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HIGHLIGHTS 
 
 
 

1.   Body part boundaries modulate perceived tactile distance from 5 years of age. 

2.   As in adulthood, 5- to 7-year-old children perceive tactile stimuli that cross 

over a body part boundary (the wrist), as further apart than two stimuli 

presented within the bounds of a body part. 

3.   We report the first observation in children of Weber’s Illusion: 

4.   From 5 years of age, children perceive the distance between two points 

presented on the skin surface to be larger in regions of high tactile acuity (the 

palm) compared to those of low tactile acuity (the ventral forearm) (i.e., 

Weber’s illusion). 

5.   We propose that a part-based (topological) body representation is particularly 

advantageous during early life given the constant change in the metric 

properties inherent in physical growth. 
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ABSTRACT 

 

Studies show that touch in adults is referenced to a representation of the body that is 

structured topologically according to body parts; the perceived distance between two 

stimuli crossing over a body part boundary is elongated relative to the perceived 

distance between two stimuli presented within one body part category. Here we 

investigate this influence of body parts on tactile space perception in children of five, 

six and seven years of age. We presented children with pairs of tactile stimuli on the 

left hand/arm, either within the hand, within the forearm, or over the wrist. With their 

eyes closed children were asked to adjust the distance between the thumb and 

forefinger of their right hand to represent the felt distance between the two tactile 

stimuli. Like adults, the children perceived the distance between two stimuli that cross 

the body part boundary to be further apart than those that were presented within the 

hand or arm. They also perceive tactile distance to be greater on the hand than the arm 

which is the first observation of Weber’s illusion in young children. We propose that 

a topological mode of body representation is particularly advantageous during early 

life given that body part categories remain constant while the metric proportions of 

the body change substantially as the child grows.  
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Body parts are a particularly salient category set during early childhood. Body 

part nouns are among the earliest words that infants learn, with evidence of 

comprehension as young as 6 months of age (Tincoff & Jusczyk, 2012). Body parts 

are also the focus of many early social interactions including songs and games (such 

as “Simon Says” and “Heads, Shoulder, Knees and Toes”), in which children are 

taught about the body as a collection of separable parts, with distinct labels and 

functional roles. Indeed, this structural breakdown of the body is seen throughout life 

in language (Enfield, Majid & Van Staden, 2006), semantics and action (Bermudez, 

1998). It is also likely that body parts become more salient as a child’s action 

repertoire develops. With the acquisition of skilled action the child begins to select 

and coordinate individual body parts for the appropriate tasks rather than employing a 

limb as a monolithic whole (Assaiante & Amblard, 1995; Berthier, Clifton, McCall & 

Robin, 1999). These emerging distinct functional roles of body parts (e.g., the arm as 

an extender, the hand as a grasper) may support the consolidation of perceptual body 

part categories, segmenting them according to their functional boundaries (the joints). 

Nonetheless, little is known about the development of part-based perceptual 

representations of the child’s own body. 

Converging neuropsychological studies (Buxbaum & Coslett, 2001; McGeogh 

& Ramachandran, 2011; Melzack, 1989, 1990; Ramachandran & Hirstein, 1998) 

suggest that adults have a representation of body structure, the Body Structural 

Description (Buxbaum & Coslett, 2001), which codes the body topologically, i.e., in 

terms of body parts and their adjacencies. It is thought that such part-based 

representations of the body in healthy adults lead to distortions of tactile space (de 

Vignemont, Tsakiris & Haggard, 2005; Le Cornu Knight, Longo & Bremner, 2014; 

Mancini, Longo, Iannetti & Haggard, 2011; Tsakiris, 2010; Tsakiris, Constantini & 
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Haggard, 2008). De Vignemont and colleagues (2009) report a perceptual elongation 

of distance between tactile stimuli presented over a body part boundary (the wrist), 

relative to those presented within one part (e.g., the hand). Reminiscent of the 

category boundary effect found in other sensory domains (e.g., Kay & Kempton, 

1984), two stimuli presented on one body part are perceived to be more similar in 

location than they actually are (i.e., closer together) whereas those that fall on either 

side of the body part boundary are perceived to be more distinct (further apart). 

Le Cornu Knight, Longo and Bremner (2014) tested an alternative possible 

interpretation of the tactile category boundary effect reported by De Vignemont et al. 

(2009). They considered whether the elongation of tactile distance over the wrist 

could result from Weber’s illusion. Weber observed that perceived distance between 

tactile stimuli increases in line with increases in spatial acuity. Thus the perceived 

elongation over the wrist could be explained by a localized increase in acuity in that 

area (Cody et al., 2004). However, Le Cornu Knight et al. showed that the elongation 

of tactile distance only occurred in one direction, across the wrist, rather than both 

across and along the wrist boundary. This shows that the effect is specific to crossing 

the wrist boundary rather than the region of the wrist per se, and is therefore 

consistent with the proposal that a perceptual elongation of tactile distance over the 

wrist is due to a central part-based representation of body structure. No research has 

yet investigated the developmental origins of the influence of part-based 

representation of the body on tactile perception. 

Developmental research into body representations has largely focused on what 

infants know about the bodies of others. Young infants appear to hold a basic 

representation of the typical human form, which continues to develop over infancy 

(Gliga & Dehaene-Lambertz, 2005; Heron & Slaughter, 2008; Heron-Delaney, Wirth 
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& Pascalis, 2011; Slaughter & Heron, 2004; Slaughter, Heron-Delaney & Christie, 

2011). By nine months of age infants expect individual body parts to be attached to a 

whole body (Slaughter & Heron, 2011), and are sensitive to the relative proportions of 

body parts (Zieber, Bhatt, Hayden, Kangas, Collins & Bada, 2010). Such studies 

suggest that infants hold a basic model of the typical human form and the spatial 

relation between the parts. However they do not address how infants represent their 

own bodies. 

Brownell, Nichols, Svetlova, Zerwas and Ramani (2010) investigated 

developing knowledge of the layout of own-body parts in 20- to 30-month-old 

children. In this study, participants were asked to place stickers on specified body 

parts, copying an experimenter, and to imitate meaningless gestures aimed at a 

specified site. Younger children were able to accurately locate two or three common 

body parts (e.g., hand and foot). By 30 months, children were able to locate almost 

twice as many body parts including less commonly defined sites (e.g., neck), but still 

did not perform at ceiling. Such findings have shown that there is a rudimentary 

knowledge of the layout of body parts by the second birthday. It remains unclear 

however, whether such knowledge of parts impacts on own-body perception as it does 

in adults (de Vignemont et al., 2009; Le Cornu Knight et al., 2014).  

In the present study, we examined the extent to which body parts structure 

tactile perception in early childhood. We measured the modulatory effect of body part 

boundaries on tactile distance estimation in children aged five-to-seven years, 

adapting de Vignemont et al.’s (2009) tactile distance estimation task for this purpose. 

The body and limbs continue to grow rapidly in early childhood, accompanied by 

substantial developments in motor skills (Henderson, Sugden & Barnett, 2007). As 

these factors might potentially impact on the representation of body parts, we 
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identified early childhood as a potentially fertile period for investigation. Through a 

process of piloting, it was apparent that five-year-olds were the youngest age group 

that could comply to task demands eliciting estimations of tactile distance. In this task 

participants are presented with tactile pairs in the proximodistal axis either within the 

hand or arm or crossing the wrist. Rather than asking children to estimate tactile 

distances with a verbal response (de Vignemont et al., 2009), which was deemed to 

difficult for these age groups, we asked them to adjust the distance between their 

thumb and forefinger to indicate their estimation. We expected that, like adults (de 

Vignemont et al., 2009; Le Cornu Knight et al., 2014), children would perceive tactile 

distances as greater when the stimuli crossed the wrist than if they remained within 

the arm or hand. We made this prediction given that a bias towards a representation of 

topological spatial relations is seen early in development in other spatial domains 

(Newcombe, Huttenlocher, Drummey & Wiley, 1998; Newcombe & Huttenlocher, 

2000; Piaget and Inhelder, 1948). We also considered that topological representations 

of body structure are likely to be particularly valuable in early development given 

that, whilst the body is changing in size and proportion, the part-based relationships 

remain constant and therefore provide a stable basis for representing the body. 

Method 

Participants 

Forty-eight typically developing children participated, in three age groups (5-, 

6-, and 7-year-olds; see Table 1). All participants reported that they were right 

handed, and this was tested by asking them to write their name. All also had normal 

or corrected-to-normal vision. Three five-year-olds were excluded as they failed to 

complete the trials. Informed consent was obtained from all of the children’s parents. 
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Experimental procedures were approved by the Department of Psychology Research 

Ethics Committee at Goldsmiths, University of London. 

--Insert Table 1 about here-- 

Materials and design 

Participants were seated at a table with their left arm resting on a table, palm 

up and outstretched (Fig. 1). A black screen (30 x 30 cm) was placed immediately to 

the right of the participant’s left arm in order to obscure that arm and the stimuli from 

view. Participants were asked to estimate the distance between two tactile stimuli 

presented to the left forearm and hand. Stimuli were delivered using two plastic pins 

with blunt but well-defined ends (approx. 1 mm diameter) attached to a ruler at 

separations of 15 mm (“Short”), 35 mm (“Medium”) and 55 mm (“Long”). These 

distances are somewhat shorter than those used by de Vignemont et al. (2009) in order 

to account for the smaller hands of the child participants. The participant’s right hand 

rested comfortably in front of them on the table, with the thumb and forefinger placed 

on a long strip of graph paper extending away from the body. The experimenter use 

the graph paper to record the participants’ responses. 

--Insert Figure 1 about here-- 

On each trial, a tactile pair was presented to the ventral surface of the left 

forearm/hand in a proximodistal orientation (i.e., along the length of the 

forearm/hand). Each tactile pair was centred around a predefined presentation point 

on one of three body parts (Hand, Wrist and Forearm; see Fig. 2). 

--Insert Figure 2 about here-- 

Across trials, tactile pairs of three varying Distances (short, medium, long), 

were presented on each of the three Body parts (Hand, Wrist, Forearm), yielding nine 

unique trials. Each of these nine trial types was presented 3 times, in a pseudorandom 



	
   9 

order that was varied between participants. Thus, participants completed 27 trials in 

total. Raw distance estimates for each trial were plotted against the actual tactile 

distances presented across Distance and Body Part conditions, yielding a regression 

line for each participant from which R2 and y-intercept values were calculated. R2 

values for each participant thus provided a measure of their overall discriminative 

sensitivity. And y-intercepts provided an overall measure of bias in their estimates 

(with positive values indicating over-estimation, and negative values 

underestimation). These overall measures of discriminative sensitivity (R2) and bias 

(y-intercept) in participants’ tactile distance estimates were compared across age 

groups using univariate analysis of variance (ANOVA). Judgment error scores were 

next calculated for each participant for each condition by subtracting the actual 

distance presented from the estimated distance for each trial. Therefore these 

judgment error scores provided an index of distortions of perceived tactile distance 

relative to the veridical. Positive judgment errors represented an overestimation, and 

negative errors represented an underestimation of distance. As we were not interested 

in children’s estimation of different distances, we collapsed scores across Distance 

conditions for judgment error analysis. Judgment errors were thus entered into a 

mixed 3 x 3 ANOVA (Body part x Age group). 

Procedure 

The participants were asked to keep their eyes closed during testing and the 

experimenter monitored this throughout. As already mentioned, an occluding screen 

was also in place to prevent the participants seeing their left arm or the tactile pairs 

between trials. On each trial the participants were presented with two simultaneous 

tactile stimuli which were separated in the proximodistal axis along the ventral 

forearm/hand. The experimenter was careful to apply equal pressure across the pins 
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and across trials. The participants were asked to adjust their thumb and forefinger to 

represent the felt distance between the stimuli. The children were asked to say "ready" 

once they had decided upon finger positioning, at which point the experimenter 

terminated stimulation and marked the response at the tip of each finger on a strip of 

graph paper. Prior to the experimental trials, the participants received five practice 

trials, with feedback, in which they were allowed to see their response hand but not 

the stimulated one. During this time, the pressure of the tactile stimuli was discussed 

with the participant to ensure that it was firm but not uncomfortable. 

Results 

Discriminative sensitivity and bias in children’s estimations of tactile distance  

In order to determine whether the participants were able to differentiate 

between the tactile distances presented, raw distance estimates for each trial were 

plotted against the actual tactile distances presented across conditions, yielding a 

regression line for each participant from which R2 was calculated (see Table 2). We 

first compared the R2 of children’s distance estimates against zero (no discrimination) 

separately for each age group with one-sample t-tests. All age groups demonstrated an 

R2 which was reliably greater than zero (see Table 2), indicating their ability to 

discriminate tactile distances. We next examined whether these R2 values differed 

across age groups using a one way ANOVA, which revealed no reliable differences, 

F(2, 42) = 0.04, n.s., η2
p = .002. 

--Insert Table 2 about here-- 

In order to determine whether participants in each age group reliably under- or 

over-estimated the tactile distances presented to them, we calculated the y-intercept of 

each participant’s regression line of actual against estimated tactile distance. One-

sample t-tests, of the means of these y-intercept values against zero confirmed that 
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participants in all age groups significantly over-estimated tactile distance (indicated 

by positive y-intercept scores; see Table 2). We next examined whether these y-

intercept values differed across age groups using a one-way ANOVA, which revealed 

no reliable differences, F(2, 42) = 0.89, n.s., η2
p = .04. 

Judgment error scores 

The dependent variable of particular interest in this investigation was 

judgment error (estimated tactile distance – actual distance; see Fig. 3). This measure 

allows us to examine the pattern of over- or under-estimation of perceived tactile 

distances across body parts and age groups. Positive errors represent an 

overestimation of distance, and negative errors an underestimation. Judgment error 

scores (collapsed across Distance conditions) were entered into a 3 (Body part: Hand, 

Wrist, Forearm) x 3 (Age group: 5-, 6-, 7-year-olds) mixed ANOVA. We found a 

main effect of Body part, F(2, 84) = 28.0, p < .001, η2
p = .40. Post-hoc t-tests using 

bonferroni correction (α = .017) showed that this effect was driven by: i) the distance 

at the hand (M = 3.23, SD = 7.88) being significantly overestimated relative to the 

arm (M = 0.66, SD = 8.46), t(44) = 4.2, p < .001, dz = .62, and ii) the distance at the 

Wrist (M = 5.74, SD = 8.46) being significantly overestimated relative to both the 

Forearm and the Hand [Forearm: t(44) = 7.1, p < .001, dz = 1.06; Hand: t(44) = 3.8, p 

< .001, dz = 0.57]. Greater perceived tactile distance on the hand than the arm is also 

seen in adults (e.g., Le Cornu Knight et al., 2014), and is taken as an example of 

Weber's illusion (1834/1996; see also Green, 1982; Longo & Haggard, 2011). The 

current findings represent the first demonstration, as far as we are aware, that Weber's 

illusion is also a phenomenon of early childhood. Most pertinent to the current 

investigation however is the overestimation at the wrist relative to both arm and hand, 

which indicates that children between 5 and 7 years demonstrate an elongation of 
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perceived tactile space over the wrist. This finding is indicative that body part 

boundaries modulate perceived tactile distance in children, as has been observed in 

adults (de Vignemont et al., 2009; Le Cornu Knight et al., 2014). 

--Insert Figure 3 about here-- 

There was no significant main effect of Age group, F(2, 42) = 2.2, n.s., η2
p = 

.10, and no interaction of Body part and Age group (F < .1). An additional variable 

was computed, to represent the size of the categorical effect; i.e., the overestimation at 

the wrist relative to the hand and arm. This variable was the mean of all judgment 

error scores for distances presented to the Hand and Forearm, subtracted from the 

mean error scores from stimuli presented across the Wrist. A one-way ANOVA 

comparing this categorical effect variable between the Age groups revealed no main 

effect of Age group, F(2, 42) = 0.3, n.s., η2
p = .002. 

Discussion 

In adults, anatomical landmarks such as the wrist have a structuring effect on 

tactile distance estimation (de Vignemont et al., 2009; Le Cornu Knight, Longo & 

Bremner, 2014), as well as tactile localisation tasks (Flach & Haggard, 2006). On the 

basis of such findings it is argued that touch is automatically referenced to a high-

level topologically structured body representation (de Vignemont, Ehrsson & 

Haggard, 2005; Mancini et al., 2011), and that one outcome of this process is a 

resultant structuring of tactile perception; two points that are presented within the 

bounds of one body part are perceived as more similar and therefore closer together 

than those presented across a body part boundary. Here, we report the same 

perceptual distortion in children of 5 to 7 years of age. 

We have also demonstrated that, as in adults (e.g., Le Cornu Knight et al., 

2014), elongations of perceived tactile distance relative to the veridical are greater on 
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the hand than on the arm in 5- to 7-year-olds. This particular distortion is readily 

explained by Weber's illusion (1834/1996), in which perceived distance 

systematically increases in parallel with increases in the tactile acuity of a given skin 

region (Cholewiak, 1999; Green, 1982; Longo & Haggard, 2011). As far as we know, 

this is the first reported observation of Weber’s illusion in early childhood. Weber’s 

illusion as measured by our task appears to be constant across the ages of 5 to 7 years, 

and reasonably comparable to the size of such effects in adults (e.g., de Vignemont et 

al., 2009). In line with interpretations of Weber’s illusion in adults (Longo & 

Haggard, 2011; Taylor-Clarke, Jacobsen, & Haggard, 2004), we propose that the 

greater receptor density, and thus spatial acuity, in the skin of the hand than in the 

skin of the arm is what drives the differences in bias in tactile distance estimates in 

these body parts. In order to achieve tactile size constancy across physiological 

differences in acuity, adults at least partially compensate for such variations in tactile 

receptor density via reference to other spatial sense modalities (e.g., vision; Taylor-

Clarke et al., 2004). It may therefore be interesting for future studies to investigate the 

origins of tactile size constancy in early life. Here, we have observed an adult-like 

Weber’s illusion at 5 years of age. It is possible that developmental reductions in 

Weber’s illusion may be observed prior to this age, before the child has learned to 

integrate the sense of vision and touch sufficiently (e.g., see Begum Ali, Spence & 

Bremner, 2015; Rigato, Begum Ali, Van Velzen & Bremner, 2014). 

The presence of Weber’s illusion in children brings us to an alternative 

account of the observed elongation of tactile distance over the body part boundary 

which we must address. Elongation of tactile distance over the wrist could be 

explained by Weber’s illusion if there is enhanced acuity at the wrist (Cody et al., 

2008), as this would lead to an increase in perceived distance. Le Cornu Knight, 
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Longo and Bremner (2014) have ruled out such an interpretation of the tactile wrist 

boundary effect in adults, showing that tactile elongation is only observed across the 

wrist boundary, and not along it. Elongation in both directions would be predicted by 

the account based on localized acuity and Weber’s illusion. To date, no studies 

comparing tactile acuity along and across the wrist have been carried out in 

developing populations. Whilst it is therefore possible that the perceived elongation of 

distance reported here might be explained by localized increases in acuity at the wrist 

in children, given the similarity between our findings and those reported in adults 

(e.g. de Vignemont et al., 2009), we assert that our findings are by far the best 

interpreted in terms of an influence of the body part boundary on tactile perception. 

There are a range of ways in which it is possible to represent the body 

spatially. Here we have appealed to a part-based (or topological) mode of representing 

tactile distance on the body surface in childhood as has been found in adults. This 

form of spatial representation is described elsewhere in the context of spatial 

processing more broadly. For instance it is well known that both coordinate-based 

(metric) and categorical (topological) spatial codes are used in object recognition 

(Jager & Postma, 2003; Kosslyn et al., 1989). It has been suggested that categorical 

encoding may provide a particular advantage when representing flexible shapes that 

undergo contortions (Laeng, Shah & Kosslyn, 1999). The body is an example of just 

such a flexible shape; the metric relations between limbs and trunk shift continually 

across changes in body posture whereas the topological relations between parts 

remain constant. 

The precedence in early development of topological modes of representing 

space has been remarked upon in discussions of a number of domains of spatial 

cognitive development. Piaget and Inhelder (1948) argue for a qualitative shift from 
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categorical (topological) to coordinate based (metric) representations of space in 

middle childhood. More recently, others have demonstrated that both metric and 

topological modes of spatial representation are available much earlier than Piaget and 

Inhelder proposed (e.g., Newcombe et al., 2005), but nonetheless provide evidence of 

shifts in the weighting of topological to metric representations in early life 

(Newcombe et al.,1998; Newcombe & Huttenlocher, 2000). Here we argue that a 

similar process occurs in bodily representation. Importantly however, we must appeal 

to some mixture of topological and metric representational codes in interpreting our 

findings. We have clearly shown the influence of body parts on tactile distance 

estimates, but the precision of the children’s estimates within body parts (i.e., in the 

hand and arm conditions) is such that some ability to represent tactile distance 

metrically is clearly apparent. What we propose is that whilst a range of spatial codes 

are at play in young children’s body representations, there is a particular weighting 

towards a topological code in early life. 

The presence of a robust topological body representation may be of particular 

utility in early childhood. Representing the body metrically through childhood is 

likely to be difficult given the rapid physical growth from birth to adolescence which 

occurs differentially across the body, and is time-locked to specific body parts. Hands, 

for example, reach near adult size in late primary-school age, whereas arms 

experience a growth spurt much later in adolescence (Tanner, 1990). Whilst the size 

and relative proportions of the body change across development the topological 

relationships between body parts remain constant, providing a stable basis for body 

representation. A further argument for the importance of part-based representations of 

the body in early life is that such representations might provide a more practical basis 

for mapping one’s own body parts onto those of others in observing, learning and 
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refining actions. A growing body of research suggests that infants and children map 

their own motor responses to the observed actions of others (e.g., Marshall & 

Meltzoff, 2014; Southgate, 2013). Given the substantial differences in the metrics of 

adult and child bodies, we propose that any process in which children map their 

actions to those of adults (see Naish, Houston-Price, Bremner & Holmes, 2014), must 

be related to body parts. In other words, body parts provide the common basis for 

shared representation of the body and action in early life. 

We have demonstrated the influence of a part-based body representation on 

tactile space perception by 5 years of age, but questions remain concerning the 

developmental origins of such categories. One interesting avenue for future research 

concerns the possible role of language. Enfield et al. (2006) suggest that it is through 

language that we learn to delineate the body in a culturally meaningful manner, and 

language development plays an important role in category-set construction 

(McDonough, Choi & Mandler, 2003). Furthermore, there is ongoing lively debate 

concerning the role of language in structuring categorical perception (Bornstein, 

Kessen & Weiskopf, 1976; Franklin & Davies, 2004; Kay & Kempton, 1984; Whorf 

& Carroll, 1964; Winawer, Witthoff, Frank, Wu & Wade, 2007). Although it is 

important to note that the phenomenon we have reported here does not meet the strict 

definition of categorical perception similar linguistic effects might also be observed in 

this context. In certain languages (such as Croatian and Indonesian), ‘hand’ and ‘arm’ 

are referred to by the same term. It would be interesting to test whether these 

languages show such a strong category boundary effect and thus further elucidate the 

role of language in structuring body representations and categorical representations in 

general. 
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Finally, on inspecting the children’s performance at tactile distance estimation 

in the current experiment more generally, it is interesting to note that all of the age 

groups of children overestimated tactile distance on average. In contrast, de 

Vignemont et al. (2009) found that adults consistently underestimate the distance 

between two tactile points (a phenomenon known as tactile spatial compression; 

Green, 1982). One possible explanation for the reduction in perceived tactile distance 

between 7 years and adulthood could be that tactile distance is coded relative to some 

bodily metric (such as body or body part size), as is seen for instance in the visual 

perception of obstacles (Warren & Whang, 1987; Pufall & Dunbar, 1992). Indeed, if 

at all ages tactile distance was coded in relation to body part size (Taylor-Clarke et al., 

2004) this would predict an increase in tactile spatial compression as the body grows. 

In childhood, as in adulthood, a body parts and their boundaries modulate tactile 

perception. We have argued that body part boundaries (in this case the wrist) give the 

impression that stimulus pairs crossing the boundary are perceptually more distinct, 

leading to an overestimation of tactile distances across the category boundary (de 

Vignemont et al., 2009). We suggest that in early childhood it may be particularly 

advantageous to bias a representation of the body towards a topological code 

comprising its constant parts. Here we observe that topological effects on tactile 

representations are present and analogous between the ages of five and seven, 

whereas metric representations may well be constantly adjusting in response to 

physical growth. Further research, perhaps in human infancy, is required to determine 

the origins of the structuring effect of body parts on tactile spatial perception, whether 

there are particular experiential drivers of topological representations of the body, or 

alternatively whether they arise independently of experience (McGeogh & 

Ramachandran, 2011). 



	
   18 

 

REFERENCES 

 

Assaiante, C., & Amblard, B. (1995). An ontogenetic model for the sensorimotor 

organization of balance control in humans. Human Movement Science, 14, 13-

43. 

Begum Ali, J., Spence, C., & Bremner, A. J. (2015). Human infants’ ability to 

perceive touch in external space develops postnatally. Current Biology, 25, 

R978-R979. 

Bermúdez, J. L., Marcel, A., & Eilan, N. (1998). The body and the self. Cambridge, 

MA: MIT Press. 

Berthier, N. E., Clifton, R. K., McCall, D., & Robin, D. (1999). Proximodistal 

structure of early reaching in human infants. Experimental Brain Research, 

127, 259-269.  

Bornstein, M. H., Kessen, W., & Weiskopf, S. (1976). Color vision and hue 

categorization in young human infants. Journal of Experimental Psychology: 

Human Perception and Performance, 2, 115-129.  

Brownell, C. A., Nichols, S. R., Svetlova, M., Zerwas, S., & Ramani. G.  (2010). The 

head bone’s connected to the neck bone: When do toddlers represent their own 

body topography? Child Development, 81, 797-810. 

Buxbaum, L. J., & Coslett, H. B. (2001). Specialised structural descriptions for 

human body parts: Evidence from autotopagnosia. Cognitive 

Neuropsychology, 18, 289-306. 



	
   19 

Cody, F. W. J., Gaarside, R. A. D., Lloyd, D., & Poliakoff, E. (2008). Tactile spatial 

acuity varies with site and axis in the human upper limb. Neuroscience Letters, 

433, 103-108. 

De Vignemont, F., Ehrsson, H. H., & Haggard, P. (2005). Bodily illusions modulate 

tactile perception. Current Biology, 15, 1286-1290. 

De Vignemont, F., Tsakiris, M., Haggard, P. (2005). Body Mereology. In G. 

Knoblich, I.M. Thornton, M. Grosjean, M. Shiffrar (Eds.) Human body 

perception from the inside out (pp. 147-170). New York: Oxford University 

Press. 

De Vignemont, F., A. Majid, C. Jola, & P. Haggard. (2009). Segmenting the body 

into parts: Evidence from biases in tactile perception. Quarterly Journal of 

Experimental Psychology, 62, 500-512. 

Enfield, N. J., Majid, A., & Van Staden, M. (2006). Cross-linguistic categorisation of 

the body: Introduction. Language Sciences, 28, 137-147. 

Flach, R., & Haggard, P. (2006). The cutaneous rabbit revisited. Journal of 

Experimental Psychology: Human Perception and Performance, 32, 717-732. 

Franklin, A., & Davies, I. R. (2004). New evidence for infant colour categories. 

British Journal of Developmental Psychology, 22, 349-377. 

Gliga, T. & Dehaene-Lambertz, G. (2005). Structural encoding of body and face in 

human infants and adults. Journal of Cognitive Neuroscience, 17, 1328-1340. 

Green, B. G. (1982). The perception of distance and location for dual tactile 

pressures. Attention, Perception & Psychophysics, 31, 315-323. 

Henderson, S. E., Sugden, D. A., & Barnett, A. L. (2007). Movement assessment 

battery for children-2 second edition (Movement ABC-2). London, UK: The 

Psychological Corporation. 



	
   20 

Heron, M., & Slaughter, V. (2008). Toddlers’ categorization of typical and scrambled 

dolls and cars. Infant Behavior and Development 31, 374-385. 

Heron-Delaney, M., Wirth, S., & Pascalis, O. (2011). Infants’ knowledge of their own 

species. Philosophical Transactions of the Royal Society of London B: 

Biological Sciences, 366, 1753-1763. 

Jager, G., & Postma, A. (2003). On the hemispheric specialization of categorical and 

coordinate spatial relations: A review of the current evidence. 

Neuropsychologia, 41, 504-515. 

Kay, P., & Kempton, W. (1984). What is the Sapir-Whorf hypothesis? American 

Anthropologist, 86, 65-79. 

Kosslyn, S. M., Koenig, O., Barrett, A., Cave, C. B., Tang, J., & Gabrieli, J. D. E. 

(1989). Evidence for two types of spatial representations: Hemispheric 

specialization for categorical and coordinate relations. Journal of 

Experimental Psychology: Human Perception & Performance, 15, 723-735. 

Laeng, B., Shah, J. & Kosslyn, S.M. (1999). Identifying objects in conventional and 

contorted poses: contributions of hemisphere-specific mechanisms. Cognition, 

70, 53-85. 

Le Cornu Knight, Longo, & Bremner (2014). Categorical perception of tactile 

distance. Cognition, 131, 254–262. 

Mancini, F., Longo, M., R., Iannetti, G. D., & Haggard, P. (2011). A supramodal 

representation of the body surface. Neuropsychologia, 49, 1194-1201. 

Marshall, P. J. & Meltzoff, A. N. (2014). Neural mirroring mechanisms and imitation 

in human infants. Philosophical Transactions of The Royal Society B, 369, 

20130620. 



	
   21 

McDonough, L., Choi, S., & Mandler, J. M. (2003). Understanding spatial relations: 

Flexible infants, lexical adults. Cognitive Psychology, 46, 229–259. 

McGeoch, P. D., & Ramachandran, V. S. (2012). The appearance of new phantom 

fingers post-amputation in a phocomelus. Neurocase, 18, 95-97. 

Melzack, R. (1989). Phantom limbs, the self and the brain. Canadian Psychology, 30, 

1-16. 

Melzack, R. (1990). Phantom limbs and the concept of a neuromatrix. Trends in 

Neuroscience, 13, 88-92. 

Naish, K.R., Houston-Price, C., Bremner, A.J., & Holmes, N.P. (2014). Effects of 

action observation on corticospinal excitability: Muscle specificity, direction, 

and timing of the mirror response. Neuropsychologia, 64, 331-348. 

Newcombe, N., Huttenlocher, J., Drummey, A. B., & Wiley, J. G. (1998). The 

development of spatial location coding: Place learning and dead reckoning in 

the second and third years. Cognitive Development, 13, 185-200. 

Newcombe, N. S., & Huttenlocher, J. (2000). Making space: The development of 

spatial representation and reasoning. Cambridge, MA: MIT Press. 

Newcombe, N. S., Sluzenski, J., & Huttenlocher, J. (2005). Preexisting knowledge 

versus on-line learning: What do young infants really know about spatial 

location? Psychological Science, 16, 222-227. 

Piaget, J., & Inhelder, B. (1948/1967). The child’s conception of space (trans. F. J. 

Langdon & J. L. Lunzer). New York: Norton. 

Pufall P.B., & Dunbar, C. (1992). Perceiving whether or not the world affords 

stepping onto and over: a developmental study. Ecol Psychol, 4, 17–38. 

Ramachandran, V. S., & Hirstein, W. (1998). The perception of phantom limbs: The 

D.O. Hebb Lecture. Brain, 121, 1603-1630. 



	
   22 

Rigato, S., Ali, J. B., van Velzen, J., & Bremner, A. J. (2014). The neural basis of 

somatosensory remapping develops in human infancy. Current Biology, 24, 

1222-1226. 

Slaughter, V., & Heron, M. (2004). Origins and early development of human body 

knowledge. Monographs of the Society for Research in Child Development, 

69, 1-102. 

Slaughter, V., & Heron, M. (2011). When do infants expect hands to be connected to 

a person? Journal of Experimental Child Psychology, 108, 220-227. 

Slaughter, V., Heron-Delaney, M., & Christie, T. (2011). Becoming a body expert. In 

V. Slaughter & C. A. Brownell (Eds.), Early development of body 

representations. Cambridge, UK: Cambridge University Press. 

Tanner, J. M. (1990). Fetus into man. Cambridge, MA: Harvard University Press. 

Tincoff, R., & Jusczyk, P.W. (1999). Some beginnings of word comprehension in 6-

month-olds. Psychological Science, 10, 172–175. 

Tsakiris, M. (2010). My body in the brain: a neurocognitive model of body-

ownership. Neuropsychologia, 48, 703-712. 

Tsakiris, M., Costantini, M., & Haggard, P. (2008). The role of the right 

temporoparietal junction in maintaining a coherent sense of one’s body. 

Neuropsychologia, 46, 3014-3018. 

Warren W.H., & Whang, S. (1987). Visual guidance of walking through apertures: 

body-scaled information for affordances. J Exp Psychol Hum Percept 

Perform, 13, 371–383. 

Winawer, J., Witthoft, N., Frank, M., Wu, L., Wade, A., & Boroditsky, L. (2007). 

Russian blues reveal effects of language on color discrimination. Proceedings 



	
   23 

of the National Academy of Sciences of the United States of America, 104, 

7780-7785. 

Whorf, B. L., & Carroll, J. B. (Eds.). (1964). Language, thought, and reality: Selected 

writings (Vol. 5). Cambridge, MA: MIT Press. 

Zieber, N., Bhatt, R. S., Hayden, A., Kangas, A., Collins, R., & Bada, H. (2010). 

Body representation in the first year of life. Infancy, 15, 534-544. 

 
  



	
   24 

 

ACKNOWLEDGEMENTS 

 

This research was supported by an award from the European Research Council 

under the European Community’s Seventh Framework Programme (FP7/2007-

2013) (ERC Grant agreement no. 241242) to AJB. The authors would like to 

especially thank Joanne Haines, and the children and teachers of Baring Primary 

School, who helped facilitate and participated in this research. 

 

  



	
   25 

 

TABLES 

 

Age group  n Gender split   Mean age in  SD of age in 

        months  months  

5-year-olds  15 8m, 7f    67.9 months  2.6 months 

6-year-olds  15 6m, 9f    77.3 months  3.5 months 

7-year-olds  15 7m, 8f    89.0 months  4.2 months 

 

Table 1: Participant characteristics 
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Table 2: Mean R2 and y-intercept values for regression lines of actual against 

estimated tactile distance plotted for each participant, compared across age groups. 

These provide measures of the discriminative accuracy and bias of participants tactile 

distance estimates. One-sample t-tests are reported in which R2 and y-intercept values 

are compared against zero. Zero acts as a baseline level of performance for the R2 

(discriminative accuracy) measure, and as veridical performance for the y-intercept 

(bias) measure.	
   	
  

 R2 y-intercept 

Age group Mean (SD) t (d.f.) p dz Mean (SD) t (d.f.) p dz 

5-year-

olds 
.42 (.16) 10.0 (14) <.001 2.6 25.11 (6.42) 15.2 (14) <.001 3.9 

6-year-

olds 
.43 (.19) 8.7 (14) <.001 2.3 21.55 (9.97) 8.4 (14) <.001 2.2 

7-year-

olds 
.41 (.18) 8.7 (14) <.001 2.2 23.89 (4.93) 18.8 (14) <.001 4.8 
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FIGURE CAPTIONS 

 

Figure 1: A schematic depiction of the experimental set up; the participant’s left 

arm, to which the tactile stimuli were presented was outstretched with 

palm up on a table (a). A black board obscured vision of the left arm and 

hand. The right arm (c) made estimates of the tactile distances presented 

to the left arm and hand by adjusting the distance between thumb and 

forefinger against a strip of graph paper (d) which was marked by the 

experimenter. 

Figure 2:  The central presentation points, around which the tactile distances were 

presented are depicted as black circles. All presentation points were 

central in the mediolateral axis (the axis running across the length of the 

arm). The wrist presentation point (A) was predefined as the distinct 

skin crease at the narrowing between the ulna bone and the hand. The 

hand presentation point (B) was predefined as the point halfway between 

the line of the wrist and the bottom of the middle finger. The arm 

presentation point (C) was predefined as a point measured on the ventral 

forearm at an equal distance from the wrist as the hand presentation 

point. 

Figure 3: Group mean judgment errors (estimated tactile distance - presented 

distance) in mm (y-axis), for all age groups (5-, 6-, and 7-year-olds) and 

tactile distances (Long, Medium, Short) (along the x-axis), for all body 

part locations (Arm, Wrist, Hand). 


