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A Letter to Nature [7] demonstrated that a sim-
ple ant-inspired ‘tandem calling’ recruitment mech-
anism [10] improved task performance in a group of
robots. In these experiments a group of robots at-
tempt to locate ‘food’ and return it to base. On its
return a successful robot tries to recruit another
to help exploit its find. As a result a population
of robots rapidly expands to exploit the resource,
resulting in greater foraging efficacy. In this note
we observe that the type of recruitment and infor-
mation sharing mechanism employed by the robots
is one instance of a general class of Swarm Intel-
ligence parallel search and optimisation methods,
known as Stochastic Diffusion Search [3] (SDS).

SDS is an efficient probabilistic multi-agent
global search, optimisation and decision making
technique [9] that has been applied to diverse prob-
lems such as site selection for wireless networks [17],
mobile robot self-localisation [2], object recognition
[4] and text search [3]. Additionally, a hybrid SDS
method was successfully used to track facial fea-
tures in video sequences [4] [6]. Previous analysis
of SDS has investigated its global convergence [12],
linear time complexity [13] and resource allocation
[14] under a variety of search conditions. For a
recent review of the theoretical foundations, and
applications of SDS see Al-Rifaie and Bishop [1].

In SDS, a set of agents individually test for the
presence of a small part of the target pattern at
a specific location in the search space. The robot
foraging task can be seen as a pattern recognition
task in which the target parts are uniform; the test
then simply equates to a test for the presence of
‘food’ at a location. If an agent passes the test,
i.e. finds a partial match, it tries to attract other
agents to co-examine the same region in the search
space (diffusion of information). An agent failing
the test can either be recruited by another agent
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successfully examining a (partial) match, or other-
wise randomly adopt a new search location.

By iterating through test and diffusion phases
agents will stochastically explore the whole search
space. However, since tests will succeed more of-
ten in regions having a large overlap with the tar-
get pattern than in regions with irrelevant infor-
mation, an individual agent will spend more time
examining these regions, at the same time attract-
ing other agents, which in turn attract even more
agents. Thus, potential matches to the target pat-
tern are identified by concentrations of a substan-
tial population of agents. Because such populations
develop dynamically, SDS is able to track changing
and moving patterns.

The ‘attention’ of a dynamic population of agents
to a part of the search space has been suggested
as an alternative mechanism solving a persistent
problem in neuroscience, the binding problem [11].
Classical connectionist models view neurons as sim-
ple computational devices; however, a neural net-
work model of SDS grounded upon communica-
tion as a metaphor for neuronal operation [15] has
now been implemented. Emergent synchronisation
across a large population of neurons in this network
can be interpreted as a mechanism of attentional
amplification [8].

The basic properties of SDS are well understood:
convergence to the global optimal solution [4, 12];
convergence time, increasing at most linearly with
search space size [13]; resource allocation dynamics
[16]. The algorithm is robust to noise distortion
and multiple instantiations of the target [16]. SDS
also provides a solution for an old problem in Ar-
tificial Intelligence, the problem of stimulus equiv-
alence: the ability to recognise a pattern indepen-
dent of its potential distortions or transformations
in the search space [3, 4].

As a general class of search and optimisation al-
gorithms, Stochastic Diffusion Processes have many
features in common with other population-based al-
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gorithms inspired by nature: Genetic Algorithms,
pheromone trail-based Ant Search and Memetic Al-
gorithms. Moreover, the well understood theoret-
ical properties, together with the elegance, speed
and robustness of the algorithm make it a valuable
additional tool in addressing many search and opti-
misation problems where partial evaluations of can-
didate solutions provide useful information about
the global search problem.
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