
MUSICAL METACREATION

The Use of Interactive Genetic Algorithms in
Sound Design: A Comparison Study
By Matthew John Yee-King

Two sound design methods were compared: modular synthesis and Evosynth, a novel variable

architecture synthesizer programming system using an interactive genetic algorithm. They were

compared using surveys, classification into established ontologies of creative systems and output

analysis. Two surveys examined users’ opinions about the two synthesis methods. 430 modular

synthesizer users and 14 Evosynth users responded. Both user groups valued unexpected output

from the systems and tended to use exploratory approaches to sound design. Placed into ontologies

of creative systems, the systems share characteristics such as autonomous signal and pattern

generation, interactivity and the ability to generate novel output that was valued by their users.

During a month long analysis period where Evosynth was online, 3552 breed events were recorded

from 229 unique IP addresses and 90 ‘fit’ sounds were saved to the Evosynth server. The output

and other analyses suggested that both systems can generate a wide range of timbres and that they

allow a gradual exploration of timbre space.

CCS Concepts: .Applied computing → Sound and music computing;  Computing methodologies

→ Search methodologies;

Additional Key Words and Phrases: Musical metacreation, sound synthesis, genetic algorithms, audio

analysis

1. INTRODUCTION

This paper describes and compares two sound design methods: hardware modular synthesis and a

novel virtual modular synthesizer called Evosynth, which is programmed via an interactive genetic

algorithm. Each of the two methods are investigated through a survey, classification into ontologies

of creative systems and analysis of their timbral outputs. The surveys sample user opinions about

modular synthesis and Evosynth, relating to the way they present sonic novelty to the user and other

aspects of the programming experience. The classification analyses identify established ontologies of

creative systems and place the sound design methods therein. The output analyses consider the

timbral range of the two methods and how users explore that range. The complete dataset and code

discussed in this paper is available in a source code repository on Github [Yee-King 2015]. The

motivation for the work presented in this paper is a desire to explore the boundary between familiar

audio tools and novel creative systems and the desire to hear sounds that have never been created

before.

1.1.  Structure of this paper

The paper begins with a discussion of methods that can be used to examine sound and music

creation tools: HCI methods in section 1.2 and classification methods in section

1.3. Previous work using genetic algorithms for sound design is considered in section

1.4. In section 1.5 is a discussion of the first sound design technique, modular sound synthesis.

Evosynth is described next, in section 2. The three methods used to analyze the two systems are

described in section 3, the results of the analysis are presented in section 4. Finally there is a

conclusion in section 5.

1.2.  Evaluation methods for creative systems

There is considerable work describing and evaluating novel sound synthesis techniques, user

interfaces and generative systems in the research fields of computer music, human computer

interaction (HCI) and new interfaces for musical expression (NIME). Stowell et al. provide a review of

HCI techniques for evaluating musical systems, concluding with a list of recommended techniques for

various types of musical system [Stowell et al. 2009, p13-14]. The recommended techniques include

a Turing Test, audience and performer interviews, surveys with Likert scales and a task-based

approach. Kiefer et al. present an HCI methodology for evaluation of musical controllers [Kiefer et al.

2008]. They combine a qualitative, grounded theory analysis [Stern 1980] of interviews with users

and a quantitative, statistical analysis of interface telemetry data, concluding that the most

‘interesting’ results came from the coded interview data, indicating the trend in HCI towards

experience as opposed to task focused HCI [Kaye 2007]. Tubb and Dixon evaluated two timbre
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exploration interfaces, one providing access to the complete set of 10 synthesis parameters and the

other to a parameter space reduced to two dimensions using a space fitting curve [Tubb and Dixon

2014]. They were interested in Guilford’s divergent and convergent phases of creativity, which they

describe as follows: ‘Divergence is the generation of many provisional candidate solutions to a

problem, whereas convergence is the narrowing of the options to find the most appropriate solution’

[Guilford 1967]. Their evaluation involved a detailed interface telemetry based analysis of the

changes users made to the synthesis parameters during an editing session and it suggested various

phases of convergence and divergence in the synthesizer programming process. Moving from

movement in parameter space to movement in timbre space, Yee-King investigated the timbral

effects of a user varying sound synthesis parameters in different synthesis architectures [Yee-King

2011, p56]. The focus here was examining the geography of timbre space and its relation to

parameter space and this can be called an output analysis, where the output of the tool is analyzed

through feature extraction.

Table I. Evaluation methods for

creative systems.

Table II. Classification of creative

systems.

Considering the output analysis approach, Collins states that a key question is ‘the extent to which

any system can truly claim a varied output, and how to measure and analyze the extent and content

of productions’ [Collins 2008]. Also, he tells us that ‘the psychological space of outputs is typically

much more constrained than the mathematical space’, which emphasizes the requirement for the

analysis to consider the perceptual or experiential effect of a system’s output. So output analysis can

be considered as a quantitative form of experiential analysis, especially if the analysis focuses upon

human, perceptual aspects. In summary, we have highlighted several approaches that can be applied

to the evaluation of sonic creation systems: comparative (e.g. system vs. human/ Turing Test),

experiential (survey, interview), task based (e.g. user interface telemetry) and output analysis (e.g.

audio analysis). It should be noted that these approaches are not mutually exclusive, e.g. task

analysis might consider the output of the system as well as the process used to achieve it. The

evaluation methods described above are summarized in Table I.

1.3.  Classification of musical systems

Another approach to the analysis of sonic creation systems is to classify them. Seago et al. define 3

modes of interaction between user and sound: user specified synthesis architecture, fixed synthesis

architecture, and direct engagement [Seago et al. 2004]. Dealing with the classification of processes

that can be applied to an audio signal, Wilmering et al. present an ontology of audio effects which

covers the effect type, effect format, parameters etc., a system that could be adapted to synthesis

[Wilmering et al. 2013]. Boden and Edmonds provide a taxonomy of systems that generate artistic

works, considering how the art is generated, the control the artist has over the process and so forth,

leading to categories such as interactive art, generative art and evolutionary art [Boden and

Edmonds 2009]. Wiggins develops a more formal framework for the description and evaluation of

creative systems [Wiggins 2006]. It builds from the basis that creative systems exhibit creative

behavior that generates artifacts having quantifiable novelty and value. Moving to musical systems,

Rowe describes 3 key areas of variation between interactive music systems: how they are driven

(input), how and what they generate (output) and where they fall on the continuum from instrument

extension to autonomous player [Rowe 1992]. Eigenfeldt et al. describe a taxonomy of musical

metacreation systems, mapping from least to most autonomous. The categories are independence,

compositionality, generativity, proactivity, adaptability, versatility and finally, volition. These taxonomies

will be used when describing the sound design techniques later on. Key classification methods are

shown in Table II.

1.4.  Evolutionary computation for sound design

Evosynth, the novel sound design tool presented in this paper, uses an interactive genetic algorithm

(IGA) to help a user interactively search the space of possible sounds that it can produce. Its

technical implementation is described in detail in section 2 but let us consider previous work using

similar types of algorithms. IGAs are a subset of genetic algorithms (GAs) that are heuristic search

algorithms inspired by evolution theory [Goldberg and Holland 1988]. GAs are used to iteratively

search highly complex spaces for useful items, where in each iteration, candidate items are selected

and rated using a fitness function. Highly rated items are mutated and recombined to generate the

next set of candidate items, until eventually a highly desirable or fit item is found. In order for these

‘genetic operations’ to be possible, the item is normally encoded as a manipulable data structure

called a genome. In a classic example from robotics, the genome is a list of real values that can be
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interpreted into a neural net controller for a robot, fitness is the ability of the controller to move the

robot forwards, and fitness is measured by using the candidate controllers to move a robot in

simulation [Husbands et al. 1998]. Typically, GAs have an automated fitness function which allows

many generations of candidates to be assessed without human intervention. Contrastingly, IGAs have

an interactive fitness function, where a human user assigns fitnesses to the candidates. In a

discussion of IGAs based on Dawkins’ seminal IGA, Biomorphs [Ruse 1987, p55-74], Smith states

two characteristics of optimization problems to which IGAs can be applied: 1) candidates can be

generated and assessed in real time; 2) candidates can be assessed by humans but not by an

algorithm [Smith 1991].

GAs with automated fitness functions and IGAs with human fitness functions have both been used to

design sounds. The seminal work where parameter settings for fixed architecture FM synthesizers

were evolved with an automated fitness function is attributed to Horner et al. [Horner et al. 1993].

Here, the fitness was the distance between the frequency spectra of candidate sounds and a target

sound and the GA was able to automatically program the FM synthesizer to make a desired sound.

Yee-King and Roth introduced the idea of automatically programming commercially available, fixed

architecture synthesizers, and the use of the more perceptually meaningful MFCC feature vectors

with their SynthBot system [Yee-King and Roth 2008]. Based on the reported performance of

SynthBot, the problem of automatically programming basic, fixed architecture synthesizers to make

desired sounds can be considered partially solved as it was able to consistently locate sounds in its

sound space, though only for fairly simple synthesizers [Yee-King 2011, p97]. Addressing the problem

of variable architecture sound synthesizers as opposed to optimizing parameters for fixed

architectures, Macret and Pasquier evolved complete PureData patches to match a target sound

[Macret and Pasquier 2014]. As a side note, they state that a single objective GA was not successful

in evolving presets for the OP-1 synthesizer, which is more complex than the synthesizers Yee-King

and Roth used in Synthbot. The work with variable architectures can be traced back to that of Garcia

and perhaps Chinen, both of whom evolved variable synthesis architectures [Garcia 2001], [Chinen

and Osaka 2007]. Moving to IGAs, Yee-King’s AudioServe system evolved variable architecture

modular synthesis patches, working as an online tool and an interactive sound artwork, using a

human fitness function [Woolf and Yee-King 2003]. Dahlstedt implemented an IGA that could search

the space of synthesis patches for the Nord Modular synthesizer [Dahlstedt and Clavia 2006]. That

system was actually built into the commercial Nord editing software.

Figure 1.   The Eurorack format modular

synthesizer used in the case study, featuring a

range of different modules including sequencers,

oscillators, filters and envelope generators. Photo

credit: Dom Mino.

1.5.  Modular synthesis

In this section, background information is provided about modular synthesis, providing context for the

comparison between modular synthesis and Evosynth presented later in the paper.

Modular sound synthesizers are synthesizers that are made out of several discrete modules, where a

range of different module types provide different functionality. Typical module types are oscillators,

filters, envelope generators and step sequencers. New modules can be added to increase the

complexity of the synthesizer. They are programmed by connecting the inputs and outputs of the

modules together with patch cables. It is the ability to add new modules and the patch programming

method that distinguish modular synthesizers from fixed architecture synthesizers. Modules from

different manufacturers can be combined in the same synthesizer and the most popular module

format is probably Eurorack. A typical modular synthesizer is shown in Figure 1. The modular

synthesizer market has grown quite rapidly from 2009 to 2015: James describes the transformation

of the Eurorack modular synthesizer market from a handful of manufacturers making a few modules

in 2009 to 80 manufacturers making over 700 different modules in 2013 [James 2013]. In 2015, the

number of different modules in Eurorackdb, a database of Eurorack modules, stood at 1033 [Noble

2015]. There are a range of factors contributing to the rebirth of the modular synthesizer. Dieter

Doepfer, the inventor of the Eurorack format attributes it to the hands-on aspect, the fullness of the

sound and the potential for unique sounds [Ableton 2010]. One might also consider other factors

such as the rise of small-scale manufacturing, hardware hacking and so forth but this is beyond the

scope of this study. Modular synthesizers are normally thought of as real, typically analogue devices

but there are many virtual modular synthesizers which aim to recreate the modular synthesizer

experience using a two dimensional representation of modules and cables. The Arturia Modular V is

an example of a software modular synthesizer. The Evosynth system described in this paper can be

thought of as a virtual modular synthesizer in that its synthesis engine uses a modules and wires

metaphor.

1.5.1.  Description of a modular synthesizer programming session. In order to provide a more direct

description of modular synthesis, this section contains a brief reflection upon the author’s first

experience programming a modular synthesizer. Figure 1 shows the system that was used for this
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programming session, which consisted of 4 ‘tracks’ of modules without a keyboard.

Most modules had unfamiliar names meaning I did not know what the function of most of them was.

I did not have a manual to hand, so decided to start with the most obviously named modules:

oscillator and mixer. I patched the oscillator into the mixer and heard a simple sine waveform. I then

began to look for sources of modulation, first locating something that had pulsing lights and patching

that to the frequency input, resulting in a slow, pulse wave frequency modulation. I explored various

sequencers and other modulation sources in the rig, and eventually ended up with a quite rich,

complex timbre, using a combination of triggers, envelopes and oscillators. The process I went

through was exploratory, testing out the outputs at various sockets against the frequency input of the

familiar oscillator to see what kind of signal they produced. I was searching in a quite haphazard

way for increasingly complex and dynamic timbres. I began using layering, where a single

modulation is patched to multiple oscillators, some of which respond in non linear ways to the input.

This produced a rich, dynamically synchronized movement that I was able to gradually adapt.

Listening back to the recordings of the session, I found that the sound moved quite gradually from

one timbre to the next, with occasional leaps in timbre space when I discovered a new layer or new

modulation.

The session was recorded and is used in the comparative analysis presented later in the paper.

In summary, the key observations were an exploratory programming process with gradual increase of

patch and timbral complexity, frequent use of serendipitous timbres and high commitment to a patch,

which was not easily reset.

2. EVOSYNTH

In this section, the Evosynth sound design system will be described. Evosynth is a sound design tool

that allows its users to interactively evolve sound synthesis patches with variable numbers of

modules and connections. It is an example of a computationally creative system, a system which

supports a human sound designer by carrying out the synthesizer programming part of the sound

design process, leaving the sound designer to simply express their preferences for the sounds that

are generated. It will be evaluated using some of the methods listed in Tables I and II: a survey, a

classification analysis placing it in various taxonomies of creative systems and an output analysis

looking at the range and modes of sound creation it allows.

2.1.  Technical implementation

2.1.1.  User interface  and workflow.  Figure 2 shows the Evosynth user interface running on an

iPhone and Figure 3 shows an annotated version, illustrating the key features of the interface. A

typical workflow consists of the following steps:

(1) Load the page and read the instructions that are displayed when first loading.

(2) Click on the play buttons for some sounds and listen to them.

(3) Click on the breed buttons for sounds that are liked.

(4) Hit the main breed button to carry out the breed operation.

(5) Back to 2.

Figure  2.   Evosynth running on an iPhone 4S in

the Safari browser under iOS 8.

Figure

3.   The
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 Evosynth

user

 interface,

 with

colors

switched

to white

for clarity.

1) breed,

2) reset, 3) record, 4) circuit visualization, 5) mutant type, 6) play, 7) select for breeding, 8) save to

server.

Additionally, users can save sounds to the server, at which point they are prompted to name them. A

record button allows the user to record the current sound then to download it as a WAV file. Finally,

a visualization of the sound synthesis circuit is provided, which allows the user to see which modules

the circuit is made from and how they are connected. However, this is automatically generated, and

the circuits can be quite complex, so it is not necessarily very comprehensible. An example of the

visualization of a circuit is shown in Figure 4.

The system is implemented using the Web Audio API, which enables real-time sound synthesis in

compatible web browsers, meaning the audio engine works on desktop operating systems as well as

Android and iOS [Rogers 2012]. The user interface is implemented using responsive HTML and CSS,

on top of the Twitter Bootstrap API and jQuery [De Volder 2006]. The circuit visualization is

generated using the network plotting component of the vis.js library [De Jong and Pazienza 2013].

2.1.2.  Sound circuit description and instantiation.  The sound synthesis method broadly follows the

typical unit generator graph model as first defined by Mathews [Mathews et al. 1969, p126]. It might

also be described as a virtual, modular synthesizer. A variable number of different modules are wired

together into a circuit, and one of them is wired to the audio output. The sound synthesis circuits are

stored as variable length arrays of float values or genomes. Each set of 10 floats in a genome (a

gene) describes a single functional unit in the synthesizer, along with its position in a 2D space

and a connection arc within which it will connect to other modules. The 10 parameters contained in a

gene and their meaning are shown in Table III.

Figure 4.   The Evosynth circuit visualizer. The boxes are modules in the circuit and the blue lines

are connections from one module to another. One module is labeled with ‘audio out’ that indicates

that this module is the one that is patched to the audio output.

Table lll. The

10 synthesizer

parameters

defined in a

single gene. 

There are two

main module

types: oscillator

and filter and each has multiple subtypes. Schematics of the inputs and outputs of the oscillator and

filter modules are provided in Figures 6 and 7, respectively. The initial value parameters from the

gene, p1  and p2  are used in various ways to configure the unit. The initial frequency of an

oscillator, f1  which is the frequency at which it oscillates in the absence of incoming modulation, is

defined according to equation 1. The frequency gain scalar f2 for an oscillator, which will scale

incoming modulation signals is defined according to equation 2 where p2  is used as the index in a

10 element array a defined in equation 3. The starting cut off/center frequency of a filter f3  is

defined according to equation 4. The cut off/center frequency gain scalar for a filter is 2000. The
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starting Q value for a filter is defined in equation 5 and the modulation gain for Q is 100.

Figure 5.   An illustration of how connection arcs work. Only the arc for

module 1 is shown. Module 1 will connect to modules 2 and 3 but not 4.

Figure 6.   A

schematic of an

oscillator module. F

is the frequency

control, set to an

initial value f1 and

modulated by input

IN1 in the range 0 −

f2 . IN2 allows

amplitude

modulation. f1  and f2   are defined in equations 1 and 2.

Figure 7.   A schematic of a filter module.

F is the cut off or center frequency, set to

an initial value f3  and modulatable in the

range 0-2000. Q is the filter Q control, set

to an initial value q and modulatable in the

range 0-100. IN1 is the cut-off/center

modulation input, IN2 is the Q modulation

input, IN3 is the signal input to the filter

and IN4 is the amplitude modulation

input. f3 and q are defined in equations 4

and 5.

When a user clicks the play button, the genome for the selected synthesizer is interpreted gene by

gene into a set of modules. Per gene, a module is placed into the space, its connection arc is

placed over pre-existing modules and connections are made, as shown in Figure 5. Therefore, the

first module in the space is likely to be the most highly connected into. The first module is finally

wired into a dynamic range limiter to prevent excessive volume and then into the audio output.

Considering the circuit shown in Figure 4, the first module is a band pass filter into which are wired

a whole network of other modules. The visualization actually uses an automatic hierarchical network

display to place the modules in space, as this was found to most clearly show the connections, as

opposed to an accurate placement using the x and y parameters. The initial population of circuits

with which the user is presented consists of 25 random circuits with 40 modules each. 40 modules

was chosen as it tended to provide circuits with a decent range of timbres, without too many silent

circuits. Once users had started saving sounds to the server, up to 10 additional sounds from the

server would be included in the population each time a breed operation was carried out, to allow the

user to cross breed between their population and sounds made by other users.

2.1.3.  Genetic operators. Once a user has selected one or more sounds for breeding, the genetic

operators are applied, namely point, grow, repeat and shrink mutations and crossover. Point mutation

selects several parameters and adds a random, small positive or negative value to them. Grow

mutation adds a new, random gene to the genome. Repeat mutation takes a copy of one of the

existing genes and adds it to the end of the genome. Shrink mutation deletes a gene. Crossover

takes two genomes and knits them together into a new genome. When generating a new population,

a variety of types of ‘mutant’ are generated and placed into the population. The type of mutant is

also indicated to the user, as shown in Figure 3.

The Evosynth system has now been described technically. The source code for the complete system

and server, including the database of saved sounds is available on Github [Yee-King 2015]. In the

following sections, a classification and an output analysis of Evosynth will be presented.
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3. METHOD: COMPARING MODULAR SYNTHESIS TO EVOSYNTH

Having now described the two sounds synthesis systems, the methods that will be used to compare

them will be introduced.

3.1.  Survey

It was judged that a simple survey instrument would be an effective way to sample the ‘vox populi’

of modular synthesizer users. In order to maximize response numbers, 5 simple but interesting

questions were asked with Likert scale response options, with the response options taken from

[Brown 2010]. The questions were as follows:

(1) I start with a very simple patch and work from there. (Never, Rarely, Sometimes, Very Often,

Always)

(2) I start with a target sound in mind. (Never, Rarely, Sometimes, Very Often, Always)

(3) Unexpected sounds lead me in new directions when patching. (Never, Rarely, Sometimes, Very

Often, Always)

(4) The modular synth itself is creative. (Strongly Disagree, Disagree, Undecided, Agree, Strongly

Agree)

(5) My modular rig is: (Non-existent, Small, Medium, Large)

A Google Form survey was posted to Twitter, targeted at the user accounts of some well connected

modular synth makers and resellers. The survey was made deliberately simple to maximize response

numbers. However, it should be noted that not all sections of the modular synthesizer community use

Twitter, and this limits the power of the survey. In parallel to this survey, a similar survey was

connected to the Evosynth website which aimed to ask related questions to Evosynth users. The

questions were as follows:

(1) Evosynth  itself  is  creative.  (Strongly  Disagree,  Disagree,  Undecided,  Agree, Strongly

Agree)

(2) Breeding resulted in similar sounds to the parents. (Never, Rarely, Sometimes, Very Often,

Always)

(3) I was able to work towards specific sounds I had in mind. (Never, Rarely, Sometimes, Very Often,

Always)

(4) Unexpected sounds lead me in new directions. (Never, Rarely, Sometimes, Very Often, Always)

(5) I enjoyed listening to the sounds. (Strongly Disagree, Disagree, Undecided, Agree, Strongly

Agree)

3.2.  Ontological analysis

The ontological analysis involved placing the synthesis systems into pre-existing ontologies that have

been used in the literature to classify ‘creative systems’.

3.3.  Output analysis

The output analysis involved working with recordings of the output of the two systems and comparing

them in different ways. To create output data for the modular synthesizer, a 15-minute segment from

the middle of the author’s first modular synthesizer programming session (described in section 1.5.1)

was selected. This extract was chosen as it represent a section in the recording where the author

felt they were in ‘flow’, with a steady progression through timbres, akin to the kind of progression

that Evosynth was designed to enable.

The 15-minute recording was sliced into 5 second, non overlapping segments which were stored in

separate WAV files such that the range of timbres could be further examined. Features were

extracted from the segments using Collins’ SuperCollider MIR library as it offered a simple means to

extract features from multiple files and write them out in CSV format [Collins 2011]. The feature

extractors used were MFCC, Loudness, Spectral Centroid, Spectral Percentile, Spectral Flatness,

FFT Crest from 0 to 2000Hz, FFTCrest from 2000 to 10000Hz, FFT Spread, FFT Slope, Sensory

Dissonance and Onsets. This is the default set used in the SCMIR examples and it offers a sensible

range of perceptual features. The resulting feature vectors had 2000 dimensions. 

The next step was to create equivalent data to the above for evosynth. Noting that the segment of

the modular synthesizer session was chosen by looking for a section where the programmer felt they

were in flow, smoothly working through a series of programming steps, an Evosynth session was

selected where there was a sequence of regular ‘select for breeding’ events spanning a similar

length of time (15 minutes) to the modular synth session. This was possible as every time a user

The Use of Interactive Genetic Algorithms in S... https://cie.acm.org/articles/use-interactive-genet...

7 of 14 06/04/17 15:55



clicked on the ‘select for breeding’ button, the genome of the selected synthesizer was stored to the

database along with a timestamp. The chosen session belonged to an anonymous user of the online

system. The genomes that were selected for breeding were interpreted into running synths and

rendered into a set of 5 second long WAV files, from which the set of features described above were

extracted. They were also concatenated into a single file for comparison to the modular recording. 

4. RESULTS 

4.1.  Survey of modular  synthesizer users 

432 people responded to the modular synthesizer survey and the questions and response statistics

are shown in Figure 4.1. 84% of respondents reported that the modular synth itself is creative. The

intention of this question was to find out if users viewed their synth as a creative system in the

Boden or Wiggins sense, but it is very likely the respondents did not grasp this intention, not being

experts in this field so we cannot conclude much here. However, considering the question

‘Unexpected sounds lead me in new directions when patching’, 79% responded with ‘sometimes’ or

‘very often’. The intention of this question was to probe if users were assigning value to sounds

which they did not intentionally create, by being lead in new directions by these sounds. According

to Wiggins, creative systems should generate artifacts having quantifiable novelty and value. Two of

the other questions investigate the programming process: working from a simple patch as a starting

point is reported as very common, starting with a target sound in mind is reported mostly as

‘sometimes’, implying that exploratory programming is common.

4.2.  Survey of Evosynth users

During the two weeks following the announcement of Evosynth on Twitter, 90 sounds were saved to

the server by users and 3552 breed events were recorded from 229 unique IP addresses. Most of

the sessions involved less than 10 breed operations, but 60 of the 229 involved 10 or more breed

operations, probably signifying engaged use of the system. Six users logged over 100 breed

operations in their sessions, implying prolonged use of the system. Unfortunately, only 14 of the

200+ users responded to the survey; the results are shown in Figure 9.

The number of respondents to this survey is much lower than for the modular survey, likely due to

the added commitment of having to first learn and use the Evosynth system. To some extent this

survey aimed to test how much control users felt they had over the sound design process--a majority

felt they were able to work toward sounds they had in mind, despite having no direct control over the

circuits. The breeding process seemed to be reasonably effective at producing iterative movement

through timbre space as people felt that offspring tended to sound like the parents. People seemed

to consider Evosynth to be creative in itself, but again it is not clear that they understood the intent

of the question. Finally, users enjoyed the sounds. This is a positive response to the system, but a

more elaborate survey would be required to probe more details. It should also be noted that the

surveys contain different questions and they were answered by different groups of people. The

responding groups are not necessarily representative of any particular group, e.g. modular synth

users or Evosynth users.
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Figure 8.   Results of a survey of 432 modular synthesizer users.

Figure 9.   Results of a survey of 14 Evosynth synthesizer users.

4.3.  Ontological analysis of modular  synthesizers

Where does the modular synthesizer sit in the ontologies of creative systems mentioned at the

beginning of the paper? Considering Boden and Edmonds classification of generative art systems,

the modular synthesizer is capable of generative art or G-artifacts are made using a process not

directly under the control of the artist. It is an interactive (I-art) system, since the sound designer

interactively creates the artifact. Considering Eigenfeldt et al.’s taxonomy of musical metacreation,

there is a close match to the lowest level of autonomy, i.e. independence, with their level 1 example
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of ‘an LFO based upon a complex mathematical function whose output may not be entirely

predictable’. The modular synthesizer can possibly stretch to level 2, compositional autonomy:

consider a 2D matrix step sequencer controlled by two complex LFOs, as commonly found in

modular set ups for drum sound triggering. Finally, regarding Wiggins’ formal descriptions of creative

systems, further work is needed to establish what precisely is the value of the ‘unexpected sounds’

encountered whilst programming modular synthesizers, but clearly there is some sort of interplay

between sounds proposed by the programming process and sounds explicitly designed by the human

programmer.

4.4.  Ontological analysis of Evosynth

In the introductory discussion of taxonomies for classifying ‘creative’, computational systems, Boden

and Edmonds’ taxonomy of systems that generate art [Boden and Edmonds 2009] provided several

terms that can be applied to Evosynth. It makes generative-art (G-art), where artifacts are made

using a process not directly under the control of the artist. It makes evolutionary art (Evo-art), where

artifacts are ‘evolved by processes of random variation and selective reproduction that affect the

art-generating program itself.’ Finally, as a system, it is interactive (I-art), since the selection of

individuals for reproduction is carried out interactively by the human sound designer, not

autonomously. Next one can consider Eigenfeldt et al.’s taxonomy of musical metacreation systems

or G-art systems that work in the musical domain, structured from least to most autonomous

[Eigenfeldt et al. 2013]. Evosynth deals with sound, not symbolic musical material but it is certainly

generative, since it ‘generates and/or substantially varies pre-generated sequences’ and it is

somewhat proactive, since it is ‘able to initiate [its] own musical gestures’--it proposes new synthesis

patches to the user. Therefore, it achieves a moderate level of autonomy on their scale.

Figure 10.   Spectrograms of a

15-minute modular synth session

(above) and a 15-minute Evosynth

session (bottom).

4.5.  Output analysis of modular

 synthesis and Evosynth

The output analysis was carried

out on a single modular synth

session and a single Evosynth

session, which were conducted by

different people. It has not been

established if these were typical

examples of either, but they do

provide some grounds for

discussion. The spectrograms of

the two sessions are shown in

figure 10, with the modular on the

left and Evosynth on the right.

Considering the modular, It is clear

from this spectrogram that a wide

range of timbres was explored in

this extract. Another feature is the

distinct changing in timbre that was

associated with adding and

removing patch cables. The

Evosynth spectrum looks less

varied, with many correlated

regions suggesting exploration of a more limited timbre space.
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Figure 11.   Inter-segment feature distance distribution from the synthesizer programming sessions

shown in Figure 10. The modular synth is on the left, Evosynth on the right.

To investigate this further, the sessions were sliced into 5 second segments which were arranged

chronologically. Features were extracted (as described in section 3.3) and the Euclidean inter

segment feature distances were measured. The distributions of these distances are shown in Figure

11. Lots of high distances imply lots of large movement in feature space. Both sessions exhibited

broadly similar movement in timbre space between segments, though there were more very small

and very large jumps in Evosynth. There are several reasons this might occur, for example some

mutations would produce tiny jumps and completely different genomes can be selected from the

database in in the middle of a session, producing large jumps.

For the final analysis, the 5-second segments from both sessions were combined to a single dataset

and a principle component analysis (PCA) was applied to the features. 41% of the variance in the

dataset was explained by the first two coefficients of the PCA, so the 2D plot shown in Figure 12 is

a reasonable representation of the relative distances between the vectors. (Such plots are typical of

the literature, e.g., Grey [1977] and Halpern et al [2004].) There is limited overlap between the two

sounds sets, implying the timbres within each where quite different. The spread of timbres for the

Evosynth session actually looks slightly greater, implying a wider range of timbres, with the modular

timbres bunched together. Again, this is an interesting area of discussion but it should be stated that

neither the modular session nor the Evosynth session were necessarily representative of typical

programming sessions. 

Figure 12.   Results of running PCA on

both sets of files. The x and y positions

are the first two PCA coefficients, circles

are Evosynth sounds and squares are

modular synth sounds.

5. CONCLUSION

This paper has described and compared

two sound design methods: hardware

modular synthesis and a novel virtual

modular synthesizer called Evosynth,

which is programmed via an interactive

genetic algorithm. Each of the two

methods were investigated through a

survey, through classification into

ontologies of creative systems, and through analysis of their timbral outputs. The surveys sampled

user opinions about modular synthesis and Evosynth, relating to the way they present sonic novelty

to the user and other aspects of the programming experience. The classification analyses identified

established ontologies of creative systems and placed the two sound design methods therein. The

output analyses considered the timbral range of the two methods and how users explore that range.

The survey analysis demonstrated that in both cases, users were willing to make use of unexpected

sounds and that they commonly used an exploratory approach to sound design. The classification

analysis indicated that the modular synthesizer encroaches into the creative systems area, with its

generation of valued, novel output and its fine and coarse level algorithmic pattern generation

capabilities. Similarly, Evosynth generates valued novelty and has medium level autonomous

capabilities. The output analysis shed some light on the range of timbres that were explored during

modular and Evosynth programming sessions. The modular session contained a fairly tight cluster of

timbres compared to the wider range explored in the Evosynth session. The movement in timbre

space during the sessions was fairly similar, with the Evosynth session showing more very small and

very large movements. It is not clear if this observation is typical of modular and Evosynth

programming sessions however.

In future work, Evosynth could be developed to better support the aims of the user, perhaps using

the growing dataset of selected and saved sounds to map out the timbral space. It would be

interesting to gather a set of different recordings of modular programming sessions, and carry out an

overarching output analysis which extends upon the work described here, which might also feed into

the design of the underlying Evosynth exploration engine. It would also be interesting to investigate

further the culture and techniques that are developing in the modular synthesis scene.
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