Executive processes in Asperger syndrome: Patterns of performance in a multiple case series

Available at: http://research.gold.ac.uk/2561/

COPYRIGHT
All material supplied via Goldsmiths Library and Goldsmiths Research Online (GRO) is protected by copyright and other intellectual property rights. You may use this copy for personal study or research, or for educational purposes, as defined by UK copyright law. Other specific conditions may apply to individual items.

This copy has been supplied on the understanding that it is copyright material. Duplication or sale of all or part of any of the GRO Data Collections is not permitted, and no quotation or excerpt from the work may be published without the prior written consent of the copyright holder/s.
Executive processes in Asperger syndrome: Patterns of performance in a multiple case series

Elisabeth L. Hill a,b, Chris M. Bird b

a Department of Psychology, Goldsmiths College, University of London, New Cross, London SE14 6NW, United Kingdom b Institute of Cognitive Neuroscience, University College, London, United Kingdom

Abstract

Mixed evidence exists for executive dysfunction in autism spectrum disorders (ASD). This may be because of the nature of the tasks used, the heterogeneity of participants, and difficulties with recruiting appropriate control groups. A comprehensive battery of ‘executive’ tests was administered to 22 individuals with Asperger syndrome and 22 well-matched controls. Performance was analysed both between groups and on an individual basis to identify outliers in both the ASD and control groups. There were no differences between the groups on all ‘classical’ tests of executive function. However, differences were found on newer tests of executive function. Specifically, deficits in planning, abstract problem solving and especially multitasking. On the tests that discriminated the groups, all of the ASD individuals except one were identified as significantly impaired (i.e. below the 5th percentile of the control mean) on at least one executive measure. This study provides evidence for significant executive dysfunction in Asperger syndrome. Greatest dysfunction appeared in response initiation and intentionality at the highest level—the ability to engage and disengage actions in the service of overarching goals. These deficits are best observed through using more recent, ecologically valid tests of executive dysfunction. Moreover, performance on these measures correlated with autistic symptomatology.

Keywords: Executive functions; Autism spectrum disorder; Problem solving; Multitasking; Prefrontal cortex
‘Executive function’ is traditionally used as an umbrella term for abilities such as planning, working memory, impulse control, inhibition and shifting set, as well as the initiation and monitoring of action (Roberts, Robbins, & Weiskrantz, 1998; Stuss & Knight, 2002). Animal, behavioural and neuropsychological studies have linked these functions to frontotemporal structures of the brain, and to prefrontal cortex in particular. Additionally, a number of neurodevelopmental disorders have been linked to executive dysfunction, including autism spectrum disorder (ASD; see Russell, 1997). The core features of autism are abnormalities of social interaction, impairments in verbal and non-verbal communication and a restricted repertoire of interests and activities, all present from early childhood (American Psychiatric Association, 1994). If executive dysfunction is a central component of ASD then this would have important implications for diagnosis, intervention and our theoretical understanding of the syndrome. However, the presence, or causal nature of executive dysfunction to autism is much debated.

Systematic reviews of the literature reveal mixed evidence for executive dysfunction in ASD, although difficulties in planning, mental flexibility and generativity have been documented (see Pennington, & Ozonoff, 1996, for review). Mixed findings may arise from a number of issues, including the nature of the tasks administered as well as the nature of the autism and/or control samples used. In its strongest form, seeing executive dysfunction as a core and causal deficit in ASD would imply that it should be found in all ASD populations, irrespective of age and/or general ability. Thus for example, if a child had a planning deficit, you would expect that child to continue to show a planning deficit in some form as an adult. Moreover, if specific executive functions play a causal role in ASD, these would be expected to correlate with severity of autistic symptomatology.

Given the, at times, equivocal results of past studies, it is necessary to conduct a study that addresses possible causes of contradictory findings. In the current study, we have attempted to do this on three counts. First, Asperger syndrome might be considered to be the purest form of autism in the sense that it is unimpeached by the effects of learning difficulty common to other parts of the autism spectrum (Frith, 2004). Individuals with Asperger syndrome have IQs well within the normal range, they tend to have been educated in mainstream schools and may even be diagnosed only in adulthood. Yet they experience striking difficulties in the core areas of autistic dysfunction. Therefore, any deficits that are related causally to autistic symptomatology should be found in their most pure forms in high-functioning individuals with ASD, i.e. those with Asperger syndrome. Second, we report data from a group of adults, rather than children, for which only a handful of previous studies have been published (see Table 1). By focusing on this group, we can avoid issues concerning the late maturation of the frontal lobes (Mesulam, 2002) that may cloud the picture in studies of children and adolescents as we are tapping into an apparently mature executive system. Furthermore, others have argued recently for the need to focus on the study of executive functions in adults with ASD in order to understand the possible causal role of executive function and dysfunction within the autistic spectrum (Lopez, Lincoln, Ozonoff, & Lai, 2005). Third, by carefully selecting an IQmatched control group we move away from complications in interpreting results in the light of ability level, since the interpretation of performance of a clinical group can be influenced strongly by selection of controls.

As an umbrella term, ‘executive functions’ is rather vague. A range of functions are included, and the term is often confused at different levels of explanation; namely, constructs, operations and functions (see Burgess et al., 2006, for elaboration). Briefly, in their example, Burgess et al. argued that the function working memory is a construct. An operation refers to each individual component of that construct that is not directly observable, but inferred (the mental manipulation of representations, for example), and a function is the output of a series of operations that is, itself, observable. A whole range of tests purport to measure some aspects of executive function. These tests include those well-known, ‘classic’ tests of executive function such as the tower tasks (e.g. Tower of Hanoi), Wisconsin Card Sort Task (WCST), the Stroop test and tests of verbal fluency. Studies with children with ASD have shown plenty of dissociations between performance on these tests (see Hill, 2004a). However, it is unclear what the pattern of
performance of adults with AS is across various executive processes, or even whether there is
consistency in performance on two measures believed to assess the same component of
executive function.

Another difficulty is the choice of tasks that can be used to assess executive functioning reliably.
Standard tests of executive function tend to be complex tasks, where the outcome is the sum of
performance of a number of executive processes. For example, Tower tasks are often taken as a
measure of planning. However, these involve a number of processes over and above planning per
se (e.g. working memory, inhibition of prepotent but inefficient sub-goal moves). Furthermore,
traditional tests of executive function may be insensitive in those with a putative developmental
executive dysfunction, in a way that they are not in those with acquired executive dysfunction.

A further factor that needs to be investigated to clarify the nature of any executive dysfunction in
ASD is the method of analysis. Studies have focused on group comparisons, concluding that
executive dysfunction exists in ASD when a significant group difference is found between the
performance of the ASD group in comparison to a control group. However, this approach alone is
problematic since individual differences tend to be large. In fact, it has been argued that
aggregating data across a group of individuals requires that all individuals are homogenous
with respect to their cognitive profiles, and this cannot be assumed a priori (McCloskey, 2001).
Consequently non-significant group differences are not indicative of fully intact performance in
all participants. Conversely, in studies with large numbers of individuals, ‘significant’ differences
in performance at the group level may be largely meaningless in terms of the degree of
executive dysfunction exhibited by the individuals within the group if there is a large degree of
overlap between the groups. By careful, detailed analyses of individual cases, rich information can
be obtained concerning the range of performance, and the potential of difficulties in a subgroup of
individuals (Caramazza &McCloskey, 1988; Marshall&Newcombe, 1984; McCloskey, 2001). In the
current study we conducted both a group analysis of performance on our test battery and also a
detailed analysis of the 22 individual cases.

Anecdotal accounts of the everyday difficulties of adults with high-functioning forms of ASD are
suggestive of difficulties in executive functioning. Indeed, Channon, Charman, Heap, Crawford,
and Rios (2001) reported that according to parents, a group of individuals aged 10–19 years with
Asperger syndrome showed significantly more behaviours associated with dysexecutive syndrome
than did a typically developing group. This was assessed using the Dysexecutive Questionnaire
(DEX; Wilson, Alderman, Burgess, Emslie, & Evans, 1996). The DEX is a 20- item questionnaire
sampling four broad areas of changes commonly associated with dysexecutive syndrome:
emotional or personality changes, motivational changes, behavioural changes and cognitive
changes. In a pilot study we used the DEX in a sample of 35 adults with ASD. Large and significant
difficulties in areas of daily living associated with executive dysfunction were identified. These
difficulties were reminiscent of the executive dysfunction seen in those with acquired
dysexecutive syndrome. This was seen in the reports of both the individual themselves, and a
close family member. Such widespread difficulties highlighted the impact of a hypothesised
executive dysfunction in the day-to-day life of such individuals. In the current study the
centrality of deficits in the areas of planning, mental flexibility and generativity was investigated
in a high-functioning sample of adults with Asperger syndrome in comparison to well-
matched controls. This approach allows us to assess directly the question of how central deficits in
executive functions are in Asperger syndrome. Another prediction of the executive dysfunction
theory is that any function that plays a causal role in ASD will be correlated with autistic
symptomatology. This was tested explicitly by correlating performance on the measures of
executive function with responses to the autism spectrum quotient (Baron-Cohen, Wheelwright,
Skinner, Martin, & Clubley, 2001; completed by the participant) and a communication checklist
(Frith, unpublished—see AppendixA; completed by an observer). Both these tests assess day-to-
day behaviour, and can be seen as an index of autistic symptomatology.
Table 1

<table>
<thead>
<tr>
<th>Reference</th>
<th>Diagnosis</th>
<th>Comparison groups</th>
<th>Age (years)</th>
<th>Matching criteria (for all groups)</th>
<th>Measures</th>
<th>Autism impaired?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rumsey (1985)</td>
<td>Autism</td>
<td>Normal</td>
<td>18–39</td>
<td>Age, education, sex, handedness, FSIQ</td>
<td>WCST</td>
<td>Y*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No. of categories completed</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Y*</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No. of perseverative responses</td>
<td>Y</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No. of perseverative errors</td>
<td>Y</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No. of categories completed</td>
<td>Y</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Trail-making (time)</td>
<td>Y*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Letter fluency</td>
<td>Y</td>
</tr>
<tr>
<td>Rumsey and Hamburger (1990)</td>
<td>Autism</td>
<td>Dyslexic, normal</td>
<td>18–39</td>
<td>Age, education, handedness, FSIQ</td>
<td>WCST</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No. of categories completed</td>
<td>Y</td>
</tr>
<tr>
<td>Minshew, Muenz, Goldstein, and</td>
<td>Autism</td>
<td>Normal</td>
<td>15–40</td>
<td>Age, sex, race, FSIQ</td>
<td>WCST</td>
<td></td>
</tr>
<tr>
<td>Payton (1992)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Perseverative errors</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Nonperseverative errors</td>
<td>N</td>
</tr>
<tr>
<td>Minshew, Goldstein, and Seigel</td>
<td>Autism</td>
<td>Normal</td>
<td>15–40</td>
<td>Age, FSIQ</td>
<td>Letter fluency</td>
<td>N</td>
</tr>
<tr>
<td>and Seigel (1995)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turner (1999)</td>
<td>High functioning autism</td>
<td>High functioning</td>
<td>6–32</td>
<td>Age, NVIQ, VMA, VIQ</td>
<td>Word fluency</td>
<td>Y</td>
</tr>
<tr>
<td></td>
<td></td>
<td>controls</td>
<td></td>
<td></td>
<td>Idational fluency</td>
<td>Y</td>
</tr>
<tr>
<td>Learning disabled autism</td>
<td></td>
<td>Learning disabled</td>
<td>6–32</td>
<td>Age, NVIQ, VMA, VIQ</td>
<td>Design fluency</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>controls</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Planning efficiency</td>
<td>Y</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Initial thinking time</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Subsequent thinking time</td>
<td>Y</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ID/ED shift</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Simple discrimination</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Simple reversal</td>
<td>N</td>
</tr>
<tr>
<td>Boucher et al. (2005)</td>
<td>Autism</td>
<td>Normal</td>
<td>Mean: autism, 23 years 9 months; control, 24 years 2 months</td>
<td>Age, sex, VIQ</td>
<td>Brixton test</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Hayling test—list two errors</td>
<td>Y</td>
</tr>
</tbody>
</table>
1. Method

A total of 44 people participated in the study: 22 high-functioning adults with a formal diagnosis of Asperger syndrome (AS; 16 male, 6 female) and 22 normal adult controls (14 male, 8 female). The adults with AS were recruited via various support groups and community centres in the UK. In order to be included in the study, each must have received previously a diagnosis of Asperger syndrome based on APA criteria from a psychiatrist or clinical psychologist who was an expert in this area. The normal adult control group was recruited from the subject pool at the Institute of Cognitive Neuroscience, from local community centres and a sixth form college. Each adult with Asperger syndromewas paired individually with a control participant, to match for general ability level (to within four standard score points) and, where possible, age and sex (see Table 2 for further details). General ability was assessed using seven subtests of the Wechsler Adult Intelligence Scale (WAIS-III; Wechsler, 1998). Subtests used were picture completion, block...
design, picture arrangement, vocabulary, similarities, arithmetic and digit span. These reflect the
general pattern of strengths and weaknesses, within the standard WAIS subtests, for those with
ASD. Ethics approval for the study was granted by the Joint UCL/UCLH committees on the Ethics
of Human Research. Informed consent was obtained from all participants according to
the declaration of Helsinki.

Table 2
Mean (S.D.) and range values for age, FSIQ, the Autism Spectrum Quotient (AQ) and Communication Checklist for each participant group

<table>
<thead>
<tr>
<th></th>
<th>Asperger adults (n = 22)</th>
<th>Normal adults (n = 22)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>31.09 (13.14)</td>
<td>33.45 (14.54)</td>
</tr>
<tr>
<td>Range</td>
<td>16–61</td>
<td>18–64</td>
</tr>
<tr>
<td>FSIQ</td>
<td>110.5 (18.22)</td>
<td>107.91 (14.97)</td>
</tr>
<tr>
<td>Range</td>
<td>80–135</td>
<td>79–135</td>
</tr>
<tr>
<td>AQ (max = 50)a-*</td>
<td>34.04 (6.95)</td>
<td>15.75 (8.12)</td>
</tr>
<tr>
<td>Range</td>
<td>17–46</td>
<td>5–38</td>
</tr>
<tr>
<td>Communication checklist*</td>
<td>19.41 (4.34)</td>
<td>14.09 (1.23)</td>
</tr>
<tr>
<td>Range (13–39)</td>
<td>14–29</td>
<td>13–17</td>
</tr>
</tbody>
</table>

a Data for two normal adults not returned.
* P < 0.001.

1.1. Experimental investigation

1.1.1. Tests of executive function

1.1.1.1. Behavioural Assessment of the Dysexecutive Syndrome (BADS; Wilson et al., 1996). The full BADS assessment was completed, which includes six subtests. These are:

- **Rule Shift Cards test.** Mental flexibility is tested by the ability to shift from one rule to another and to keep track of the colour of the previous card and the current rule. The numbers of errors were recorded.

- **Action Program test.** Novel problem solving is tested by this task which involves physical manipulation of a variety of materials. To solve the task, one has to work backwards, working out what needs to be done, before concentrating on how that end is to be achieved. The numbers of stages completed successfully were recorded.

- **Key Search test.** Problem solving is tested by asking the participant to indicate how she/he would search an area to find a lost item. A scoring procedure quantifies how effectively and efficiently the participant covers the search area.

- **Temporal Judgement test.** Cognitive estimation is tested by asking the participant four questions concerning the length in time of commonplace events (e.g. how long would it take to clean the windows of an average sized house). The number of correct responses was recorded.

- **Zoo Map test.** Planning is tested by asking participants to show how they would visit a series of designated locations on a map of a zoo. Whilst doing so, certain rules must be obeyed. There is a high demand and a low demand trail. In the high demand trail, participants must plan in advance the order in which to visit the places. In the low demand trial, participants must simply follow the instructions to produce an error free score. Accuracy on the two trials and the time taken to complete them were recorded.
7 Executive processes in Asperger syndrome

Goldsmiths Research Online

- Six Elements test. Planning, organisation and monitoring of behaviour are tested using this multi-component task. Participants must carry out six separate tasks (two dictation, two arithmetic and two picture-naming tasks), within 10 min, whilst obeying a simple rule (do not carry out two of the same tasks consecutively). Whilst participants are not expected to complete each task, they must carry out at least part of all six. It is not important how well the participant performs the individual component tasks. Performance is measured as the number of tasks attempted, the number of rule breaks, and the maximum time spent on any individual subtask.

1.1.1.2. Hayling test (Burgess & Shallice, 1997). Response initiation and suppression are measured by this test which comprises two parts. In the first part, 15 incomplete sentences are read aloud and must be completed by a word that makes the sentence meaningful (e.g. ‘he posted the letter without a . . . stamp’). In the second part, 15 further sentences are presented which have to be completed by a word that does not fit into the context of the sentence (e.g. ‘the captain wanted to stay with the sinking . . . toaster’). Four scores were of interest—time taken part one (response initiation), time taken part two, errors part two (response suppression, strategy formation) and overall efficiency score.

1.1.1.3. Modified Card Sorting test (MCST; Nelson, 1976). On this measure of mental flexibility, the participant must sort cards on one of three possible dimensions (colour, number, shape) according to an unspoken rule. After correctly sorting six cards, the participant must shift to sort the cards along a different dimension. The experimenter tells the participant whether she/he has placed each card correctly, but does not give the participant the rule explicitly. Total number of errors, number of perseverative errors and number of categories obtained were recorded.

1.1.1.4. Stroop test (Trenerry, Crosson, DeBoe, & Leber, 1989). Inhibition of a dominant verbal response is tested using the Stroop test. In part 1 (low demand condition), participants are required to read aloud colour words as quickly as possible. The colour word is written in an ink which is of an incongruent colour. In part 2 (high demand condition), participants are required to name the colour of the ink, rather than read aloud the word. The number of words read in 120 s was recorded (if all items were read within the time limit, a score of 112 – the total number of items – was recorded).

1.1.1.5. Trail-making test (Army Individual Test Battery, 1944). This task assesses psychomotor speed, visual scanning and, in the second part, cognitive flexibility. In part A, the participant must draw a line linking the numbers 1–25 in consecutive order. In part B, the participant must draw a line linking alternating numbers and letters in ascending order (A–L; 1–13) as quickly but as accurately as possible. In both cases, time taken (including time to correct any errors) was recorded.

1.1.1.6. Verbal fluency. Generativity is tested by asking the participant to list as many different words as possible beginning with the same letter in 60 s. The letters F, A and S were used in three separate trials. The test was administered using instructions as described in (Lezak, 1995). Total number of words generated was recorded.

1.1.2. Measures of autistic symptomatology

1.1.2.1. Autism Spectrum Quotient (AQ; Baron-Cohen et al., 2001). This self-administered 50-item questionnaire was developed to measure the extent to which an adult with normal intelligence has the traits associated with the autism spectrum. Participants rate their own behaviour in the areas of social skill, attention switching, attention to detail, communication and imagination on a four-point scale (definitely agree, slightly agree, slightly disagree, definitely disagree). Although we should note that the AQ is not specifically a diagnostic tool, a score of 32/50 is given as a useful cut-off for distinguishing those who have clinically significant levels of autistic traits when conducting a general population study. For a clinic referred sample, a cut-off score of 26 has recently been proposed (Woodbury-Smith, Robinson, Wheelwright, & Baron-Cohen, 2005). Test–retest and inter-rater reliability of the AQ is reported to be good (Baron-Cohen et al., 2001), and discriminant power as moderate (Woodbury-Smith et al., 2005). Furthermore, individuals on the
broader autism phenotype (in this case parents of children with autism) have been found to score significantly higher than controls on the social skills and communication subscales of the AQ (Bishop et al., 2004).

1.1.2.2. Communication Checklist (Frith, unpublished; see Abell et al., 1999). This 13-item checklist (see Appendix A) was used to assess verbal and nonverbal communication in each individual. It is based on observation and was completed by two raters by discussion. The checklist is divided into three sections – speech, language and body language – and each of the 13 items are rated on a three-point scale.

2. Results

Data were analysed first in the traditional manner, looking for group differences. The results of this analysis were used to focus the direction of the subsequent analyses, that of the multiple case series.

2.1. Group difference analysis

Performance on all test measures was subjected to group analysis using independent t-tests or Mann–Whitney tests as appropriate, according to the nature of the distribution of scores in each group on each test. Overall 11 of 22 comparisons showed a significant group difference in performance, and it is these measures that formed the focus of the remaining investigation. As can be seen in Table 3, these findings show mixed performance on tests of executive functions in a group of able adults with Asperger syndrome. For the most part, the performance of the adults with Asperger syndrome was similar to, or significantly worse than that of their well-matched peers. However, on the temporal judgement subtest of the BADS, the group of adults with Asperger syndrome was significantly better able to estimate the time required for four commonplace activities than the control group. Thus as a group, and in relation to a well-matched control group, evidence for intact and impaired ability is identified, with impaired ability being identified predominantly in the newer tests of executive function (the Action Program, Zoo Map and Six Elements subtests of the BADS as well as the Hayling test). In terms of the classic tests of executive function adopted in the study, only performance on the Trailmaking test distinguished between the two participant groups. The AS participants were significantly slower than their peers on both parts of this test, although performance on the test of psychomotor speed (part A) showed a greater difference than performance on the test thought to tap cognitive flexibility (part B). Correlations between performance on the two parts of the test were found in both the AS group \[r = 0.59\ (20) \quad p < 0.01\], and the control group \[r = 0.422\ (20) \quad p = 0.051\], although the latter just failed to reach significance. As a result of this, the group comparison of Trailmaking part B was rerun, with performance on part A being entered as a covariate in the analysis. Once slower psychomotor skill had been accounted for in this way, no group differences remained in the speed of performance on part B \[F (1,41) = 0.01, \quad p = 0.92\]. Thus, while this was the only one of the traditional tests of executive function to show a group difference, this difference reflects difficulties in psychomotor processing and visual search rather than in executive dysfunction.

A similar concern arose with respect to performance on the Hayling test. While there was no difference in the errors produced by the two participant groups, the AS group was significantly slower than their peer group on both parts of this test (part 1, initiation; part 2, inhibition and strategy formation). Correlations between latencies on the two parts of the test were found in the AS group \[r (19) = 0.85, \quad p < 0.001\], and in the control group \[r (20) = 0.45, \quad p < 0.05\]. As a result of this, the group comparison of latencies on part 2 of the Hayling test was rerun,

\[A\] small number of missing data points exist which arose: one AS participant was experiencing a stutter at the time of testing and therefore provided no data on tasks requiring a speeded linguistic response; one control was colour-blind and did not undertake the Stroop test.
with performance at time 1 being entered as a covariate in the analysis. Once slower initiation had been accounted for in this way, no group differences remained in the latency to respond in the second part of the test \(F(1,40) = 0.07, p = 0.79 \). Thus, this difference appears to reflect difficulties in initiation per se, rather than in inhibition or strategy formation. However, there was a clear group difference in overall score on the Hayling test, as well as a significant correlation between this measure and performance on the Stroop test (another test of inhibition) in the AS group only [AS, \(r(19) = 0.45, p < 0.05 \); controls, \(r(19) = 0.19, p = 0.42 \)]. This suggests that performance on the Hayling test is a useful test of inhibition in an AS sample. We will return to performance on this test when describing the multiple case series analysis below.

2.1.1. Relationship between tests of executive function, the AQ and the Communication Checklist

Correlations were conducted to examine the association between the measures of executive function, the AQ and the communication checklist in the Asperger group (This analysis was conducted only on those measures showing data that were normally distributed). There was a relationship between performance measures on certain executive tests and both the AQ and the communication checklist, although these were seen predominantly for the latter comparison (four versus two; see Table 4). The significant correlations were seen only between the measures of autistic symptomatology and parts of the newer tests of executive function, specifically the action program and six elements subtasks of the BADS and the Hayling test. The relationship between these variables is shown in Fig. 1.

In summary, the findings of the group and correlational analyses in two groups well matched for sex, age and intellectual ability, provides some evidence for a deficit in executive functions in Asperger syndrome. However, many of the tests showed no impairment in the performance of the AS group. This leads to the question of the causal nature of an executive deficit in Asperger syndrome. Is a deficit seen in all participants, or is a deficit seen in a subgroup of those with AS? In order to evaluate this, we conducted a detailed individual case analysis of performance using a multiple case series approach.
Fig. 1. Scatterplots showing relationship in adults with Asperger syndrome between: (a) AQ and SET number of tasks completed; (b) AQ and Hayling overall total; (c) CC and action program score; (d) CC and Hayling time 1; (e) CC and Hayling time 2.
1.1 Executive processes in Asperger syndrome

Goldsmiths Research Online

2.2. Multiple case series analysis

Only those measures in which the performance of the control group was normally distributed were included in the case series analysis (see Table 5). In order to identify those participants with Asperger syndrome who fell outside of the normal distribution we compared each individual with the whole control group on every performance measure. We adopted the procedure of Crawford and Garthwaite (2002) for comparing a single case with a modestly sized control group. This procedure uses the t-distribution, which is more resistant to departures from normality in the control group than the standard methodology of using z-scores. It provides a conservative method for identifying individuals that fall below the 5th percentile of normal performance. We followed the method of Ramus et al. (2003) for defining the normal range. First, the control mean and standard deviation was calculated and control participants who qualified for atypical performance – falling below the 5th percentile of the t-distribution – were removed (usually none and never more than two control adults). Second, the control mean, S.D. and number of cases were recalculated and the AS participants falling below the 5% cut-off were identified and considered as outliers. Once outliers had been identified, comparison across tasks and domains was made. The number of outliers identified for each task is shown in Table 5. Here, outliers are seen in some of the classic tests of executive function, as well as in the newer tests.
2.2.1. Relationship between tests of executive function, the AQ and the Communication Checklist

With reference to the multiple case series analysis, we now consider the relationship between performance on the six elements and Hayling tests – both tests which are apparently highly sensitive to AS – and two measures of autistic symptomatology: the AQ and the Communication Checklist. First, comparison was made of the outliers identified on the SET longest time, the AQ and the Communication Checklist (see Fig. 2). It is clear that combinations of these three measures account well for the AS outliers. Only one individual with AS was an outlier on each measure alone and only one was unimpaired on all three measures. Table 6 shows those individuals considered as outliers on each test measure included in the study.

![Fig. 2. Outliers identified on the SET longest time, the AQ and the Communication Checklist (adults with Asperger syndrome; controls).](image)

The qualitative performance of the AS group was also distinguished from that of their peers in some cases: as the SET longest time difference shows, those with AS were more likely to get engrossed in one particular subtask at the expense of the other five subtests. This was particularly clear in the case of one 44-year-old male (id122) who first attempted a dictation task and ended
up talking for the full 10 min, thereby failing to complete any of the other SET subtests. Other examples are the case of a 22-year-old female who stopped for long periods of time (id103) or that of a 16-year-old male who spent a very short period of time on each of the six SET subtests and then settled now to complete one subtest in detail, knowing that he had fulfilled the rule ‘complete something from all tests’ (id170). These behaviours were not seen in any of the control participants.

When comparing performance on the Hayling overall total score to the AQ and the Communication Checklist, it is clear that the total score on the Hayling test alone does not account for any of the AS outliers (see Fig. 3). As shown in Table 4 (see also Fig. 1), there was a strong correlation between Hayling overall total score and score on the Communication Checklist in those with AS ($r (19) = -0.69, p < 0.001$) such that those making more errors on the Hayling test were rated as more ‘odd’ on the communication checklist. Furthermore, as shown in Fig. 3, all those with AS who were identified as outliers on the Hayling overall total measure were also identified as outliers on the Communication Checklist. This suggests that there is some process involved in the Hayling test that is linked to verbal and non-verbal communication and that when impaired creates a perception of oddness in another person.
Table 6a Individual profiles of performance for each adult (adults with Asperger syndrome)

<table>
<thead>
<tr>
<th></th>
<th>CC*</th>
<th>AQ*</th>
<th>BADS total</th>
<th>Key search total</th>
<th>Key search profile</th>
<th>Temp. judge. profile*</th>
<th>Zoo map profile</th>
<th>SET time*</th>
<th>Hayling Time 1*</th>
<th>Hayling Time 2*</th>
<th>Hayling overall total*</th>
<th>MCST total errors</th>
<th>MCST perseverations</th>
<th>Trails A*</th>
<th>Trails B*</th>
<th>Fluency</th>
<th>% outliers</th>
</tr>
</thead>
<tbody>
<tr>
<td>102</td>
<td></td>
<td>29</td>
</tr>
<tr>
<td>103</td>
<td></td>
<td>53</td>
</tr>
<tr>
<td>104</td>
<td></td>
<td>47</td>
</tr>
<tr>
<td>106</td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>107</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>109</td>
<td></td>
<td>47</td>
</tr>
<tr>
<td>110</td>
<td></td>
<td>29</td>
</tr>
<tr>
<td>113</td>
<td></td>
<td>41</td>
</tr>
<tr>
<td>115</td>
<td></td>
<td>53</td>
</tr>
<tr>
<td>116</td>
<td></td>
<td>33</td>
</tr>
<tr>
<td>119</td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>122</td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>130</td>
<td></td>
<td>29</td>
</tr>
<tr>
<td>141</td>
<td></td>
<td>35</td>
</tr>
<tr>
<td>145</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>151</td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>152</td>
<td></td>
<td>27</td>
</tr>
<tr>
<td>159</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>170</td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>171</td>
<td></td>
<td>44</td>
</tr>
<tr>
<td>175</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>176</td>
<td></td>
<td>18</td>
</tr>
</tbody>
</table>

% outliers 64 82 0 0 0 0 5 62 38 38 38 18 14 59 32 0

Table 6a Individual profiles of performance for each adult (adults with Asperger syndrome)

Shaded cells show participants whose performance fell outside of the normal distribution (outliers, see Table 5 for description of process to establish outliers). *Significant group difference (see Table 3). AQ: Autism Spectrum Quotient (Baron-Cohen et al., 2001); CC: Communication Checklist (Frith, unpublished; see Appendix A); BADS: Behavioural Assessment of the Dysexecutive Syndrome (Wilson et al., 1996); Hayling: Hayling test (Burgess & Shallice, 1997); MCST: Modified Card Sorting Test (Nelson, 1976); Trails: Trailmaking test (Army Individual Test Battery, 1944); Fluency: test of verbal fluency (for administration, see Lezak, 1995).
Table 6b Individual profiles of performance for each adult (control participants [all outliers were excluded in the first stage of the outlier analysis, except for participant 220 on ASQ and participant 237 on Trails B]).

Shaded cells show participants whose performance fell outside of the normal distribution (outliers, see Table 5 for description of process to establish outliers). *Significant group difference (see Table 3). AQ: Autism Spectrum Quotient (Baron-Cohen et al., 2001); CC: Communication Checklist (Frith, unpublished; see Appendix A); BADS: Behavioural Assessment of the Dysexecutive Syndrome (Wilson et al., 1996); Hayling: Hayling test (Burgess & Shallice, 1997); MCST: Modified Card Sorting Test (Nelson, 1976); Trails: Trail-making test (Army Individual Test Battery, 1944); Fluency: test of verbal fluency (for administration, see Lezak, 1995).
3. Discussion

In the present investigation we assessed a relatively large group of adults with Asperger syndrome on a comprehensive battery of tests of executive functions. Their performance was compared with that of a very well-matched group of normally developing adults. Overall, there were no differences between those with and without AS on all ‘classical’ tests of executive function, once difficulties in psychomotor processing and visual search had been accounted for (cf. group difference on trails A and B). However, surprisingly large differences were found on other, newer tests of executive function, in particular on the Six Elements task of the BADS and on the Hayling test. These tests were sensitive not only at a group level but also on a case-by-case basis and they correlated with measures of autistic behaviours. Existing data from the Six Elements task, in particular, points to an interpretation of these findings. For example, Burgess (1997) confirmed that this task is crucially related to planning, organisation and action monitoring. Furthermore, Burgess, Alderman, Evans, Emstie, and Wilson’s (1998) factor analysis of the DEX questionnaire (see below) and performance on a range of behavioural tests of executive function suggested that dysexecutive syndrome might fractionate at the behavioural level. Specifically, those individuals who performed particularly poorly on the Six Elements test, but within the range of a control group (matched to the patient group for meanNARTreading IQ), on a range of other executive tests – including the MCST, Trailmaking and verbal fluency tasks completed in the current study – were seen as having a particular difficulty in response initiation and intentionality. An alternative, but perhaps overlapping, explanation would be as a difficulty in goal/sub-goal coordination. According to Ward and Allport (1997), a sub-goal is an essential, but indirect, part of the solution of a task. Goal/subgoal coordination is a critical component of the Six Elements test. Further support for this view in relation to autism comes from a set of unpublished studies of children with autism. Sykes (2001) adapted a paradigm developed out of the work of Ward (1993) using the Tower of London. One of the over-riding conclusions of these studies was that children with autism begin to have difficulty on tower-type puzzles only when sub-goal moves are introduced into the puzzles. Overall, then, the findings of the current study suggest that greatest dysfunction appeared in response initiation and intentionality—the ability to engage and disengage actions in the service of overarching goals. By showing this, our study has provided support for the existence of deficits in specific aspects of executive function in Asperger syndrome. At this point it is unclear whether these deficits are causal to autistic disorder. However, by combining evidence from a group analysis, multiple case series (outlier) analysis,
17 Executive processes in Asperger syndrome

Goldsmiths Research Online

and from the correlations between executive measures and the two relatively new measures of autistic symptomatology included in the study we have been able to provide preliminary evidence for a link between a certain pattern of executive dysfunction and the aspects of autistic symptomatology that were assessed in our study. This provides stronger evidence than is obtained purely from the executive function data, or from the use of any one of the three analyses alone. To further strengthen our findings, it will be important to validate the Communication Checklist, and to have more detailed evaluation of the Autism Spectrum Quotient, in order to compare behavioural performance on test measures with subsections of these tests.

There are three main reasons why the population assessed in the present study provides a particularly good test of the theory that executive function is central to ASD. First, Asperger syndrome might be considered to be the purest form of autism in the sense that it is unimpeded by the effects of learning difficulty, for example (Frith, 2004). Therefore, any deficits that are related causally to autistic symptomatology should be most clearly observable in high-functioning individuals with ASD, i.e. those with Asperger syndrome. Second, by assessing adults we avoid issues concerning the late maturation of the frontal lobes that may cloud the picture in studies of children and adolescents (especially when these groups are compared with their typically developing peers). It should be noted, however, that this study did not address any potential compensatory strategies that may have effected the performance of our adult group. Third, by carefully selecting an IQ-matched control group we again move away from complications in interpreting results in the light of ability level.

We administered a large range of tests of executive functions. Interestingly, no significant group differences were found on any of the tests that are considered to be ‘classical’ executive tests, after controlling for psychomotor speed (the MCST, Stroop test, Trail-making test and verbal fluency). The multiple case analyses did reveal executive dysfunction on some performance measures of these tests in a minority of AS individuals. Nevertheless, significant group differences were found on certain newer tests, particularly the Six Elements and Hayling tests. These tests also correlated with autistic symptomatology and a high proportion of the AS group performed below the 5th percentile with reference to the controls. Both of these tests have been shown to have reasonable ecological validity (Odhuba, Broek, & Johns, 2005, respectively). Thus, we can expect that the AS participants in our study will experience a degree of executive dysfunction in their everyday living. This position is supported by the data from AS individuals who have been administered theDEXquestionnaire (Channon et al., 2001, Hill & Bird, unpublished data). In the future, it will be necessary to identify which dysexecutive behaviours seen in day-to-day life are related directly to specific executive deficits in adults with Asperger syndrome. A recent study has made some progress in this respect, investigating the relationship between executive functions (using the recently published Delis–Kaplin executive function scale; Delis, Kaplan, & Kramer, 2001; see Table 1), and restricted, repetitive behaviours, which are a diagnostic feature of the autism spectrum. In this study, a model of executive strengths (working memory and response inhibition) and weaknesses (planning and cognitive flexibility) best predicted the severity of restricted, repetitive behaviours reported in a group of adults with ASD (Lopez et al., 2005).

While the data that we have presented are indicative of specific difficulty in at least two aspects of executive function – what has been termed response initiation and intentionality by Burgess et al. (1998) – the possibility remains that we have identified a general dysexecutive syndrome rather than specific deficits. This might be the case if the Six Elements and Hayling tests were simply more sensitive to generalised executive dysfunction than other executive tests, rather than to specific difficulties. More research needs to be conducted to address this question. By further assessing a wide range of executive functions in the same sample, we can continue to address the question of whether we can identify a specific profile of strengths and weaknesses in Asperger syndrome, or whether the disorder represents general executive dysfunction. Furthermore, careful neuroimaging studies will help to identify whether normal brain activations are seen in those with Asperger syndrome when completing tasks on which their behavioural performance falls in the normal range. To date, it seems that this is not the case (e.g. Boucher et al., 2005; Schmitz et al., 2005).
Our data support those reported by a number of other researchers who have shown deficits in executive function in the autism spectrum (see Table 1 and Hill, 2004a,b). Turner (1999) reported a correlational link in autistic individuals between poor performance on ideational and design fluency tasks and high levels of repetitive behaviour in daily life. More recently Ozonoff et al. (2004) reported a correlation between impairment on the Stockings of Cambridge and ID/ED shift subtests of the Cambridge Neuropsychological Test Automated Battery (CANTAB®, Cambridge Cognition, 1996) and adaptive behaviour (as measured by the Vineland Adaptive Behaviour Scales, Sparrow, Balla, & Cicchetti, 1984). However, CANTAB performance did not predict autism severity or specific autism symptoms (measured by the ADI-R and ADOS; Lord, Rutter, & Le Couteur, 1994, respectively). We might expect, that children and adults with a lower general ability level and/or more severe autistic features would show the executive deficits identified here in addition to other deficits in the executive domain. This could reflect either more general executive dysfunction in the lower ability ranges or impoverished cognitive skills in non-executive domains.

If executive dysfunction is central to the autism spectrum then the profile of performance of those with ASD on executive tests should differ from those with other developmental disorders that have also been associated with executive dysfunction. While the performance of children with attention deficit hyperactivity disorder (ADHD) has been reported to be poor in relation to matched controls on both the Six Elements and Hayling tests (Siklos & Kerns, 2004; Shallice et al., 2002, respectively), overall the evidence suggests that children with ADHD and ASD show differing profiles on tests of executive function (see Sergeant, Geurts, & Oosterlaan, 2002 for a review; but see also Goldberg et al., 2005). Specifically, in a comparison of children with ASD, ADHD and Tourette syndrome, Ozonoff and Jensen (1999) reported differential performance between the groups on a test of planning, cognitive flexibility and inhibition. Those with ASD were shown to have difficulties only on the tests of planning and cognitive flexibility, while the children with ADHD had difficulties only on the test of inhibition. The performance of the current adult sample on the Stroop task, conceived as a test of inhibition, supports this view. It remains a possibility that tasks requiring other attentive processes than inhibition (for example, sustained attention) may be impaired in ASD. Tasks such as the Test of Everyday Attention (Robertson, Ward, Ridgeway, & Nimmo-Smith, 1994) and the Sustained Attention to Response Test (SART; Robertson, Manly, Andrade, Baddeley, & Yiend, 1997) might be useful in testing this. It seems likely, however, that differing profiles of executive dysfunction can be identified in those with different developmental disorders. With time, patterns of executive dysfunction might act as behavioural markers of different disorders.

Given that we have identified a very specific neuropsychological performance profile in our sample of adults with Asperger syndrome, is it possible to speculate about its neuroanatomical cause? While we must be wary of drawing parallels between acquired and developmental disorders, the performance of our AS sample appears to mirror a number of findings reported in the literature. For example, multitasking (which requires considerable numbers of executive functions) has been shown to be impaired in patients who have acquired frontal lobe damage (particularly to rostral prefrontal cortex), even when an executive function deficit is small or indeed undetectable using traditional neuropsychological tests such as the Wisconsin Card Sorting test and verbal fluency (e.g. Burgess, 2000). There is now increasing evidence of frontal lobe abnormalities in individuals with ASD (see Cody, Poppel, & Piven, 2002 for a review), including evidence of a significantly slower rate of increase in frontal lobe white matter across the 2–11-year age range (Carper, Moses, Tigue, & Courchesne, 2002). In typical development, the frontal lobes are those that take the longest to mature postnatally and the rostral prefrontal cortex is one of the last areas to achieve myelination (e.g. Huttenlocher, 1979; Fuster, 1997). These regions may therefore be particularly susceptible to the influence of atypical development in other brain areas, even though the consequences of this may appear subtle in some situations, and this might explain the profile that we have observed. Certainly, the frontal lobes must remain vulnerable long after other brain areas are fully matured and this could lead these areas to be particularly susceptible to slow increases in the frontal lobe
19 Executive processes in Asperger syndrome

Goldsmiths Research Online

white matter described by Carper and Courchesne (2000), or to poor neural pruning (as speculated to occur in ASD; Frith, 2003).

In summary, we have provided support for executive dysfunction in a group of adults with Asperger syndrome, suggesting that executive dysfunction is central to the disorder. Specifically, response initiation and intentionality, in particular the ability to engage and disengage actions in the service of overarching goals, are impaired. This might also be seen as a difficulty in goal/sub-goal coordination such as that described by Ward and Allport (1997). These deficits are best observed by using a range of tests of executive function, and particularly those that have some degree of ecological validity (see studies by Klin for similar arguments in the social domain, e.g. Klin, Jones, Schultz, & Volkmar, 2003). Furthermore, we have highlighted the importance of both between- and within-group analysis methods to identify the extent of executive dysfunction across participants, as well as the need to link these to autistic symptomatology.

Acknowledgements

This research was facilitated by the MRC Co-operative in ‘Analysis of cognitive impairment and imaging of cognition’ at UCL and supported by funding from the UK’s Medical Research Council (grant no. G9716841 to Uta Frith). The data were collected while the first author worked at the Institute of Cognitive Neuroscience. We gratefully acknowledge the willing participation of all individuals in this study. We are indebted to Philip Angell and Sarah White for help with data collection, as well as to Uta Frith and Paul Burgess for discussions regarding the study.

Appendix A

Communication Checklist (developed by Uta Frith, unpublished). One or more raters complete the Communication Checklist after spending some time with the individual concerned. Each item is scored on a three-point scale – normal (1), slightly odd (2), very odd (3) – resulting in a score between 13 and 39.
References

Executive processes in Asperger syndrome

<table>
<thead>
<tr>
<th>Speech</th>
<th>Normal</th>
<th>Slightly odd</th>
<th>Very odd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intonation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stress</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Speed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volume</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Language</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grammar</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Socially adapted</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Topic maintenance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Body language</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eye contact</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gestures</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Posture/gait</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Facial expression</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proximity to others</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
21 Executive processes in Asperger syndrome

Goldsmiths Research Online

22 Executive processes in Asperger syndrome

Goldsmiths Research Online

23 Executive processes in Asperger syndrome

Goldsmiths Research Online

