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Abstract 

This thesis offers an account of music cognition based on information theory and memet­

ics. My research strategy is to split the memetic modelling into four layers: Data, In­

formation, Psychology and Application. Multiple cognitive models are proposed for the 

Information and Psychology layers, and the MDL best-fit models with published human 

data are selected. Then, for the Psychology layer only, new experiments are conducted to 

validate the best-fit models. 

In the information chapter, an information-theoretic model of musical memory is pro­

posed, along with two competing models. The proposed model exhibited a better fit with 

human data than the competing models. Higher-level psychological theories are then 

built on top of this information layer. In the similarity chapter, I proposed three compet­

ing models of musical similarity, and conducted a new experiment to validate the best-fit 

model. In the fitness chapter, I again proposed three competing models of musical fit­

ness, and conducted a new experiment to validate the best-fit model. In both cases, the 

correlations with human data are statistically significant. 

All in all, my research has shown that the memetic strategy is sound, and the mod­

elling results are encouraging. Implications of this research are discussed. 
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Chapter 1 

Introduction 

My research hypothesis is that a cognitive modelling approach to music information can 

account for memetic phenomena (henceforth "a cognitive information hypothesis"). To 

test this hypothesis, I will first develop a multi-layer strategy for this research (this chap­

ter). I will then construct a novel model of cognitive information, which quantifies the 

amount of musical information in bits, and will correlate model predictions with human 

data in two experiments. 

1.1 What is Computational Memetics of Music? 

Memetics is the study of Darwinian evolution in culture (Hofstadter, 1985), where the 

meme is defined as a unit of cultural transmission and copying-fidelity refers to the accu­

racy of such transmissions (Dawkins, 1976). Chan and Wiggins (2002) coined the term 

computational memetics of music; while Chan and Wiggins were focusing on one specific 

simulation model, the term computational memetics of music is used here to cover the inter­

section between two existing subfields of memetics: 

1. Computational memetics: the study of memetics using computational modelling 

techniques (Best, 2001); 

2. Memetics of music: the application of the memetic framework to musicology, in­

cluding cognitive musicology (Jan, 2000a). 

Researchers in this newly proposed subfield aim to produce theoretical and empirical 

computational models of musical culture, modelling musical memory (the meme), mu­

sical similarity (copying-fidelity), musical value (fitness), and related topics within the 

unifying biological framework of memetics. As yet, no one seems to know concretely 

10 



CHAPTER 1. INTRODUCTION 11 

what a meme is (Hull, 2000). Is it then premature to study the science of memetics? Hull 

(2000) thinks not: 

[M]emeticists cannot begin to understand what the science of memetics is un­

til they generate some general beliefs about conceptual change and try to test 

them. These tests are likely to look fairly paltry, but in the early stages of a sci­

ence, attempts at testing always look fairly paltry [ ... ] I want to urge memeti­

cists to ignore the in-principle objections that have been raised to memetics 

no matter how cogent they may turn out to be and proceed to develop their 

theory in the context of attempts to test it. (p. 49) 

1.2 Why a Cognitive Information Hypothesis? 

How should we measure musical culture quantitatively? What constitutes a unit of cul­

tural evolution? We can answer these questions by borrowing from information theory 

and cognitive science. 

By definition, memes contain information. Indeed, the subtitle of the Journal of Memet­

ics is Evolutionary Models of Information Transmission. Information theory allows us to 

break musical memes down to bits. It even allows us to use bioinformatics tools in con­

junction with the measures proposed here, if we accept the meme-gene analogy. 1 In other 

words, when a meme is operationally defined as a unit of information, we have a precise, 

testable measure of cultural evolution. 

Secondly, the musical experience is cognitive and affective, so a theory of music in­

formation should reflect this.2 In other words, music memetics should be a cognitive the­

ory. Note that my cognitive memetics is different from Castelfranchi's (2001) "cognitive 

memetics", as Castelfranchi is talking about "cognition" in the context of autonomous 

agents (not necessarily human); he models agents that can decide to accept or reject in­

coming memes based on "cognitive" rules. While I share with Castelfranchi the idea that 

memetics should be cognitive, my thesis is at a much lower level of abstraction. Here I 

follow Neisser (1967) who defines cognition as 

[ ... ] all the processes by which the sensory input is transformed, reduced, 

elaborated, stored, recovered, and used. It is concerned with these processes 

even when they operate in the absence of relevant stimulation, as in images 

and hallucinations. Such terms as sensation, perception, imagery, retention, recall, 

1 It is outside the scope of this thesis to discuss the advantages and pitfalls of the meme-gene analogy. 
2See Chapter 2 for Meyer's view on music and information theory. 
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problem-solving, and thinking, among many others, refer to hypothetical stages 

or aspects of cognition. (p. 4) 

12 

Thirdly, in anthropology, Goodenough (1957) defines culture as cognitive in nature: 

[A] society's culture consists of whatever it is one has to know or believe in 

order to operate in a manner acceptable to its members, and do so in any 

role that they accept for anyone of themselves. Culture, being what people 

have to learn as distinct from their biological heritage, must consist of the end 

product of learning: knowledge, in a most general, if relative, sense of the 

term. (p. 167) 

Furthermore, there is what Plotkin (2000) calls "Kitcher's rule": Kitcher (1987) 

claimed that without psychological foundations there cannot be a natural science of cul­

ture (the context was sociobiology). Plotkin (2000) took Kitcher's claim as a self-evident 

truth in the context of memetics, and I agree with Plotkin. 

Another motivation for my cognitive information hypothesis comes from Schneider 

et aL's (1986) measure of information for DNA sequences. Using modern terminology,3 

their measure is equal to the sum of mutual information values between the nucleotide 

sequence B E {A, C, G, T} and each of the binding sites L: 

Rsequence = '[J (B; L). 
L 

Binding sites are essentially DNA regions that have been recognised by specific macro­

molecules such as polymerases and ribosomes (Schneider et aL, 1986). Put another way, 

binding sites correspond with recognisable DNA patterns. As such, the Rsequence mea­

sure is at least related to recognition if not cognition as its value depends on both the 

sequence itself and the macromolecular recognisers. The fact that even geneticists have 

something like cognition in their information measures motivates me to do the same in 

the context of memetics. 

1.3 A Multi-Layer Research Strategy 

Here I propose the research strategy used throughout this thesis (Figure 1.1). My strategy 

is to split the memetic modelling into four layers. The Data Layer corresponds to low-level 

perceptual inputs. Its role is to provide the cultural molecules from which the memetic 

3See Chapter 2 for Shannon's definition of information rate, or mutual information as it is usually known 
today. 
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codes are built. The Information Layer corresponds to my cognitive information measure, 

whose output should ideally be validated by psychophysical experiments. The Psychol­

ogy Layer would include aesthetic fitness, categorisation, familiarity, similarity, and so on, 

where each component must be validated psychologically. Finally, the Application Layer 

would include, inter alia, creative systems, evolutionary musicology and music informa­

tion retrievaL The advantages of multi-layer modelling is that it allows us to reuse the 

same Application and Psychology Layers to describe phenomena across different domains 

while requiring only changes in the Information and Data Layers. 

Level Layer Examples 
4 Application Creative systems and cultural ecology 
3 Psychology Similarity and aesthetic fitness measures 
2 Information Cognitive information measures 
1 Data Computational musical code 

Figure 1.1: A multi-layer research strategy 

1.4 Scope and Limitations 

For this thesis, I will limit my domain to polyphonic Western tonal music and restrict my 

investigations to the following topics: 

1. Modelling musical complexity (cognitive information) and extending this infor­

mation measure to include joint, conditional and mutual information (Information 

Layer); 

2. Modelling musical similarity based on this cognitive information measure, and test­

ing the model with psychological experiments (Psychology Layer); 

3. Modelling musical value (defined here as a subjective measure of psychological 

affect) based on this cognitive information measure, and testing the model with 

psychological experiments (Psychology Layer). 

As music memetics is not limited to the three topics above, the enumeration and sub­

sequent investigations of other topics (along with assessments of their statistical impor­

tance) would be the subject of future research (e.g., recombination, mutation and trans­

mission mechanisms in general). As in many other computational theories of music per­

ception (Lerdahl and Jackendoff, 1983; Large et aL, 1995; Narmour, 1999; Temperley and 

Sleator, 1999), my proposed theory does not account for lyrics, timbre and dynamics, as 
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these factors are not hierarchical in nature (Lerdahl and Jackendoff, 1983). Furthermore, 

my theory is unable to account for micro tonal music and problems of attention. These 

are the main limitations of my theory. 

1.5 Organisation of The Thesis 

This thesis is set out to demonstrate the feasibility of, and to provide evidence for, my 

cognitive information hypothesis. This thesis consists of six chapters. Chapter 2 reviews 

relevant literature which forms the basis of this research. Chapter 3 presents the cogni­

tive information theory and its mathematical properties (Information Layer). Within the 

framework of this information theory, Chapters 4 and 5 present models of musical simi­

larity and musical fitness (Psychology Layer). Chapter 7 summarises the methodologies, 

results and implications of this thesis, with a short rebuttal to the claim that memetics is a 

"discredited label" (Edmonds, 2005), followed by prospects of research. The information 

sheet and consent form used in Chapters 4 and 5 are reproduced in Appendix A. An 

introduction to computability is presented in Appendix B. Terms not defined in the main 

text are defined in the Glossary. 



Chapter 2 

Literature Review 

2.1 Introduction 

My proposed cognitive model of music information is a synthesis of musicology and in­

formation theory. In generat this synthesis is not new and dates back to Pinkerton (1956), 

or even Birkhoff (1933) if we allow the modern interpretation (Kolmogorov, 1965; Stiny 

and Gips, 1978; Koshelev, 1998) that order and complexity are measures of information. 

However, my synthesis is novel because it incorporates physiological, psychological and 

evolutionary principles into an information model (hitherto lacking in the current litera­

ture). Therefore, in this chapter, I will present the background necessary for the construc­

tion of my information theory of music. 

Meyer (1957) was the first to postulate an explicit link between information theory 

and music psychology. He first hypothesised that "the psycho-stylistic conditions which 

give rise to musical meaning, whether affective or intellectual, are the same as those 

which communicate information" (p. 412). Assuming the central role of expectations in 

musical experience, he then interpreted musical expectations as internalised probabili­

ties, and thus as equivalent to uncertainties or information. 

In this seminal paper, Meyer postulated music as a Markov process with a built-in 

"systemic uncertainty", countered by the "designed uncertainty" of the composer. Ac­

cording to Meyer, there is a systemic tendency for information to vanish as the music 

unfolds, and the composer's "designed uncertainty" has the effect of going against this 

tendency. In relation to musical styles, he called the probabilities from the norm of a style 

as the "latent expectation" of that style. 

Finally, Meyer speculated that "perhaps values as well arise only as the result of the 

uncertainties involved in making means-end choices" (p. 424). This potentially provides 

a bridge between a value-neutral information theory and musical value, which is cur-

15 
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rently a difficult unresolved problem. 

In pondering whether an accurate quantification of musical information is possible at 

all, he identified two important requirements for the quantification to work (pp. 422-423): 

1. "First we must arrive at a more precise and empirically validated account of men­

tal [behaviour] which will make it possible to introduce the more or less invariant 

probabilities of human mental processes into the calculation of the probabilities in­

volved in the style. This account need not necessarily be statistical itself." 

2. "Second, and this is ultimately dependent upon the first, it is necessary to develop 

a more precise and sensitive understanding of the nature of musical experience." 

Subsequent literature searches have not yielded any relevant papers1 that treat in­

formation as a cognitive measurement. There are two ways to proceed: one is to use 

Shannon information, which requires a precise knowledge of mental events and their 

probabilities; the other is to propose a new cognitive model of information. As precise 

models of the brain are beyond our current technological reach, by elimination the only 

alternative is to propose a new cognitive information theory. However, there is yet an­

other problem: Meyer's "mental behaviour" and "musical experience" are rather vague 

requirements. Therefore, I will refine them into three major building blocks (in decreas­

ing order of importance): 

1. Mental representations: the study of how one encodes knowledge in the mind. 

Assuming the physicalist2 position, mental representations can be studied either 

physiologically or psychologically (or both). In this review, I will report several 

experimental and theoretical results in the literature, with a primary focus on music 

representation; 

2. Music informatics: the application of data structures and algorithms to music re­

search. This includes general computer science, computer music research, and 

computational musicology. Music informatics provides the computational tools for 

modelling musical behaviour; 

3. Biomusicology: Wallin (1991) combines the neurophysiological, neuropsychologi­

cal, and evolutionary aspects of music research into the new field of biomusicology. 

lWhile there are numerous papers on music and information theories (e.g. Kraehenbuehl and Coons, 
1959; Conklin and Witten, 1995), neuroscientific evidence (see Section 2.2.1) suggests that melody-like stimuli 
are encoded more accurately than random stimuli. Therefore, theories based on transition probabilities are 
unlikely to account for the perceptual and cognitive constraints in music processing. See also the criticisms 
of the information-theoretic approach to music by Cohen (1962) and Sharpe (1971), especially the ones based 
on Chomsky's (1956) observation that no Markov process can include an English grammar. 

2The physicalist position holds that all mental events are physicaL 
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Since then, this field has been expanded to include comparative musicology and 

applied biomusicology (Brown et al., 2000). 

The rest of this chapter will be devoted to these building blocks, and is organised 

as follows. I will review mental representations in Section 2.2, and music informatics in 

Section 2.3. Section 2.4 reviews biomusicology, and finally, Section 2.5 concludes with a 

summary. 

2.2 Mental Representations 

Research in mental representations usually fall into two different levels of analysis: the 

biophysical level or the cognitive level. The first level is concerned with neurophysiol­

ogy while the latter is concerned with cognitive psychology. Using Marr's terminology 

(Phillips, 1997), neurophysiology belongs to the hardware implementation level, whereas 

cognitive psychology belongs to the computational level. 

2.2.1 Biophysical Representations 

At the biophysical level, researchers aim to model low-level neuronal structures instead 

of high-level cognitive schemata. Relevant research along this line includes Licklider 

(1951) and de Cheveigne (1993) on auditory perception, Oja (1982) and Sanger (1989) 

on mathematical modelling of neural networks, Patel and Balaban (2000) on cortical 

representations, and the speculation of Narmour (1999) on neuronal representations of 

melodies. 

In auditory perception, Licklider (1951) proposed a model of pitch perception (i.e., 

mental imagery of pitch), in which the main component is called the "neuronal autocor­

relator", hypothesised to exist in the brain, with inputs supplied by the cochlea (a part of 

the inner ear that translates sounds into nerve impulses). The neuronal autocorrelator is 

defined as follows (for a single channel of cochlear input): 

where EOK denotes the excitation of the output neuron, the overbar denotes the running 

average, t denotes time, NA (t) denotes the state of the input neuron, and ~T denotes 

the synaptic delay (propagation delay from one neuron to the next). Licklider (1951) 

calls it a "duplex theory of pitch perception" because it incorporates frequency-domain 

analysis (by the cochlea) and time-domain analysis (by the neuronal autocorrelators). The 

weakness of this model is the assumption of long delay lines, which lacked physiological 
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evidence (de Cheveigne, 1993). Licklider (1951) also proposed a model of the overall 

analyser, in which an array of neuronal autocorrelators were used for multiple channels 

of cochlea inputs (see Figure 2.1). In this figure, x represents the frequency dimension and 

T represents the synaptic delay. Together with the time dimension t, the overall system 

represents an auditory stimulus in three dimensions: t, T, and x (Licklider, 1951). 

x 

cochlea 

Figure 2.1: Array of neuronal autocorrelators (after Licklider, 1951) 

Following Licklider's line of research, de Cheveigne (1993) proposed the neural can­

cellation model for auditory processing (see Figure 2.2): 

o(t) = max(O,i(t) - i(t - T)). 

It combines the time-domain comb filter in signal processing with the non-negativity 

constraints in physiology. Non-negativity constraints refer to the fact that the firing rates 

of neurons cannot be negative. There are two main assumptions for this filter to be 

physiologically plausible: the existence of long delay lines (same requirement as Lick­

lider's model) and inhibitory synapses. As de Cheveigne (1993) has noted, while the 

first assumption is still lacking evidence, the second assumption is well accepted in neu­

roscience. The model was tested on guinea pig auditory-nerve fiber discharge data ob­

tained in response to double vowel stimuli, with success in separating concurrent vowel 

sounds. In Chapter 3, I will use a modified form of Licklider's (1951) array in which the 

neuronal autocorrelators are replaced by the neural cancellation filters (de Cheveigne, 

1993). 
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delay line 

( ~ inhibito,>, 

--------"""-L'---------l! 0 synapse ~ 
excitatory 
synapse 

Figure 2.2: Neural "comb" filter (after de Cheveigne, 1993) 

The above papers all deal with low-level cochlear inputs, but my proposed research 

deals with high-level symbolic data. Is it legitimate to adapt the neural cancellation fil­

ter for symbolic inputs? It is helpful to view this in light of Lorincz et al. (2002), who 

advanced an interesting view of computational neuroscience. They argued that the tra­

ditional association of anatomical structure with computational function could be un­

warranted. They demonstrated their point by developing a hierarchical neural network 

model of long-term memory. The model worked well in simulations, but when they 

mapped the model to the anatomy of the neocortex, functional discrepancies began to 

appear. They claimed that the discrepancies can be resolved by "questioning the identi­

fication of functional and anatomical layers". In other words, it is not a priori wrong to 

reuse the neural cancellation filter to model a different brain function, for it is possible 

that both functions share the same neural mechanism. 

Now I shall turn to the mathematical modelling of neural networks, speCifically the 

well-known works of Oja (1982) and Sanger (1989). Oja (1982) proposed a simplified 

neuron model that acts as a principal component analyser. Oja's neuron model is: 

n 

1] = L fii~i. 
i=l 

where ~l' ... , ~n are the inputs, fil, ... ,fin are the synaptic strengths, and 1] is the output. 

His learning equation is based on the normalised Hebbian rule, 

where I is positive. Oja (1982) proved that if the input vector [~l (t) ... , ~n (t) F represents 

a stochastic process, then the neuron would become a principal component analyser as t 

approaches infinity. 

Sanger (1989) went beyond a single neuron and proposed an "optimality principle" 
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of neural network training by maximising the ability to reconstruct the input data given 

the network outputs. For a single-layer feedforword network (see Figure 2.3), Sanger 

proposed the following "Generalised Hebbian Algorithm": 

where C( t) is the weight matrix, 'Y is the learning rate, x( t) is the input vector, and y( t) is 

the output vector such that Yj(t) = 2::1=1 Cji(t)Xi(t). 

Figure 2.3: A single-layer feedforward neural network 

Sanger (1989) proved that his rule would cause the rows of C(t) to converge to the 

eigenvalues of the correlation matrix E[xxT ], which coincides with the singular value 

decomposition. 

This correlational aspect of learning has also been verified physiologically by in vitro 

hippocampal slice recordings. Using a pair of strong and weak stimuli, Stanton and 

Sejnowski (1989) showed that an increase in synaptic strength (long-term potentiation) 

is elicited when the stimuli are applied in phase, while a decrease in synaptic strength 

(long-term depression) is elicited when the stimuli are applied out of phase. Stanton and 

Sejnowski then concluded that the mechanisms of associative long-term potentiation and 

depression can compute and store the covariance matrix of the inputs in the hippocam­

pus. This provides further evidence for Sanger's "optimality principle". 

On cortical representations, Patel and Balaban (2000) provided neuroscientific evi­

dence that parts of the brain are tracking the pitch contour of tone sequences where the 

tracking accuracy is proportional to musical predictability. Their participants listened 
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to twenty-eight one-minute tone sequences of varying degrees of predictability, chosen 

from random sequences (hardest to predict), 1/ f sequences (the second hardest), 1/ p se­

quences (easier), and scales (the easiest). The MEG signals were simultaneously recorded 

by a 148-channel whole-head biomagnetometer. They found that in all cases the recon­

structed MEG phase spectrum bore a significant resemblance to the stimuli pattern. For 

all participants, the correlation coefficients between the input sequences and the MEG 

increased in the order of: random < 1/ f < 1/ p < scales, meaning that their participants 

are worst at tracking random music and best at tracking scales. This unequal tracking ac­

curacy motivates me to propose, in Chapter 3, an alternative information theory of music 

that is not directly based on the probabilities of the tone sequences. 

Finally, Narmour (1999) speculated that in a neuronal representation of melodies in 

the brain, each neuron should be level-topic (store hierarchical function) and tonotopic 

(store melodic pitch), and perhaps chronotopic as well (store manifest duration). The con­

nections between neurons would then store the learned path of expectations. Narmour's 

speculation implies that hierarchical levels are as important as pitches and durations. 

This point will be taken into consideration in Chapter 3. 

In summary, this subsection reviews biophysical representations. The concepts specif­

ically relevant to my proposed research are: Licklider's (1951) array, de Cheveigne's 

(1993) neural cancellation filter, the link from neural networks to the "optimality prin­

ciple" (Sanger, 1989), the experimental result that melody-like music is encoded more 

faithfully than random music (Patel and Balaban, 2000), and the importance of hierarchi­

cal levels in music representations (Narmour, 1999). Next, I review cognitive representa­

tions. 

2.2.2 Cognitive Representations 

At the cognitive level, representations refer to higher-level cognitive schemata, which 

are usually functional rather than biophysicaL In this line of research, relevant work 

includes Atkinson and Shiffrin (1968) on short-term memory; Levitin (1994) and Levitin 

and Cook (1996) on absolute memory; Lerdahl and Jackendoff (1983) and Temperley and 

Sleator (1999) on well-formedness and preference rules; and Large et aL (1995) on reduced 

memory representations. 

Atkinson and Shiffrin (1968) proposed an influential model of human memory (re­

produced in Figure 2.4) where it has three components: sensory register (SR), short-term 

store (STS) and long-term store (LTS). The short-term store can hold information for about 

thirty seconds without rehearsal (Atkinson and Shiffrin, 1968). Another theory, at least in 

music psychology, is that the STS has a duration of 3-5 seconds on average, occasionally 
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up to 10-12 seconds depending on the complexity of stimuli (Snyder, 2000). The 'brain­

clock" theory (Poppel, 1989) goes even further and suggests that musical memory are 

segmented into three-second units. For the purpose of this thesis, I will not attempt to 

resolve this discrepency, but instead I will follow Atkinson and Shiffrin's original thirty­

second limit. 

Environmental Input ~ 0 ~ El ~ G 
Figure 2.4: Block diagram of Atkinson and Shiffrin's (1968) model 

In the quest of relative/ absolute memory for music, Levitin (1994) and Levitin and 

Cook (1996) obtained evidence that long-term auditory memory is absolute, with respect 

to both pitch and tempo. Levitin (1994) asked forty-six participants to sing two popular 

songs from memory. Each song constitutes a trial. All of them reported that they had 

not heard their selected song in the past seventy-two hours. Three participants withdrew 

from the experiment after the first trial. Of the forty-three participants who completed 

both trials, 12% of the participants got the correct pitch on both trials, and a further 32% 

were within two semitones of the correct pitch on both trials. This result suggests that 

pitch memory is absolute. In Levitin and Cook (1996), the same dataset was re-analysed 

for tempo. For both trials combined, 72% of the participants were within 8% of the correct 

tempo. This result suggests that memory for tempo is also absolute (Levitin and Cook, 

1996). This absolute nature of tempo memory prompts me to use an absolute notion of 

time in the proposed theory. 

As regards well-formedness and preference rules, Lerdahl and Jackendoff (1983) were 

the first to model music psychology using such rules. In their well-known Generative 

Theory of Tonal Music (GTTM), Lerdahl and Jackendoff (1983) first made two important 

idealisations: that the listeners are experienced in Western tonal music; and that there 

exists a final state of understanding (i.e., a cognitive representation of the music). These 

are two important idealisations that I will adopt wholesale into my proposed information 

model. 

Secondly, Lerdahl and Jackendoff (1983) limited their investigations to four hierar­

chical parts of listener's musical intuitions: grouping structure (segmentation of music 

into sections and smaller units), metrical structure (multiple levels of strong and weak 

beats), time-span reduction (a tree structure showing relative importance of the notes), 

and prolongational reduction (showing tension and relaxation). They achieved this goal 

by proposing three types of rules (Lerdahl and Jackendoff, 1983): 
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1. Well-formedness rules: these constrain the space of possible musical structures. 

This rules correspond to generative grammar in linguistic theory; 

2. Preference rules: these rules correspond to experienced listeners' preferred inter­

pretation of a piece. Although preference rules do not correspond to any part of 

Chomskian linguistics, they are necessary because musical intuitions can often be 

ambiguous; 

3. Transformational rules: these include the grouping overlap, grouping elision and 

metrical deletion rules, which cannot be modelled using the well-formedness rules. 

These rules do not playa major role in GTTM. 

Temperley and Sleator (1999) provided a preference-rule approach of meter mod­

elling based on GTTM. Temperley and Sleator (1999) found that GTTM had problems 

with rubato performances due to the regularity well-formedness rule, so they relaxed 

this into a regularity preference-rule (prefer evenly spaced beats), avoiding the rigidity 

of the well-formedness rule. Their approach also consists of two other preference rules 

adapted from GTTM: event rule (prefer beats that aligns with event onsets) and length 

rule (prefer beats that aligns with onsets of longer notes). The actual search procedure is 

based on dynamic programming with a score table, with columns representing quantised 

time (35ms) and rows representing beat intervals. They have implemented this in their 

meter program, which I will use in this research. 

Finally, Large et al. (1995) proposed a reduced memory model of music as a neural 

network that performs lossy compression on input melodies. The model was validated 

experimentally: six skilled pianists were asked to improvise ten variations each on three 

children's melodies, and the variations thus produced correlated significantly with the 

reconstruction errors predicted by the neural network (Large et al., 1995). This result 

suggests that the human brain might use a form of compression in storing melodies. 

In summary, this subsection reviews cognitive representations of music. The con­

cepts specifically relevant to my proposed research are: short-term memory (Atkinson 

and Shiffrin, 1968), absolute musical memory (Levitin, 1994; Levitin and Cook, 1996), 

Temperley and Sleator's (1999) meter program, and a compression-based model of mu­

sical memory (Large et al., 1995). 

2.3 Music Informatics 

As I am proposing a new information theory of musk it is logical that a review of music 

informatics is in order. In this section, I will mainly review information theories and time 
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series analysis as applied to the mathematical modelling of music.3 

2.3.1 Information Theories 

Shannon's (1948) paper is the seminal paper in information theory. Shannon is interested 

in the problem of message transmission from an information source to its destination, 

where semantic aspects are not relevant. The basis of his information theory is Hartley's 

information measure, 

H(N) = log2 N, 

where N is the number of possible messages. Shannon noticed that the number of pos­

sible messages increases exponentially with time. If the communication system is gov­

erned by stochastic processes, then by using this statistical structure one could reduce the 

required capacity of the transmission channeL 

Shannon began by assuming that every sequence generated by the same information 

source has the same statistical structure. Then he defined the well-known information 

measure called the entropy, 
n 

H(x) = - L Pi log Pi, 
i=1 

for the set of probabilities {PI, ... , Pn} that characterises x (the information source). Fur­

thermore, Shannon defined the joint entropy 

and the conditional entropy 

H(x,y) = - LP(i,j)logp(i,j) 
i,j 

Hx(Y) = - LP(i,j)logpi(j), 
i,j 

corresponding to joint and conditional probabilities of events. In modern notation, Hx (y) 

is usually written as H(ylx). He then proved the following theorems (for proofs see 

Shannon, 1948): 

Theorem 2.1 (Shannon). H (x, y) ::; H (x) + H (y) with equality iff x and yare independent. 

Theorem 2.2 (Shannon). H(x,y) = H(x) + Hx(Y) = H(y) + Hy(x). 

3Concerned readers might object to my omission of music and connectionism. In my view, music and 
connectionism belongs elsewhere since their nature is psychological rather than mathematical (cf my cita­
tion of Large et al. (1995) in Section 2.2.2). More to the point, my proposed model is at the computational 
(mathematical) level, not the algorithmic (connectionist) level. 
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Finally, Shannon defined the information rate, also known as mutual information 

I(x;y), as R = H(x) - Hy(x), where H(x) represents the information source and Hy(x) 
represents the equivocation or noise entropy, which characterises the ambiguity due to 

transmission noise. This definition, plus the two theorems above, are ubiquitous in the 

literature; I will refer to them collectively as the three laws of Shannon, and will attempt 

to prove these laws for my new information theory as welL A version of his information 

theory for continuous probability distributions is also given by Shannon (1948): 

H(x) = - I: p(x) log p(x)dx, 

where the joint and conditional entropies are 

H(x,y) = - 11 p(x,y) logp(x,y)dxdy 

and 

Hx(Y) = - 11 p(x, y) log Px(y)dxdy. 

Kolmogorov (1968) noted that the Shannon definition of entropy 

[ ... ] used probability concepts, and thus does not pertain to individual val­

ues, but to random values, i.e., to probability distributions within a group of 

values [ ... ] By far, not all applications of information theory fit rationally into 

such an interpretation of its basic concepts. I believe that the need for attach­

ing definite meaning to the expressions H(xly) and [I(x;y)], in the case of 

individual values x and y that are not viewed as a result of random tests with 

a definite law of distribution, was realized long ago by many who dealt with 

information theory. (p. 662) 

In a related paper, Kolmogorov (1965) proposed an algorithmic approach to the quan­

titative definition of information. He believed that the algorithmic approach would give 

rise to a correct definition of "hereditary information", for instance the amount of infor­

mation required for the reproduction of a cockroach (Kolmogorov, 1965). His approach 

is based on the "quantity of information conveyed by an individual object x about an 

individual object y". Kolmogorov noted that while this can be done in the probabilistic 

approach: 

I(x;y) = 11 Pxy log2 ::;y dxdy, 

it is not always meaningful in practice as I(x;y) depends on the complexity of the 

schemes used to describe the objects. Furthermore, the characteristics of objects might 
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not be random variables. Accordingly, Kolmogorov defined the relative complexity of an 

object y given x as the length of the minimal program p that outputs y given x, 

KA(ylx) = min l(p) 
A(p,x)=y 

where A is the asymptotically optimal programming method such that for any other 

programming methods cp(p,x) we have the inequality 

KA(ylx)::; min l(p) + Ccp 
cp(p,x)=y 

where the constant Ccp depends only on cpo Kolmogorov then defined the complexity of y 

as 

and the II quantity of information conveyed by x about y" as 

Note that in modern literature (e.g. Bennett et aL, 1998), the subscript A is often dropped, 

and the optimal programming method is tacitly assumed. Interestingly, up to a logarith­

mic term, Kolmogorov complexity obeys the three laws of Shannon as well (Kolmogorov, 

1965; Hammer et aL, 2000). 

A closely related measure is called the Levin complexity. While Kolmogorov com­

plexity does not consider the running time, Levin complexity does. Levin complexity is 

defined as (Koshelev, 1998; Levin, 1973): 

a(x) = min {t(p) .21(p)} 
A(p)=x 

where t(p) is the running time of the program p and A is the asymptotically optimal 

programming method as described in the previous paragraph. While the concepts of 

Kolmogorov and Levin complexities will not be directly used in my thesis (since they are 

uncomputable; see Appendix B), they are nonetheless essential for understanding two 

other sections in this literature survey (specifically the ones dealing with similarity and 

algorithmic aesthetics). Furthermore, Kolmogorov's argument for a probability-free in­

formation theory will apply with equal force to my proposed information theory (Chap­

ter 3). 

In summary, this subsection covers information theories. In Chapter 3, I will develop 

my proposed information theory by building on Kolmogorov (1965), while incorporating 
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existing knowledge about mental representations (Section 2.2), and relating it to the three 

laws of Shannon. The next section deals with time series analysis. 

2.3.2 Time Series Analysis 

A distinctive approach to the analysis of symbolic musical data is time series analysis. 

One of the pioneering papers, Dirst and Weigend (1994), noted that themes in fugues are 

traditionally subjected to symmetry transformations (see Figure 2.5). Motivated by this 

musicological fact, they devised three representation schemes for four-part fugues: 

• The x-representation: Xt is a four-dimensional vector denoting the pitch values of 

the four voices at time t (in semiquavers). 

• The difference representation: dt = Xt - Xt-l, representing the four pitch intervals 

at time t. 

• The run length representation: each note is denoted by (p,1), where p denotes 

the pitch number and 1 denotes its length. Dirst and Weigend remarked that this 

scheme does not preserve vertical alignment. 

Musical term Operation 
Transposition x +-- x + c (translation) 
Retrograde t +-- -t (time reversal) 
Inversion d +-- -d (pitch reflection) 
Diminution t +-- 2t 
Augmentation t +-- O.St 

Figure 2.5: Symmetry transformations (after Dirst and Weigend, 1994) 

Given these time series representations, Dirst and Weigend proposed several ways to 

analyse the horizontal (melody), vertical (harmony), and higher order structure of music. 

For horizontal analysis, they proposed to use Markov models and Fourier transforms on 

the pitch, intervals, or length time series. For vertical analysis, they proposed to use stan­

dard connectionist techniques on the x-representation. For higher order structure, the 

authors have presented a theme finding algorithm based on the difference representation 

and clustering techniques. Finally, for the modelling of expectations, they proposed to 

use a neural network model that predicts the next event, whereby a large prediction er­

ror is interpreted as a violation of the musical expectation.4 What are noteworthy here 

4However, nothing was said about empirical validation. 
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are their repeated mentions of the difference representation, which I will also be using in 

Chapter 3. 

Boon and Decroly (1995) showed that symbolic pitch data can be quantised into a 

time series so that dynamical systems theory can be used for music analysis (for multi­

part music, each part is analysed separately). They used phase space dimensions and 

spectral analysis to identify global dynamics in a corpus, and a novel entropy measure 

for local dynamics. 

The phase portrait for an n-part composition can be constructed by plotting the n­

dimensional pitch trajectories over time in an n-dimensional phase space (Boon and De­

croly, 1995). The phase space dimensions (D f) can be obtained from the log-log plot of 

N (A) against A, where N (A) is calculated by dividing the phase space into small boxes 

of size A and counting the total number of occupied boxes in that space, and D f is the 

slope of the plot: 

D f is found to be in the range of 0.94 ::; D f ::; 1.86 for the 23 pieces in their corpus. 

Secondly, the slopes of the log-log power spectra S(f) rv 1/ r showed that for musical 

pieces, v is in the range of 1.79 ::; v ::; 1.97 (Boon and Decroly, 1995). 

The most interesting aspect is their new entropy measure. Empirically, Boon and 

Decroly discovered that conditional entropy of the note Si+1 given the previous note si 

II did not reflect consistent significance" for musical sequences. They identified a possible 

cause as the lack of reference to tonality, then defined a new entropy measure by dividing 

the note distributions into two sets, P for notes belonging to a reference scale (e.g., A 

major), and Q for notes outside the scale. This new entropy measure is defined as: 

H' _ H('YP) + H(6Q) 
0- 10gN ' 

where N is the total number of notes, 'Y + 6 = 1 and 6 > 'Y. The last inequality means 

that non-tonal notes are more surprising and therefore are assigned a higher entropy. 

Generalising to first order transitions, they used: 

H~ = LH/(S)P(S) 
5 

where 

5 MIDI pitch number, 

e the reference scale, 
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v(S) 

H'(S) 

P(S) 

total number of occurrences of pitch 5, 

[SEe ,P(sIS) log( ,P(sIS)) + [sjI'B bP(sIS) log(bP(sIS)) 
logv(S) 

{ 
,v(S)/N, if 5 E e, 
bv(S)/N, otherwise. 

29 

They systematically plotted all measured quantities against each other. Their widely 

scattered results suggest that there is no evidence of correlations between global and 

local dynamics (with the notable exception that Df might be related to HD. This result 

suggests that low-order Markov models (even when tweaked to accommodate tonality) 

is unable to capture all information within the piece, which corrobates my motivation for 

a new information theory. 

In summary, this subsection deals with time series analysis of symbolic musical data. 

When viewed in light of biophysical relevance, the difference representation (Dirst and 

Weigend, 1994) bears a close resemblance to the neural cancellation filter (de Cheveigne, 

1993). Therefore, with biological realism in mind, the difference representation (Dirst and 

Weigend, 1994) will be used in Chapter 3. 

2.4 Biomusicology 

Biomusicology (see p. 16) is of particular relevance to my thesis. The very first evolu­

tionary tree of music was produced by Lomax's (1980) cantometrics project (Brown et al., 

2000), but Lomax did not use the term meme, nor did this term exist when the work was 

carried out in the 1960's. Lomax (1980) and colleagues quantified musical culture by 

what they called a cantometric profile (consisting of thirty-seven variables, such as nasal­

ity, tempo and melodic range, each of them within a 3-6 point scale). After collecting 

148 cantometric profiles from all over the world, Lomax (1980) performed a multifac­

tor analysis on the collected profiles and discovered ten major regional factors: Siberian, 

Circum-Pacific, Nuclear America, African Gatherer, Early Agriculture, Proto-Melanesian, 

Oceanic, Old High Culture, Central Asian, and West Europe. By subjecting these ten 

factors to a further clustering procedure, Lomax and colleagues were able to create an 

evolutionary tree of folk song styles. This treeS is reproduced in Figure 2.6 (only primary 

bonds are reproduced here). Given this tree, Lomax predicted that all world songs have 

two evolutionary parents: Siberia and African Gatherer. However, the correctness of Lo-

5This tree should be read from the left to right, with the leftmost nodes (Siberia and African Gatherer) 
representing the roots. Evolutionary age (causality) is assumed to be positively rank-correlated with the 
level of socio-economic development, shown on the horizontal axis (Lomax, 1980). Strictly speaking, this is 
not a tree but a network due to the reticulations. 
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max's tree has been questioned: Brown et al. (2000) claimed to have an independent (but 

unpublished) cluster analysis on Lomax's raw cantometric data that contradicts Lomax's 

prediction. As their tree is not published (nor do they say anything about their method­

ology), I have no basis for judgement here-I can only say that we need more data before 

making any such claims. 

Level of socio·economic development 

Figure 2.6: Clustering of song styles (after Lomax, 1980) 

The first scientific study of musical memes (with the word meme explicitly mentioned) 

was carried out by Lynch and Baker (1994). They began by defining the "song meme" as a 

sequence of "syllable types", where the syllable types were determined post hoc by visual 

inspection of discontinuities in the recorded spectrograms of chaffinch songs. The se­

quences were then analysed using population biology methods. Lynch and Baker (1994) 

found that the levels of cultural differentiation among chaffinch populations can be ex­

plained by high mutation rates (memetic drift) and low migration rates (memetic isola­

tion). 

While Lomax (1980) and Lynch and Baker (1994) might rightfully be called the fa­

thers of music memetics, Jan (2000a,b) was the first to apply the memetic paradigm to 

Western tonal music and link it to music theory and psychology. Taking a more theo­

retical standpoint, Jan (2000a) distinguished between the phemotype and the memotype, 

which correspond to memetic behaviours and artefacts (e.g., scores and recordings) and 

their engendering neural structures (e.g., mental representations), respectively. He also 
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requires coequality, by which he means the segmentation of music into discrete, compara­

ble units (analogous to the DNA code). Jan (2000a) identified two dimensions of memetic 

hierarchies, cultural and structural: cultural hierarchies consist of intraopus style, idioms, 

dialects, rules and laws; whereas structural hierarchies can be mapped to Narmour's hi­

erarchical style structures, defined as "[themes] that listeners implicatively map from the 

top down onto incoming foreground variations" (Narmour, 1999, p. 444). Jan's account is 

a good starting point for future work, but as it stands there is not much beyond a vague 

mapping from musicological terms to memetic ones (thus unfalsifiable). I will address 

this inadequacy by furnishing an explicit and in principle falsifiable definition of memetic 

information in Chapter 3. 

Jan (2000a) also linked aesthetics to memetics: "[the cultural fitness] of a [musical 

meme] is an index of its intrinsic appeal to the environment of a brain, which is circum­

scribed both by innate perceptual and cognitive attributes, and by the receptivity to incur­

sion of the complement of memes already encoded therein" (Jan, 2000a, my emphasis). This 

cultural fitness has not been explicitly modelled before, and I will investigate this further 

in Chapter 5. 

In summary, this subsection reviews music memetics. Of particular relevance is the 

link between memetics and music psychology (Jan, 2000a). While Lomax (1980) and 

Lynch and Baker (1994) did pioneering work on music memetics, Jan (2000a) was the 

first to link memetics to music psychology as well as aesthetics. By putting Jan (2000a) 

together with (Meyer, 1957, reviewed in Section 2.1), one could unearth an indirect link 

between memetics and information theory-ultimately, both seek to model music psy­

chology and aesthetics. I believe that this link addresses an important caveat regarding 

memetic information (Hull, 2000): 

The solar system, an enclosed gas, and a molecule of table salt all contain 

information. So does a molecule of DNA. It is a double helix. The bonds 

that run along the 'backbones' of this molecule do not rupture as easily as 

those holding the base pairs together. Hence, the molecule can zip and unzip 

with great facility. However, another sort of information is also contained in 

a molecule of DNA-in the sequence of its base pairs. As far as I know, none 

of the current analyses of evidence can distinguish between these two sorts of 

information, and until they do, memetics is in real trouble. (p.59) 

By looking at memes from an information-processing perspective, we can analyse the 

second sort of information quantitatively. 



CHAPTER 2. LITERATURE REVIEW 32 

2.5 Summary 

Measures of music information have been around for a while, but their physiological, 

psychological and evolutionary validity have been hitherto lacking. Based on the previ­

ous work of Meyer (1957), I have identified three major building blocks for a biologically 

plausible quantification of music information: mental representations, music informatics 

and biomusicology. In mental representations, I have reviewed biophysical and cognitive 

representations, providing the most important building block for my proposed informa­

tion theory. In music informatics, I have reviewed information theory and time series 

analysis, providing the computational techniques for my proposed research. Finally, in 

biomusicology, I have reviewed the memetics of music, providing a biological basis for 

my proposed measure. All in all, this chapter provided a strong foundation for my the­

sis. 



Chapter 3 

Cognitive Information 

3.1 Introduction 

This chapter proposes a novel cognitive information theory of music. The heart of this the­

ory consists of a non-Shannon information measure for symbolic musical time series such 

as those extracted from MIDI files. The aim of this theory is to model the amount of short­

term memory required to store pieces of music in the human brain. This theory provides 

a unifying information-theoretic and simultaneously perceptually-motivated framework 

for music complexity, music similarity, and aesthetics of music. In this chapter, I will fur­

ther motivate my cognitive information theory, detail my research methodology for this 

and the next two chapters, and propose and test my new information measures. 

3.2 Motivation 

Recall from Chapter 2 the two requirements for the construction of an accurate informa­

tion theory of music (Meyer, 1957): 

1. "First we must arrive at a more precise and empirically validated account of mental 

behavior which will make it possible to introduce the more or less invariant proba­

bilities of human mental processes into the calculation of the probabilities involved 

in the style. This account need not necessarily be statistical itself" (p. 422-423). 

2. "Second, and this is ultimately dependent upon the first, it is necessary to develop 

a more precise and sensitive understanding of the nature of musical experience" 

(p.423). 

In Chapter 2, I have recast these requirements into three main building blocks (for a 

biologically plausible information theory of music): mental representations, music infor-

33 
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matics and biomusicology. I propose that this kind of information modelling-although 

difficult from a pure information-theoretic point-of-view-is actually possible if we ac­

tively incorporate knowledge from other fields, especially theoretical neuroscience and 

music psychology. This approach is built on Meyer's suggestion that the above two con­

ditions are necessary and sufficient. Even if they are not, my model could still be a partial 

cognitive model for a clearly defined subset of tonal music, such as fugues, on a model­

fitting basis. The definition of such subsets, if such a need arises, would be future work. 

The modelling of brain activities would give us a sound basis for further investigation 

into computational aesthetics and, as I will argue, a sound basis for music memetics as 

welL The following is a brief rationale for my new information theory. 

1. To a first approximation, cognitive information corresponds to perceived complex­

ity, manifested in self-reported responses of musical complexity (cf Conley, 1981; 

Shmulevich and Povel, 2000, reviewed below). For Lerdahl (1988, p. 255), "com­

plexity refers not to musical surfaces but to the richness of their (unconscious) 

derivation by the listener". A similar view is expounded by Toop (1993). For 

Toop, complexity is "essentially a subjective, perceptual phenomenon [ ... ] some­

thing [that the listeners sense unreflectingly] as richness" (p. 48). There seems to be 

a consensus that complexity is a perceived phenomena and not a physical one. This 

corroborates my cognitive information hypothesis (see Chapter 1). 

2. Recall from Chapter 2 that musical probabilities do not match brain probabilities, 

because neuroscientific experiments have shown that melody-like music is encoded 

more faithfully in the brain than random music (Patel and Balaban, 2000). Cur­

rently, all existing Shannon-based models of music employ the probabilities of the 

musical text, therefore they are unlikely to reflect the probabilities of mental pro­

cesses as per Meyer's requirements. A notable exception is Conklin and Witten's 

(1995) multiple viewpoint system, which combines multiple probabilistic models 

of music (called viewpoints), thus making it possible to recreate the nonlinearities 

observed by Patel and Balaban (2000); however, the correlation between combined 

viewpoints and brain probabilities is not currently known. 

3. Instead of Shannon information theory (as specified by Meyer), I will instead pro­

pose a new, compression-based information theory that does not involve proba­

bilities. I believe that this change does not detract from Meyer's arguments, be­

cause Meyer explicitly said that "this account need not necessarily be statistical 

itself". Furthermore, Large et aL (1995) empirically validated a compression-based 

model of musical memory, providing indirect support for my compression-based 



CHAPTER 3. COGNITIVE INFORMATION 35 

approach. 

4. My model addresses Meyer's first requirement by having a short-term memory 

component derived from biologically plausible building blocks known as delay 

lines and cancellation. These building blocks have previously been hypothesised 

to exist in the human auditory system by different researchers (Licklider, 1951; 

de Cheveigne, 1993), although they have not yet been located experimentally. In 

this thesis, I will simply assume that they exist, on the basis that an explanatory 

theory derived from this assumption lends weight to it. 

5. I will adopt the optimality principle of neural processing (Sanger, 1989). Specifi­

cally, I assume that the auditory short-term memory performs fairly-optimal com­

pression. This is further motivated by an experimentally validated, compression­

based model of musical memory (Large et aL, 1995). 

6. Towards fulfilling Meyer's second requirement, I use the preprocessor of Temper­

ley and Sleator (1999) as my front-end, which results in a stream of three-tuples of 

the form (onset, pitch, metrical level) from a MIDI file. This representation is es­

sentially the same as the neuronal speculation of Narmour (1999), with a slightly 

different interpretation of "chronotopic" (Narmour used durations, I used onsets). 

Evidence for beat-tracking mechanisms is well-documented in music psychology 

(Lerdahl and Jackendoff, 1983); furthermore, absolute pitch and tempo mechanisms 

have been documented by Levitin (1994) and Levitin and Cook (1996). Moreover, 

Temperley and Sleator (1999) claimed that their beat-finding algorithm is robust 

even for performance rubati. 

7. Finally, at Marr's computational level (Phillips, 1997), I hypothesise that the way 

I put together the above components reflects the cognitive constraints on music 

processing. 

In conclusion, both of Meyer's requirements are addressed by my proposed model, 

explained in detail below. Therefore, in his terms at least, I have proposed a potentially 

accurate quantification of music in information-theoretic terms, that could in principle 

lead to a quantitative measure of musical value. 

Of course, the validity of my premises and assumptions cannot be proven in pure de­

ductive logic, given their falsifiable nature. The best we can get is empirical evidence (i.e., 

testing the model predictions, see Subsections 4.4.2 and 5.3.4), and even that cannot be 

done in full in the scope of this thesis. Due to inherent time constraints, many validation 

tasks have to be left for future work. 
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3.3 Methodology 

For this and the next two chapters, the meta-gMDL+ methodology (proposed in this sec­

tion) will be used throughout. This methodology combines minimum description length 

and meta-analysis, detailed below. The main idea is to combine description lengths from 

different studies and then select the hypothesis that minimises the combined code length. 

3.3.1 Minimum Description Length 

The minimum description length (MDL) principle states that the best data model is the one 

that minimises the code length for the observed data (Rissanen, 1978; Barron and Ris­

sanen, 1998). MDL is better than traditional goodness-of-fit measures (such as variance 

accounted for) because MDL penalises complex models, thus preventing overfitting (Pitt 

and Myung, 2002; Grunwald, 2005). Since psychological data are usually on an interval 

scale, a good way of comparing them with computational models would be linear regres­

sion (specifically, one-tailed correlation model where negative correlations are ignored). 

The non-negativity constraint is motivated by the existence of models that out­

put the correct magnitude but with the wrong sign. Consider the following datasets: 

(Xdata,Ydata) = {(0,0),(1,1),(2,0)} and (Xmodel,Ymodel) = {(0,1), (1,0), (2, I)}. Quadratic 

fits are shown in Figure 3.1. With a two-tailed correlation, the model accounts for 100% 

of the variances in the data, which is not right in a model selection context because the 

model is exactly the opposite of what it should be. With a one-tailed correlation, however, 

the variance accounted for is 0%, which is exactly what we wanted. 
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Figure 3.1: Toy Data and Model 

The gMDL criterion (Hansen and Yu, 2001) is an appropriate measure of code length 

for regression problems like two-tailed correlation. Although there are many other forms 
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of MDL criteria, I chose gMDL because it has a simple closed-form expression that is 

amenable to my one-tailedness modification. 

Consider a non-negative, one-tailed correlational model with n pair of data points, 

where 1 ::; i ::; n, x and yare standardised vectors (zero mean and unit variance) such that 

L:f=l xT = L:f=l YT = n - 1, and the errors ti are normally distributed with zero mean and 

an unknown variance. The vectors are standardised so that we are comparing apples 

with apples, and the choice of n - 1 is such that the unbiased estimate of population 

variance becomes unity. Here R+ denotes the product moment correlation coefficient 

with negative correlations replaced by zeros, 

R - (0 L:f=l XiYi ) +-max, l' n-

In other words, if the correlation between x and Y is negative, we ignore x and model Y 
as noise. The residual sum of squares is 

n 

RSS = [>T 
i=l 
n 

~)Yi - R+Xi)2 
i=l 
n 

~)YT - 2YiR+Xi + R~XT) 
i=l 
n n n 

LYT -2R+ LXiYi +R~ LXT 
i=l i=l i=l 
(n - 1) - 2R~ (n - 1) + R~ (n - 1) 

(n - 1) - R~ (n - 1) 

(n - 1)(1 - R~). 

The gMDL criterion is then given by Hansen and Yu (2001): 

2 n-k 2 RSS/(n-k) , 
{ 

!! log RSS + ls.log (L:i'-lYT-RSS)/k + logn if R2+ ? kin 

~ log (L:i'~l YT) + ! log n otherwise, 

where k denotes the number of predictors (only one here, which is R+).1 After some 

1 I write gMDL+ here because I use R+ instead of the usual correlation coefficient R. 
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algebra, this becomes 

{ 

n 1 (1 R2) 11 (n-l)R~ 1 2 2: og - + + 2: og l-R~ + ogn, if R+ 2: lin 

1 log (n~ 1 ) + ~ log n otherwise. 

3.3.2 Meta-Analysis 

Glass (1976) coined the term meta-analysis to mean the integration of findings through 

statistical analysis of a large collection of studies. For correlational studies, Glass (1977) 

recommended that one could use either the average of correlation coefficients, or that 

the coefficients be "squared, averaged, and the square root taken". Instead of look­

ing at the correlation coefficient, which is a poor measure of model selection (Pitt and 

Myung, 2002), I propose to add the gMDL code lengths together to obtain a combined 

code length.2 The hypothesis with the shortest combined code length will then be chosen 

as the best explanation. I call this meta-gMDL+ selection. 

3.4 Review of Non-Standard Information Models 

3.4.1 The Theory of Cilibrasi et al. (2004) 

In this chapter, I will make use of two non-standard information models, reviewed below. 

First I will review the information theory proposed implicitly in Cilibrasi et al. (2004). I 

write "implicitly" because the explicit one is the uncomputable Kolmogorov complexity 

(approximated by bzip2, with a preprocessing step to ensure fair comparisons of MIDI 

files).3 But I believe that any preprocessing that goes beyond lossless data extraction 

counts as a deliberate modification to the compressor. In fact I am prepared to claim that 

the effectiveness of their information theory comes entirely from preprocessing alone. 

This is an important philosophical difference between Cilibrasi et al. (2004) and my work. 

Their preprocessing step goes like this (Cilibrasi et al., 2004): 

The preprocessor extracts only MIDI Note-On and Note-Off events. These 

events were then converted to a player-piano style representation, with time 

quantized in O.OS-sec intervals. All instrument indicators, MIDI control sig­

nals, and tempo variations were ignored. For each track in the MIDI file, we 

2In meta-analyses, people often use Cronbach's a (interrater consistency) as weights, such that studies 
with all participants agreeing with each other will have more weights than those without. My problem is 
that I do not have the a values for most of the studies in this and the other two chapters, so instead I assume 
that all studies are equally consistent. 

3 And secondly because they do not use this information measure other than for the purpose of calculating 
the information distance, the subject of the next chapter. 
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calculate two quantities: an average volume and a modal note. ("Modal" is 

used here in a statistical sense, not in a musical sense.) The average volume 

is calculated by averaging the MIDI Note-On velocity of all notes in the track. 

The modal note is defined to be the note pitch that sounds most often in that 

track. If this is not unique, then the lowest such note is chosen. The modal 

note is used as a key-invariant reference point from which to represent all 

notes. It is denoted by 0, higher notes are denoted by positive numbers, and 

lower notes are denoted by negative numbers. A value of 1 indicates a half 

step above the modal note, and a value of -2 indicates a whole step below the 

modal note. 

The modal note is written as the first byte of each track. For each track, we 

iterate through each 0.05-sec time sample in order, producing a single signed 

8-bit value as output for each currently sounding note (ordered from lowest 

to highest). Two special values are reserved to represent the end of a time step 

and the end of a track. The tracks are sorted according to decreasing average 

volume and then output in succession. (p. 58) 

This contradicts with the following claims, made in the same paper: 

39 

1. "We do not look for similarity in specific features know to be relevant for classifying 

music; instead we apply a general mathematical theory of similarilty" (p. 49); 

2. "We want to stress again that our method does not rely on any music-theoretical 

knowledge or analysis but only on general-purpose compression techniques" 

(p.62). 

Both claims are false, because they made use of specific features such as modal notes, 

intervals, and average volume. Such features rely on music-theoretical knowledge (such 

as the relative importance of intervals). Actually, even Rudi Cilibrasi himself admitted 

that "the preprocessing step is crucial to the success of the method" (personal commu­

nication, 23 October 2006). Therefore, there is no clear evidence that the Kolmogorov 

complexity framework played a role here in the "success" of this measure, despite pub­

lished claims to the contrary. I would argue that the preprocessor is really a part of their 

information measure. 

3.4.2 T-Complexity Theory 

Now I will review the theory of T-complexity (Titchener, 2000), which will be used in my 

short-term memory model (proposed in the next section). Let A = {aI, a2, ... ,an} be a 
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finite alphabet of symbols. By convention (Hopcroft et aL, 2000, p. 113), A + denotes "one 

or more" symbols taken from the alphabet A. The T-complexity of a string x E A + is "a 

measure of the effort required" to produce x and is derived as follows (Titchener, 2000). 

First we decompose x into a series of patterns Pi E A + such that 

kt kt - 1 kt -2 kl 
X = Pt Pt-I Pt-Z ... PI a, 

where a E A, subject to the constraint 

_ mi-l,i-l mi-l,i-2 mi-l,1 A 
Pi - Pi-I Pi-Z ... PI ' 

where 0 ::; mj-I,i ::; ki. The T-complexity of x is then defined as: 

CT(X) = l)ogz(ki + 1). 
i 

The decomposition step can be done in 0 (n log n) time using the fast T-decomposition 

algorithm (Yang and Speidel, 2005). Note that the decomposition itself is not unique, but 

it has been proven that all possible decompositions of x give the same value of CT(x) 
(Titchener, 2000; Yang and Speidel, 2005). The T-complexity measure is selected for my 

short-term memory model mainly because of its 0 (n log n) speed. 

Example 3.1. Prove that (ME)3 (M) 1 E is a valid decomposition of MEMEMEME, and calcu­

lates its T-complexity. 

Proof For (ME)3(M)I E, we have: 

1. A = {M,E}; 

2. PI = M, kI = 1. Here PI E A; 

3. pz = ME, kz = 3. Here pz = (PI)I E where E E A and 0 ::; 1 ::; kz· 

Therefore the constraint is satisfied and (ME)3 (M) 1 E is a valid decomposition. Its 

T-complexity is L logz (ki + 1) = logz (1 + 1) + logz (3 + 1) = 3 bits. 0 

3.5 A Model of Musical Memory 

My cognitive information model is based on Atkinson and Shiffrin's (1968) memory 

modeL4 A block diagram of my information model (with context also shown) can be 

4Note that this is just one possible realisation of the Atkinson-Shiffrin model; I do not claim that it is the 
best. 
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found in Figure 3.2. Here OPM stands for onset, pitch and metrical level (the input), 

TDNN stands for time-delay neural network (the sensory register), STM stands for short­

term memory and LTM stands for long-term memory. The double bars in this diagram 

represent my proposed information measure quantifying the memory usage in the STM. 

I OPMTracker I~I TDNN l~a~B 
, v~---------' 

Scope of my model 

Figure 3.2: Block diagram of my information model 

3.5.1 Assumptions 

Firstly, I assume the existence of separate STM and LTM mechanisms (Atkinson and 

Shiffrin, 1968). This is a standard simplifying assumption. Secondly, both Narmour 

(1999) and Temperley and Sleator (1999) require a beat tracker for their respective cogni­

tive theories to work. This leads to my assumption that metrical level is a crucial building 

block that should not be omitted from the inputs. Finally, I assume that the neural cancel­

lation filter mechanism is applicable to higher cognitive functions as well. This is justified 

by the argument of Lorincz et al. (2002) on the separation of structure and function (see 

Chapter 2, p. 17). 

3.5.2 Inputs 

My model takes an array of three-tuples of the form (onset, pitch, metrical level) from 

a beat-tracked MIDI file, which I will call the OPM representation. Onsets can be in 

any linear time format (seconds, milliseconds and so on). Pitches are specified in MIDI 

pitch units. Metrical level starts at 0 (least accent) and goes up to 4 (heaviest accent). 

This representation is isomorphic to those of Narmour (1999) and Temperley and Sleator 

(1999). For example, the first bar of J. S. Bach's Invention No.1 (Figure 3.3) along with 

its metrical structure (marked by the x's) are converted to the OPM representation in 

Figure 3.4. 

In the rest of this thesis, the input file will be a real-time performance MIDI file, post­

processed by the meter program (Temperley and Sleator, 1999). However, note that the 

meter-finding program itself is outside the scope of my model; the OPM input can be 

prepared by any other meter-finding program as long as it returns the onsets, pitches 



CHAPTER 3. COGNITIVE INFORMATION 

x 
x 
x 
x x 

x 
x x 

x 
x 
x x 

x 
x x 

Figure 3.3: First bar of J. 5. Bach's Invention No.1 in C Major (BWV 772) 

Onset Pitch Level 
1 48 0 
2 50 1 
3 52 0 
4 53 2 
5 50 0 
6 52 1 
7 48 0 
8 55 3 
9 36 0 
10 38 1 
10 60 1 
11 40 0 
12 41 2 
12 59 2 
13 38 0 
14 40 1 
14 60 1 
15 36 0 

Figure 3.4: OPM representation of the first bar of Bach's Invention No.1 (BWV 772) 

and metrical levels in the manner prescribed above. 

3.5.3 Outputs 

Time-Delay Neural Network (TDNN) 

42 

The sensory register should have been modelled by the connections between neurons 

that Narmour (1999) mentions, using a spreading activation modet except that Narmour 

does not give enough information for a concrete implementation of it. 50 instead I use 

the neural cancellation filter (de Cheveigne, 1993), which can be configured to compute 

all pairwise differences between all nodes. The advantage of this filter is that it takes 
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into account the notion of intervals (differences) which are crucial to music perception. 

The calculation of differences also resonates with Bateson's (1973) ecological view that 

information is a "difference which makes a difference". 

In the model below, the time-delay mechanisms are modelled by a neural cancellation 

matrix M, which I define as the output of an array (Licklider, 1951) of neural cancellation 

filters (de Cheveigne, 1993): 

mij = max (0, Xi - Xi-j), 

for 1 :s: i :s: nand 1 :s: j < i, where Xl, ... ,Xn is a real time series. Intuitively, neural 

cancellation filters are comb filters with non-negativity constraints (de Cheveigne, 1993). 

Unfortunately, this matrix is ill-defined because mij is undefined whenever i :s: j. Further­

more, a one-dimensional (real) representation cannot capture the OPM format naturally. 

So I modify it to: 

where Xl, .. . , Xn is a three-dimensional time series in the OPM format, for 1 :s: i, j :s: n, 

where the max operator here operates component-wise. For example, max ( 0, ( -4, -1,2) ) 

returns (0,0,2) and max(O, (10, -5,10) ) returns (10,0,10). 

Short-Term Memory (STM) 

Assuming that the STM is performing compression (cf Sanger, 1989; Large et aL, 1995), 

I quantify the compressibility of music with T-complexity (Titchener, 2000). Specifically, 

I define cognitive information H(x) as the square root of the T-complexity of the above 

neural cancellation matrix, which models the STM usage of a meme. This definition is 

the centre of my cognitive information theory.s The square root is used because the neural 

cancellation filter sends n source elements into n2 destination slots. 

As an example, the first three notes of the aforementioned Bach invention (BWV 772) 

correspond to the following three-dimensional time series: 

r 
(1,48,0) 1 

X = (2,50,1) , 

(3,52,0) 

SIn this thesis, matrices are stored in row-major order and tuple elements are stored left to right, with no 
zero padding, using 32-bit signed integers in the big-endian format. The symbol alphabet for the calculation 
of T-complexity is 8-bit. But these are not important details, as Titchener (2000) has demonstrated that T­
complexity is empirically a monotonic increasing function of Shannon entropy (for long strings), so we can 
expect the T-complexity to stay approximately the same after a conversion to another storage format. 
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for which the modified neural cancellation matrix can be calculated as follows: 

l 
max(O, Xl - Xl) max(O, Xl - X2) max (0, Xl - X3) 1 

M max(0,X2 - Xl) max(0,X2 - X2) max(0,X2 - X3) 

max(0,X3 -Xl) max(0,X3 -X2) max(0,X3 -X3) 

l 
max(O, (0,0,0)) max(O, (-1, -2, -1)) max(O, (-2, -4,0)) 1 
max(O, (1,2,1)) max(O, (0,0,0)) max(O, (-1, -2, 1)) 

max(O, (2,4,0)) max(O, (1,2,-1)) max(O, (0,0,0)) 

l 
(0,0,0) (0,0,0) (0,0,0) 1 

= (1,2,1) (0,0,0) (0,0,1) . 

(2,4,0) (1,2,0) (0,0,0) 

A hexadecimal dump of the above matrix is shown in Figure 3.5. 

00000000 00000000 00000000 00000000 00000000 
00000010 00000000 00000000 00000000 00000000 
00000020 00000000 00000001 00000002 00000001 
00000030 00000000 00000000 00000000 00000000 
00000040 00000000 00000001 00000002 00000004 
00000050 00000000 00000001 00000002 00000000 
00000060 00000000 00000000 00000000 

Figure 3.5: Hexadecimal dump of M (first column denotes address) 

The reader can verify that the following decomposition (with each symbol under­

lined) satisfies the constraints set forth in the definition of T-complexity: 

(000000000000000000000000000000000000000000000000000000 

0000000000)1(0000000000000001 00 00 00 02 00 00 00 01)1(00 00 00 00 00 

0000000000000000000000)1(0000000000000001 0000 oomoo 0000 

04)1(0000000000000001)1(00000002)1(00) 1500. 

Its T-complexity is Li log2 (k i + 1) = log2 (1 + 1) + log2 (1 + 1) + log2 (1 + 1) + log2 (1 + 
1) + log2(1 + 1) + log2(1 + 1) + log2(15 + 1) = 10. Therefore H(x) is J10 ~ 3.2 bits. 

Long-Term Memory (LTM) 

The long-term memory was not modelled here, but it ought to be investigated in future 

work. For the purpose of this thesis, I will simply assume that the LTM consists of a 

concatenation of a corpus of pieces, which characterises a particular listener who has 

learnt the pieces. 
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3.6 Extended Theory for Two Musical Objects 

So far, H (x) has no notion of jointness and conditionedness of two musical objects. To 

extend the theory for two musical objects, I borrow the pairing operator (x, y) from Kol­

mogorov complexity theory, which returns the concatenation of x and y (Bennett et al., 

1998). Armed with this pairing operator, I then define the joint cognitive information of x 

and y as H( (x, y)). Theoretically, this jOint measure models memory usage learning both 

x and y together assuming that they have not been learned before. Next, I define cognitive 

independence, which characterises the condition H( (x, y)) ~ H(x) + H(y). When x and 

yare cognitively independent, compressing the concatenated inputs would yield a equal 

or larger result compared with concatenating both compressed inputs. In other words, 

the two inputs have so little in common that there could be no memory savings when 

they are compressed together. 

Finally, I define conditional cognitive information, which models memory usage trans­

ferring song x to a brain containing y, as 

H(xly) = min{H(x), H( (x, y)) - H(y)}, 

and the mutual cognitive information as 

I(x; y) = max{O, H(x) + H(y) - H( (x, y))}. 

It follows that if x and yare cognitively independent, then the mutual cognitive infor­

mation will be zero by definition. This information can also be interpreted as a model of 

memory savings in learning x and y together. 

3.6.1 Conformance to The Three Laws of Shannon 

Kolmogorov (1965) observed that the Shannon inequalities are also valid for Kolmogorov 

complexity (up to a logarithmic term). Hammer et al. (2000) went further and stated that 

these inequalities are valid for ranks of finite subsets of linear spaces as well. Given 

this apparent universality (applicable to three completely different information models), 

I will now prove that these inequalities are valid for my information measures too. 

Theorem 3.1. H(x, y) ::; H(x) + H(y) with equality iff x and yare cognitively independent. 

Proof By definition, we have H(x,y) = min{H(x) + H(y),H( (x,y))} ::; H(x) + H(y). 

Again, by definition, H( (x, y)) ~ H(x) + H(y) iff x and yare cognitively independent. 

Therefore, H (x, y) ::; H (x) + H (y) with equality iff x and yare cognitively independent. 

o 
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Theorem 3.2. H(x, y) = H(x) + H(ylx) = H(y) + H(xly) + 0(1). 

Proof To prove the first equality, we note that H(xly) = min{H(x), H( (x, y)) - H(y)} = 

min{H(x) + H(y),H((x,y))} - H(y) = H(x,y) - H(y). For the second equality, we 

invoke the symmetry of algorithmic information (Li et aL, 2003) and we have H( (x, y)) = 
H ( (y, x) ) + 0 (1). Therefore the second equality holds. 0 

Theorem 3.3. I(x;y) = H(x) - H(xly). 

Proof We have I(x;y) 

max{-H(x),H(y) - H((x,y))} 

H(x) - H(xly). 

max{O, H(x) + H(y) - H( (x, y))} H(x) + 
H(x) - min{H(x), H( (x,y)) - H(y)} = 

o 

These theorems will be used in Chapter 4 to establish the measure-theoretic properties 

of my cognitive information measures. 

3.7 Psychological Experiments 

In this section, I summarise three psychological experiments on perceived complexity 

done by other researchers, which I will replicate computationally here in this chapter. 

All three experiments used stimuli that sounded realistic and therefore should not 

suffer from the criticism of being ecologically invalid. 

The first experiment was done by Shmulevich and Povel (2000). In their experiment, 

they asked 25 participants to listen to 35 rhythmic patterns and to rate the complexity of 

each. The patterns and mean ratings are reproduced in Figure 3.6. Shmulevich and Povel 

(2000) noted that a compression-based measure of complexity (the Lempel-Ziv measure) 

could only account for 2.25% of the variances in the human data (r = 0.15), whereas their 

Povel-Shmulevich measure could account for 56.25% (r = 0.75). They attributed this to 

two factors: first, that the Lempel-Ziv measure is unsuitable for short sequences; and 

second, that the Povel-Shmulevich measure is an empirically-tested perceptual model 

and therefore it is likely to do better than the Lempel-Ziv measure. 

The second experiment was done by Conley (1981). In this seminal work on the per­

ception of complexity in art music, Conley specified 10 predictors of musical complexity 

and set out to correlate them with human judgements of musical complexity. In her 

experiments, sixteen Beethoven Eroica Variations (played by Sviatoslav Richter, Angel S-

40183) were used as stimuli (see Figure 3.7). These stimuli6 were chosen because of their 

ecological validity (Conley, 1981). The effect of musical training is controlled for by di­

viding the participants into Graduate, Sophomore and Non-major groups (Conley, 1981). 

6Var. 1 is actually the main theme, despite Conley's misleading labeL 
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Pattern Complexity Pattern Complexity 

11111··11·1·1··· 1.56 11··11·1111·1··· 2.64 

111·1·111··11··· 2.12 11··11·111·11··· 3.24 

1·111·111··11··· 2.08 11111·11·1··1··· 3.08 

1·1·11111··11··· 1.88 1111·1··111·1··· 3.04 

1··11·1·11111··· 1.80 111··11·111·1··· 3.04 

111·111·11··1··· 2.44 1·111··1·1111··· 2.56 

1·1111·11··11··· 2.20 1·1··1111·111··· 2.56 

11··11111·1·1··· 2.56 1111·1·1··111··· 2.84 

11··1·111·111··· 3.00 11·111·1··111··· 3.60 

1·111·1111··1··· 2.04 11·1··111·111··· 2.68 

111·11··11·11··· 2.76 1·1111·1··111··· 3.28 

11·1111·1··11··· 2.72 1··11111·11·1··· 3.08 

11·11·1111··1··· 3.00 1111·111··1·1··· 3.52 

11··11·11·111··· 3.16 1111··11·11·1··· 3.60 

1··111·111·11··· 2.04 11·1111··11·1··· 3.04 

11·1111·11··1··· 2.88 11·1··11111·1··· 2.88 

11·111·111··1··· 2.60 1·1··111·1111··· 3.08 

11·111··11·11··· 2.60 

Figure 3.6: Human data from Shmulevich and Povel (2000). Here a bar represents a tone 
in middle C, a dot represent a rest, and the events are spaced 200ms apart 

Her main results are reproduced in Figure 3.7. For this particular experiment, musical 

training had an effect and that the best predictor of complexity for all three groups is the 

rate of rhythmic activity, accounting for more than 70% of the variances in each group 

(Conley, 1981). At the end of her paper, Conley was careful to warn us that her results 

might not necessarily generalise to any other settings. 

The third experiment was conducted by Heyduk (1975). Heyduk composed four orig­

inal, thematically similar piano pieces in increasing complexity (A < B < C < D) by 

manipulating chord structure and syncopation. He then asked his participants to rate 

the complexity of each of the pieces after two listenings. The mean complexity ratings 

can be seen in Figure 3.8. The ratings exhibited a monotonically increasing relationship 

against compositional complexity (Heyduk, 1975). 

3.8 Computational Replications 

Following my proposed methodology in this chapter, I will compare the following three 

models by using meta-gMDL+ selection: 

• The model proposed in Section 3.5; 
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Var. Title Graduate Sophomore Non-major 
1 Introduzione col Basso del Tema -1.65 -1.51 -1.17 
2 A due -0.57 -0.99 -1.07 
3 A tre -0.90 -1.09 -0.95 
4 A quattro 0.12 0.14 0.05 
5 Tema -0.64 -0.48 -0.22 
6 Variation I 0.00 0.40 0.63 
7 Variation II 1.12 1.89 1.39 
8 Variation III 0.88 0.62 0.29 
9 Variation IV -0.24 0.11 0.04 
10 Variation V -0.08 -0.78 -0.53 
11 Variation VIII 0.23 0.09 0.15 
12 Variation IX 0.20 0.45 0.65 
13 Variation X 1.49 0.93 0.62 
14 Variation XI -0.29 -0.39 -0.07 
15 Variation XII 0.69 0.64 0.60 
16 Variation XIII -0.36 -0.02 -0.39 

Figure 3.7: Stimuli and mean standardised complexity data from Conley (1981) 

Piece Complexity 
A 3.0 
B 5.4 
C 8.0 
D 9.8 

Figure 3.8: Complexity data, read from the graph in Heyduk (1975) 

• A reduced model, which is the same as above but with the neural cancellation filter 

removed; in other words, the T-complexity is taken of the input sequence itself, and 

the final square root is not taken; 

• The baseline model using Cilibrasi et al.'s (2004) preprocessor with bzip2 (see Sub­

section 3.4.1), which is the current state-of-the-art in algorithmic music information. 

In examining the internal validity of my information measure, I noted that there are 

two potential objections: the short sequence objection and the polyphonic objection. I will 

answer each of them by computational replications. Finally, I will combine the findings 

using meta-gMDL+ selection. 
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3.8.1 Experiment 1 

As reviewed above, Shmulevich and Povel (2000) found that a compression-based mea­

sure of complexity (Lempel-Ziv) could only account for 2.25% of the variances in human 

judgements of rhythmic complexity. This raises the question whether my compression­

based information measure would perform as poorly for short sequences. The following 

replication of Shmulevich and Povel (2000) will provide evidence against the short se­

quence objection. 

Method 

Materials The stimuli consisted of all thirty-five rhythmic patterns from Shmulevich 

and Povel's (2000) experiment (as shown in Figure 3.6). 

Procedure Stimuli were entered into a computer and then converted into the OPM for­

mat. The cognitive information H ( .) of all 35 OPM files were then calculated. The cor­

relation between the values thus calculated and the human judgements in Figure 3.6 are 

then reported, along with its statistical significance and gMDL+ (see Subsection 3.3.1). 

Results 

Results are shown in Figure 3.9. There is a statistically significant correlation between my 

proposed model and human data (p < .05). On the other hand, the reduced model and 

the baseline model do not have statistically significant correlations (p > .05). The values 

of gMDL+ also reflect this. 

Measure r df p gMDL+ 
Proposed 0.44174 33 0.0039 0.811 
Reduced -0.44841 33 1.0000 1.270 
Baseline 0.00000 33 0.5000 1.270 

Figure 3.9: Correlation with Shmulevich and Povel's (2000) data in Experiment 1 

Discussion 

My proposed model (r = 0.44) is much better than the Lempel-Ziv measure (r = 0.15) 

but not as good as the Povel-Shmulevich measure (r = 0.75). One way to look at it is 

that the Povel-Shmulevich measure deals only with beat music and does not generalise 

to polyphonic music; nor does it recognise any pitch-based features in the first place. 

Music like Gregorian chants are defined mainly by their pitches, so the Povel-Shmulevich 
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measure would not be applicable. Also, the reduced and baseline models performed very 

poorly in this experiment, suggesting that: 

• The neural cancellation filter is important; 

• The assumptions behind the baseline model (the applicability of Kolmogorov com­

plexity theory) might be misguided. 

With more data, I can expect to claim that my model is a reasonable trade-off between 

model specificity and sensitivity. 

3.8.2 Experiment 2 

My choice of the OPM format was based on Narmour's (1999) theory which was orig­

inally proposed for monophonic music. The validity of my extrapolation (to the poly­

phonic domain) is not yet demonstrated. It is possible that my model might not be able 

to handle polyphonic music well. To examine this question, I have replicated Conley's 

(1981) experiment below. 

Method 

Materials The stimuli consisted of all sixteen Beethoven Eroica Variations from Con­

ley's (1981) experiment (as shown in Figure 3.7). Conley (1981) used a Sviatoslav Richter 

recording (Angel S-40183) which is out-of-print and, even if available, would be ex­

tremely difficult to convert into proper MIDI files. To establish an approximate corre­

spondence with her experiment, I used a publicly available MIDI performance by Bunji 

Hisamori (several versions are published on the Internet; I used his "Revision 2", dated 

July 1999). 

Procedure Stimuli were converted into the OPM format. The cognitive information 

H(·) of all 16 OPM files were then calculated. The correlation between the calculated 

values and the human judgements in Figure 3.7 were then reported (along with statistical 

significances and gMDL+). 

Results 

Results are shown in Figure 3.10. For my proposed measure, the correlations are statis­

tically significant for the Sophomore and Non-major groups (p < .05), but not for the 
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Graduate group (p > .05). All of the correlations with my reduced measure are sta­

tistically significant. None of the correlations with the baseline measure is statistically 

significant (p > .05). 

Measure Group r df p gMDL+ 
Graduate 0.415270 14 0.05500 1.830 

Proposed Sophomore 0.665640 14 0.00240 -0.670 
Non-major 0.597580 14 0.00730 0.298 
Graduate 0.489010 14 0.02700 1.360 

Reduced Sophomore 0.728240 14 0.00069 -1.860 
Non-major 0.656680 14 0.00290 -0.526 
Graduate 0.078651 14 0.39000 0.870 

Baseline Sophomore 0.231170 14 0.19000 0.870 
Non-major 0.318970 14 0.11000 2.180 

Figure 3.10: Correlation with Conley's (1981) data in Experiment 2 

Discussion 

The results showed that my information measure is able to model the Sophomore and 

Non-major judgements reasonably well, but has marginally failed on the Graduate data. 

One possible explanation is that, as all the Beethoven Variations contained the same 

theme (Var. 1), there might be a priming effect where the main theme was memorised 

by the participants at least partially (more so by the Graduate group, assuming that they 

have a better memory for music than the other two groups). 

3.8.3 Experiment 3 

In this experiment, Conley's (1981) experiment is again replicated, but with conditional 

cognitive information (conditioned on the theme) in lieu of cognitive information. If 

there is a priming effect as suggested above, then the conditional cognitive information 

should correlate better with human ratings than unconditioned cognitive information (in 

Experiment 2). 

Method 

Materials The stimuli were the same as in Experiment 2. 

Procedure The procedure was the same as that of Experiment 2, except that the condi­

tional cognitive information is used (conditioned on the theme). 
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Results 

Results are shown in Figure 3.11. The correlations are statistically significant for all three 

measures on all three groups (p < .05), and each of the correlations are higher than their 

counterparts obtained in Experiment 2. 

Measure Group r df p gMDL+ 
Graduate 0.48571 14 0.02800 1.3900 

Proposed Sophomore 0.68993 14 0.00150 -1.0900 
Non-major 0.62716 14 0.00470 -0.0882 
Graduate 0.54564 14 0.01400 0.8700 

Reduced Sophomore 0.73447 14 0.00060 -2.0000 
Non-major 0.66793 14 0.00230 -0.7080 
Graduate 0.41192 14 0.05600 1.8500 

Baseline Sophomore 0.40219 14 0.06100 1.8900 
Non-major 0.41614 14 0.05400 1.8200 

Figure 3.11: Correlation with Conley'S (1981) data in Experiment 3 

Discussion 

With the priming assumption, the results added support to my cognitive information 

model. By comparing the r-values in the two tables, we can see that the priming as­

sumption produced the highest improvement for the Graduate group, while producing 

only negligible improvements for the Sophomore and Non-major groups. One possible 

interpretation is that the Graduate group had a better memory for music and were able 

to memorise the main theme while listening. Another possibility is that they might have 

learnt this theme before from Beethoven's Eroica Symphony. 

Here again, the reduced model performed slightly better than the full model, and the 

baseline model has failed. The percentage of variances accounted for by my full model 

are 23%, 46% and 37%, respectively, which are not as good as Conley's best model (rate 

of rhythmic activity, accounting for 71%, 90% and 77% of the data variances). However, 

when I apply Conley's best model to Shmulevich and Povel's (2000) rhythmic patterns 

(Figure 3.6), I obtained the same constant for all 35 patterns because they all have the 

same number of sounding notes per minute. This certainly does not fit the data (in fact, 

the correlation coefficient is undefined in this case). Therefore, I argue that my model 

avoids overfitting and that it scores better in generalisability. 
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3.8.4 Experiment 4 

In this experiment, I will replicate Heyduk's (1975) experiment to see if my complexity 

measures correlates well with Heyduk's human data. Note that the stimuli used here is 

again polyphonic. 

Method 

Materials The stimuli consisted of all four pieces from Heyduk's (1975) experiment. 

Procedure The four pieces were entered into a computer and converted into the OPM 

format. The cognitive information was calculated for all four pieces. The correlation 

between computed information and human judgements (in Figure 3.8) is reported, along 

with statistical significance and gMDL+. 

Results 

Results are shown in Figure 3.12. There are statistically significant correlations between 

my proposed model and human data as well as between the reduced model and human 

data (p < .05). The baseline model and the human data do not have statistically signifi­

cant correlations (p > .05). 

Measure r df p gMDL+ 
Proposed 0.98768 2 0.0062 -3.640 
Reduced 0.87465 2 0.0630 -0.371 
Baseline 0.61580 2 0.1900 0.736 

Figure 3.12: Correlation with Heyduk's (1975) data in Experiment 4 

Discussion 

The superiority of my proposed measure over the reduced and baseline models can be 

seen from the superior r-value and the gMDL+ code length above. 

3.9 General Discussion 

While Experiment 3 provided strong evidence for a priming theory in perceived com­

plexity, I leave further explanation of this conclusion to future work as it is really outside 

the scope of this thesis. At this juncture I will simply treat both as equally probable. 
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The sum of all the gMDL+ values (see Subsection 3.3.1) so far is displayed in Fig­

ure 3.13. 

Measure L124gMDL+ L134gMDL+ 
Proposed -1.40 -2.60 
Reduced -0.12 -0.94 
Baseline 5.90 7.60 

Figure 3.13: Meta-analysis of gMDL+ code lengths 

According to Figure 3.13, my proposed measure is the winning measure, because it 

has the lowest combined gMDL+ (for both Experiment 1 + 2 + 4 and Experiment 1 + 3 + 

4). Therefore, this measure was chosen for use in the next two chapters in the modelling 

of musical similarity and fitness. 

This is the most important chapter of my thesis, in which I have proposed a detailed 

methodology for this thesis (meta-gMDL+), motivated and presented a computational 

theory of musical memory, extended my theory to deal with two musical objects, proven 

that my extended theory obeyed the three laws of Shannon, and provided empirical evi­

dence for my measures. 

Pitt and Myung (2002) stated that if experimental data are noisy then standard 

goodness-of-fit measures (such as the square of the correlation coefficient) may not be 

the best way to compare models of cognition. While good models would require some 

goodness-of-fit, beyond a certain point the extra goodness-of-fit could mean overfitting, 

thus reducing the generalisability of the model (Pitt and Myung, 2002). This is the idea 

behind the MDL methodology. However, as I am only using one predictor, this method­

ology might be a bit overkill (all my models are parametedess so far). Still, it is a good 

idea to start with a flexible methodology, so the switch to more complex models would 

be easy, should the need arise. 

3.10 Concluding Remarks and Future Work 

My model takes (onset, pitch, metrical level) as its input. This means that duration, 

timbre, pedalling and other data are being thrown away. Future models may potentially 

benefit from incorporating these missing factors. 

The predictive accuracy of my proposed model is not great. With variance accounted 

for as low as 16% in Experiment 1, there is certainly plenty of scope for improvement. 

For example, the way that IISTMII is defined is not entirely justified. The square root bit 

is rather ad hoc. Future work should, inter alia, look into better ways to define IISTMII as 

well as TDNN. 
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Finally, more work is needed on the psychological meaning of complexity. In Ex­

periment 3, I have hinted at the possibility of perceived complexity as conditional infor­

mation rather than plain information. Whether this should be the case remains unclear 

(more data is needed). Also, the link from cognitive information to reaction time can (and 

should) be investigated. 



Chapter 4 

Musical Similarity 

4.1 Introduction 

In the last chapter, I proposed an information-theoretic model of musical complexity that 

is constrained by theories of music cognition. I argued, and provided evidence with 

three experiments, that my model is better (according to gMDL+) than a generic Kol­

mogorov complexity-based model (Cilibrasi et aL, 2004), apparently because cognitively 

unconstrained models (such as Kolmogorov complexity) treat every detail in an object 

as equally important, thus ignoring the possibility that not all physical information is 

cognizable. In affirming the importance of cognitive constraints on memory and music 

perception (Atkinson and Shiffrin, 1968; Lerdahl and Jackendoff, 1983; Narmour, 1999; 

Temperleyand Sleator, 1999), I have chosen a psychologically-motivated data represen­

tation for my cognitive information model, and have shown that this model provides the 

best overall fit to published human data on perceived musical complexity. 

Next on my agenda is to derive models at the Psychology Layer (see Figure 1.1) that 

make use of my cognitive information modeL I will first look at similarity, which is an 

important and well-published area of research (cf Tversky, 1977; Medin et aL, 1993). In 

memetics, the central concept of copying-fidelity (Dawkins, 1976) refers to the closeness 

between parent and child memes; the general concept of closeness is usually called sim­
ilarity in music psychology (Cambouropoulos, 2001; Hofmann-Engl and Parncutt, 1998; 

Eerola et aL, 2001). Given this connection, it would be interesting (and novel) to look 

at copying-fidelity from a psychological point of view. However, to date, there are no 

ready-made, psychological models of similarity that would allow me to plug cognitive 

information models into them directly. So, in this chapter, I first propose a unified the­

ory of similarity by combining Tversky (1977) and measure theory (which would enable 

this plug-and-play functionality). I will then plug my cognitive information model into 

56 
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this unified theory of similarity, and examine three parameterisations of it. To simplify 

terminology, I call each of these parameterisations a model. The best model amongst the 

three proposed is chosen using the same model-fitting strategy used in Chapter 3. A 

new experiment is described to further test the best-fitting similarity model. Whilst this 

best-fitting similarity model could also work as a model of copying-fidelity, the variance 

accounted for might be too low for an accurate reconstruction of (memetic) phylogeny 

(Graur and Li, 2000), so I will make no claims about phylogeny here. 

The plan of this chapter is as follows: 

1. To investigate well-established mathematical forms of set-theoretic and 

information-based similarity measures; 

2. To review some music psychological experiments in similarity; 

3. To propose a new similarity framework based on Tversky (1977) and measure the­

ory; this unifying framework subsumes all the aforementioned similarity measures 

both set-theoretic and information-theoretic (including Tversky's); 

4. To select the best parametrisation which fits published psychological data best; 

5. To describe a new experiment to see if the best-fitting formula would also fit the 

experimental data well. 

In following this plan, we need a further review of the state of the art in this area. I 

will first look at the mathematical background. 

4.2 Review of Similarity Measures 

4.2.1 Mathematical Forms 

In order to understand similarity mathematically, we need a precise notion of how far 

apart two things are. Mathematically, a metric space (X, d) is the set X with a distance 

function d : X x X 1--+ lR such that the following axioms hold (Blumenthal, 1953): 

1. d(x, y) 2: 0 with equality iff x = y (positive definiteness), 

2. d (x, y) = d (y, x) (symmetry), and 

3. d( x, z) ~ d( x, y) + d(y, z) (triangle inequality). 



CHAPTER 4. MUSICAL SIMILARITY 58 

It was observed that not all similarity ratings obey the metric axioms (cf Tversky, 

1977), but hopefully there exist mathematical formulae to measure the degree of metric 

violations such that it is possible to test the metricity of human ratings. In the context 

of evaluating the tour quality of asymmetric travelling salesman problem (ATSP) bench­

marks, Johnson et al. (2002) proposed three measures of tour quality, of which two are 

related to the metric properties. I will use these two measures to calculate metric vio­

lations in this chapter. The first relevant measure calculates the extent of symmetricity 

violation and the second one calculates the extent of triangle inequality violation (for a 

distance matrix dNxN )' Johnson et al.'s first measure is 

Lj<i Idij - dji I 

Lj<i Idij + djil' 

which can be interpreted as the Bray-Curtis distance (Faith et al., 1987) between the 

lower-triangular portion of a distance matrix and its upper-triangular counterpart. This 

measure ranges from 0 to 1 and equals 0 if and only if the matrix is completely symmetric. 

Their second measure is 

where 

d' , = min { If 

1- d',j diJ' L IJ 
ii'j N(N -1) 

dij , 

min{dik + dkj : 1 :s; k:S; N}. 

Its value ranges again from 0 to 1 and reaches 0 if and only if the triangle inequality is 

obeyed. 

In psychometry, Restle (1959) proposed a set-theoretic model of distance in which 

objects are represented by sets containing arbitrary elements. A measure function m (as 

in measure theory; see Section 4.3) is used to characterise the weight of each element: 

Restle proved that Dij obeys the three metric axioms shown above. Building on Res­

tle's set-theoretic formulation, Tversky (1977) stated that a distance function need not 

satisfy the metric axioms; instead he proposed a feature-based model of similarity as­

suming the matching function axioms (while getting rid of the metric axioms and measure 

theory altogether): 

1. s(a,b) = F(A n B,A - B,B - A) (matching), 

2. s (a, b) 2:: s (a, c) if A n B :::J A n C, A - B c A - C and B - Ace - A (monotonic-
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ity). 

These axioms say that similarity is expressible as a function of the objects' common 

and distinctive features, and that similarity increases if common features are added and 

decreases if distinctive features are added. This formulation can account for certain ob­

served violations of metric axioms in human data (Tversky, 1977). Together with three 

auxilliary assumptions,l the matching function axioms lead to the celebrated contrast 

model, 

S(a,b) = ef(A n B) -lXf(A - B) - f3f(B - A) 

where e,lX, f3 2: 0, and its normalised counterpart, the ratio model, 

S(a b) = f(A n B) 
, f(A n B) + IXf(A - B) + f3f(B - A) 

where IX, f3 2: O. Here f ( .) is restricted to a general linear transformation2 reflecting the 

salience of various features. This transformation is sometimes called a saliency function 

(Cazzanti and Gupta, 2006). This model generalises some well-known set-theoretic sim­

ilarity measures (Tversky, 1977): for example, if we denote NA = IAI, NB = IBI and 

C = IA n BI, then the ratio model corresponds to the coefficients ofJaccard, Dice, Simp­

son and Braun-Blanquet, among others (cf Cheetham and Hazel, 1969, pp. 1132-1133). 

See Figure 4.1 for a list of these coefficients along with the corresponding ratio model 

parameters. 

Coefficient Formula Corresponding ratio model 
Jaccard 1X=f3=1 NA+NB-C 

Dice 2C 1X=f3=! NA+NB 
Simpson ~, where NA :::; NB IX = I, f3 = 0 

Braun-Blanquet N
R

' where NA :::; NB IX = 0, f3 = 1 

Figure 4.1: Similarity coefficients with corresponding ratio models 

While the ratio model is very versatile, it is not without its problems. One problem 

is that the Tversky model does not work for feature sets that are fuzzy (Santini and Jain, 

1999). In fuzzy logic (Zadeh, 1965), an object can have feature X and not have feature X 

at the same time. For instance, if X is livery tall", then the set membership may be am­

biguous (with a graded degree of membership between 0 and 1 depending on height). 

This cannot be done with classical set theory, which says that the object is either livery 

IThese are the independence, solvability and invariance axioms; they are not relevant to the discussion 
here. 

20r "interval scale" as in Tversky's (1977, p. 332) original. 
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tall" or not "very tall". Even if we accept this limitation and continue to use classical 

set theory, it would still be problematic if the set of features is not defined a priori but 

determined adaptively (or even not defined at all, as in the case of my cognitive infor­

mation measure), since by definition, the Tversky model only applies to a predefined set 

of features that describe the two objects in comparison. Of course, there have been work 

on fuzzifying Tversky's measure (Bouchon-Meunier et al., 1996; Santini and Jain, 1999), 

which extend the set membership function to a fuzzy truth value in [0,1] when applying 

the contrast and ratio formulae. But we need something more-a general, non-negative 

set function that is bounded by [O,oo]-so that we can plug in arbitrary, non-negative 

measures as a (quasi) set membership function. As it turns out, this is possible if we 

recombine Tversky (1977) with measure theory (see Section 4.3). 

In machine learning, there is another approach along Tversky's lines (Lin, 1998), but 

developed independently of Tversky} on creating a ratio-like model. Lin's (1998) mea­

sure, based on slightly different assumptions from Tversky's, is 

sim A,B = logP(common(A, B)) , 
( ) logP(description(A,B)) 

where P(·) stands for the probability of truth of a proposition, common(A, B) stands for 

a proposition that states the commonality between A and B, and description(A, B) stands 

for a proposition that fully describes A and B. The advantage of this measure is that it 

is information-theoretic (based on the negative logarithm of probabilities), so it is "uni­

versal" and can even "be used in domains where no similarity measure has previously 

been proposed" (Lin, 1998, p. 296). The downside is that this measure is underspecified: 

it could encapsulate just about anything, since" common" and" description" are left un­

defined as a price to pay for the "universality" of this measure. However, note that in the 

actual examples that Lin (1998) gave, all four of them have the following form (a factor 

of 2 is introduced because this measure needs to be normalised between 0 and 1): 

. 2 x log P(f(A) n f(B)) 
slm(A,B) = logP(f(A)) +logP(f(B))" 

Here the implicit definition of P(common(A,B)) is P(f(A) n f(B)) and that of 

P(description(A, B)) is JP(f(A))P(f(B)). Written this way, Lin's measure can be seen 

(at least in actual applications) as an information-theoretic extension of Dice's coefficient, 

3Lin (1998) has briefly mentioned the contrast model by name (in the second sentence in the introduction), 
together with a citation to Tversky (1977), but then in the main text, Lin (1998) reinvented the Tverskian­
axiomatic approach to similarity without crediting Tversky; furthermore, Lin's assumption 3 is very similar 
to Tversky's matching axiom. So I believe that Lin has not read Tversky's paper. 
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a precursor of Tversky's ratio model. In fact, Lin's measure can always be written in the 

above form if we make the additional assumption that the features are probabilistically 

independent (Cazzanti and Gupta, 2006). 

The most recent synthesis of set-theoretic and information-theoretic similarity is pub­

lished by Cazzanti and Gupta (2006). They began with Tversky's contrast model with 

e = l,l\: = f3 = 1 (same as Dice's coefficient and Lin's measure, except that the contrast 

model is used instead of the ratio one). Their novelty is in the use of Shannon mutual 

information (reviewed in Chapter 2) for the saliency function, and the incorporation of 

an extra object R (manifested as a set of features) which serves as the comparison context: 

f(a n b) = I(R;a nbc R),f(a - b) = I(R;a - b c R), and f(b - a) = I(R;b - a C R). 

With these parameters, the residual entropy similarity results: 

( b) - -H(RI b R) H(Rla - b C R) H(Rlb - a C R) 
Sre a, - a n c + 2 + 2 

where H(Rla nbc R) = - Lr P(R = ria nbc R) log P(R = ria nbc R). Note that this 

measure, like Tversky's, need not obey the metric axioms. 

Now I will review a number of information-theoretic distances (ones that obey the 

metric axioms) that have been proposed by different researchers over the years. These 

distances are well known in information theory but are not currently connected to Tver­

sky's measure (in Section 4.3, I will propose a novel framework to link them together). 

These are the Rajski distance, the Horibe distance, the KvaIseth distance, the normalised 

sum distance, the normalised universal cognitive distance, and the normalised compres­

sion distance. Rajski (1961) defined a metric for discrete probability distributions, based 

on Shannon's (1948) information theory: 

d( ) = H(xly) + H(ylx) 
x,y H(x,y) ' 

where x and yare probability distributions and H ( .) denotes the Shannon entropy. Ra­

jski's metric has a range of [0,1], with zero representing equality (up to isomorphism) 

and one representing statistical independence, and obeys the three metric axioms above. 

Rajski has also defined a coherence coefficient, 

R(x, y) = VI -d2 (x, y), 
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also in the range [0,1], with zero representing independence and one representing equal­

ity. A similar Horibe (1985) correlation coefficient and its related metric are defined as: 

p(X, Y) = 1 - d(X, Y) 

and 
d(X Y) = {H(XIY)/H(X), if H(X) ~ H(Y) 

, H(YIX)/H(Y), if H(X) :::; H(Y) 

where p(X, Y) is in the range [0,1] with zero indicating independence and one indicating 

isomorphism. Horibe proved that d (X, Y) satisfies the three metric axioms, and gave an 

intuitive interpretation of p(X, Y): assume without loss of generality H(X) ~ H(Y), we 

have 

[1 - p(X, Y)]H(X) = H(XIY). 

Thus, p(X, Y) measures the relative reduction of uncertainty in X after knowing Y 

(Horibe, 1985). With regards Horibe's correlation measure, KvaIseth (1987) observed that 

p(X, Y) = I(XiY)/D, 

where D = max{H(X),H(Y)}. Kvalseth criticised Horibe's choice of D and demon­

strated that a better D existed (at least in terms of statistical inferences): 

D = H(X) + H(Y) 
2 . 

The corresponding distance metric for K valseth's Dis: 

2I(Xi Y) 
d(X, Y) = 1 - p(X, Y) = 1 - H(X) + H(Y)· 

Now I will review the remaining four measures on my list. Before I can do so, how­

ever, I need to introduce two more measures: the (unnormalised) sum distance and 

the (unnormalised) universal cognitive distance, on which their normalised versions are 

based. Bennett et al. (1998) defined these information distances based on Kolmogorov 

complexity.4 They obey the metric axioms, but only approximately, for there is an "addi­

tive constant or logarithmic error term" involved (Bennett et al., 1998). The sum distance 

is equal to: 

E3(X, y) = K(xly) + K(ylx) + O(log(K(xly) + K(ylx))). 

4Refer to Section 2.3 for the definition of K(xIY). 
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The universal cognitive distance is defined as: 

E1(x,y) = max{K(xly),K(ylx)}. 

These two distances have been shown to be equal up to an additive logarithmic term 

(Bennett et aL, 1998). 

Bennett et aL (1998) proposed a property of "admissibility" on distance functions (de­

fined as Ly:y#2-D (x,y) < 1), and proved that for any admissible distance D(x,y), we 

have E1 (x, y) ::; D (x, y) up to an additive constant. In other words, E1 is the optimal 

admissible distance (Bennett et aL, 1998). 

Li et aL (2003) extended the above information distances by normalising them to the 

range of [0,1]. Their rationale is that two short strings with a distance n apart are probably 

not as similar as two long strings with the same distance n. They have normalised both 

the sum distance, 
d ( ) _ K(xly) + K(ylx) 

s x,y - K(x,y) , 

and the universal cognitive distance, 

d( ) = max{K(xly),K(ylx)} 
x,y max{K(x),K(y)} ' 

and proved that the latter is more precise from a mathematical point of view. 

Cilibrasi and Vitanyi (2005) proposed a normalised compression distance which is 

an approximate version of the universal cognitive distance. By substituting the uncom­

putable Kolmogorov complexity K with a computable real-world compressor C, after 

some algebraic manipulation they arrived at 

NCD(x ) _ C(xy) - min{C(x),C(y)} 
,y - max{C(x),C(y)} 

Although independently developed, we can see that the normalised sum distance 

(Li et aL, 2003) is effectively the Rajski (1961) metric, and that the normalised universal 

cognitive distance (Li et aL, 2003) is effectively the Horibe (1985) metric, apart from a 

change in the underlying information theory (Shannon versus Kolmogorov). Therefore, 

we have a strong motivation for a unifying framework (proposed in Section 4.3). 

4.2.2 Music Psychology 

Since musical similarity is a psychological phenomena, a review of relevant literature is in 

order. Over the years, Deliege (1996) has proposed a psychological theory that examines 
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cue abstraction (feature salience), similarity, and category formation (cf Cambouropou­

los, 2001). Cambouropoulos extended Deliege's work into the computational domain 

and defined similarity as follows: 

Sh(X,y) = ' 
{

I iff d(x, y) :::; h (similarity) 

0, iff d(x, y) > h (dissimilarity) 

where d(x,y) denotes any distance function and h denotes a distance threshold.5 While 

Cambouropoulos stated that lithe distance between two objects can be calculated by var­

ious distance metrics", what he actually used in his paper is a version of the weighted 

Hamming distance where the weights are calculated adaptively by his Unscramble clus­

tering algorithm (Cambouropoulos, 2001). However, as his distance function is adaptive, 

it is impossible to use a distance matrix as input (this is the biggest difference between 

Unscramble and many other distance-based clustering algorithms). Cambouropoulos' 

clustering algorithm was quite successful: in his Experiment 1 (Cambouropoulos, 2001), 

Unscramble was able to replicate the second task of Deliege's (1996) experiment without 

errors. In this task (Deliege, 1996), participants were first asked to memorise the two ref­

erence motifs A and B. They were then asked to classify 72 derivative motifs (of which 24 

are distinct) into either family A or B. It was found that the musicians classified all of the 

motifs correctly, while the non-musicians classified 90% of the motifs correctly (Deliege, 

1996). 

Recall that my best-fitting information model deals with interval data by virtue of 

the neural cancellation filter (de Cheveigne, 1993). The first similarity model that deals 

with interval data is probably Hofmann-Engl and Parncutt's (1998). Hofmann-Engl and 

Parncutt (1998) investigated isochronous melodic similarity based on normalised contour 

difference (effectively the Hamming distance on contour, e.g., up-up-down and up-down­

up has a contour difference of two) and normalised interval difference (like the city block 

distance on intervals except that the absolute value is not taken, and furthermore the 

final value is normalised by the total number of intervals). They found that the correla­

tion between normalised contour difference and participants' similarity ratings was low, 

but on the other hand, normalised interval difference accounted for 76% of the variance 

in the data. They concluded that interval differences are good predictors for melodic 

similarity. However, it should be noted that these experiments are somewhat synthetic 

(isochronous melodic fragments with 1-5 tones, with manipulations on tempo, transposi­

tion, inversion and order), thus its generalis ability and ecological validity are somewhat 

SPor mathematicians, Cambouropoulos' formulation can be condensed for readability: define Sh(X, y) as 
the characteristic function of x associated with the closed-h-ball centred at y. 
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suspect, and the high correlation may very well be a result of overfitting. 

Eerola et aL (2001) motivated their work by the well-known fact that we are sensitive 

to the statistical properties of melodies. Eerola et aL (2001) began by questioning the suf­

ficiency of statistical features in the predictions of melodic similarity. The statistical simi­

larity is calculated as the city block distance between the distributions of tones, intervals, 

durations, two-tone transitions, interval transitions, and duration transitions of the two 

melodies. With a stimuli repertoire of fifteen folk songs, they performed similarity rating 

experiments on seventeen participants by asking them to rate on a 1-9 scale the similarity 

of every possible combination of pairs within the repertoire (with a randomised presen­

tation order between pairs and within pairs). This procedure lasted about an hour. Their 

results showed that statistical musical properties (frequency of events using zero- and 

first-order statistics) could only account for 39% of the participants' similarity ratings, 

while descriptive variables (e.g., tonal stability, mean pitch, number of tones) accounted 

for as much as 62% of the human ratings. Eerola et aL argued that this means statistical 

features were not effective predictors of music similarity (but nonetheless they admitted 

that further study is necessary). I disagree with this conclusion since they used only zero­

and first-order statistics, which is not doing justice to the entire arsenal of statistical tools 

available to us. Therefore in this thesis I will use a more sophisticated model based on 

my new information theory. 

Eerola and Bregman (2007) conducted more experiments in the same direction, this 

time with twenty phrases sampled from the Essen collection (Schaffrath and Dahlig, 

2000; Schaffrath, 1997). Drawing on their experience with their previous experiment, 

they had made their stimuli much shorter, and allowed for up to 30% of pairings to be 

randomly omitted, such that their participants would not be over-fatigued. With twenty­

two musically-trained participants, Eerola and Bregman correlated the human ratings 

with five similarity predictors: contour, pitch content, interval content, contour periodic­

ity, and range. All five predictors were highly significant and the best single predictor is 

pitch content, accounting for 47% of the variance. In their discussion, Eerola and Breg­

man (2007) wrote: 

A re-analysis of a previous study [ ... ] suggested that listeners use the most 

salient variation between stimuli as the deciding factor in similarity judge­

ments [ ... ] In an ideal similarity model, the features that contribute to similar­

ity would be dynamically modified by the salient vairation within the context 

of comparison. (p. 227-228) 

A connection between the quote above and my similarity framework is that salient 

features are dynamically discovered by a context-sensitive, cognitive information theory 
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that looks at global statistical regularities of both pieces at once. To test how well my 

measures approximate human cognition, I will replicate the second task of Deliege (1996), 

as well as both Eerola et aL (2001) and Eerola and Bregman (2007) computationally in this 

chapter. 

4.3 A Novel Framework for Similarity 

In this section, I will present a measure-theoretic analogue of Tversky's (1977) ratio 

model, motivated in part by Restle's (1959) use of measure theory and in part by measure­

theoretic formulations of information theory (Hu, 1962). First we need a definition of a 

measure (Saks, 1937): 

Definition 4.1 (Saks). Let x be any set. A non-negative function fl(X) defined on every subset 

of x is a measure if 
fl(UXn ) = Lfl(Xn ) 

n n 

for every pairwise disjoint sequence {Xn} of subsets of x. 

In simpler terms, a measure assigns arbitrary measurements (such as length, area, 

volume or counts) to all subsets of a set,6 with the requirement that the measure­

ments are non-negative and additive for disjoint sets. Intuitively, this means that area­

proportionate Venn diagrams (area proportional to the measure of the subset) can be 

physically drawn on paper. 

Now I will present my framework based on Tversky (1977). My framework is 

S(a b) = fl(A n B) 
, fl(A n B) + IXfl(A - B) + f3fl(B - A) 

where IX, f3 ~ 0 and fl ( .) is a measure. It has long been known that Shannon entropies 

have a measure-theoretic interpretation (Hu, 1962). Let a, band c be dummy set variables 

associated with any random variables X and y7 via the following definitions: 

fl(0) 

fl({a}) 

o 
H(XIY) 

6Note that a measure can be defined on smaller collections of subsets, but these collections (called (T­

algebras) are outside the scope of this thesis. 
7Beyond the use of X and Y in the calculation of fI(-), there are no further relationships between {a, b, c} 

and {X, Y}. 
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(l({b}) 

(l({c}) 

(l ( {a, b} ) 

(l({a,c}) 

(l({b,c}) 

(l({a,b,c}) 

H(YIX) 

I(X; Y) 

H(XIY) + H(YIX) 

H(X) 

H(Y) 

H(X, Y). 

The corresponding Venn diagram is shown in Figure 4.2. 

a b 

Figure 4.2: Venn diagram associated with X and Y 
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The Shannon entropies in the above formulation can be replaced by my cognitive 

information measures H(-), Kolmogorov complexities K(-), or Cilibrasi and Vitanyi's 

(2005) compression-based complexities C(.) since they all obey (at least approximately) 

Shannon's three theorems (Hammer et aL, 2000; Cilibrasi and Vitanyi, 2005). I will as­

sume that similarity measures are normalised to [0, I], as per the normalised distance 

measures reviewed above. Additionally, I will define distance as the inverse of similarity, 

d (X, Y) = 1 - 5 (X, Y). A corollary is that my framework encapsulates all the normalised 

information-theoretic distances reviewed above, as well as the set-theoretic ones origi­

nally covered by Tversky (see Figure 4.3; cf Figure 4.1). 

Distance Corresponding ratio model 
Rajski (1961) 1X={3=1 
Horibe (1985) IX = 0, {3 = 1 where H(X) :::; H(Y) 

Kv,llseth (1987) 1X-{3_1 - -2: 
Li et aL (2003), ds (x, y) 1X={3=1 
Li et aL (2003), d(x,y) IX = 0, {3 = 1 where K(X) :::; K(Y) 

Cilibrasi and Vitanyi (2005) IX = 0, {3 = 1 where C(X) :::; C(Y) 

Figure 4.3: Summary of information-theoretic distance measures 
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4.4 Three Competing Models of Musical Similarity 

I will now define three competing musical distance measures based on Figure 4.3 and my 

newly proposed similarity framework, replacing the Shannon, Kolmogorov or Cilibrasi 

measures with my cognitive information measure. Three models follow: 

H1: d(x,y) 
H(xly) + H(ylx) 

H(x, y) 

H2: d(x,y) 
max{H(xIY), H(Ylx)} 

max { H (x), H (y) } 

H3: d(x,y) 
H(xly) + H(ylx) 

H(x) + H(y) 

These are the cognitive information analogues of the Rajski (HI), Horibe (H2), and 

Kv,Hseth (H3) measures, respectively. Here H(·) denotes my best-fitting cognitive infor­

mation measure as defined in Chapter 3. It is clear that all three distances (HI-H3) are 

normalised to the range of [0,1], due to the fact that H(XIY) < H(X). 
Recall that Li et al. (2003) called the Kolmogorov complexity version of H2 the "nor­

malised universal cognitive distance". I have no problem with their term "universal", 

which comes from Kolmogorov complexity theory, but I strongly disagree with their call­

ing it "cognitive". As I have said before, human minds obviously do not perform algo­

rithmically optimal compression. This is evident in our inability to compress 7f (correct to 

say three billion digits) into our long-term memory-whereas the length of the shortest 

program that outputs three billion digits of 7f is much smaller than three billion. Hence 

I substitute the complexity measure with my proposed cognitive information measure, 

and hope to result in a better model of cognitive distance. The quality of these models 

can be empirically tested by the two experiments proposed in the next section. 

Additionally, my musical similarity measure S(x,y) equals 1 - d(x,y) (see Sec­

tion 4.3), which can be interpreted as the opposite of musical distance. Musical similarity 

can be interpreted as a measure of cognitive independence between two pieces of music: 

identical pieces would yield a value of zero, while pieces that are cognitively indepen­

dent will yield a value of one. 

Finally, the metric properties of my proposed measures are not known. Here I simply 

report the degree of metric violations using Johnson et al.'s measures reviewed above. 

If the violation is nearly zero then it provides indirect evidence that perceived similarity 

may be defined on a metric space. 

In the next subsection, I present the results of three experiments to select the most 
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promising cognitive modeL 

4.4.1 Model Selection with Three Experiments 

In the experiments below, I will simply correlate the human data in Deliege (1996), Eerola 

et aL (2001) and Eerola and Bregman (2007) with my similarity measures. I will also 

report their metric properties where possible. The best-fitting similarity measure is then 

selected using meta-gMDL+ (proposed in Chapter 3). 

Correlation with Deliege's (1996) Experiment 

Only her second task is replicated.s My model predictions are ~ = d(music, A's 

prototype) - d(music, B's prototype) for each of the 26 motifs and for all three distance 

measures. The idea is that if music is closer to A's prototype then ~ ::; 0, else ~ > O. The 

point-biserial correlations between my model predictions and the true classifications9 are 

then calculated. Results are shown in Figure 4.4. The correlations are statistically signifi­

cant for H2 and H3 (p < .05). 

Measure r df p gMDL+ 
HI 0.29870 24 0.069 2.49 
H2 0.38291 24 0.027 1.93 
H3 0.42199 24 0.016 1.55 

Figure 4.4: Point-biserial correlation with Deliege's (1996) data 

Correlation with Eerola et al.'s (2001) Experiment 

Recall that Eerola et aL (2001) performed similarity rating experiments by asking partici­

pants to rate the similarity of all combination of pairs given a repertoire of fifteen songs. 

The correlations of Eerola et aL's mean human ratings with my hypotheses are shown 

in Figure 4.5. All correlations are statistically significant (p < .05). Metric violations are 

shown in Figure 4.6. 

Correlation with Eerola and Bregman's (2007) Experiment 

Recall that Eerola and Bregman (2007) conducted another experiment in the same direc­

tion, but now with Essen folksong phrases instead of complete songs and that all partici-

8Deliege did four tasks in total (the first of which is irrelevant to similarity), so two more tasks remain to 
be replicated in future work. 

9 Recall that the musicians classified all of the motifs correctly in the original experiment (see Section 4.2.2). 
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Measure r df p gMDL+ 
HI 0.42047 103 4.0 x 10-6 -4.01 
H2 0.45405 103 5.7 x 10-7 -5.82 
H3 0.41780 103 4.6 x 10-6 -3.87 

Figure 4.5: Correlation with Eerola et aL's (2001) data 

Data Asymmetry Triangle inequality violation 
Human 0.0000 0.0034 

HI 0.0025 0.0000 
H2 0.0000 0.0000 
H3 0.0059 0.0000 

Figure 4.6: Metric violations pertaining to Eerola et aL's (2001) data 

pants were musicians. The correlations of their mean human ratings with my hypotheses 

are shown in Figure 4.7. All correlations are statistically significant (p < .05). Metric vio­

lations are shown in Figure 4.8. 

Measure r df p gMDL+ 
HI 0.51983 188 7.6 x 10-15 -22.6 
H2 0.45283 188 2.7 x 10-11 -14.6 
H3 0.49928 188 1.1 x 10-13 -19.9 

Figure 4.7: Correlation with Eerola and Bregman's (2007) data 

Data Asymmetry Triangle inequality violation 
Human 0.000000 0.0035 

HI 0.006200 0.0000 
H2 0.000029 0.0000 
H3 0.016000 0.0000 

Figure 4.8: Metric violations pertaining to Eerola and Bregman's (2007) data 

Discussion 

The sum of gMDL+ code lengths are shown in Figure 4.9. The three measures seem to 

be very close to each other, but for the purpose of this chapter, the winner is the one 

with the smallest total description length, which is HI. All reported metric violations are 

minor, suggesting that the metric axioms hold. In the next subsection, I will present an 

experiment to test HI. 
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Measure I:gMDL+ 
HI -24 
H2 -19 
H3 -22 

Figure 4.9: Meta-analysis of gMDL+ code lengths for similarity 

4.4.2 Validation of HI 

The aim of this experiment is to test whether HI can be psychologically validated for 

pairs of polyphonic music presented to the participants. My hypothesis is that there 

is a correlation between HI and human judgements of similarity. I assumed that the 

participants are representative with respect to similarity judgements, and controlled for 

age, sex and musical training. 

Method 

Participants Participants were recruited from the University of Sheffield through a 

university-wide volunteers' e-mail list. The eligibility criteria are that they be aged 18-64, 

have at least one healthy ear, and not have musicogenic epilepsy. They were paid eight 

pounds sterling per hour for their participation. Ethical approval was granted by the 

Department of Psychology Ethics Sub-Committee at the University of Sheffield. Thirty 

participants signed up for this experiment with informed consent (10 males and 20 fe­

males). The mean age was 36 years (SD = 11) and the mean years of musical training was 

4.9 years (SD = 8.6). 

Materials The stimuli consisted of fifteen short MIDI files downloaded from the Inter­

net prior to the experiment. The main critera of inclusion are that their lengths must 

be within the range of fifteen to twenty seconds each, and they must have the same 

timbre, tempo and key, and preferably be all by the same composer, to reduce con­

founding effects. I settled on some historical piano rolls performed by piano masters 

of the past century, meticulously scanned in and MIDI-fied by Terry Smythe, at his web­

site http://members.shaw.ca/smythe/rebirth.htm. The fragments were shown in Fig­

ure 4.10. These fragments satisified the following constraints: 

• Composed by a single composer: Frederic Chopin (1810-1849); 

• In the key of C sharp minor and/ or D flat major; 

• Each fragment lasted IS-20s each; 
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• All phrases are complete phrases. 

Title Pianist Roll No. MIDI Ticks 
1. Etude, Op. 10, No.4 

(a) Presto (bb. 1-12) T. Lerner Ampico 6854 100496-107928 
2. Etude, Op. 25, No.8 

(a) Vivace (bb. 1-8) A. Cortot Duo-Art 6740 44-6536 
3. Nocturne, Op. 27, No.2 

(a) Lento sostenuto (bb. 2-5) J. Hofmann Welte 668 2209-7870 
4. Scherzo, Op. 39 

(a) A tempo risoluto (bb. 25-56) L. Godowsky Ampico 5111 10835-19162 
(b) Meno mosso (bb. 156-171) L. Godowsky Ampico 5111 46499-53950 
(c) Tempo I (bb. 573-604) L. Godowsky Ampico 5111 201082-210432 

5. Waltz, Op. 64, No.1 
(a) Molto vivace (bb. 1-36) E. d'Albert Ampic05060 1-8130 
(b) Sostenuto (bb. 38-65) E. d'Albert Ampic05060 11791-19353 

6. Waltz, Op. 64, No.2 
(a) Tempo giusto (bb. 1-16) L. Godowsky Ampic05495 1007-8781 
(b) Piu mosso (bb. 33-48) L. Godowsky Ampico 5495 17151-21165 
(c) Piu lento (bb. 65-80) L. Godowsky Ampico 5495 25904-33618 

7. Impromptu, Op. 66 
(a) Allegro agitato (bb. 5-16) H. Bauer Duo-Art 6058 2871-9458 
(b) Moderato cantabile (bb. 43-48) H. Bauer Duo-Art 6058 27053-34199 

Figure 4.10: Chopin excerpts used in the experiment 

Fragments were extracted using the midicopy utility (part of the abcmidi package), 

which allows selective copying of a small part of a MIDI file. In addition, I increased 

the MIDI velocities of the Duo-Art and Welte rolls by 32, due to the fact that mechanical 

pianos have a slightly different response curve from software synthesisers. 

For the playback of MIDI files, I chose a realistic piano SoundFont file called 

Akai-SteinwayIII. sf2, downloaded from http://www.sf2midi.com/. 

Procedure An information sheet and consent form were given to the participants (see 

Appendix A). Verbal instructions were also given. Once the consent form was signed, 

the instructions in Figure 4.11 were shown to the participants on a computer screen on 

which they would begin the experiment by pressing a button. 

Once they have clicked on the button to begin, the main protocol started. The protocol 

is mainly taken from Eerola et al. (2001). There are C(15,2) = 105 distinct pairs given a 

corpus of fifteen pieces, and all such pairs were tested. To reduce order effects, both the 

within-pair and between-pair orders were randomised as per Eerola et al. (2001). 
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.~ You will be listening to 78 pairs of music (each pair lasts about 30-40 
seconds). The first three pairs will be practice trials. Within each pair, 
the two pieces of music will be separated by a D.3·second beep 
sound. After each pair, you will be instructed to rate how similar are 
the pieces in the pair you have just heard. You will have 10 seconds 
after each pair to give your rating. There are no wrong answers"just 
tell us how much you think they are similar from your point of view. 

( I have read the instructions) 

Figure 4.11: On-screen instructions 
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For each pair of music (say X and Y), the participant was first presented with X (Fig­

ure 4.12), followed by 0.6s of silence, followed by a O.3s beep at 2093Hz, followed by an­

other 0.6s of silence, followed by Y. The participant was then asked to rate the similarity 

between X and Y on a 1-9 scale (see Figure 4.13). The rating buttons are greyed-out until 

the rating phase, in order to prevent participants from pressing the buttons prematurely. 

The human ratings were recorded alongside the computational predictions of musical 

Similarity, 1 - d(X, Y). All of the above were presented using an iTunes-like computer 

CUI. The first three trials were practice trials where the results are not analysed. This 

procedure was repeated until all 105 combinations of pairs have been exhausted. At the 

end, the human ratings were correlated with model predictions and the statistical signif­

icance are reported below. 

As a last-minute addition, an "Obscure Names" toggle has been added to the Ex­

periment menu (Figure 4.14), after hearing the feedback from a participant who felt that 

showing the name of the piece was giving too much information away. With the "Ob­

scure Names" toggle set to on, the name display will be replaced by "Excerpt No. X". 

Half of the participants have this toggle set to on, in order to control for pOSSible effects 

of knowing the name of the piece. The whole set of data can still be analysed at once, 

but if the resulting correlations are statistically insignificant, then the two datasets can be 

reanalysed separately. 
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Expenment (Part AI 

Practice 1 of 3 

QuestionnQi fC-

You are now listening to: 

• Tempo giusto.mid 
A tempo riso luto.mid 

Please rate their simila~ity on a scale of 1-9 

(where 1 means ·very simi lar" and 9 means ' very dissimi lar;: 

Very similar Very dissimilar 

})s 9 

Prog rt55 bar 

Figure 4.12: Listening to the first piece 

Expenmert (Part A) 

Practice 1 of 3 

Questionnaire 

You are now listen ing to: 

Tempo giusto.mid 

A tempo risoluto.mid 

Similarity R.>!ing • .:s'--____________________ _ 

Please rate meir similarity on a scale of 1-9 

(where 1 means ·very simi lar" and 9 means ' very dissimi lar"): 

Very simll.r Very dissimilar 

CD 

Progress bar 

Figure 4.13: Rating the similarity 

Data Analysis Here the unit of analysis is the mean of all participants' rating on each 

piece. This decision is based on theoretical grounds due to the population nature of 

memes-the same meme exists not only within a brain but potentially across many dif-
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Que-s t io nn ... l r~ 

You are now listen ing to: 

[
* Excerpt No. 1 

_ Excerpt No. 9 

Exoenment (Part A) 

Practice 1 of 3 

~jm llarlty Rating<.:.s ________________ _ 

Please rate thei r similar ity on a scale of 1-9 

(where 1 means ·very similar· and 9 means · very dissimilar; : 

Very ,,;ml far Very di""imllar 

S 6 -;, 8 9 

Prog r~ss bar 

Figure 4.14: Listening to the first piece (with the names obscured) 

ferent brains as well. 
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As the practice trials do not count, they are removed and treated as missing data. 

Since the order of presentation is by design completely random (not biased towards par­

ticular pieces), the missing values of the first three trials can also be regarded as missing 

completely at random. So the strategy I adopt below is to replace each missing value 

by the mean of other participants' ratings on the same piece (this is also the strategy 

used by Eerola and Bregman, 2007). Finally, for intra-rater reliability, Cronbach's (1951) 

IX is reported. Cronbach's IX is a type of intraclass correlation (ICC) which can be used 

to measure the realiability of the means of human ratings under the assumption of a 

two-way Judge x Target ANOVA model without interactions (Shrout and Fleiss, 1979; 

McGraw and Wong, 1996), and the assumption that absolute agreement of the ratings is 

not required (1/9" from one participant could be consistent with 1/8" from another after a 

shift of anchor) . If Cronbach's IX < 0.8, partition the data according to age, sex, musical 

training and name obscuration, and reanalyse the data separately. 

Results 

One participant I/[a]nswered the trial questions and I think the first 2 or 3 of the exper­

iment incorrectly-got the scale mixed up" (anon.). Assuming that the ratings of this 

participant is consistent with the rest of the population, the corrected scale should yield 
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the highest intra-rater reliability. Based on this assumption, I corrected this participant's 

ratings by inverting the scales for the first n responses only, for each 1 ~ n ~ 10 (with 

one inversion at n = 1 and successively more and more inversions towards n = 10), incre­

mentally. The inversions are tabulated in Figure 4.15. 

n Before After 
1 2 8 
2 1 9 
3 8 2 
4 8 2 
5 7 3 
6 2 8 
7 5 5 
8 4 6 
9 3 7 
10 9 1 

Figure 4.15: Scale inversions for one anonymous participant 

I then look for the value of n that maximises Cronbach's a (see Figure 4.16). Here the 

best fit is n = 2 (a = 0.94767), so I take this as the final correction. After this correction, 

I correlate the mean human ratings with my HI model (see Figure 4.17). There is a sta­

tistically significant correlation, r(76) = 0.57106 (p < .05), meaning that my HI model 

accounts for 33% of the variance in the average human ratings. 

n a F dfl df2 P 
0 0.94685 18.8 77 2233 < 10 -0/ 

1 0.94696 18.9 77 2233 < 10-37 

2 0.94767 19.1 77 2233 < 10-37 

3 0.94757 19.1 77 2233 < 10-37 

4 0.94740 19.0 77 2233 < 10-37 

5 0.94722 18.9 77 2233 < 10-37 

6 0.94701 18.9 77 2233 < 10-37 

7 0.94701 18.9 77 2233 < 10-37 

8 0.94711 18.9 77 2233 < 10-37 

9 0.94698 18.9 77 2233 < 10-37 

10 0.94653 18.7 77 2233 < 10-37 

Figure 4.16: Cronbach's a after inversion of the first n trials for one anonymous partici­
pant 

It was found that the human data obey the metric axioms, and HI approximately 

obeys the metric axioms. See Figure 4.18 for violations of metric properties. 
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Figure 4.17: Scatterplot of results for all 105 pairs of pieces 

Data Asymmetry Triangle inequality violation 
Human 0.0000 0.0000 

HI 0.0015 0.0000 

Figure 4.18: Metric violations with human data 

Discussion 

A reasonable objection to my methodology is the use of averaged distance without ac­

counting for the order of presentation within each pair. This always results in the asym­

metry of zero as shown in Figure 4.18. To show that my human data really are metric, 

I reanalyse the data by averaging the values separately for each order of presentation 

so that we can really test the human data for asymmetry. First I redo the corrections as 

before (see Figure 4.19). 

As expected, this again suggests that n = 2 is the best fit. I then look at the metric 

violations with this correction applied. Results show that there are very minor violations 

(see Figure 4.20; cf Figure 4.18). My conclusion is that human data really are metric; the 

asymmetry observed by Tversky (1977) is probably due to confounding factors such as 

the built-in directionality of the question "is X similar to Y". 

With regards inter-rater reliability, Shrout and Fleiss (1979) interpreted Cronbach's IX 



CHAPTER 4. MUSICAL SIMILARITY 78 

n lX F dfl df2 P 
0 0.98893 90.3 168 4872 < 10 -j/ 

1 0.98895 90.5 168 4872 < 10-37 

2 0.98907 91.5 168 4872 < 10-37 

3 0.98906 91.4 168 4872 < 10-37 

4 0.98901 91.0 168 4872 < 10-37 

5 0.98899 90.8 168 4872 < 10-37 

6 0.98898 90.7 168 4872 < 10-37 

7 0.98898 90.7 168 4872 < 10-37 

8 0.98899 90.8 168 4872 < 10-37 

9 0.98897 90.7 168 4872 < 10-37 

10 0.98890 90.1 168 4872 < 10-37 

Figure 4.19: Corrections with asymmetric data 

Asymmetry Triangle inequality violation 
0.079 0.00018 

Figure 4.20: Metric violations with asymmetric human data 

as a de facto correlation coefficient but which is not generalisable to another group of 

30 participants (participants as fixed effects). On the other hand, McGraw and Wong 

(1996) interpreted this value not as a real correlation coefficient in the sense of variance 

accounted for, but as a general value of consistency which could be generalised to any 

other population of 30 participants (participants as random effects). As the ability to 

interpret Cronbach's lX as a percentage of variance is not essential here, I choose the in­

terpretation of McGraw and Wong (1996) so I can generalise the inter-rater reliability to 

another group of 30 participants. The high value of lX provides further evidence for the 

validity of the similarity construct in the context of 30 participants listening to 10-20s 

fragments of Chopin pieces. 

4.5 General Discussion 

I have proposed a novel framework of similarity combining Tversky's ratio model and 

measure theory. I demonstrated that the new framework subsumed a large range of 

previously proposed distance measures both set-theoretic and information-theoretic. I 

then proposed three parametrisations of this framework and have shown that the first 

one (H1) is marginally better, at least for the data used here. This better measure was 

shown to fit human data quite welL I showed that similarity ratings are metric (contra 

Tversky), at least for the human data in Eerola et aL (2001), Eerola and Bregman (2007), 
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Due to possible horizontal pathways of cultural transmission, the use of informa­

tion distance measures could lead to inaccurate authorship and language trees. To get 

around this, Baronchelli et aL (2005) proposed that one could use "5wadesh list tech­

niques" where one would eliminate the borrowed words from a language corpus before 

the doing the analysis. This might be an interesting research topic for its musical ana­

logue. 



Chapter 5 

Musical Fitness 

5.1 Introduction 

After musical similarity in the last chapter, I will now investigate another model at the 

Psychology Layer (see Figure 1.n this time musical fitness. 

In memetics, cultural fitness refers to the relative success of cultural replication and 

corresponds to a meme's "intrinsic appeal to a brain" (Jan,2000a). It is often said that mu­

sical beauty is in the subjective ear of the listener, yet it is also true that there are cognitive 

constraints on musical listening (Lerdahl and Jackendoff, 1983; Lerdaht 1988; Narmour, 

1999). One could even argue that such constraints are universal regardless of cultural 

background. Despite Berlyne's (1974) early efforts, there have been few empirical studies 

to date on mathematical models of musical beauty. Is it possible to have a mathemat­

ical model of musical fitness that is scientifically valid? I answer in the affirmative by 

introducing subjectivity into a model of musical fitness proposed in this chapter. 

Musical fitness is an important concept in evolutionary musical models, for both cog­

nitive modelling and in practical applications such as evolutionary musical composition. 

Following the same plan as the previous chapter, this chapter is organised as follows: 

1. To investigate relevant research in theoretical and empirical aesthetics; 

2. To review other mathematical forms that will be used in this chapter; 

3. To propose three competing models of musical fitness (and a training corpus repre­

senting the listener's musical knowledge); 

4. To select the best fitting model; 

5. To design a falsifying experiment to see if the best model holds. 

81 
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I will first review theoretical and empirical aesthetics. 

5.2 Review of Theoretical and Empirical Aesthetics 

5.2.1 The Birkhoff Formulation and Beyond 

The mathematical quantification of beauty dates back to Birkhoff (1933) who proposed 

an objective measure of beauty, 
o 

M= C' 

where 0 denotes order and C denotes complexity. Eysenck (1942) observed that 

Birkhoff's formulation did not agree with empirical findings (where C was shown to 

be positively correlated with M instead of being negatively correlated). Therefore, he 

proposed an improved formula 

M = 0 X C, 

where 0 denotes unity and C denotes diversity. Eysenck's formula was dismissed 

by Katz (1994, p. 201) as "inadequate" because unity is inherently subject-dependent; 

however, I have addressed Katz's criticism in my proposed version of unity, in the 

next section, by accounting for subjectivity explicitly (where both 0 and Care subject­

dependent). 

Katz (1994) himself proposed a more complex model of musical affect based on a 

"connectionist operationalization" of the idea of unity in diversity. His model consists of 

a bank of bandpass filters connected to a multilayer neural network. Katz argued that 

the degree of unity in diversity can be measured by the activation levels in the neural 

network (high activation means high affect). With this model, one of his experiments 

showed that affect is an inverted U-shaped curve as a function of melodic complexity 

(determined by note range). However, Katz's model is currently limited to monophonic 

melodies within the range of an octave, and it is not clear whether his model could 

be adapted for polyphonic pieces with a larger range. Furthermore, his model has not 

been validated with human data. Nevertheless, Katz's was able to demonstrate that "the 

model's response to degraded versions of [good] melodies decreases with the degree of 

degradation" (Katz, 1994, p. 219), which seems reasonable at first glance. I will return to 

his degradation experiment in Subsection 5.3.4. 

Of course, Katz is by no means the first to address subjectivity. Moles (1968, p. 162) 

for example defined" artistic value" as 

v = f(IH - H'I) 
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where H denotes the message's originality and H' denotes the receptor's capacity (here 

f(·) is an unspecified decreasing function). 

The idea of beauty as "unity in variety", "order in complexity" or "unity in diversity", 

although usually attributed to Birkhoff (1933) and Eysenck (1942), can be traced back for 

several centuries to philosophers like Francis Hutcheson (Berlyne, 1974), and this will be 

the lineage of research to which I will be contributing in this chapter. 

5.2.2 Algorithmic Aesthetics 

Stiny and Gips (1978) coined the term "algorithmic aesthetics". Among other things, they 

defined an entity called an "evaluation algorithm" as part of a larger aesthetic system. 

Given an interpretation X of an object, an "evaluation algorithm" E outputs the object's 

aesthetic value, e.g., E("Danse Macabre") = 666. By this definition, the value of E(X) 

depends only on how the object is interpreted, and therefore may vary from interpreter 

to interpreter. As an extended example, Stiny and Gips (1978) defined the evaluation 

algorithm 
L(f3) 

Ez( (IX, (3)) = L(IX) 

where (IX, (3) denotes an interpretation, IX denotes the input component of the interpreta­

tion, f3 denotes the output component of the interpretation, and L ( .) denotes the length 

of its argument. Then they linked Ez to the aesthetic notion of unity in variety (where 

IX is the information for construction and f3 is the description), and furthermore to Kol­

mogorov complexity (where IX is the shortest program reconstructing f3; see Section 2.3 for 

a review). Stiny and Gips (1978) did not attempt to validate their work empirically, but 

to be fair, psychology is orthogonal to their aim-they were effectively taking an artificial 

life stance. 

Koshelev (1998) noted that while Birkhoff's original formula of beauty (see above) 

can be shown to work for specific classes of objects (such as simple melodies), a more 

general formalisation that is applicable to any arbitrary object is missing. Motivated by 

the general nature of Kolmogorov complexity theory, and independently from Stiny and 

Gips (1978), Koshelev (1998) formalised Birkhoff's idea to the general case by proposing 

that: 

o 
c t(p ), 

where p is chosen from the space of all possible programs that generates the object, I (p) is 

the length of p, and t(p) is the running time of the program such that M = 0/ C takes the 
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maximum value. Koshelev (1998) noted that this value is precisely the reciprocal of the 

object's Levin complexity (Section 2.3). However, as Levin complexity is not computable 

in practice, they also proposed a practical alternative: 

o length of the wavelet compressed object, 

C length of the zip compressed object. 

As this alternative measure was proposed without experimental validation, there is no 

way to tell, as it stands, whether this is a good model or not. It is also not clear whether 

this computable alternative has any mathematical relation at all to the theoretical one. 

5.2.3 The Wundt Curve and Its Contenders 

D. E. Berlyne is the father of modern experimental aesthetics (the subject of the next 

subsection). Also of note is his theoretical reinterpretation of the Wundt curve, which 

represents the inverted-U relation between "hedonic value" and "arousal potential" (see 

Figure 5.1b), hypothesised to be the summation of two opposing activities (reward and 

aversion) in the brain (Berlyne, 1974). Berlyne (1974) also related this hypothesis to the 

theories of Birkhoff and Eysenck (see above). The Wundt curve lies at the heart of both 

theoretical and experimental aesthetics and describes the following phenomenon: if the 

listener does not understand the music at all, then the music cannot be appreciated; on 

the other hand, if the listener can understand the music absolutely fully, then the music 

would sound boring. 

However, the Wundt curve is not without competition. Two major contenders are 

identified by Walker (1973). The first one is a double-inverted-U function (see Fig­

ure 5.1c), while the second one is a monotonic increasing function (see Figure 5.1a). 

Walker stated that "with psychological complexity and preference theory, adaptation 

results in a gross temporary reduction in the complexity of an event and a correlated 

reduction in preference" and this is characterised by the double inverted-U shape. The 

adaptation-level theory is first proposed by Helson (1947) and the double-inverted-U 

shape is first proposed by McClelland et al. (1953), where it assumes that small discrep­

ancies from the optimal adaption-Ievel equal pleasingness, whereas big discrepancies 

from it equal negative affect (resulting in a butterfly-shaped curve). Haber conducted 

experiments with cold and hot water to support this theory (Haber, 1958). 

Secondly, the monotonic increasing function can occur in two cases: one is Walker's 

example of piles of money, which is the more the merrier. Another one is the mere ex­

posure hypothesis (Zajonc, 1968), which states that we prefer stimuli that we are more 
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(a) Monotonically increasing (Zajonc, 1968) (b) Inverted U-shaped (Berlyne, 1974) 

(c) Double inverted U-shaped (Haber, 1958) 

Figure 5.1: Three types of preference functions (Walker, 1973) 

familiar with. Both of these contenders will be further explored in this chapter. 

5.2.4 Experimental Aesthetics 

Neuroscience 

In neuroscience, Birbaumer et aL (1996) performed an EEG experiment consisting of 

three blocks (melody, rhythm, melody & rhythm) each with three types of stimuli (pe­

riodic, low-dimensional chaos, high-dimensional chaos). They found that both periodic 

and high-dimensional chaotic music elicited higher EEG dimensions, which "reflects the 

[higher] number of independently active neuronal cell assemblies" (Birbaumer et aL, 

1996, p. 275). Furthermore, in response to low-dimensional chaotic music in the rhyth­

mic blocks, participants who preferred classical music responded with higher EEG di­

mensions whereas participants who preferred popular music responded with lower EEG 

dimensions. In Birbaumer et aL's (1996) own words, "complex music produces complex 

brain activity in complex people, simple music excites simple brain activity in simple 
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people [sic]" (p. 268).1 

Jeong et al. (1998) performed a similar EEG experiment with a slightly different set 

of stimuli. Their experiment is divided into three blocks (as shown in Figure 5.2) with 

four types of stimuli (1/1, white, brown and constant). Their stimuli were prepared as 

follows (Jeong et al., 1998, p. 218): 

1. "White music. We need only one imaginary die with 120 sides to produce white 

music. We successively throw the die. The sequence is made from the selected 

number on the die. Each value has the same probability of 1/120 of being [chosen], 

and one quantity is not affected by any of its preceding quantities." 

2. "Brown music. The first note [ ... ] is determined by a random number genera­

tor. The next note of the pitch, or the duration, for brown music is determined by 

throwing a die with three sides ( + 1,0, -1). For + 1, the fluctuating quantity (pitch 

or duration) increases by one step. For 0, it stays the same, and for -1, it decreases 

one step." 

3. "l/f music. We use twenty dice, each with six sides, to produce 1/1 music. First, 

we throw all twenty dice and calculate their sum. For the next trial, we randomly 

choose seven dice and throw only those chosen dice again. We recalculate the sum 

of all twenty dice; then, we repeat the procedures [sic] as many times as we like." 

In layman's terms, white music is the most complex (totally unpredictable), 1/1 is in 

the middle, while brown music is the simplest (highly predictable). 

Jeong et al.'s (1998) stimuli had a frequency range of 100-800Hz (120 notes) and a 

durational range of 0.1-2s (Jeong et al., 1998). Each trial lasted 30s. Their results revealed 

significant differences in EEG dimensions during 1/1 music perception. Augmented 

by their participants' self-reports, they have established a perfect negative correlation 

between brain activity and aesthetic pleasingness (Jeong et al., 1998). Jeong et al. (1998) 

also related their results to Birkhoff's theory of aesthetics: 

The reason interesting music has 1/1 spectra for its pitch and its duration 

is partially answered by the 'theory of aesthetic value' propounded by the 

American mathematician Birkhoff. Birkhoff's theory states that for a work of 

art to be pleasing and interesting, it should be neither too regular and pre­

dictable nor too irregular and unpredictable. (p. 224) 

1 For political correctness, "simple people" could be rewritten as "musically less sophisticated partici­
pants". 



CHAPTER 5. MUSICAL FITNESS 87 

Melody Rhythm 
Block 1 l/f l/f 

White White 
Brown Brown 

Block 2 l/f Constant 
White Constant 
Brown Constant 

Block 3 Constant l/f 
Constant White 
Constant Brown 

Figure 5.2: Jeong et aL's (1998) experiment 

Music Psychology 

In music psychology, Vitz (1964) was the first to investigate the relationship between the 

information rate of tone sequences (in bits per second) and human ratings of pleasant­

ness. In this experiment, Vitz (1964) expected an inverted-U relationship but instead 

found that the mean human rating is a monotonically increasing function of information 

rate (cf Figure 5.1). Vitz (1966) then tried a more nuanced criterion for stimulus varia­

tion, where stimuli were generated with six predefined levels of randomness involved 

(called the "magnitude of stimulus variation"). Vitz then obtained a Wundt curve by 

plotting subjective ratings against magnitude of stimulus variation. Using ecologically 

more valid stimuli (four original piano compositions in increasing complexity), Heyduk 

(1975) also obtained this inverted-U curve by plotting mean liking ratings against com­

positional complexity. 

North and Hargreaves (1995) shifted the focus of research from complexity to famil­

iarity. Using 60 excerpts of popular music, they not only obtained an inverted-U curve 

with subjective complexity, but also a monotonically increasing function with subjective 

familiarity. 

Tan et aL (2006) studied the effect of repeated hearings on liking. They used two types 

of stimuli: "intact" compositions consisted of complete piano pieces, whereas "patch­

work" compositions consisted of excerpts from three different piano works patched to­

gether into one. Their results are shown in Figure 5.3. Although they did not mention the 

double inverted-U curve and instead chose to explain their findings in Berlyne's terms, 

it can be seen that the "patchwork" compositions induced a monotonically increasing 

curve whereas the "intact" compositions induced a curvilinear trend suggestive of a dou­

ble inverted-U relationship (see Figure 5.1). Unfortunately, there are not enough points 

on the hearing axis, so the curvilinear relationship has only weak support. 
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Figure 5.3: Liking versus exposure (after Tan et al., 2006) 

Historiometry 

Although not strictly experimental, historiometry is a science where "hypotheses about 

human behaviour are tested by applying quantitative analyses to data concerning histor­

ical individuals" (Simonton, 1997, p. 107). Simonton advocated the application of histo­

riometry to the analysis of musical creativity (which includes the product, person, and 

period aspects). Here I will only focus on analyses of the product aspect, which includes 

composer identification, quantification of melodic originality, and quantification of aes­

thetic success (Simonton, 1997); of particular relevance to this thesis is melodic originality 

and aesthetic success. 

Simonton (1997) quantified melodic originality by first tabulating the frequencies of 

two-note transitions in 15,618 classical themes (truncated to the first six notes of each 

theme). He then calculated the improbability of each theme from the probabilities of its 

constituent two-note transitions. Simonton (1997) called this improbability the repertoire 

melodic originality. He also quantified aesthetic success of a composition by its number 

of appearances in "catalogues of recorded performances, music appreciation textbooks, 

student scores, concert and record-buying guides, thematic dictionaries, anthologies of 

great music, and music histories, dictionaries, and encyclopedias" (Simonton, 1997). Si­

monton found a link between melodic originality and aesthetic success: "the popularity 

of a composition is an inverted backwards-J function of originality" and he noted that 

this inverted-J shape is remarkably similar to the famous Wundt curve (Simonton, 1997). 
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5.2.5 Other Mathematical Forms 

While not previously connected to aesthetics, the following complexity measures will be 

refered to in this chapter and therefore are summarised below. 

For a system with N states associated with the probabilities {PI, P2,···, PN}, L6pez­

Ruiz et al. (1995) defined the disequilibrium in the system as 

N 

D = I)Pi - 1/N)2. 
i=I 

The L6pez-Ruiz complexity of this system is then defined as 

C = HD, 

where H denotes the Shannon entropy. A normalised version is also given by L6pez-Ruiz 

et al.: 

C HD, 

where H is the normalised Shannon entropy H = L~I Pi log pi! log N. For N = 2 with 

PI = x and P2 = 1 - x, L6pez-Ruiz et al. showed that C(H) is an inverted-U function by 

plotting C against H. 

Shiner et al. (1999) proposed a family of complexity measures that takes both order 

and disorder into account, 

where the disorder is defined by 6 = S / Srnax and the order is defined by [) = 1 - 6. Here 

S denotes the Shannon entropy. With different combinations of ex and f3, the complexity 

curve can be a monotonically increasing, an inverted-U, or a monotonically decreasing 

function of disorder (Shiner et al., 1999). Unnormalised versions are also given by Shiner 

et al. (1999): 

This measure is said to be a generalisation of the L6pez-Ruiz complexity (Shiner et al., 

1999). 
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5.3 Three Competing Models of Musical Fitness 

In this section, I present my new models of musical fitness. Following Eysenck (1942), 

I define musical fitness as "unity in diversity between music and listener", with three 

competing mathematical realisations. Conceptually, unity represents understandability 

or predictability, while diversity represents novelty or unpredictability. Unity in diversity 

implies striking a balance between the two. 

But first, note that Eysenck's objective definition of complexity does not necessarily 

hold in music. Indeed, twelve-tone music is less complex for trained ears than for the 

untrained. A single formula for all participants would be fairly hard to justify. Therefore, 

I instead assume that both unity and diversity are subject-dependent and that subject 

dependency is mostly a function of memory (ignoring the emotional aspects). This is 

motivated by the everyday experience that complex pieces, once learned, becomes less 

complex from a subjective point of view. This highlights the importance of familiarity in 

my model, which I call the "to each their own" principle, where both unity and diversity 

are subjective functions of the listener's brain. This principle is supported by neuroscien­

tific evidence, where" complex music produces complex brain activity in complex people, 

simple music excites simple brain activity in simple people [sic]" (see Subsection 5.2.4). 

5.3.1 Unity in Diversity Between Music and Listener 

I define unity as I(x;y), diversity as H(xIY), and familiarity as normalised unity, 

F(x, y) = ~(~J = 1 - H~(Z), where x is the music (information source), y is the listener 

(destination), and I(x;y) and H(xly) are my cognitive information measures (defined in 

Chapter 3). The listener is represented by a corpus of music (see below). It is clear from 

the definition of I(x;y) that F(x,y) E [0,1]. F(x,y) can be seen as the proportion of in­

formation in x accounted for by y. In addition, I define a forced-choice binary variable 

"I know this piece" taking the probabilities P("I know this piece"=True) = F(x,y) and 

P ("I know this piece" =False) = 1 - F (x, y). In other words, I model the probability P 

of a forced choice self-reported "I know this piece" as the familiarity of the piece to the 

listener-the more familiar the piece is, the higher the probability. Now, I propose three 

alternative hypotheses for the relationship between musical fitness and my cognitive in­

formation measures: 

HI: Fitness equals unity times diversity (after Eysenck, 1942): 

unity x diversity I(x;y) x H(xly) 

H(x)F(x,y) x H(x)[l- F(x,y)] 
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= H(x)2F(x, y) [1 - F(x, y)] 

See Figure 5.4. With x fixed HI is the Wundt curve and with y fixed it is a monotoni­

cally increasing quadratic curve. This supports both the inverted-U and monotonically 

increasing interpretations (cf Figures 5.1b and 5.1a). This measure is mathematically 

equivalent to Shiner et aL's third Gl1 measure (see Section 5.2.5) with S = I(x;y) and 

Smax = H(x). 

Musical Fitness (bits'2) 

25 

20 

15 

10 

5 

0 

0 

6 
Complexity (bits) Familiarity (%) 

Figure 5.4: Unity times diversity versus familiarity (HI) 

H2: Fitness equals unity divided by diversity (after Birkhoff, 1933): 

unity 
diversity 

I(x;y) 
H(xly) 

F(x,y) 
1 - F(x,y) 

25 

20 

15 
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See Figure 5.5. This supports the monotonically increasing interpretation (cf Figure 5.1b). 

An alternative (but mathematically eqUivalent) formulation is that musical fitness is de­

fined as the odds2 on the truth of "I know this piece". This measure is mathematically 

equivalent to Shiner et aL's r 1,-1 measure with 0, = F (x, y). 

2The statistical odds on a proposition with probability p is l~p. 
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Figure 5.5: Unity divided by diversity versus familiarity (H2) 

H3: Fitness is the normalised L6pez-Ruiz complexity (see Section 5.2.5) of the "I know 

this piece" variable: 

C(P) H(P)D(P) 

-{F(x,y)log2 F(x,y) + [1-F(x,y)]1og2[1-F(x,y)]} x 2 [F(X,y) - ~r 
F(x,y) [1]2 -{F(x, y) log2 1 _ F(x, y) + log2[1 - F(x, y)]} x 2 F(x, y) - "2 

See Figure 5.6. This supports the double inverted-U interpretation (cf Figure 5.1c). 

Furthermore, C(P) almost fits Moles's (1968) model of artistic value (reviewed in Sec­

tion 5.2.1), if we make the additional assumption that musical originality is 1 - F(x, y) 

and the listener's capacity is !: 

C(P) -{F(x,y) log2 F(x,y) + [1- F(x,y)]log2[1- F(x,y)]} x 2 [F(X,Y) _~] 2 

- {[~ + 11- F(x,y) - ~I] log2 [~+ 11- F(x,y) - ~I] 

+ [~-11- F(x,y) - ~I] log2 [~-11- F(x,y) - ~I]} x 2 [1- F(x,y) - ~r 
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The reader can verify that the expression on the second line is equivalent to the one on 

the first line, by considering seperately the cases F(x,y) > 1 and F(x,y) ::s: 1. I write 

"almost fit" here because f ( .) is not a monotonically decreasing function as Moles had 

originally specified. 
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Figure 5.6: L6pez-Ruiz complexity versus familiarity (H3) 

5.3.2 A Simple Model of Human Listeners 

100 

My subjective measures require a model of the listener. For simplicity, in this chapter I 

will use eighty-eight songs (all songs beginning with KOxxx and K1xxx) from the Essen 

Kinder collection (Schaffrath and Dahlig, 2000; Schaffrath, 1997), and concatenate them 

together to form a single listener set. 

5.3.3 Model Selection with Three Experiments 

In the experiments below, I will correlate the human data in Vitz (1966), Heyduk (1975) 

and Jeong et al. (1998) with my model predictions. The best-fitting fitness measure is then 

selected using meta-gMDL+ (see Chapter 3). 
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Correlation with Vitz's (1966) Experiment 

A program was written to generate 64 pieces each of six levels of randomness (a total 

of 384 pieces). The average fitness for each level is calculated and correlated with Vitz's 

human data. Results are shown in Figure 5.7. The correlations are statistically significant 

for all three measures (p < .05). 

Measure r df p gMDL+ 
HI 0.84667 4 0.0170 -0.724 
H2 0.94361 4 0.0023 -2.990 
H3 0.86956 4 0.0120 -1.070 

Figure 5.7: Correlation with Vitz's (1966) data 

Correlation with Heyduk's (1975) Experiment 

The fitness for each of Heyduk's four pieces is calculated and correlated with Heyduk's 

human data. Results are shown in Figure 5.8. The correlations are statistically significant 

for H3 only (p < .05). Note that this is the only experiment with stimuli that qualify as 

western tonal music. 

Measure r df p gMDL+ 
HI 0.74572 2 0.130 0.424 
H2 0.74938 2 0.130 0.410 
H3 0.93187 2 0.034 -1.180 

Figure 5.8: Correlation with Heyduk's (1975) data 

Correlation with Jeong et al.'s (1998) Experiment 

Here I will demonstrate that there is a correlation between my model predictions and 

the negation3 of Jeong's EEG results. I perform 128 x 3 (white, brown, 1/ f) runs of 

random music generation (monophoniC, lasting thirty-two seconds at sixty beats per 

minute). For each type of music, I calculate the average musical fitness of all 128 pieces. 

In order to avoid the potential confounding factor of biased random numbers, a sophis­

ticated scheme known as "Dynamic Creation of Mersenne Twisters" (Matsumoto and 

Nishimura, 2000) is used. Then I correlate the mean musical fitness with the negation of 

Jeong's EEG dimensions. Results are shown in Figure 5.9. The correlations are statisti­

cally significant for H2 only (p < .05). 

3Negation because aesthetic superiority is measured by the lowering of brain activity Geong et aL 1998). 
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Measure r df p gMDL+ 
HI 0.845900 1 0.180 0.0207 
H2 0.996570 1 0.026 -3.5400 
H3 -0.99235 1 0.960 -0.0589 

Figure 5.9: Correlation with Jeong et al.'s (1998) data 

Discussion 

The sum of gMDL+ code lengths are shown in Figure 5.10. H2 has the minimal total 

description length and is thus selected. However, note that if the stochastic experiments 

are removed, then H3 will be the winner instead (see Figure 5.8 only). Because of this, I 

have decided to check for both hypotheses in the next section. 

Measure EgMDL+ 
HI -0.28 
H2 -6.10 
H3 -2.30 

Figure 5.10: Meta-analysis of gMDL+ code lengths for fitness 

5.3.4 Validation of H2 and H3 

Using my fitness model I now extend Katz's degradation experiment on a larger scale. 

The original Katz hypothesis states that the number of mutations is roughly inversely 

proportional to fitness (in other words, H2), but I will also test for H3 below. 

Method 

Participants Participants were recruited from the University of Sheffield through a 

university-wide volunteers' e-mail list. The eligibility criteria are that they be aged 18-64, 

have at least one healthy ear, and not have musicogenic epilepsy. They were paid eight 

pounds sterling per hour for their participation. Ethical approval was granted by the 

Department of Psychology Ethics Sub-Committee at the University of Sheffield. Thirty 

participants signed up for this experiment with informed consent (10 males and 20 fe­

males). The mean age was 36 years (SD = 10) and the mean years of musical training was 

4.0 years (SD = 6.0). 

Materials The stimuli consisted of K2445 and K3027 from the Essen Kinder collection, 

mutated into 178 mini-pieces. For each song, degraded melodies are created "by re-
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placing a set number of randomly chosen notes with a random note in the pitch range 

between the highest and lowest note in the song, conforming to the key of the melody" 

(Katz, 1994, p. 220). The requirement that the mutations should conform to the key will 

be reversed to enhance Katz's position and to diminish mine-at least intuitively, atonal 

mutations should be worse than tonal mutations. Twenty mutants will be created for 

each set number of mutations (so as to improve the quality of the statistical sampling). 

The set number of mutations is set to 5, 10, 15 and 20 mutations. 

Procedure An information sheet and consent form were given to the participants (see 

Appendix A). Verbal instructions were also given. Once the consent form was signed, 

the instructions in Figure 5.11 were shown to the participants on a computer screen on 

which they would begin the experiment by pressing a button. 

You will be listening to 178 pieces of music (each one lasts about 10 
seconds). The first three pieces will be practice trials. Your task is to 
rate how much you like each piece. You will have 10 seconds after 
each piece to give your rating. There are no wrong answers--just tell 
us how much you like it from your point of view. 

Figure 5.11: On-screen instructions 

The order of presentation was randomised to reduce priming effects. The participant 

rated how much they like each song in a 1-9 scale (see Figure 5.12), with a ten-second 

inter-stimulus silence intervaL The rating buttons were greyed-out until the rating phase, 

in order to prevent participants from pressing the buttons prematurely. The procedure 

was repeated until all songs (mutants as well as originals) were presented. The first 

three pieces were practice trials and the results were not analysed. At the end of this 

experiment, the results were correlated to model predictions. For the playback of MIDI 

files, I had chosen the same sound font used in the previous chapter. 
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Questionnaf~ 

You are now listening to: 

1* Excerpt No . 95 

E.,oerlment (Pan 8) 

Practice 1 of 3 

Ukln9 Rat ing,.::.., __________________ ", 

Please rate t he above piece on a scale of 1-9 

(where 1 means "did not l ike it at all" and 9 means "liked it very much"): 

O,d not Ilk. 
[ut aH 

1 ! 2 
-
4 

Ukod It 
very much 

5 '6 9 

Prog res, bar 

Figure 5.12: Listening to the first piece 
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Data Analysis The unit of analysis is the mean of all participants' rating on each piece, 

and the practice trials were treated as missing data which were replaced by the mean 

of other participants' ratings on the same piece (as in Chapter 4). Finally, for inter-rater 

reliability, Cronbach's (1951) IX was reported. 

Results 

The Cronbach's IX is 0.857, meaning that the mean of the human ratings are consistent. 

Results are shown in Figure 5.13. The correlations are statistically significant for both H2 

and H3 (p < .05). 

Measure r df p 
H2 0.66223 176 3.9 x 10 ·L4 

H3 0.66943 176 8.5 x 10- 25 

Figure 5.13: Musical fitness results 

Discussion 

Both H2 and H3 have statistically significant correlations with human data (p < .05). 

H2 accounted for 44% of the variance in the data, whereas H3 accounted for 45% of the 
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variance. In order to find out which model is better, quadratic fits of the human data and 

the model predictions are plotted in Figure 5.14. From the figures, it can be seen that H3 

fits the shape of the human data better. In other words, human ratings follow the middle 

portion of the double inverted-U curve (cf Figure 5.lc), at least in this experiment. 
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Figure 5.14: Quadratic curve fits (by song) 
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5.4 General Discussion 

I have proposed three computational models of musical fitness and have shown that H2 

is better in general but H3 is the best in a western tonal music context. A possible expla­

nation for this discrepancy can be found in the data of Tan et al. (2006), where "intact" 

compositions generated a double inverted-U curve, whereas "patchwork" compositions 

genenated a monotonic increasing curve (see Section 5.2.3). The results of this chapter 

challenged the perceived superiority of the Wundt curve (Berlyne, 1974; Walker, 1973), a 

model which performed the worst in the model selection experiments. 

5.5 Concluding Remarks and Future Work 

More work is needed to create new formulae of fitness and to experimentally validate 

them. In fact, I will go further and say that we need a lot more data before we can 

properly evaluate the results in this chapter. 

With regards to computational creativity (Application Layer), the fitness measure 

could be applied to creative systems that compose music, and the value of the creative 

product could be evaluated by a panel of expert human judges, perhaps using the con­

sensual assessment technique (Amabile, 1982). Also, given an arbitrary creative system 

with mathematical definitions of complexity and familiarity in non-information-theoretic 

terms, there is a possibility to reverse engineer the Information Layer (loosely speaking). 

Where this is possible, a hard test of the generalisability and independence of the layers 

would be to reverse engineer the Information Layer and use it to predict higher level 

properties at the Psychology Layer, such as fitness. 



Chapter 6 

Discussion 

6.1 Introduction 

In this thesis, I have offered a synthetic, multi-layer account of music cognition based on 

both information theory and Dawkins' memetic theory of culture (specifically, that mu­

sical culture is made up of atomic units of evolutionary information transmission anal­

ogous to the gene). My starting point is Jan's (2000b) premise that musical culture is 

memetic (which enables me to interpret copying-fidelity and aesthetic fitness of music in 

Darwinian terms). 

Of course, I acknowledge that memetics is not a silver bullet for answering all sci­

entific questions about music. Indeed, even the validity of the gene-meme analogy is in 

dispute (see next section). Nonetheless, it is my hope that at least some anti-memeticists 

would reconsider memetics as a useful discipline after seeing the preliminary evidence 

provided in this thesis. 

While previous research in memetics has suffered from vagueness, unfalsifiability, 

and incompleteness, this thesis is the first to start with a falsifiable definition of a meme 

and try to disprove it with psychological experiments. 1 In so doing, the vagueness and 

unfalsifiability in traditional computational memetics is circumvented and replaced by 

the vigour of psychology. So far, my research has shown that the memetic strategy is 

sound, and the modelling results are encouraging. 

1 Pocklington and Best (1997) was probably the only paper to start with a falsifiable definition of a meme; 
unfortunately, the authors do not follow it up with psychological experiments-they just say, effectively, 
that such and such are the memes extracted from a text corpus using their (falsifiable) meme extraction 
algorithm, and that those memes exhibited certain statistical properties which suggests that they are likely 
to be units of (Darwinian) selection. But they stopped short of psychological validation. 

100 
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6.2 A Short Reply to Bruce Edmonds 

Bruce Edmonds, publisher (and one of the founding editors) of the Journal of Memetics­

Evolutionary Models of Information Transmission, famously pronounced the death of 

memetics, before he teminated the publication of the journal (Edmonds, 2005). Because 

of his authority in memetics, and because my thesis does not address his challenges, a 

short reply is in order. Let me give a bit of history first. 

Edmonds (2002) posed three challenges to the memetics community. He claimed that 

if these challenges are not met, memetics will not survive. Challenge 1 is "a conclusive 

case study" where the meme "needs to be something physical and not in the mind". 

Challenge 2 is "a theory for when memetic models are appropriate" where the theory 

must not be based on "unobtainable information" such as "the composition of mental 

states". Challenge 3 is "a simulation of the emergence of a memetic process" without a 

"built-in" imitation process. Three years later, Edmonds (2005) could not find any sub­

stansive answers to his challenges, so he went on to make his famous claims based on the 

absence of evidence. I will refute his claims, point by point, below (Edmonds, 2005): 

1. "I do claim that the failure to answer those challenges was indicative of the poverty 

of the memetics project resulting in a lack of demonstrable progress which, in turn, 

has meant that it has failed to interest other academics": on the contrary, I believe 

that the failure to answer was indicative of the poverty of those challenges. Ed­

monds' first two challenges assumed that memes are physical and not in the mind, 

and that composition of mental states are unobtainable information and should not 

be relied upon in a memetic theory. But psychologists and anthropologists disagree 

with this stance. Plotkin (2000) and Henrich and Boyd (2002) advocated putting 

cognition into a theory of cultural evolution, and they all said that memes are in the 

brain. And so do I in this thesis. As for Edmonds' third challenge, I believe that it 

was misplaced-the lack of evolvability of memetic evolvability is not a necessary 

condition for the demise of memetics; it could very well be that our capacity for 

memes is an evolutionary accident. Remember that life on earth is highly improb­

able. Why must the ability to imitate be treated differently? If memetic capacity is 

easily evolvable, why is Homo sapiens sapiens the lone subspecies on earth that has 

produced the likes of Bach and Beethoven? 

2. "Here I distinguish between [ ... ] the 'broad' and the 'narrow' approaches to memet­

ics [ ... ] The later, narrow, sense involves a closer analogy between genes and 

memes-not necessarily 100% direct, but sufficiently direct so as to justify the ep­

ithet of 'memetics'. What has failed is the narrow approach": here the boundary 
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between "broad" and "narrow" is too vague and subjective. What is sufficiently 

direct to me might not be so to Edmonds. Since I took the stance that memes are 

in our minds, memes would be very different from genes in terms of longevity, 

fecundity and copying fidelity. Would a 50% copying fidelity count as not direct 

enough? How about 25%? Is there a peer-reviewed, internationally accepted crite­

rion of how close is close enough? I am not aware of one. Also note that Henrich 

and Boyd (2002) have provided simulation evidence that even individuals with low 

copying fidelity could still give rise to a culture with high copying fidelity (at the 

population level). 

3. "I claim that the underlying reason memetics has failed is that it has not provided 

any extra explanatory or predictive power beyond that available without the gene­

meme analogy [ ... ] The ability to think of some phenomena in a particular way 

(or describe it using a certain framework), does not mean that the phenomena has 

those properties in any significant sense": the same can be said about most terms 

in quantum physics or even in genetics. Just what exactly is the definition of a 

gene? Answers differ, even within the field of genetics (Hull, 2000)! Yet this does 

not stop the term" gene" from being useful. I can imagine that if Edmonds reads 

this thesis, he might claim that all that he saw is an information theory of musical 

memory (no memes here). But if Edmonds wants to disprove the usefulness of the 

"meme" framework at this early stage of memetics, he needs to work a lot harder to 

prove that the memetic framework is redundant and has already been subsumed 

completely by other disciplines. Then and only then, could he invoke Occam's 

razor. 

4. "[T]here is a successful community of social simulators who study, among other 

things, evolutionary models of information transmission. Similarly there is work 

in computer science, applying evolutionary ideas to computational processes and 

work in theoretical biology studying non-genetic evolutionary processes. Thus this 

wider work will continue as subsets of other projects, but not under the discredited 

label of memetics": those "wider works" are clearly successful examples of memet­

ics research. Edmonds is apparently discrediting memetics by confining memetics 

to an unnecessarily small niche, thus excluding all the successful examples, then 

making his claims by appealling to the absence of evidence. There is no evidence. 

5. "[T]he meme-gene analogy [ ... ] has been a short-lived fad whose effect has been 

to obscure more than it has been to enlighten. I am afraid that memetics, as an 

identifiable discipline, will not be widely missed": Edmonds' claims here are both 
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unsubstantiated and premature. The scientific study of memes is still in its infancy, 

and memetics is still awaiting its Watson and Crick. The science of memetics may 

very well turn out to be a fad in the future, but currently we have no concrete 

evidence of that. 

With the "not in the mind" ban lifted, I believe that Edmonds' first two challenges still 

need to be met. Specifically, I believe that Edmonds' desire for a theory of applicability 

(Challenge 2) is well-intentioned and indeed necessary, but I think it is premature to 

expect such a theory to surface anytime soon, as we are still determining the boundaries 

of applicability of the memetic theory and it will be a long journey. 

6.3 Implications and Prospects of Research 

This thesis has provided a research programme of computational memetics (not neces­

sarily limited to music) that is based on a multi-layer, information-theoretic and cognitive 

approach to memetic modelling. 

This thesis has contributed significantly to the computational aspects of music 

memetics. Recall that Best's (2001) original taxonomy of computational memetics con­

sists of simulation, computational theory, and population memetics. Best (2001) noted, 

in relation to computational theory, that "[w]hile we do not, to my knowledge, have as 

strong a result specific to memetics, this line of computational memetic inquiry is quite 

valuable and should payoff handsomely in tomorrow's research outputs." This thesis 

can be seen as a reply to this call, unifying computational theories of memetics, similarity, 

and aesthetics under my cognitive information framework (Chapter 3), supplemented by 

solid experimental work (Chapters 4 and 5). 

This research has indirectly contributed to other areas of research, which may be 

potentially significant (detailed research on any of these would however remain future 

work): 

1. In artificial intelligence, evolutionary methods for algorithmic composition have a 

long history, but their cognitive plausibility has been questioned (Papadopoulos 

and Wiggins, 1999). By asking direct scientific questions pertaining to the evo­

lutionary mechanisms of music transmission, this research will bring us one step 

closer to a gold standard for knowledge representation and fitness criteria in evo­

lutionary music composition. Indeed, aesthetic selection and artificial creativity 

are two of the "open problems in evolutionary music and art" (McCormack, 2005), 

deemed to be grand challenges worthy of sustained future research. 
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2. In biomusicology, this research contributes a novel approach to cognitive musicol­

ogyand experimental aesthetics. To my best knowledge, this is the first thesis to 

combine evolutionary, cognitive, affective and computational modelling in musi­

cology under one unifying framework. 

3. In music education, my complexity measure might be useful for the construction 

of an aural training curriculum that gets harder progessively, to the ultimate goal 

where students could transcribe free jazz by ear with accuracy. The increment of 

difficulty can now be done algorithmically with my complexity measure, rather 

than by guesswork. 

4. In music information retrieval, my similarity measure might have immediate appli­

cations to musical databases and archives, for example in searching and querying. 

5. My similarity measure might also be used to create a phylogenetic tree, with im­

plications for music history and musicology, for example author identification (but 

look at the end of Chapter 4 about horizontal meme transfer). 

6. In cultural ecology, one could look at the geographical distribution of songs as in 

Aarden and Huron (2001). My thesis adds a similarity measure and a fitness mea­

sure to Aarden's toolbox, so that we can now ask for the geographical distribution 

of songs that matches fuzzily with a polyphonic query (utilising my similarity mea­

sure), or the distribution of songs that would sound best (fitness exceeds a certain 

threshold) to those of us encultured in a certain musical tradition. 

7. Also in cultural ecology, one could look at the biodiversity of memes, for example 

using Faith's phylogenetic diversity (PD) measure (Faith, 1992). PD can be calcu­

lated simply by constructing a phylogenetic tree of the pieces using my similarity 

measure, then add up all the branch lengths (Faith, 1992). We can apply this num­

ber in different ways, such as: 

• Cultural environmental protection: the negation of PD could be used as a mea­

sure of cultural hegemonity. If it is higher than a certain threshold, then it 

might be a good time for intervention. 

• Concert programming: consider that a soloist has decided to do a recital on 

a single composer, with the additional assumption that this composer only 

composes works of the highest quality. This gives us unity, but what about 

diversity? By using PD we will be able to, within the confines of the soloist's 

active repertoire, select out a subset of that repertoire that maximises the cul­

tural diversity. 
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6.4 Concluding Remarks 

This research has provided evidence for the soundness of the computational memetic 

approach. It is my hope that the reader would, by now, be convinced that this approach 

is fruitful and that it opens up a great many possibilities for future work. 



Chapter 7 

Conclusion 

7.1 Introduction 

In this chapter I summarise my contributions to knowledge. 

7.2 Summary of Methodologies 

The aim of this thesis is to propose and examine a novel, multi-level cognitive infor­

mation theory. New methodologies are proposed to fulfill this aim. The following is a 

summary. 

7.2.1 Multiple-Layer Approach 

My research strategy is to divide the modelling effort into four layers, proposed in Chap­

ter 1 (see p. 13). The Data Layer corresponds to perceptual inputs, the Information Layer 

corresponds to my information measures, the Psychology Layer includes similarity and 

aesthetic fitness, and the Application Layer includes creative systems and cultural ecology 

(not explored in the previous chapters). With the exception of the Data Layer (which has 

no dependencies), all higher-level layers depend on the lower-level layers. 

With this scheme, information becomes the ultimate foundation underlying all expla­

nations of musical behaviours above the Data Layer level. The advantages of multi-layer 

modelling is that we can potentially reuse the same Application and Psychology Layers to 

describe phenomena in a different domain while changing only the Information and Data 

Layers. 

The problem with the multi-layer approach is that it is not clear whether different ar­

eas of the brain share the same cognitive processing mechanisms. It might be premature 

106 
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to allow for a theory with a plug-and-play information-theoretic substrate (music, chess, 

etc.). It is outside the scope of this thesis to talk about the memetics of chess (de Sousa, 

2002), but the theory presented here will be heavily bolstered if the very same formulae 

for similarity and fitness (brilliancy) would also work for chess moves without modifica­

tions. 

In the Data layer, I simply assumed a postprocessed MIDI file containing onset, pitch, 

and metrical position data. This is operationally useful, but it lacks important features 

such as loudness, so this representation would be inadequate for tasks requiring loudness 

discrimination (or other information that it does not have). 

The main focus of this thesis is on the Information and Psychology layers. For these 

two layers, I proposed competing models and selected the best fitting models based on 

published experimental data. In addition, for the Psychology layer, I designed, con­

ducted and analysed new experiments in order to validate my models. 

First, for the Information layer, I started from the well-established modal memory 

model and propose, in precise computational terms, a putative information theory of 

memory. Three competing models each outputted a single number denoting the cogni­

tive complexity of a piece of music, which could be interpreted as the theoretical number 

of bits required to store the piece into memory. The model best fitting human data was 

selected, and higher-level psychological theories were built on top of this model. In this 

thesis, I investigated two such theories at the Psychology layer, musical similarity and 

musical value. 

In the similarity chapter, I proposed three competing models of musical similarity 

based on the information measure described above, and selected the best one using a 

model-fitting strategy. In the same chapter, I presented a new experiment to check if the 

selected model would break. The experiment used polyphonic piano music as stimuli, 

with 30 participants each rating the similarity of 75 pairs of musical fragments. I also 

proposed an overarching similarity framework that subsumes a large number of existing 

similarity measures both set-theoretic and information-theoretic. 

In the fitness chapter, I again proposed three competing models and have the best 

fitting model selected. Then a new experiment was designed to check the predictive 

power of this model, with 30 participants each rating how much they like each of the 175 

musical fragments based on two mutated Essen folksongs. 

7.2.2 Minimum Description Length Principle 

The minimum description length (MDL) principle (see Chapter 3, p. 36) is used through­

out this thesis, both in model selection and in the models themselves. The MDL principle 
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states that a model that minimises the description length of a dataset is the best fitting 

model (Rissanen, 1975; Barron and Rissanen, 1995). This is also known as the Occam's 

razor or the principle of parsimony (Barron and Rissanen, 1995). MDL is better than tra­

ditional goodness-of-fit measures because MDL penalises overfitting (Pitt and Myung, 

2002; Grunwald, 2005). MDL might suffer from overgeneralisation (imprecise models) 

but that could be a good thing if cross-domain modelling of universals is the ultimate 

goal-we do not want domain-specific "noise" to get in our way. Another way to put 

this is that it is a trade-off between domain-specific and universal modelling and we pre­

fer a universal theory. 

The meta-gMDL+ selection criterion (proposed in Chapter 3) is used throughout this 

thesis. In meta-gMDL+, the best fitting model is taken to be the one with the lowest value 

ofgMDL+. 

Not only is the model fitting related to MDL, but so are the models themselves. My 

proposed information measures are measures of compressibility so they are related to the 

MDL principle (in the sense of Ernst Mach who "proposed that the goal of perception [ ... ] 

is to provide the most economical explanation of sensory data", Chater, 2005), or in other 

words, perception equals compression. 

I believe that this thesis is the first piece of work that adheres to the MDL principle at 

two different levels simultaneously. 

7.3 Summary of Results 

For both the Information and Psychology layers (p. B), competing models were pro­

posed and the best fitting models were selected based on published experimental data. 

In addition, for the Psychology layer, two experiments were designed, conducted and 

analysed in order to validate the proposed models. Here is a summary of the results. 

7.3.1 Cognitive Information 

In Chapter 3, I proposed three competing models of musical information, and selected 

the best fitting model based on Conley's (19Sn Shmulevich and Povel's (2000) and Hey­

duk's (1975) human data. The best fitting model (L1,2,4gMDL+ = -1.4, Ll,3,4gMDL+ = 
-2.6) is the one based on the T-complexity measure (Titchener, 2000) after neural cancella­

tion filtering (de Cheveigne, 1993). I have also proposed an alternative model of human 

listening (using conditional information rather than just information, on the grounds that 

listeners would unconsciously remember for example the theme when listening to a set 

of variations on the same theme). Using this listener modet the data fit is somehow im-
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proved, but not by much. Note that Conley's stimuli (Beethoven's Eroica variations) are 

ecologically valid. While this model is rough (only accounting for 17% of the variance in 

Conley's Graduate data), it is a good enough starting point for my similarity and fitness 

measures. 

7.3.2 Musical Similarity 

In Chapter 4, I proposed three competing models of musical similarity based on various 

information distances adapted to use my information measures, and selected the best 

fitting model using Cambouropoulos's (2001), Eerola et al.'s (2001) and Eerola and Breg­

man's (2007) human data. The best fitting model H1 ([;gMDL+ = -24) is the one based 

on K viUseth's (1987) information measure. A new experiment was carried out to validate 

the selected model. The experiment used polyphonic piano-roll music as stimuli, with 30 

participants each rating the similarity of 75 pairs of musical fragments. The model fit is 

statistically significant, r(76) = 0.57106 (p < .05), accounting for 33% of the variance in 

the mean human ratings. Results also showed, contra Tversky (1977), that human data 

obey the metric axioms. 

7.3.3 Musical Fitness 

In Chapter 5, I again proposed three competing models and used model-fitting to select 

the best. The best fitting model H2 ([;gMDL+ = -6.1) was the one based on Birkhoff 

(1933), but if stochastic music was disallowed, then H3 ([;gMDL+ = -2.3), the model 

based on L6pez-Ruiz et al. (1995), would be the best fit instead. A further experiment 

was carried out to validate these two models, with 30 participants each rating how much 

they like each of the 175 musical fragments based on two mutated Essen folksongs. Both 

models fit the data well: H2 accounted for 44% of the variance in the data, r(176) = 
0.66223 (p < .05), whereas H3 accounted for 45% of the variance, r(176) = 0.66943 (p < 
.05). Quadratic curve fitting revealed that H3 fits the shape of experimental data better. 

The results of this chapter challenged the received view that the Wundt curve is the best 

model for experimental aesthetics. 

7.4 Summary of Other Contributions 

Firstly, this thesis contributed a method for the meta-analysis of correlational studies, 

based on a non-standard correlation model with non-negativity constraints. I expect this 

method to be applicable outside this thesis as well. 
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Secondly, this thesis proposed a working Data Layer model, namely the OPM (Onset, 

Pitch, Metrical Level) model. The bundling of Onset and Metrical Level is first done by 

Temperley and Sleator (1999) in their meter-finding algorithm. Therefore, this thesis may 

be seen as further corroborating evidence for Temperley and Sleator's representation. 

Thirdly, it was known that the assumptions made by many information-theoretic 

analyses of music were untenable or at least hard to justify (Cohen, 1962; Sharpe, 1971). 

My model addresses one of these limitations: most languages are not describable by 

finite-state Markov sources such as n-gram models (Chomsky, 1956); while this is not 

sufficient evidence to falsify the information-theoretic approach to music per se, it shows 

that this approach (when applied only to smaller basic units such as single notes) is in­

adequate and insufficient (Sharpe, 1971). By using a compression-based model of infor­

mation that looks at all possible pairs of notes, this limitation is circumvented. 

Fourthly, the cognitive information results had shown that a cognitively constrainted 

information theory is better than a generic compression algorithm like Cilibrasi et aL 

(2004). This confirms that one cannot ignore representation in music cognition research. 

Fifthly, the overarching framework proposed in the similarity chapter (subsuming 

most set-theoretic, Shannon-based and compression-based similarity measures) might 

be useful in other contexts such as music information retrieval. 

Sixthly, the bridge between information and musical fitness, while not new (Meyer, 

1957; Moles, 1968), has been questioned (Cohen, 1962). Cohen maintained that informa­

tion alone cannot account for the musical experience; the musical experience bit belongs 

to aesthetics. I believe that this assertion is too strong; it could very well be that an uni­

versal information measure would simultaneously be a good model of aesthetic fitness. 

We need more research of course, but at least the results of this thesis fail to refute my 

view. 

Finally, the musical fitness results had shown that, despite its popularity, the inverted­

U formulation of fitness did worst in the model selection phase. In other words, it does 

not seem to model human data well. Of course, given the poverty of empirical evidence, 

more evidence is needed. 



Appendix A 

Information Sheet and Consent Form 

A.I Information Sheet 

• The expected duration of this experiment is two hours, split into two one-hour slots 

with a fifteen-minute break in between. 

• You have the right to withdraw from this experiment at any time without incurring 

any penalty. 

• The purpose of this experiment is to learn more about human judgements of simi­

larity and liking in music, and to see whether a computational measure of musical 

complexity could account for the variances in the human judgements of similarity 

and liking. 

• There are no known discomforts or risks involved in this experiment, except for 

people who suffer from musicogenic epilepsy or related neurological disorders. 

People with musicogenic epilepsy are likely to have epiletic fits when they listen 

to music. If you have this medical condition, you will not be allowed to participate 

in this experiment. 

• Publications arising from this experiment will not contain personally identifiable in­

formation. Such information will be kept confidential and will be destroyed within 

six months of this experiment. 
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A.2 Consent Form 

I have been informed about the nature and potential risks of this research. I declare that I 

do not suffer from musicogenic epilepsy or other neurological disorders related to music. 

I agree to participate voluntarily. 

Signature ....................................................... . 

Date ............................................................... . 



Appendix B 

Computability and Kolmogorov 

Complexity 

B.I Computability 

The Church-Turing thesis (Church, 1936; Turing, 1936) states that a function is computable 

if there exists a non-halting program that computes it. An example of an uncomputable 

function is the halting function-given an arbitrary program, decide if it halts. Turing 

(1936) proved that the halting function is uncomputable.1 

B.2 Kolmogorov Complexity 

To calculate the Kolmogorov complexity K (x) (see Section 2.3), one searches for the short­

est program that generates x. This is computationally equivalent to running all possible 

programs and searching for the smallest one outputting x. Since there exists programs 

that will halt, by the Church-Turing thesis, K (x) is uncomputable. 

B.3 Super-Turing Computation 

Copeland and Sylvan (1999) argued that the Church-Turing thesis (as stated above) is 

false. For them, the thesis only delineates what is computable by "orthodox computing 

devices" (p. 48) such as Turing machines. Copeland and Sylvan (1999) introduced the 

notion of computability by "heterodox computing devices" (p. 48), which could poten-

1 Note that uncomputability is different from intractability; intractability means that the function cannot 
be computed in polynomial-time in the size of the input (Garey and Johnson, 1979). 

113 



APPENDIX B. COMPUTABILITY AND KOLMOGOROV COMPLEXITY 114 

tially compute the halting function (pp. 60-62). The first heterodox computing device is 

introduced by Weyl (1949): 

[ ... ] there is no reason why a machine should not be capable of completing 

an infinite sequence of distinct acts of decision within a finite amount of time; 

say, by supplying the first result after 1/2 minute, the second after another 

1/4 minute, the third 1/8 minute later than the second, etc. In this way it 

would be possible, provided the receptive power of the brain would function 

similarly, to achieve a traversal of all natural numbers and thereby a sure 

yes-or-no decision regarding any existential question about natural numbers! 

(p.42) 

There exists at least two more heterodox devices that are capable of computing the 

halting function (Copeland and Sylvan, 1999, pp. 60-62). Whilst these devices are outside 

the scope of my thesis2, I will simply note that their existence would render Kolmogorov 

complexity computable. Nevertheless, given that the aforementioned devices are unre­

alisable with present-day technologies, I will disregard super-Turing computation and 

maintain that Kolmogorov complexity is uncomputable for the purpose of this thesis. 

2Interested readers are referred to Copeland and Sylvan (1999) and the references therein for more details. 



Glossary 

aesthetics The study of beauty, both philosophical and empirical. 

bit strings Vectors in {O, 1 y. 

city block distance The city block distance between two vectors x and y is Li I Xi - Yi I. 

clustering Methods of grouping things together based on their closeness. 

conditional probability The probability of one event occurring given that the other 

event also occurs. 

connectionism Cognitive modelling using neural networks. 

correlation matrix A matrix of correlations between all pairs of data. 

diagonal matrix A matrix A in which aij = 0 whenever i =F j. 

EEG See electroencephalograph. 

eigenvalues The eigenvalues of a complex matrix A are the solutions of IA - All = O. 

electroencephalograph A device for measuring the electrical activities on the scalp. 

excitatory neurons Neurons whose firing would cause other neurons to fire. 

Hamming distance The Hamming distance between two bit strings is equivalent to their 

city block distance. 

hippocampus Part of the brain primarily responsible for memory. 

in vitro In glass. See also in vivo. 

in vivo In the living body. See also in vitro. 

inhibitory neurons Neurons whose firing would stop other neurons from firing. 
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joint probability The probability of two events occurring together. 

linear independence A set of vectors is linearly independent if none of them can be writ­

ten as a linear combination of the others. 

magnetoencephalograph A device for measuring the magnetic field over the head. 

MEG See magnetoencephalograph. 

neural networks A network of simple processing units with a learning algorithm. 

neuronal Of or related to neurons. 

neuroscience The scientific study of neuronal systems in humans and other animals. 

principal component analysis A method to reduce a large number of variables into a 

few statistically uncorrelated components. The components are sorted such that 

the first principal component has the largest variance. The principal component 

analysis can be computed using the singular value decomposition. 

rank The rank is defined as the maximal number of linearly independent rows or columns 

in a matrix. 

similarity measures A numerical measure telling you how close together two items are 

(roughly the opposite of distance measures). 

singular values The Singular values of a matrix A are the square roots of the eigenvalues 

of AA*. 

singular value decomposition A complex matrix A can be decomposed into A = UI:V* 

where U and V are unitary and I: is a diagonal matrix containing the singular values 

of A. 

statistical independence Two events X and Yare statistically independent if their joint 

probability p(X, Y) can be factorised into p(X)p(Y). 

time series A vector of numerical samples taken from discrete time points. 

unitary A matrix A is unitary if A * A = AA * = 1. 

weighted Hamming distance The weighted Hamming distance between two bit strings 

x and y is Li WdXi - yd where w represents the weights. 
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