GOLDSMITHS Research Online
Printed Ephemera

Seipp, Karsten

Graduate Festival Academic Poster Competition Winner 2014

You may cite this version as: Seipp, Karsten. 2014. Graduate Festival Academic Poster Competition Winner 2014. [Printed Ephemera] : Goldsmiths Research Online.

Available at: http://research.gold.ac.uk/11286/

COPYRIGHT

All material supplied via Goldsmiths Library and Goldsmiths Research Online (GRO) is protected by copyright and other intellectual property rights. You may use this copy for personal study or research, or for educational purposes, as defined by UK copyright law. Other specific conditions may apply to individual items.

This copy has been supplied on the understanding that it is copyright material. Duplication or sale of all or part of any of the GRO Data Collections is not permitted, and no quotation or excerpt from the work may be published without the prior written consent of the copyright holder/s.
Introduction

Touchscreen smartphones can be operated in portrait (P) and landscape (L) orientation. Previous research [1, 2, 4, 7] suggests that a landscape layout is quicker to perceive but it remains unclear if it actually performs better than a portrait one and which areas are the best for positioning an element.

We investigate whether a touchscreen smartphone is faster to operate in P or L and where to put a button in each layout for best findability and operability.

How?

In line with various sources on optimum button size [3, 5], we laid out a series of 3, 5, and 8 buttons in both orientations on an HTC Sensation XE. Each button was 53 x 53 pixels in size, had a grey background and black type to minimize the effect of visual salience.

First round (R1):

• 44 users to tap a target consisting of a three-letter-word, target name shown on task screen
• In portrait and landscape
• In a layout consisting of 3, 5 or 8 buttons

Second round (R2):

• same as R1, but colour names shown using method similar to Stroop effect [6] to require brief consideration of target before selection
• task screen vanishes automatically after one second in portrait and landscape
• in a layout consisting of 3, 5 or 8 buttons

Results

R1: The ANOVA showed no statistically significant difference between P and L or the target positions, only a main effect for button amount, which is expected. F(2,86) = 91.04, p<.001. Bonferroni: alpha : 0.05/3 = 0.017

R2: The ANOVA showed three effects and one interaction:

<table>
<thead>
<tr>
<th>Amount</th>
<th>Orientation</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>F(2,86)=25.205, p<.001</td>
<td>F(1,43)=36.42, p<.001</td>
<td>F(2,86)=12.53, p<.001</td>
</tr>
</tbody>
</table>

Breakdown:

- 3 buttons (Median: 1170.00) is faster than 5 buttons (Median: 1302.88), Z = 4.28, p < .001
- and 5 buttons is faster than 8 buttons (Median: 1389.50), Z = 4.81, p < .001
- End is faster than Start (Median: 1483.30); Z = 5.59, p < .001

Bonferroni: alpha : 0.05/2 = 0.025

Interaction

- 3 Buttons
 - Start is faster than End (Median: 1378.25), Z = 5.59, p < .001
- 5 Buttons
 - Middle is faster than Start (Median: 1408.25), Z = 7.62, p = .006; although not statistically significant
- 8 Buttons
 - Middle is faster than End (Median: 1285.38); Z = 4.34, p<.001

Bonferroni: alpha : 0.05/3 = 0.017

Tips for Designers

When designing time-critical applications, favour landscape orientation over portrait. In addition, the user’s visual focus set by a dialogue has a higher impact on interaction time than the proximity of the finger to an element. Therefore, put a button you would like the user to perceive first in the same place as your preferred option. In portrait orientation, place these to the bottom and the top respectively.

References
