
Semi-Automated Design Space

Exploration for Formal Modelling?

Gudmund Grov1, Andrew Ireland1, Maria Teresa Llano2, Peter Kovacs1

Simon Colton2, and Jeremy Gow2

1 Heriot-Watt University, School of Mathematical and Computer Sciences
{G.Grov,A.Ireland,PK157}@hw.ac.uk

2 Goldsmiths College, University of London
{m.llano,s.colton,j.gow}@gold.ac.uk

Abstract. Re�nement based formal methods allow the modelling of sys-
tems through incremental steps via abstraction. Discovering the right
levels of abstraction, formulating correct and meaningful invariants, and
analysing faulty models are some of the challenges faced when using this
technique. We propose Design Space Exploration that aims to assist a
designer by automatically providing high-level modelling guidance.

Keywords: Design, Abstraction, Event-B, Theory Formation.

1 Introduction
During the development of software intensive systems, the mathematical rigour
of formal methods brings unique bene�ts. Speci�cally, the precision of a formal
notation enables design decisions to be clearly communicated and formally ver-
i�ed. However, the use of a formal notation alone is not su�cient to achieve
these bene�ts. Developing design models at the �right� level of abstraction is
a creative process, requiring signi�cant skill and experience on the part of the
designers. Typically within industrial-scale projects, a design will be modelled at
too concrete a level, with the details obscuring the clarity of key design decisions,
making it harder to determine if the customer's requirements have been satis-
�ed. In addition, starting with too concrete a design may prematurely �lock� the
design team into a particular solution and increase the complexity of the asso-
ciated formal veri�cation task, i.e. proving properties of the design. Addressing
these problems would signi�cantly leverage the creativity of a designer.

We aim at developing a tool that analyses the work of a designer behind the
scenes, and automatically suggests design alternatives for Event-B models [1] �
alternatives which improve the clarity and correctness of a design. Moreover, a
tool that explains for each alternative what issue it is addressing and how it will
e�ect the design as a whole. The tool will be semi-automatic in that while the
analysis and synthesis outlined above will be automatic, the designer will remain
in full control of the design process. We believe that we can achieve this goal
by combining common patterns of modelling with techniques from automated
reasoning, in particular automated theory formation. This paper takes the �rst

? This work has been supported by EPSRC platform grants EP/J001058/1 and
EP/N014758/1, and FP7 WHIM project 611560. We are grateful for feedback on
our approach by Jean-Raymond Abrial.

2 Grov, Ireland, Llano, Kovacs, Colton and Gow

steps towards such tool. As a working example, consider the requirements given
below of a simpli�ed protocol for transferring money between bank accounts:

R1: the sum of money across all accounts should remain constant;
R2: transactions can only be completed if the source account has enough funds;
R3: if an amount m is debited from a source account, the target account should

be credited by m;
R4: progress should always be possible (no deadlocks).

A designer might choose to represent the protocol as follows in Event-B:

start(a1, a2,m)
def
= when a1 /∈ active

then pend := pend ∪ {((a1, a2),m)} || active := active ∪ {a1}
debit(a1, a2,m)

def
= when ((a1, a2),m) ∈ pend ∧ bal(a1) ≥ m

then bal(a1) := bal(a1)−m || pend := pend \ {((a1, a2),m)} ||
trans := trans ∪ {((a1, a2),m)}

credit(a1, a2,m)
def
= when ((a1, a2),m) ∈ trans

then bal(a2) := bal(a2) +m || trans := trans \ {((a1, a2),m)} ||
active := active \ {a1}

The chosen approach involves three steps, each of which is represented through
an event that is parametrised by the names of the source (a1) and target (a2)
accounts, along with the value of money (m) associated with the transfer. Step
one (event start) initiates a transfer by adding the transaction to a pending set
(pend), and uses a set (active) to ensure that an account can only be the source
of one transfer at a time. Note that || denotes parallel execution. The second
step (event debit) removes the funds from the source account if su�cient funds
exist � bal denotes a function that maps an account to its balance. If successful,
the transaction is removed from the pending set and is added to the transfer set.
The �nal step (event credit) completes the transaction by adding the funds to
the target account, as well as updating the trans and active sets accordingly.
Finally, requirement R1 is formalised as an invariant, I1: Σa∈dom(bal)bal(a) = C
where C is a constant that represents the sum of money across all accounts.

This design abstraction only represents a starting point for the modelling
process. A designer will next re�ne their design ideas through a series of pro-
gressively more concrete design abstractions. This gives leverage over the in-
herent complexity of the design process, enabling the designer to incrementally
achieve a customer's requirements. Crucially each re�nement step must be for-
mally proved correct. This process is called correctness-by-construction. A longer
version of this paper is available on ArXiV [5].

2 Towards Design Space Exploration
Key to the style of modelling outlined above is abstraction � the ability to create
a design at the right level of detail; and to �glue� it to any abstract model
through a set of gluing invariants. Trial-and-error is very much part of the expert
methodology, where low-level proof failures are examined, and design alternatives
in terms of abstractions are experimented with manually (see [2]). Within Design

Semi-Automated Design Space Exploration for Formal Modelling 3

Space Exploration, our goal is to automate much of the low-level grind associated
with the trial-and-error nature of formal modelling, and provide a designer with
high-level modelling advice in real-time.

In particular, we aim to generate alternative models at a higher level of
abstraction than the original model to deal with a �aw. The intuition is that
the �aw is a result of being too concrete. Moreover, within a correct abstraction,
the designer has the additional burden of correctly de�ning the system behaviour
and supplying numerous auxiliary invariants that are required for the formal
veri�cation process. To support this, we will suggest adaptations of the initial
model at the same level of abstraction. This could be for instance in terms of
additional invariants, or even changes to the behaviour of the system. As can
be seen in the next section, unconstrained generation of new models will result
in an enormous search space which will be infeasible in practice. Instead, the
approach we are proposing has two phases, analysis and generation, which
will iterate until a satisfactory solution is found, possibly including user input.

Analysis phase Automated Theory Formation (ATF) is a technique that in-
vents concepts to describe and categorise examples from the input domain, makes
conjectures which relate the concepts, and seeks proofs and counterexamples to
determine the truth of the conjectures. The HR ATF system [3] will be used
in the analysis phase to explore given Event-B models and highlight problem-
atic areas. A major challenge will be to �nd heuristic techniques that e�ectively
prune the design space so that a designer is presented with a useful set of mod-
elling alternatives. This analysis will aim to pin-point both where and what the
problem may be in order to guide the generation phase, and to identify the most
interesting solutions. Our approach will be a signi�cant evolution of our previous
work on using HR for Event-B [4, 9], where we will explore unrestricted theo-
ries and include event information in order to explore hypotheses related to the
events. We explore simulation traces derived from simulating models, to iden-
tify conjectures that are associated with failed steps from the simulation trace.
This strategy has proven successful as evidenced in [4], and is extended here by
including event information. This will indicate that a variable or an event are
associated with failures in the model and therefore should be the focus for the
generation phase, as will be illustrated in �3. This section also illustrates how
HR can be used to exploit erroneous user given invariants in order to suggest
adaptations of them. We will also search for invariants that are required in order
to prove the consistency between the abstract and concrete models; i.e. gluing
invariants, which we have already explored in [9]. Finally, we will exploit HR's
support for the generation of near conjectures, i.e. conjectures that are true for
a percentage threshold of the examples they have. Building upon this function-
ality, we will explore how this can be tailored to the needs of formal modelling.
That is, although formal methods are typically based on de�nite answers, e.g.
a property is either true or false, we believe that a weaker notion of truth is
called for when exploring design alternatives, what we call near-properties; i.e.
properties that are true for most, but not all, behaviours, e.g. �event X always
violates invariant I, but it is always re-established by event Y �. Paying attention

4 Grov, Ireland, Llano, Kovacs, Colton and Gow

to such properties can lead to insights and in particular suggest solutions which
lie just beyond the fringe of what is currently true about a design.

Generation phase The results of the analysis phase are then used in the
model generation phase, where alternative abstractions and adaptations of the
model are generated. The system must be able to `explore' design alternatives
also for new and previously unseen scenarios. The component that performs the
actual generation of new abstractions and adaptations can therefore not be too
prescriptive, as was the case with our reasoned modelling critics [6]. For his (un-
published) honours dissertation, one of the authors (Kovacs) has made the �rst
step towards such a component by implementing a generic framework for model
generation as a plug-in to the Rodin tool-set [7]. The key feature of this plug-in
is that it has a layered design: at the bottom is a set of low-level but generic
`atomic operators' that make small changes to a model, e.g. `delete variable'
and `merge events'. These atomic operators can then be combined in order to
generate new models, and constrained to reduce the number of possible models
generated. It is up to the system to �nd the right combination of operators and
to constrain them in the best possible manner. Thus, a �complete� set of atomic
operators would allow the generation of all possible alternative models. This
gives �exibility to our proposed approach to Design Space Exploration, enabling
us to handle new and unforeseen circumstances. Due to space constraints, the
details of this tool has been omitted and we refer the interested reader to [5, 7].
In �3 we give examples of how this framework is used.

Common patterns of modelling As will be illustrated in �3, common mod-
elling patterns will play a central role in �nding the right combination of oper-
ators. These will be at a very high-level to enable �exibility in terms of their
application and therefore enable us to provide assistance in situations where
there are no applicable design patterns. The analysis will be used to suggest
suitable patterns and guidance as to how they can be implemented. To support
this, we have already identi�ed several re�nement patterns [4] in previous work;
however as we cannot re�ne away �aws, this will be applied in inverse, essentially
turning them into abstraction patterns. Some abstraction patterns have also been
identi�ed and represented using the operator framework in [7]. The experiments
in the next section are utilising two patterns: (1) �undoing� bad behaviour by
introducing a special error (or exception) case; and (2) abstracting away the
problem when it can be pinpointed between certain events. This amounts to
�atomising� sequential events into a single event.

3 Illustrative examples and initial experiments
In terms of realising our vision we have undertaken experiments at the level of
analysing design models as well as mechanising generation. We present these
experiments next. The selection of operators and the integration of the two
phases is currently manual; our ultimate goal is to automate the full development
chain.

Semi-Automated Design Space Exploration for Formal Modelling 5

Starting from the initial

development, abstraction

(A1) and adaptation (A2)
are suggested to deal with

violation of requirement

R4. Given that I1 is a

near-invariant, a new in-

variant is suggested in

(A3); or an abstraction

(A4) with the required

gluing invariant.

Fig. 1. A diagrammatic summary of a small design space exploration.

Consider again the user provided model of a money transfer protocol given
in �1. As it stands, the model is �awed since R4 is violated when all accounts
have started a transaction but none of the source accounts have su�cient funds.
Moreover, event debit violates invariant I1 since the amount removed from the
source account is not accounted for in the invariant, which breaks requirement
R2. Our aim in such situations will be to o�er the designer modelling alternatives
that address the �aws. Figure 1 summarises the alternatives generated through
our approach, and below we outline how this was achieved. More details can be
found in the long version of the paper [5].

Abstraction A1 The �rst step of the analysis is to generate simulation traces
by running the ProB simulator [8], which will also check if the invariants hold.
This is input for HR which will use the concept good for states in which ProB
did not �nd any invariant violations. HR is then used to search for properties
that involve the concept ¬good, and this analysis suggest that the generation of
bad states are associated to event debit and variable active.

We can apply the �abstract away� pattern to this violation. One implemen-
tation of this pattern is to remove the variable that two (sequential) events use
to communicate an intermediate result, and then combine this sequence into an
atomic event. A naive application of this pattern in our operator framework will
generate 12 alternatives, however by constraining the generation to always in-
clude the event debit and variable active, this is reduced to 2 alternatives (thus
pruning the search space by 83%), one of them being the desired abstraction:

debitabs(a1, a2,m)
def
= when a1 /∈ active ∧ bal(a1) ≥ m

then active := active ∪ {a1} || bal(a1) := bal(a1)−m
|| trans := trans ∪ {((a1, a2),m)}

Adaptation A2 An alternative analysis is to apply the error-case pattern.
Intuitively, this means introducing a new �error-handling� event that will �undo�
some previous state changes when the desired path is not applicable. This can be

6 Grov, Ireland, Llano, Kovacs, Colton and Gow

implemented so that it reverses a previous action in cases when an event of the
desired path stays disabled. This require transformations to negate an event's
guard, reverse an action of an event and combine the guards of one event with the
actions of another. Here a naive implementation will generate 10 alternatives,
while if we apply the same constraints as in (A1) then this is reduced to 7,
including the generation of the error-handling event:

debiterr(a1, a2,m)
def
= when ((a1, a2),m) ∈ pend ∧ bal(a1) < m

then pend := pend \ {((a1, a2),m)} ||
active := active \ {a1}

debiterr handles the case when the source account does not have enough funds.

Adaptation A3 Let's assume the user selects A1. Through analysis of this
alternative, invariant (I1) is still violated and HR is re-applied. Through manual
inspection of the result of HR, we can see that we are in a �bad state� when trans
and active are not empty, i.e. when there are transactions currently in progress.
As a results HR is re-applied to search for conjectures that involve the concepts
trans and active as well as the invariant itself; i.e. C = Σa∈dom(bal) bal(a). HR
is then able to generate an adaptation of the invariant I1 that addresses the
violation by debitabs. Note that this adaptation is achieved by including the
�internal state� trans within the invariant. The Event-B representation of the
invariant, which replaces I1, is:

I2: Σa∈dom(bal)bal(a) +Σ(a1,a2)∈dom(trans)trans(a1, a2) = C

Abstraction A4 Although correct, invariant I2 is not a natural representation
of R1, as compared with near-invariant I1. The designer may wish to explore
an alternative abstraction in which I1 is an invariant. Our �nal alternative A4
represents such an abstraction. Based on the output given by HR for alternative
A1, we can re-apply our �abstract away� pattern, albeit with a slighly modi�ed
implementation that deletes two variables. Unconstrained, this operator will gen-
erate 6 possible alternatives, while a constrained application, which takes into
account the analysis, only generates 2 alternatives, one of them being the desired
transfer event3:

transfer(a1, a2,m)
def
= when abal(a1) ≥ m ∧ a1 6= a2

then abal(a1) := abal(a1)−m ||
abal(a2) := abal(a2) +m

Finally, in order to prove the consistency between the abstract and concrete
models, a gluing invariant is required. Therefore, we enter again in an analysis
phase where HR is used to form a theory of the re�nement step and search for
the invariant. HR is able to �gure out the relation between the abstract variable

3 Technically, the Event-B syntax of the action should be: abal := abal /−{a1 7→
abal(a1)−m,a2 7→ abal(a2) +m}

Semi-Automated Design Space Exploration for Formal Modelling 7

abal and the concrete representation; i.e. variables bal and trans. Part of our
future work will be focused on tailoring HR for the formal methods context so
that invariants such as the gluing invariant required in this re�nement step can
be formed.

4 Conclusion and future work
Focusing on Event-B, we have introduced our approach to Design Space Ex-
ploration for formal modelling, supported by an initial implementation with
partly automated experiments. Currently, the sub-components of our approach
are partly automated, while their integration is manual. HR has to be manu-
ally guided and we have to manually inspect its output as well as select and
combine the relevant operators to perform the generations. Our goal is to fully
automate all parts, and provide users with a list of new (and ideally ordered by
perceived relevance) modelling alternatives. The approach is semi-automatic in
that the user will decide on how to use the alternatives. In this paper we have
provided the �rst step towards realizing our goal and have shown the feasibility
of the overall approach. However, there is still a long way to go: we have already
discussed the desirable features for the analysis phase; in addition, we need to
identify a su�ciently small, yet complete, set of atomic operators, constraints
and combinators, in order to be able to generate all necessary alternatives in
the generation phase. It is crucial that these are controlled to avoid generating
duplicates. The phases must then be integrated to be able to automate the selec-
tion and combination of operators based upon the analysis. The level of support
we aim to provide is very ambitious. If successful, our approach will increase the
productivity and accessibility of Event-B, but more importantly, it will provide
valuable insights into how formal methods can be deployed more widely.

References

1. J.-R. Abrial. Modeling in Event-B - System and Software Engineering. Cambridge
University Press, 2010.

2. M. Butler and D. Yadav. An incremental development of the mondex system in
Event-B. Formal Aspects of Computing, 20(1):61�77, 2008.

3. S. Colton. Automated Theory Formation in Pure Mathematics. Springer, 2002.
4. G. Grov, A. Ireland, and M. T. Llano. Re�nement plans for informed formal design.

In ABZ, volume 7316 of LNCS, pages 208�222. Springer, 2012.
5. G. Grov, A. Ireland, M. T. Llano, P. Kovacs, S. Colton, and J. Gow. Semi-

Automated Design Space Exploration for Formal Modelling. arXiv:1603.00636.
6. A. Ireland, G. Grov, M. Llano, and M. Butler. Reasoned modelling critics: turning

failed proofs into modelling guidance. SCP, 78(3), 2013.
7. P. Kovacs. Automating abstractions in formal modelling, 2015. Heriot-Watt Uni-

versity, Undergraduate Honors Thesis. Available from http://bit.ly/1JnL0Ts.
8. M. Leuschel and M. J. Butler. ProB: A model checker for B. In Proceedings of

Formal Methods Europe 2003, pages 855�874, 2003.
9. M. T. Llano, A. Ireland, and A. Pease. Discovery of invariants through automated

theory formation. Formal Aspects of Computing, 2012.

