Müllensiefen, Daniel and Halpern, Andrea

What's Behind Hits and False Alarms in Musical Memory?

You may cite this version as: Müllensiefen, Daniel and Halpern, Andrea. 2011. 'What's Behind Hits and False Alarms in Musical Memory?'. In: 4th Conference on the Neurosciences and Music. Edinburgh, United Kingdom June 9-11. [Conference or Workshop Item] : Goldsmiths Research Online.

Available at: http://research.gold.ac.uk/10216/

COPYRIGHT

All material supplied via Goldsmiths Library and Goldsmiths Research Online (GRO) is protected by copyright and other intellectual property rights. You may use this copy for personal study or research, or for educational purposes, as defined by UK copyright law. Other specific conditions may apply to individual items.

This copy has been supplied on the understanding that it is copyright material. Duplication or sale of all or part of any of the GRO Data Collections is not permitted, and no quotation or excerpt from the work may be published without the prior written consent of the copyright holder/s.
What’s Behind Hits and False Alarms in Musical Memory?
Daniel Müllensiefen, Goldsmiths, University of London
Andrea R. Halpern, Bucknell University

Question
What is it about a melody that makes listeners think that they have heard it before?

Answer
Motivic patterns that are rare in a melody corpus increase both hits and false alarms.

Some melodies elicit a higher sense of familiarity than others

What’s the Approach?
Predict human memory judgments by quantitative information about the structure of real melodies. Use corpora of melodies to approximate real-life listening histories and musical knowledge.

Summary Features
Computed from notes of a melody ignoring note order, e.g. note density indexing complexity of melody

Motivic patterns (m-types features)
Computed from frequency distribution of short note sequences observing note order.

What’s the Evidence?

The Experiment:
Recognition task including study list of 40 melody items and test list of 80 items, half old and half new.

Participants:
34 adults with low musical background.

Stimuli:
80 melodic phrases (testset corpus) randomly drawn from the vocal lines of 14,063 commercial pop songs (pop corpus) and unfamiliar to participants.

Task:
Confidence rating on 6-point scale “How sure are you that you have heard this melody before?”

Melody eliciting highest “old” ratings:
Drifters – “Under the Boardwalk” [37]

Melody eliciting highest “new” ratings:
W. Houston – “I wanna dance with somebody” [44]

Regression Analysis
a) Random mixed effects modeling for all-item as well as old-item trials and new-item trials separately.
b) Model selection based on model fit (log-likelihood), model parsimony, significance of predictor coefficients.

Results
All-item model: $R^2 = .253$

<table>
<thead>
<tr>
<th>Fixed effects</th>
<th>beta</th>
<th>std error</th>
<th>t</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>1.9</td>
<td>0.85</td>
<td>2.28</td>
<td>[0.3, 3.6]</td>
</tr>
<tr>
<td>Condition (old/new)</td>
<td>-0.9</td>
<td>0.05</td>
<td>-18.46</td>
<td>[-1, -0.8]</td>
</tr>
<tr>
<td>Commonness of note density in testset</td>
<td>0.4</td>
<td>0.23</td>
<td>1.66</td>
<td>[-0.1, 0.8]</td>
</tr>
<tr>
<td>Commonness of motivic patterns in testset</td>
<td>-53.3</td>
<td>54.59</td>
<td>-0.97</td>
<td>[-155, 53]</td>
</tr>
<tr>
<td>Variance in rarity of motivic patterns</td>
<td>-7.0</td>
<td>2.43</td>
<td>-2.88</td>
<td>[-12, -2]</td>
</tr>
<tr>
<td>Proportion of rare motivic patterns in testset</td>
<td>1.4</td>
<td>0.53</td>
<td>2.64</td>
<td>[0.4, 2.4]</td>
</tr>
</tbody>
</table>

Old-item model: $R^2 = .276$

<table>
<thead>
<tr>
<th>Fixed effects</th>
<th>beta</th>
<th>std error</th>
<th>t</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>2.6</td>
<td>1.19</td>
<td>2.2</td>
<td>[0.4, 4.7]</td>
</tr>
<tr>
<td>Variability of melodic Contour</td>
<td>0.1</td>
<td>0.03</td>
<td>2.53</td>
<td>[0.02, 0.12]</td>
</tr>
<tr>
<td>Commonness of motivic patterns in testset corrected by frequency in melody</td>
<td>-12.9</td>
<td>7.1</td>
<td>-1.82</td>
<td>[-25.4, 0.1]</td>
</tr>
<tr>
<td>Variance in rarity of motivic patterns</td>
<td>-7.3</td>
<td>3.99</td>
<td>-1.82</td>
<td>[-14, -0.2]</td>
</tr>
</tbody>
</table>

New-item model: $R^2 = .229$

<table>
<thead>
<tr>
<th>Fixed effects</th>
<th>beta</th>
<th>std error</th>
<th>t</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>0.6</td>
<td>0.24</td>
<td>2.5</td>
<td>[0.1, 1.0]</td>
</tr>
<tr>
<td>Commonness of overall duration wrt pop-corpus</td>
<td>-0.8</td>
<td>0.43</td>
<td>-1.99</td>
<td>[-1.7, -0.1]</td>
</tr>
<tr>
<td>High repetition of rare motivic patterns wrt pop-corpus</td>
<td>-1.1</td>
<td>0.5</td>
<td>-2.28</td>
<td>[-2.1, -0.2]</td>
</tr>
</tbody>
</table>

So what? - Interpretations
When is recognition correct (what makes a hit)?
Rare motivic patterns stand out at encoding and a stronger memory trace is generated. Also, at recognition, attention is directed towards rare motivic patterns and hits are facilitated.

What creates illusions of familiarity (false alarms)?
Attention is directed towards rare motivic patterns at recognition and an unusual motive is registered. This registration is misattributed to recognition and leads to a false alarm.