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Experimental evidence indicates that neurophysiological responses to well-known

meaningful sensory items and symbols (such as familiar objects, faces, or words) differ

from those to matched but novel and senseless materials (unknown objects, scrambled

faces, and pseudowords). Spectral responses in the high beta- and gamma-band

have been observed to be generally stronger to familiar stimuli than to unfamiliar ones.

These differences have been hypothesized to be caused by the activation of distributed

neuronal circuits or cell assemblies, which act as long-term memory traces for learned

familiar items only. Here, we simulated word learning using a biologically constrained

neurocomputational model of the left-hemispheric cortical areas known to be relevant for

language and conceptual processing. The 12-area spiking neural-network architecture

implemented replicates physiological and connectivity features of primary, secondary,

and higher-association cortices in the frontal, temporal, and occipital lobes of the human

brain. We simulated elementary aspects of word learning in it, focussing specifically

on semantic grounding in action and perception. As a result of spike-driven Hebbian

synaptic plasticity mechanisms, distributed, stimulus-specific cell-assembly (CA) circuits

spontaneously emerged in the network. After training, presentation of one of the learned

“word” forms to the model correlate of primary auditory cortex induced periodic bursts

of activity within the corresponding CA, leading to oscillatory phenomena in the entire

network and spontaneous across-area neural synchronization. Crucially, Morlet wavelet

analysis of the network’s responses recorded during presentation of learned meaningful

“word” and novel, senseless “pseudoword” patterns revealed stronger induced spectral

power in the gamma-band for the former than the latter, closely mirroring differences

found in neurophysiological data. Furthermore, coherence analysis of the simulated

responses uncovered dissociated category specific patterns of synchronous oscillations

in distant cortical areas, including indirectly connected primary sensorimotor areas.

Bridging the gap between cellular-level mechanisms, neuronal-population behavior, and

cognitive function, the present model constitutes the first spiking, neurobiologically,
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and anatomically realistic model able to explain high-frequency oscillatory phenomena

indexing language processing on the basis of dynamics and competitive interactions

of distributed cell-assembly circuits which emerge in the brain as a result of Hebbian

learning and sensorimotor experience.

Keywords: neural network, cell assembly, gamma band, language, synchrony, simulation, Hebbian learning

INTRODUCTION

Experimental evidence suggests that the cortex stores knowledge
about meaningful, well-known familiar items (such as objects,
faces, and words) as distributed memory circuits, that is, strongly
interlinked neuronal ensembles of hundreds or thousands of
neurons whose members may be spread across distant areas
of cortex. The reactivation of such a cell assembly (CA)
circuit sparked by the perception of the corresponding sensory
item is hypothesized to induce waves of reverberant activity
within the corresponding circuit (Hebb, 1949), measurable as
correlated firing activity. Intracortical recordings of stronger
high-frequency synchronous oscillations during perception of
coherent vs. incoherent visual stimuli were thus taken as crucial
support for the existence of such mutually supporting neuronal
ensembles in the brain (Singer, 1993; Singer and Gray, 1995;
Engel and Singer, 2001; Varela et al., 2001; Buzsáki and Draguhn,
2004). In the cognitive domain, observed increases in the
oscillatory cortical responses to meaningful, well-known stimuli
compared to senseless, unknown sensory material also provide
evidence for the existence of stimulus-specific memory traces
for frequently occurring percepts (and lack thereof for novel,
unfamiliar ones) (Pulvermüller et al., 1994; Krause et al., 1998;
Henson et al., 2009; Tallon-Baudry, 2009; Hassler et al., 2011;
Bertrand et al., 2013; Craddock et al., 2015). The majority of
experiments testing this hypothesis focus on fast oscillatory
activity, even though other types of correlation can also exist
(Abeles, 1991). In particular, differences in spectral responses
have typically been found in the so-called gamma band (around
40Hz), but also in the low-gamma and high-beta (20–30Hz)
and very high gamma (above 100Hz) bands, across different
modalities and using different recording methods. In the visual
domain, the role of gamma-band activity has been intensively
researched: a number of studies have reported differences
in oscillatory responses to recognizable, coherent, complete,
meaningful stimuli vs. unrecognizable, scrambled, incoherent or

incomplete visual ones, including, e.g., real or illusory (Kanizsa)
triangle and no-triangle (Tallon-Baudry et al., 1996), pictures
and fragmented images (Gruber et al., 2002; Bertrand et al.,
2013), objects and non-objects (Craddock et al., 2015), and faces
vs. scrambled faces (Henson et al., 2009; Gao et al., 2013).

Notably, only responses to the coherent stimuli have been found
to induce synchronous oscillations across neurons located in
different cortical hemispheres (Supp et al., 2005, 2007).

High-frequency dynamics like gamma oscillations have been

implied in the recognition of familiar sensory items also in the

language domain, with meaningful words consistently inducing
stronger spectral responses than senseless, unknown pseudoword
items for frequencies between 20 and 40Hz (Lutzenberger et al.,

1994a; Eulitz et al., 1996; Pulvermüller et al., 1996a; Krause
et al., 1998), and, occasionally, even in higher frequency ranges
(up to 200Hz: Canolty et al., 2007; Mainy et al., 2008). Some
studies suggested that aspect of the meaning of words might be
reflected in different high-frequency response topographies and
long-range gamma synchrony across the cortex (Pulvermüller
et al., 1996b; Weiss and Müller, 2013); the suggestion here was
that the underlying neuronal circuits carrying words and their
meaning might be differentially distributed across cortical areas
depending on the semantic category of the stimulus.

We focus here on the manifestation of the above-mentioned
differences in oscillatory behavior as observed in the linguistic
domain. In particular, the main goal of the present study is to
reproduce the neurophysiological findings of larger spectral
power for words than pseudowords observed in the 20–40Hz
range using a neuroanatomically realistic computational
model of the cortex, and examine the model’s behavior at
the cortical-circuit level to shed some light on the underlying
neural mechanisms. Recent simulation results obtained using
biologically realistic models of the left-perisylvian (“language”)
cortex similar to the one used here have mechanistically
demonstrated the spontaneous formation and activation
dynamics of distributed memory circuits for words, which
emerged in the network as a result of Hebbian learning (Hebb,
1949) and simulated “sensorimotor” experience (Garagnani et al.,
2007, 2008; Garagnani and Pulvermüller, 2011, 2016; Tomasello
et al., 2016). Our hypothesis was that, if the difference in high-
frequency responses induced by familiar vs. unfamiliar items can
be related to the presence of memory traces for the former and
absence thereof for the latter, the same computational model
should be able to reproduce the above-mentioned experimental
findings, potentially providing an explanatory account for the
enhanced high-frequency brain responses to lexical items on the
basis of the activation of such stimulus-specific cell-assembly
(CA) circuits.

Gamma oscillations and their synchronization have been
investigated computationally and theoretically in numerous
studies (see Wang, 2010; Buzsáki and Wang, 2012 for reviews).
Oscillations easily occur in simulations of networks of spiking
neurons, regardless of whether these are made up of simple
leaky integrate-and-fire (LIF) cells or more complex neuron
types (e.g., Traub et al., 2000; Sommer and Wennekers, 2001;
Izhikevich and Edelman, 2008; Herman et al., 2013). Various
mechanisms for the origin of oscillations in the gamma range
are known: Brunel (2000), for example, has mathematically
analyzed the quite generic case of two pools of excitatory and
inhibitory LIF neurons.While the use of excitatory and inhibitory
populations is very common in computational studies (including
the present one) further mechanisms have been also proposed as
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FIGURE 3 | Network oscillatory responses during presentation of familiar object- (Top row in each diagram) and action-related (Bottom row) words.

(A) for each area, induced spectral power of the simulated event-related responses is plotted for the different frequency bands and two conditions as a function of

time. (B) a rescaled version of (A), plotting only data from the two primary extrasylvian areas (V1, M1L ). During presentation of a stimulus to area A1, both word

categories induced high-frequency oscillatory activity peaking between 25 and 30Hz (in line with the across-area averages shown in Figure 2, top plot) which appear

(Continued)
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FIGURE 3 | Continued

stronger in the central areas (AT, PFL, PB, PFi ) (A). Note the double dissociated responses exhibited by the extrasylvian areas (V1, TO, AT, PFL, PML, M1L ). In

particular, category-specific oscillations emerge in primary visual and motor areas (B), with the former (V1) selectively responding to object-related words and the latter

(M1L ) to action-related ones. Also note the presence of oscillatory responses at frequencies higher than 30Hz.

FIGURE 4 | Synchronous activity in primary visual (Left) and primary motor (Right) areas induced by simulated recognition of spoken words grounded in the

context of visual perception (Top) and action execution (Bottom). Coherence coefficients between oscillatory responses in area M1i (where CA-circuit parts

conveying model correlates of “articulatory” information are reactivated) and primary visual (V1, Left) and motor (M1L, Right) areas (where simulated “perception” and

“action” patterns of activation, respectively, are stored) during presentation of object- and action-related words to area A1 are plotted for the different frequency bands

as a function of time. The synchronous activity reflects the periodic spreading of activity waves within stimulus-specific CA circuits (see Figure 2, top plot), which link

up phonological patterns in “auditory-articulatory” areas (A1, M1i) with “semantic” information coming from the model’s sensory (V1) or motor (M1L ) systems. Note the

clear double dissociation, whereby “articulatory” areas show a high degree of synchronization with “visual”—but not with “motor”—areas during presentation of

words with object-related meaning (Top diagrams) and action-related words exhibit the opposite pattern (Bottom diagrams), mirroring the spectral data shown in

Figure 3B.

circuit specific to that stimulus (see Figures 2, 3, 5). By contrast,
presentation of a novel, unfamiliar “pseudoword” pattern led
to significantly smaller-amplitude oscillatory responses. These
findings are consistent with experimental results reporting
larger gamma band responses to words than pseudowords
(Lutzenberger et al., 1994a,b; Pulvermüller et al., 1994, 1996a;
Krause et al., 1998; Mainy et al., 2008). Furthermore, the
cortical topography of stimulus-induced oscillatory patterns
exhibited clear dissociations between semantic word categories
in terms of both local spectral power (Figure 3) and inter-area
coherence (Figure 4), again in agreement with some pre-existing
experimental reports (Pulvermüller et al., 1996b, 1999; Weiss
and Müller, 2013). These results, documenting category-specific
spreading of activity within the stimulated CA circuits, provide
a neuromechanistic account of action- and object-related word
learning and recognition in the brain, as discussed below in light
of neurophysiological evidence.

Mechanisms Underlying the Enhancement
of the Simulated High-Frequency
Responses to Words vs. Pseudowords
In order to understand the model mechanisms that led to the
observed result, we inspected the network’s dynamic behavior
directly during stimulation. This revealed that, unlike words,
pseudoword stimuli do not induce activation specifically within
a single CA circuit, but, instead, partial co-activation of
many cell-assembly circuits, within which smaller-amplitude2,
sub-threshold, oscillatory activity occurs (see Figure 5). To
understand why this is so, note that each pseudoword pattern
was built by randomly combining smaller sub-parts of the
“learned” word patterns; therefore, presentation of a pseudoword
conveys an equal amount of activity (on average) in all word

2This is confirmed by the analysis of the within-trial S-ERP peaks, see Section

Results.
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FIGURE 5 | Representative example of simulated spiking responses over a 75 ms interval sampled during continuous stimulation of area A1 with one

of the learned word (Left) or “unknown” pseudoword (Right) patterns. The initial time point of the interval (t1) does not represent stimulus onset, but an arbitrary

time point chosen after the network had reached the “steady state.” Top: CA-specific raster plots showing spiking activity within each of the 12 cell assemblies (one

for each line, labeled CA#1,...CA#12) in a representative network area (AB) are reported for the two conditions as a function of time; spikes are depicted as vertical

lines on the black background (brightness indicates number of spikes per time bin). Middle: histograms plotting the total number of spikes per time bin in area AB for

the two conditions as a function of time. Bottom: as Middle, but the histograms plot the total number of spikes within the entire network. Note (Left) the strong

oscillatory activity (spike waves of ∼30ms period) emerging selectively within CA-circuit #3 during stimulation with the corresponding word pattern, and (Right) the

absence of such strong responses during pseudoword presentation, which is characterized instead by similar firing rates across all CA circuits and irregular,

“out-of-synch” activity peaks (e.g., see CA#3 and CA#11). Also note the synchrony between the oscillations occurring in all network areas during word stimulation,

suggested by the alignment between the peaks of the spike waves in the histograms for area AB (Middle-left) and entire network (Bottom-left). Time bins were 0.5ms.

circuits at once. This activity, however, is significantly lower
(∼1/12) than the amount conveyed into a single CA circuit
by a word pattern. In addition, the presence of regulatory
mechanisms in the network (i.e., area-specific inhibition) leads
the simultaneously stimulated circuits to inhibit each other;
this reciprocal suppression (or “competition”) causes anti-phasic
activity waves within them, i.e., out-of-synch spike bursts. As a
result, the oscillations within different circuits tend to “balance”
each other out, leading to smaller-amplitude network responses
(note the flat profile of the histograms on the right-hand side of
Figure 5).

By contrast, presentation of a learned word pattern conveys
the full amount of sensory input into neurons that belong to a
single—and hence, “non-competing”—CA circuit; this induces
above-threshold activity and thus periodic circuit ignitions,
manifest as synchronous bursts (or “waves”) of spikes spreading
within the entire circuit and network (Figure 5, Left). To sum up:
a word stimulus conveys above-threshold activity within a single

cell-assembly, inducing periodic, large-scale and synchronous
bursts of activity within it at its spontaneous (“resonance”)
frequency; by contrast, pseudoword stimulation induces
sub-threshold and “out-of-phase” activity within competing
CA circuits, resulting in significantly weaker oscillatory
responses.

This result is consistent with our previous simulations,
in which we replicated and explained differences in
neurophysiological responses to word and pseudoword
items (Garagnani et al., 2008). Such simulations showed that,
in presence of sufficiently high levels of area-specific (global)
inhibition (the model correlate of “low attention”), network
responses to familiar, learned “words” are larger than to novel,
unknown “pseudoword” stimuli; this was a consequence of the
competitive interactions (mediated by area-specific inhibitory
loops) occurring between the different CA circuits concomitantly
(but only partially) activated by a pseudoword. In the present
simulations, relatively high levels of baseline noise (simulating
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spontaneous neuronal firing) produce similarly strong amounts
of global inhibition.

Closer inspection of the results of the time-frequency
analysis of the S-ERP data reveals the presence of another
difference, namely, in the spectral profile of the responses:
while word presentation elicits consistent, strong oscillations
around 25–30Hz during stimulus presentation, the less regular
pseudoword-induced responses exhibit power peaks mostly
below 20 Hz (see Figure 2, Inset). We hypothesize that the
above-mentioned competitive interactions may also underlie
this “shift” toward lower-frequencies: in fact, mutual inhibition
between co-activated CA circuits likely induces not only smaller
responses but also “delays” in the accumulation and propagation
of activity within the CA circuits, leading to longer time intervals
between the periodic bursts of activity, and hence, to oscillations
having generally longer wavelength. The fact that the power of
the induced oscillations should peak at lower frequencies for
pseudowords than for words is a novel prediction emerging
from the model, which, to the best of our knowledge, no other
computational account of language processing has generated;
experimental data confirming this prediction would therefore
provide strong evidence in support of the present mechanistic
model.

Increased Spectral Power and Long-Range
Synchronization during Word Recognition
Spectral power
During presentation of a word stimulus the network exhibited
substantial increase in spectral power peaking at around 25–
30Hz (see Figure 2) which, as revealed by Figure 4, had
category-specific topographic profile (as predictable from the
double dissociations shown by the data plotted in Figure 3).
These results are remarkably in line with some of the
existing neurophysiological data. In particular, analogous double
dissociations in high-frequency spectral power in occipital
(visual) and central (motor) recording sites had been found for
(visually presented) nouns and verbs having strong visual and
motor semantic associations, respectively (Pulvermüller et al.,
1996b, 1999). As nouns and verbs differ not only in action-
relatedness but also in lexical category, these results were prone to
alternative interpretations, due to this confounding factor; more
recent evidence (Moseley and Pulvermüller, 2014), however,
has revealed differential brain activation to concrete nouns vs.
concrete verbs, but not between abstract ones, corroborating
the view that word meaning, rather than lexical category, is
driving the observed topographical differences in brain responses
(Moseley and Pulvermüller, 2014).

More generally, a large number of studies have documented
increases in gamma-band response (GBR) amplitude during
processing of meaningful words (compared to baseline) (e.g.,
Canolty et al., 2006; Edwards et al., 2010; Pei et al., 2011; Wu
et al., 2011; Vignali et al., 2016). Most relevant to the present
results, higher spectral power during processing of familiar items
(words) vs. unfamiliar ones (pseudowords or non-words) has
been found in English using MEG (Pulvermüller et al., 1996a)
and ECoG (Canolty et al., 2007), in Finnish with EEG (Krause

et al., 1998), in German with MEG (Eulitz et al., 1996), and in
French, using intracortical recordings (Mainy et al., 2008), with
remarkable consistency across languages, sensory modalities, and
recording methods.

Long-Range (“Inter-Area”) Synchronization
The network simulations revealed a high degree of
synchronization between model areas that are only indirectly
connected (in particular, M1i–V1, top-left of Figure 4, and
M1i–M1L, bottom-right of Figure 4); crucially, such long-range
synchrony depended on the semantic category, and was a
by-product of the dynamic activation of circuits that included (or
lacked) functional links between articulatory-phonological (M1i)
and stimulus-specific semantic information in either primary
motor (M1L) or visual perceptual (V1) areas.

Experimentally, between- (inter-) -area synchronization of
oscillatory activity in non-adjacent cortical areas (here referred
to as “long-range” synchronization) has been widely documented
in different sensory modalities and during different cognitive
tasks using both invasive and non-invasive methods (see Varela
et al., 2001; Kaiser and Lutzenberger, 2003; Womelsdorf et al.,
2007; Buzsáki and Wang, 2012; Harris and Gordon, 2015
for reviews). In particular, studies in the language domain
found changes in long-range cortical synchronization during
lexico-semantic and syntactic processing (Weiss and Mueller,
2003; Supp et al., 2004; Weiss et al., 2005; Bastiaansen and
Hagoort, 2006; Mellem et al., 2013; Weiss and Müller, 2013).
Most relevant here is the recent work by Weiss and Mueller
(2003), who analyzed oscillatory neurophysiological responses
to concrete and abstract spoken words placed in semantically
congruent and incongruent contexts. The authors found that,
in incongruent sentences, lower-range (29–34Hz) gamma band
coherence between frontal and posterior recording sites was
higher for concrete than for abstract items, interpreting this
difference as indexing presence and reactivation of lexical-
semantic circuits widely distributed over sensory and motor
cortices (Weiss andMüller, 2013). We should note, however, that
coherence as measured at scalp level cannot be unequivocally
attributed to synchronous oscillatory activity in distinct brain
sources, due to the presence of possible volume conduction
artifacts (Guevara et al., 2005; Trujillo et al., 2005; Bastos and
Schoffelen, 2015). Thus, in order to adequately test the prediction
emerging from the present simulation results (in particular,
Figure 4)—i.e., that word meaning comprehension processes are
grounded in primary areas in a category specificmanner—further
studies of language-induced synchronous oscillations (either by
means of intracranial recordings in patients or in source space)
are desirable, potentially adopting paradigms successfully used in
the past to reveal brain correlates of category specific semantic
activations (Carota et al., 2012; Moseley et al., 2012).

High-Frequency Cortical Responses and
Long-Range Synchronization in
Non-linguistic Domains
As the neuroscientific principles (in particular, Hebbian learning)
underlying the emergence of word-related memory circuits in
the perisylvian areas are putatively at work in all parts of the
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cortex, this account predicts - and is consistent with experimental
evidence indicating the presence of - similar differences in
high-frequency responses to familiar, well-learned vs. unknown,
unrecognizable items in other modalities, due to the putative
emergence of analogous CA circuits there for the commonly
occurring percepts. Indeed, different types of gamma oscillations
have been documented not only in the auditory, but also visual,
olfactory, and somatosensory modalities, as well as during motor
tasks, of both humans and animals (Tallon-Baudry and Bertrand,
1999; Engel and Singer, 2001; Cheyne, 2013). In the visual
domain, earlier work on basic stimuli, investigating GBRs to
coherently (i.e., parallel) vs. incoherently moving bars (Gray
and Singer, 1989; Gray et al., 1989; Engel et al., 1991a,b)
in animals was closely followed by cognitive investigations,
with real object pictures eliciting greater GBRs than pictures
of unrecognizable, fragmented or scrambled objects or faces
(Tallon-Baudry et al., 1996; Gruber et al., 2002; Henson et al.,
2009; Hassler et al., 2011; Bertrand et al., 2013; Gao et al.,
2013; Craddock et al., 2015). Although, Yuval-Greenberg and
colleagues (Yuval-Greenberg et al., 2008) showed that induced
gamma-band activity (iGBA) in neurophysiological data can be
contaminated by artifacts originating from miniature saccades
or muscle activity, we note that: (1) several of these results can
hardly be attributed to effects of microsaccades, as, for example,
these studies controlled for the physical features of the stimuli
(Gruber et al., 2002), presented stimuli tachistoscopically so that
eye movements were discouraged or excluded muscle artifacts
based on EMG recordings (Pulvermüller et al., 1997), or used
intracortical recording methods (or magnetoencephalography,
MEG) (Bertrand et al., 2013; Gao et al., 2013), which are
minimally affected by small eye artifacts; (2) some evidence
suggests that microsaccades actually decrease when looking at
a coherent stimulus as compared to an incoherent one (Makin
et al., 2011); and (3) the use of artifact-removing methods such as
independent component analysis and beamforming (Keren et al.,
2010; Craddock et al., 2016) enables identifying iGBA activity
increases in the signal even after removal of miniature-saccade
effects (Hassler et al., 2011, 2013; Craddock et al., 2015).

The results that reduced synchronization in the olfactory
system can impair odor discrimination (Stopfer et al., 1997;
Martin and Ravel, 2014) and that modulation of both gamma
and beta responses are linked with changes induced by olfactory
learning (Ravel et al., 2003; Martin et al., 2004) also constitute
further pieces of evidence in support of the hypothesis mentioned
at the beginning, i.e., that CA circuits for commonly occurring
percepts may emerge in the cortex in different modalities and
cognitive domains.

The results plotted in Figure 5 (in particular, middle and
bottom-left diagrams) suggest that, during word presentation,
the oscillations in the different model areas exhibit an almost zero
time-lag synchronization. The emergence of quasi-zero phase-
lag in the simulations is interesting, but not entirely surprising:
previous work using multi-area spiking networks has linked this
phenomenon, for example, to local inhibitory interactions (Traub
et al., 1996) or global regulatory loops (Vicente et al., 2008),
both of which are implemented here. It is known, however, that
modeling realistic axonal transmission delays may also prevent

zero-lag synchronization, or even induce anti-phase interactions
(Knoblauch and Palm, 2002; Knoblauch and Sommer, 2003);
as the present model does not implement conduction delays,
any strong prediction about the phase lag based on the results
presented here should be taken with caution (Viriyopase et al.,
2012). On the other hand, experimental evidence for zero time-
lag synchronization across distant cortical regions (including
interhemispheric areas) and sensory modalities during different
tasks has been observed, using invasive recordings in both
humans—typically from epileptic patients in surgical settings
(e.g., Rodriguez et al., 1999; Lachaux et al., 2005)—and animals,
in the beta (Bressler et al., 1993; Roelfsema et al., 1997; Witham
et al., 2007) and gamma band (Engel et al., 1991b; Roelfsema et al.,
1997; von Stein et al., 2000; Gregoriou et al., 2009). Note that the
role of synchrony and neural-population responses in cognition
is object of ongoing research (Gilad and Slovin, 2015; Martin and
von der Heydt, 2015).

Summary
We present a spiking, neuroanatomically realistic neural-
network model able to simulate and explain larger high-
frequency neurophysiological responses to familiar words than
novel, unknown pseudoword stimuli on the basis of spontaneous
emergence and competitive interactions of cell-assembly circuits
for words. The model links the different spectral responses to
corresponding differential oscillatory dynamics of underlying
large-scale neuronal populations, with periodic “bursts” of
spikes occurring within a single, stimulus-specific circuit during
presentation of a well-learned, meaningful word, and absence
thereof during pseudoword input (characterized, instead, by
“out-of-phase” and smaller amplitude responses within multiple
competing CA circuits). In addition, the model replicates
and extends previous results obtained with a simpler, graded-
response version of the architecture, demonstrating spontaneous
emergence of stimulus-specific cell-assembly circuits by means
of a novel, spike-driven Hebbian plasticity rule at work within
a more accurate neuroanatomical structure. Finally, in line
with existing experimental results, coherence analysis of the
simulated neurophysiological responses reveals the presence
of double dissociations in the category specific patterns of
synchronous oscillations observed in distant cortical areas.
Linking cellular-level mechanisms and neuronal-population
behavior with cognitive function, this study contributes to
bridging the gap between experimental data and scientific theory
by means of a computational architecture based entirely on
neurobiologically realistic principles, hence providing further
evidence in support of an account of word acquisition and
semantic learning grounded in action and perception.
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APPENDIX A

Additional Evidence in Support of The
Model’s Connectivity Structure
Neuroanatomical evidence shows that adjacent cortical areas
tend to be connected with each other through next-neighbor
between-area connections (Pandya and Yeterian, 1985; Young
et al., 1994, 1995). These exist within each triplet of areas
of the four domain-specific “sub-systems” modeled, that is,
amongst (I) inferior-frontal areas in the articulatory system
PFi–PMi–M1i, (II) superior-lateral areas in the “auditory”
system A1–AB–PB (Pandya, 1995; Kaas and Hackett, 2000;
Rauschecker and Tian, 2000), (III) superior-lateral frontal areas
in the “hand-arm” motor system PFL–PML–M1L (see also
Arikuni et al., 1988; Lu et al., 1994; Dum and Strick, 2002,
2005), and (IV) inferior temporo-occipital areas in the “visual”
system V1–TO–AT (Distler et al., 1993; Nakamura et al.,
1993).

Evidence also indicates the presence of long-distance cortico-
cortical links (see thicker purple arrows in Figure 1B) connecting
areas distant from each other. Amongst the long-distance
cortico-cortical links within fronto-temporo-occipital cortex, we

implemented only the well-documented mutual and reciprocal
connections between anterior temporal (AT), superior parabelt
(PB), and inferior (PFi) and superior-lateral (PFL) prefrontal
areas. The connections between inferior anterior (and middle),
superior temporal (AT, PB in Figure 1B) and inferior prefrontal
(and premotor) cortices (PFi) are realized by the arcuate and
uncinate fascicles (Makris et al., 1999; Romanski et al., 1999b;
Petrides and Pandya, 2001; Makris and Pandya, 2009; Catani
et al., 2005; Parker et al., 2005; Romanski, 2007; Rilling et al.,
2008; Makris and Pandya, 2009; Petrides et al., 2012; Rilling,
2014). Dorsolateral prefrontal (and premotor) cortex (PFL) is
reciprocally linked to anterior and inferior temporal regions (AT)
via the uncinate fascicle (Kuypers et al., 1965; Pandya and Barnes,
1987, p.49; Ungerleider et al., 1989; Eacott and Gaffan, 1992;
Webster et al., 1994) as well as to the superior temporal cortex
(PB) via the extreme capsule (Pandya and Barnes, 1987, p.48;
Romanski et al., 1999a,b; Schmahmann et al., 2007).

Lastly, links between inferior and superior prefrontal areas
(PFi–PFL) (Yeterian et al., 2012) and between auditory parabelt
and anterior temporal cortex (PB–AT) (Gierhan, 2013) were also
implemented, as in a recent (graded-response) version of the
architecture (Tomasello et al., 2016).
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