
Deep Visual Instruments:
Realtime Continuous, Meaningful Human Control

over Deep Neural Networks for Creative Expression

Mehmet Selim Akten

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Goldsmiths, University of London

Department of Computing

April 2021

I, Mehmet Selim Akten, hereby declare that this thesis and the work presented in it is

entirely my own. Where I have consulted the work of others, this is always clearly stated.

Signed:

Date: 22 April, 2021

Page ii

Abstract

In this thesis, we investigate Deep Learning models as an artistic medium for new modes of

performative, creative expression. We call these Deep Visual Instruments: realtime interactive

generative systems that exploit and leverage the capabilities of state-of-the-art Deep Neural

Networks (DNN), while allowing Meaningful Human Control, in a Realtime Continuous manner.

We characterise Meaningful Human Control in terms of intent, predictability, and account-

ability; and Realtime Continuous Control with regards to its capacity for performative interac-

tion with immediate feedback, enhancing goal-less exploration. The capabilities of DNNs that

we are looking to exploit and leverage in this manner, are their ability to learn hierarchical

representations modelling highly complex, real-world data such as images. Thinking of DNNs

as tools that extract useful information from massive amounts of Big Data, we investigate ways

in which we can navigate and explore what useful information a DNN has learnt, and how

we can meaningfully use such a model in the production of artistic and creative works, in a

performative, expressive manner.

We present five studies that approach this from different but complementary angles. These

include: a collaborative, generative sketching application using MCTS and discriminative CNNs;

a system to gesturally conduct the realtime generation of text in different styles using an ensem-

ble of LSTM RNNs; a performative tool that allows for the manipulation of hyperparameters

in realtime while a Convolutional VAE trains on a live camera feed; a live video feed processing

software that allows for digital puppetry and augmented drawing; and a method that allows for

long-form story telling within a generative model’s latent space with meaningful control over

the narrative.

We frame our research with the realtime, performative expression provided by musical in-

struments as a metaphor, in which we think of these systems as not used by a user, but played

by a performer.

iii

Page iv

Acknowledgements

It would be an understatement to call these last few years that I have been working on this

thesis, an incredible journey. As I reflect back on these years, especially in the middle of a global

pandemic and crisis, I am truly moved to recognize how fortunate I have been with regards to

the incredible support that I have received from a truly remarkable network of people.

First and foremost, I cannot thank my supervisors Professor Mick Grierson and Dr. Rebecca

Fiebrink enough for their unwavering guidance over these years. I am indebted to your faith

and patience; and your invaluable mentorship in showing me how to think and organise my

thoughts. Thank you both for making this PhD an incredibly enjoyable experience. I am

especially indebted to my primary supervisor Mick. Thank you for giving me the space, the

time, the freedom, and the opportunities to explore, to discover, to fail, to get lost; and then

knowing exactly when and how to signal me back. Professor Frederic Fol Leymarie, though

you were not officially my supervisor, your ongoing guidance and feedback has been invaluable,

always so incredibly concise and clear. I owe an additional thanks to Professor Atau Tanaka,

and Professor William Latham for your ongoing support, and in particular to Atau, for talking

me into applying for this PhD position. I am sincerely grateful to the UK’s EPSRC whose

funding supported my research, and to Professor Peter Cowling, Professor Simon Lucas, Dr

Jeremy Gow, Jo Maltby, Lucy Jeczalik, Tuula Juvonen and everybody else involved in IGGI,

for making this experience not only possible, but as smooth as it could be.

I would also like to extend my gratitude to my PhD and lab companions: Daniel Berio, Tom

Cole, Tara Collingwoode-Williams, Janet Gibbs, Christian Guckelsberger, Rob Homewood, Zoë

O’Shea. You always made it a joy coming into the lab. In particular I would like to thank

Christian, for the stimulating conversations around creativity, curiosity, intrinsic motivation,

information theory and beyond; Rob, for the limitless energy and support on so many levels, on

our adventures in Eindhoven, in Prague, in Transylvania; and Daniel, for our collaborations, the

late nights trying to hit submission deadlines, and for opening my mind to the Art of Graffiti,

leading me into the rabbit holes of motor control and cognition, and embodied simulation.

Much of the work in this thesis was conducted from my studio in Somerset House Studios.

Jonathan Reekie, Marie McPartlin, Emma Hannon, Stella Sideli, Leonara Manyangadze, you

are awesome. You have built an incredible space, and an incredible community. I am honoured

to have been part of it, and I thank you for your support over these years. My Somerset

House neighbours: Alan Warburton, Anab Jain & Jon Ardern and the rest of the Superflux

crew, Anna Meredith, Carmen Aguilar y Wedge, Estela Oliva, Libby Heaney, Marija Bozinovska

Jones, Matthew Plummer-Fernandez, Nick Ryan, what a stellar group of people you are, I miss

you all so much! I am eternally grateful to my SHS collaborators Jennifer Walshe and Jenna

v

Sutela. You pushed my mind to places it would never have thought to go, and I am incredibly

proud of the work we have done. I would like to extend an additional thanks to the Chase

Foundation, for their support in my collaboration with Jennifer Walshe; and the Serpentine

Gallery and Google Arts & Culture for their support in my collaborations with Jenna Sutela. I

owe an additional thanks to Google’s Artists & Machine Intelligence program, for offering me

the opportunity to be one of their first Artists-in-residence, and then allowing me to use that

opportunity to investigate the stereotypes and bias’s embedded in Google’s language models.

In that respect I would like to extend an extra thanks to Mike Tyka and Kenric Mcdowell, for

not only making this opportunity happen, but for the endless fascinating conversations, in so

many different corners of the world, from Tokyo to London to Seattle.

This thesis would not have been possible without the long-lasting support from my long-term

collaborators, my friends, my Hackney Wick posse: Alexander Whitley, Barney Steel, Clemmie

Mason, Davide Quayola, Ersin Han Ersin, Giorgia Polizzi, Nell Whitley, Robin McNicholas,

Ruairi Glynn, Sandra Ciampone, and Tim Exile. We have been on this journey for over a

decade. The endless discussions and investigations into visual instruments, realtime modes of

interaction and creativity, perception, embodied cognition; over Sunday Roasts, Crate pizza

and beer by the canal — these have all played a central role in shaping me and my thoughts on

this subject, and in this thesis. I miss you all. And I’d like to extend a heartfelt thank you to

Jane Laurie, for your immeasurable amounts of patience and support during these years. Ruby,

Pearl, Bruce, Jeff Bridges, you brought so me much joy. I miss you.

A special thanks goes to the wonderful folks at Stochastic Labs in Berkeley, my most recent

family who supported me leading up to my final push: Vero Bollow, Primavera De Filippi, Joel

Simon, Alex Reben, Steve Thompson, Aza Raskin, Thank you for giving me a place to focus

and work, and a beautiful home. You have been a wonderful family and I miss you all.

I am deeply indebted to the curators, festival organisers, galleries, producers and writers

who supported my work by getting it out there and situating it in wider context. I would like

to thank so many inspiring artists and researchers working in this field, many of whom are cited

in this thesis, and I’d like to especially thank you for sharing your code :). In this capacity

I’d like to extend a personal thank you to the following people, my colleagues, friends, not

only for your inspiring work and visions, but for your support, and the thought-provoking and

insightful conversations which has helped guide me in this time: Alexander Mordintsev, Allison

Parish, Angelique Spaninks, Anna Ridler, Behnaz Farahi, Caspar Sonnen, Catherine Griffiths,

Christiane Paul, Christine Schöpf, Christl Baur, Damien Henry, Daniel Shiffman, David Ha,

David OReilly, David Rokeby, Daria Parkhomenko, Drew Hemment, Doug Eck, Elliot Woods,

Emiko Ogawa, Eva Jaeger, Gaby Jenkins, Gene Kogan, Golan Levin, Gerfried Stocker, Hannah

Davis, Honor Harger, Irini Papadimitriou, Jérôme Neutres, Jesse Engel, Joanie Lemercier, Joel

Gethin Lewis, Jonathan Harris, José Luis de Vicente, Juliette Bibasse, Juliette Larthe, Karina

Smigla-Bobinski, Kyle Kastner, Kyle Mcdonald, Lalin Akalan, Lauren McCarthy, Liam Young,

Luba Elliott, Lucy McRae, Manuela Naveau, Martin Honzik, Max Cooper, Mario Klingemann,

Marjan Sharifi, Mira Calix, Moco Ziegler, Parag Mital, Rachel Uwa, Refik Anadol, Renee

Zachariou, Ross Goodwin, Sander Dieleman, Şerife Wong, Shane & Sophie Walter, Tom Higham,

Tom White. And a special thanks to Hanna Radek, for keeping me sane during the final push.

Page vi

I would like to pay a special tribute to JT Nimoy. You have been such a huge inspiration

to me, and to so many people. You are deeply influential on my thinking about the topics in

this thesis. You are a visionary and a pioneer. You were too ahead of your time. The world

was not ready for you.

Finally, I would like to thank my family. Due to the unexpected turn of events that took

place in 2020, we ended up spending more time together than we have done since the 1990s.

For this experience, I am eternally grateful. Writing my thesis this summer, amidst a global

pandemic no less, could have been an incredibly stressful period. And in many ways it has been.

But it has also become one of the most treasured periods of my life. I am beyond grateful for

making me feel at home, once again after all these years. Thank you to my mother Nur, my

father Tuncer, my sister Zeynep, and of course little Nora.

Page vii

Page viii

Contents

Abstract iii

Acknowledgements v

List of Figures xiii

List of algorithms xxiii

1 Introduction & Motivations 1

1.1 Background . 1

1.2 Why Deep Learning? . 4

1.3 Meaningful Human Control . 5

1.3.1 Pressing a button . 6

1.3.2 ‘Random’ faders . 7

1.3.3 Necessary and sufficient conditions . 7

1.4 Visual instruments: Realtime Continuous Control 8

1.4.1 Realtime Continuous Control . 8

1.4.2 Visual instruments . 8

1.4.3 Realtime performative interaction . 9

1.4.4 Goal-less exploration . 9

1.4.5 Flow . 10

1.5 Creative DL × Meaningful & Realtime Continuous Control 11

1.5.1 The State . 11

1.5.2 The Problem . 11

1.5.3 The Reason . 11

1.6 Conclusion: why is this important . 12

1.7 Research . 13

1.7.1 Research summary . 13

1.7.2 Research methods and evaluation . 14

1.8 Summary of contributions and impact . 15

1.8.1 Press . 17

1.8.2 Invited presentations and panels . 17

1.8.3 Public showings . 18

1.8.4 Opensource software . 19

ix

CONTENTS

1.9 Thesis outline . 20

2 Background 23

2.1 Generative models . 24

2.1.1 Unconditional generative models . 25

2.1.2 Conditional generative models . 26

2.1.3 Latent manipulations . 26

2.1.4 ‘Generative’ terminology in different domains 29

2.2 Very brief histories . 30

2.2.1 Generative art . 31

2.2.2 AI and ML in art, pre-Deepdream . 31

2.2.3 Interactive media art . 32

2.2.4 Visual instruments . 33

2.2.5 Convergence . 33

2.2.6 Creative DL ← AI Art ∪ Creative AI . 33

2.2.7 Creative Deep Learning — from a cultural perspective 34

2.2.8 Computational Creativity . 46

2.2.9 Machine Learning for Artistic, Expressive Human Computer Interaction

(AE-HCI) . 47

2.3 Introduction to Deep Learning . 51

2.3.1 Overview . 51

2.3.2 Machine Learning (ML) . 52

2.3.3 Artificial Neural Networks (ANN) . 52

2.3.4 Feed-forward (FNN) vs Recurrent Neural Networks (RNN) 53

2.3.5 Layers . 53

2.3.6 Multi-Layer Perceptrons (MLP) . 53

2.3.7 Universal function approximators, expressive power 54

2.3.8 Learning . 55

2.3.9 Loss functions . 55

2.3.10 Gradient descent and backpropagation . 56

2.3.11 Optimisation algorithms . 57

2.3.12 Deep Neural Networks (DNN) . 57

2.3.13 Hyperparameter search . 58

2.3.14 Classes of learning . 59

2.3.15 Convolutional Neural Networks (CNN) . 60

2.3.16 Auto-Encoders (AE) . 63

2.3.17 Variational Auto-Encoders (VAE) . 64

2.3.18 Deep Convolutional Generative Adversarial Networks (DCGAN) 67

2.3.19 Recurrent Neural Networks (RNN) . 69

2.3.20 Monte Carlo Tree Search . 73

2.4 Conclusion . 75

Page x

CONTENTS

3 Realtime sequence generation with continuous control 77

3.1 Introduction . 77

3.2 Collaborative generative sketching with MCTS and CNNs 79

3.2.1 Introduction . 79

3.2.2 Background . 79

3.2.3 Overview . 80

3.2.4 System description . 81

3.2.5 Results and discussion . 84

3.3 Realtime interactive text generation with RNN ensembles 88

3.3.1 Introduction . 88

3.3.2 Background . 88

3.3.3 Overview . 90

3.3.4 System description . 94

3.3.5 Results and discussion . 95

3.4 Conclusion . 95

4 Hello World: Realtime interactive training as an informative and performa-

tive tool 97

4.1 Introduction . 97

4.2 Motivations . 98

4.3 Background . 100

4.4 System description . 104

4.4.1 Hyperparameters . 107

4.4.2 Batch size, exponentially decaying memory and augmentation 108

4.5 Experiments and results . 109

4.5.1 Optimiser and associated hyperparameters 109

4.5.2 Reconstruction loss . 114

4.5.3 Latent loss and variational reparametrisation 115

4.5.4 Video feed manipulations . 117

4.6 Conclusions . 121

5 Learning to see: Digital puppetry through realtime video transformation 123

5.1 Introduction . 123

5.2 Overview . 125

5.3 System description . 133

5.3.1 Datasets . 133

5.3.2 Training . 134

5.3.3 Inference . 139

5.4 Experiments and results . 140

5.4.1 Augmented drawing . 140

5.4.2 Digital puppetry . 144

5.4.3 Live parameter manipulation . 151

5.5 Conclusion . 168

Page xi

CONTENTS

6 Deep Meditations: Latent storytelling 173

6.1 Introduction . 173

6.2 Background and motivations . 175

6.3 Goal and requirements . 176

6.3.1 Main tasks . 176

6.3.2 Additional issues . 177

6.4 System description . 178

6.4.1 Concepts and definitions . 179

6.4.2 Exploration of the model . 183

6.4.3 The narrative edit . 184

6.4.4 The narrative conform . 185

6.4.5 Trajectory planner . 186

6.4.6 The final render . 186

6.4.7 Model architecture and data . 186

6.4.8 Trajectory planner details . 187

6.5 Conclusion . 193

7 Conclusion 195

7.1 Summary of research background and objectives 195

7.2 Research methodology . 197

7.3 Summary of contributions and outcomes . 199

7.4 Future directions . 204

7.5 Final thoughts — Human-Machine Collaboration 208

References 211

Page xii

List of Figures

1.1 The hand stencils at the Cuevas de las Manos in Santa Cruz, Argentina, are

thought to be over 10,000 years old. Image from Wikimedia Commons by

User:Marianocecowski, licenced under CC BY-SA 3.0. 1

2.1 Still image from video “Deepdream is blowing my mind” (2015) by Memo Akten. 36

2.2 “All watched over by machines of loving grace: Deepdream edition” (2015) at

the “DeepDream: The art of Neural Networks” exhibition at the Gray Area

Foundation, February 2016. 37

2.3 A selection of press covering the “DeepDream: The art of Neural Networks”

exhibition at the Gray Area Foundation, February 2016. 39

2.4 a.) A three layer, feed-forward, Multi-Layer Perceptron with a single hidden

layer. In this diagram, all of the neurons are displayed, and we can see that the

network consists of 4 inputs and 3 outputs, and a 5 neuron hidden layer. b.)

The same MLP, displayed with layers collapsed into multi-variate units allowing

simpler visualisation, mathematical modelling and computational implementa-

tion using vectors. The dimensions of each layer is indicated with dim, W xh and

W hy denote the weights of the connections from the input layer to the hidden

layer, and hidden layer to the output layer respectively, bh and by denote the

bias vectors (which are typically included as parts of the weights or parameters)

of the hidden layer and output layer respectively, and ϕ denotes the activation

functions. c.) A Recurrent Neural Network, with a cyclic connection on the

hidden layer. 54

2.5 A Convolutional layer consisting of many filters, applied to an input. Image from

Wikimedia Commons, licensed under CC BY-SA 4.0 61

2.6 Image from Wikimedia Commons, licensed CC under BY-SA 4.0 62

2.7 A simple Auto-Encoder. In this example, the input and output layers consist

of 10 neurons, while the bottleneck layer consists of 3 neurons. To avoid clutter

in the diagram, we have omitted drawing all of the connections. In a MLP

Auto-Encoder, all of the layers are fully connected. In a Convolutional Auto-

Encoder, the layers are arranged into grids as we describe in subsection 2.3.15:

Convolutional Neural Networks (CNN) . 64

xiii

LIST OF FIGURES

2.8 Variational Auto-Encoder. The output of the encoder network is the mean µ

and standard deviation σ of a Normal distribution, from which a latent vector z

is sampled z ∼ N (µ,σ). This is then fed into the decoder network for decoding. 65

2.9 Generative Adversarial Network . 68

2.10 MLP and RNN with single hidden layer. 70

2.11 Overview of the steps of MCTS . 75

3.1 Overview of how MCTS and the CNN is integrated 82

3.2 A screenshot from our software, running the MLR model trained on MNIST.

The top left panel shows the current state of the canvas for the current timestep,

the top middle panel shows the scaled down drawing used for evaluation, and

the top right panel shows a visualization of all of the current MCTS rollouts

for the current timestep. At the bottom of the screenshot, the class probability

distribution shows that the classifier returns 100% confidence that the current

state of the drawing is the digit ‘3’. 84

3.3 A screenshot of our software, running the Inception-v3 model trained on Ima-

geNet with desired target class set to ‘meerkat’. At the bottom of the screenshot,

the class probability distribution shows that the classifier is 100% confident that

the drawing is of a ’meerkat’. 86

3.4 The same configuration as Fig. 3.3 except the desired target class is ‘white wolf’,

and the class probability distribution shows that the classifier is 98% confident

that the drawing is of a ’white wolf’. 86

3.5 Screenshot from our dual-screen interactive Char-RNN ensemble software. On

the left is the interaction screen which we typically display on a touchscreen

monitor. On the right is the output screen where the text is displayed as it is

generated character-by-character. 90

3.6 The two screens from Fig. 3.5 stacked vertically for ease of reading in print. . . . 91

3.7 Software architecture for our interactive Char-RNN. The Server is a python-

based console application with no Graphical User Interface, that manages all of

the models. At every timestep, the Server receives a seed text from the Visualiser,

runs it through all of the models, and returns all of the probability distributions

output from each model to the Visualiser. The Visualiser is an OpenGL appli-

cation which provides the visual interface and interaction. The screenshots in

Fig. 3.5 and Fig. 3.6 are from the Visualiser. The Visualiser continually tracks

the performer’s actions, either via mouse input, tracking the performer’s hands

using a LeapMotion device, or via faders on an external midi controller. At every

timestep, the Visualiser uses these inputs to calculate and update style mixture

weights, which are used to calculate the joint probability distribution for the next

character. The Visualiser samples the next character from this distribution, up-

dates the screen with this new character, and also sends it back to the Server via

OSC, so that the Server can update the internal state of each of the models. . . . 94

Page xiv

LIST OF FIGURES

4.1 Hello World at The Moscow Museum of Modern Art, 2018 (Photo © Yuri

Palmin) . 99

4.2 Variational Auto-Encoder. The output of the encoder network is the mean µ

and standard deviation σ of a Normal distribution, from which a latent vector z

is sampled z ∼ N (µ,σ). This is then fed into the decoder network for decoding. 101

4.3 An adaptation of Hello World at “Artists and Robots”, Astana Contemporary

Art Centre, 2017 . 103

4.4 A screenshot from our Hello World software. 106

4.5 A selection of frames covering roughly a two minute experimentation session

where we play with the optimisation hyperparameters learning rate, momentum,

and gradient clipping threshold. Time flows from left to right, and each frame

shows the live reconstruction, i.e. the Seeing panel. 112

4.6 Six screenshots showing a qualitative comparison of the four different loss func-

tions. Four models train in parallel, with identical architecture and hyperparam-

eters and the only difference being the loss functions. MS-SSIM converges the

quickest, producing the sharpest reconstructions, while L2 and CE loss produce

the most blurry. 115

4.7 Three screenshots taken during the first 30 seconds of a new experimentation

session. The model is initialised at the beginning, and by the 3rd row, has con-

verged to the extent that the reconstructed image Seeing is sharp and resembles

the live video feed Stimulus. This indicates that the model has become familiar

with, and has learnt the necessary features required to represent and reconstruct

this Stimulus image. 117

4.8 In the top row, we hold our left arm vertical and hold it still for a few seconds while

we wait for the reconstructed image Seeing to become sharp. We then rotate our

arm to be horizontal. As can be seen in the 2nd row, the entire reconstructed

image Seeing is sharp, except for our arm, which is missing. The model has

not seen our arm in a horizontal position yet, and thus lacks the representations

required to visualise it in that manner. Across the last two rows, the arm flickers

and fades in as the model learns the necessary representations for the arm in

this position. Note that in the 3rd column Reminiscing, the arm flickers between

horizontal and vertical. This is due to the fact that the Reminiscing image is

a random sample from the local neighbourhood of the Stimulus. And in the

well structured latent space of a generative model, this local neighbourhood will

contain images that are aesthetically, structurally, and/or semantically similar.

For this reason, the Reminiscing image will be random samples that resemble

the Stimulus, without necessarily being straight reconstructions. 118

Page xv

LIST OF FIGURES

4.9 In the top row, we hold a red phone in our right hand for a few seconds while we

wait for the reconstructed image Seeing to become sharp. In the second row, we

put the phone down, and quickly lift our hand to the same position. In Seeing,

trying to reconstruct this image of our hand without a phone, the model samples

the closest image it can to this Stimulus. And that is limited by what it has seen

before, and the representations that it has learnt. In this case, the red phone

appears in our hand. Over the course of the subsequent rows, the phone flashes on

and off and gradually fades out as the model learns the necessary representations

for this Stimulus. In the Reminiscing panel however, we can see that the local

neighbourhood of this point in latent space is still dominated by the red phone.

It will take another minute or two for the distribution to be evened out across

this larger area in latent space. 119

4.10 We hold the red phone in our left hand. However the model has not seen this. In

fact it has only seen our arm in this position with our hand open and flat, as it

was in Fig. 4.8 . So in Seeing, this is how the model reconstructs this Stimulus

image. Over the next few frames, the red phone gradually fades in, flickering

in and out. After the 5th frame, we start slowly rotating our arm back and

forth between horizontal and vertical, and we observe the results in both Seeing,

and Reminiscing as the phone flickers in and out, and the arm even snaps to

horizontal or vertical positions. 120

5.1 Frames from Gloomy Sunday (video, 2017), demonstrating subsection 5.4.2: Dig-

ital puppetry. Each row shows a single frame from the video, and is also a screen-

shot from our software (with the GUI hidden). In each frame, the left panel

shows the live video feed from a camera, and the right panel shows the image

generated in realtime by our software. 127

5.2 Frames from Gloomy Sunday (video, 2017), demonstrating subsection 5.4.2: Dig-

ital puppetry. Each row shows a single frame from the video, and is also a screen-

shot from our software (with the GUI hidden). In each frame, the left panel

shows the live video feed from a camera, and the right panel shows the image

generated in realtime by our software. 128

5.3 Frames from a video demonstrating subsection 5.4.1: Augmented drawing. Each

pair of images shows a single frame from the video, and is also a screenshot from

our software (with the GUI hidden). In each frame, the left panel shows the

live video feed from a camera, and the right panel shows the image generated in

realtime by our software. 129

Page xvi

LIST OF FIGURES

5.4 Frames from We are all made of star dust (video, 2017), demonstrating sub-

section 5.4.3: Live parameter manipulation. In the top frame, we adjust the

parameters such that the desired output brightness is low. The system automat-

ically uses dark features to construct the output image. In this case, most of the

output image is comprised of distant galaxies, while hints of larger and brighter

distant galaxies define the outline of the face in the video feed. In the lower two

frames, we increase the desired brightness, and the system automatically replaces

the distant galaxies with brighter features, such as nebulae. We demonstrate this

in much more detail in later sections. 130

5.5 Frames from a video demonstrating muliple simultaneous models. This was pre-

sented as an interactive installation at International Documentary Film Festival

Amsterdam (IDFA) 2017. Each row shows a single frame from the video, and is

also a screenshot from our software (with the GUI hidden). In each frame, the

left panel shows the live video feed from a camera, and the subsequent panels

show images generated in realtime by our software using multiple models trained

on different datasets. 131

5.6 section 5.4.2: Interactive installation as exhibited at The Barbican’s 2019 AI:

More than Human exhibition in London, UK and currently on tour around the

world. We discuss this in more detail in section 5.4.2: Interactive installation. . . 132

5.7 A high level schematic of the system including the training and inference stages.

During pix2pix training, the images which are to be used as inputs in the

(input, target) pairs, are generated on the fly from the target images via

a custom image processing pipeline. The parameters of this pipeline are ran-

domised on every iteration, in order to augment the dataset and aid general-

isation. During inference, the video feed is also fed through the same image

processing pipeline. In addition, a number of additional image processing filters

are applied before the images are fed into the model for prediction. This exposes

a number of human-understandable parameters for realtime manipulation and

meaningful control over the images generated. 134

5.8 Example images from training. Each row shows examples from a separate model.

From top to bottom, these are the Waves, Flowers and Deep space models. The

left column shows an image selected at random from the training data. This is

a random crop, and may or may not have been flipped. This will be used as a

target image for this particular training iteration. I.e. it is the ground truth. The

centre column shows the input image generated on the fly via realtime processing

of the target image, with randomised parameters (i.e. random brightness and

contrast). The right column shows a prediction from the generative model, given

only input. In other words, the model is learning to predict the first column,

given only the second column, and is producing the third column. 138

Page xvii

LIST OF FIGURES

5.9 A screenshot from our realtime inference software with multiple models and the

GUI enabled. In the top left corner, we can see the live video feed, either from a

camera, or a video file. In the top centre, we can see the video feed processed by

the image processing pipeline. This is the input image (labelled capture proc in

the screenshot) that is fed to the trained model(s) for inference. In this particular

case, the video feed has been downscaled 24x, and then upscaled back to its

original size. This acts as a low-pass filter. The next four panels show the

outputs from four different models, simultaneously running inference on the same

input. On the far right, we can see the GUI, showing the parameters which are

adjustable in realtime. Notice how the original video feed in the top left, is

radically different from the raw training examples in the left-most column of Fig.

5.8. However, the centre image, which is actually input into the model during

inference, very much resembles the types of images in the centre column of Fig.

5.8, which are input into the model during training. 139

5.10 Frames from a video demonstrating augmented drawing (2017). 140

5.11 Frames from a video demonstrating augmented drawing (2018). More frames

from this video can be seen in 5.3. 140

5.12 Stills from Delusions (video, 2017) by French artist and roboticist Patrick Tresset.

Each pair of images shows a single frame from the video. In each frame, the left

panel shows the live video feed from a camera, and the right panel shows the

image output from his software in realtime. 142

5.13 Stills from Body Network on Paper I and II (video, 2019) by American artist

and human anatomy expert Scott Eaton. 143

5.14 Frames from the video Gloomy Sunday (2017) . 145

5.15 Frames from the video We are made of star dust #2 (2017). The live video feed

for this example comes from a USB microscope. 146

5.16 Objects provided with the Learning to see interactive installation. Users play

with and manipulate these objects. The video feed from an overhead camera is

fed to our system for processing. 147

5.17 Learning to see interactive installation at The Barbican’s 2019 AI: More than

Human exhibition in London, UK. 147

5.18 Learning to see interactive installation at The Barbican’s 2019 AI: More than

Human exhibition in London, UK. 148

5.19 Learning to see interactive installation at The Barbican’s 2019 AI: More than

Human exhibition in London, UK. 149

5.20 Learning to see interactive installation at The Barbican’s 2019 AI: More than

Human exhibition in London, UK. 150

5.21 Frames from Architectural machine translation (video, 2019) by Swedish archi-

tect Erik Swahn. In 2019, inspired by the work that we shared in this area,

Swahn started experimenting with a similar approach. He trained models on ar-

chitectural plans and urban maps. Using wooden blocks, he was able to instantly

prototype potential architectural diagrams. 150

Page xviii

LIST OF FIGURES

5.22 The image here in the top left shows the frozen video feed that will be used as

an input for all of the subsequent examples in this section. All of the variations

in output in the subsequent examples, come only from different configurations of

parameters, which we will detail in each example. 152

5.23 A selection of outputs from the Waves model, collected in a single image to aid

side-by-side visual comparison. Note that each of these images was generated

from the same input video frame. Only the processing pipeline parameters are

interactively modified in realtime via the GUI. 153

5.24 Same configuration as Fig. 5.23, with outputs from the Fire model. 154

5.25 Same configuration as Fig. 5.23, with outputs from the Clouds model. 155

5.26 Same configuration as Fig. 5.23, with outputs from the Deep space model. 156

5.27 downscale=24, gamma=2. 157

5.28 downscale=24, gamma=5. 157

5.29 More examples of modifying gamma, arranged in a single image to aid side-by-

side visual comparison. Each of the columns show the outputs for gamma=2, 3,

5 and 7 respectively, with downscale=24 for all. 158

5.30 The first column is for reference, and shows the outputs with invert turned off

and gamma=2. The following three columns show the outputs with invert turned

on and gamma=1, 2 and 3 respectively. 159

5.31 invert=True, downscale=0., post median=20, gamma=1. 160

5.32 invert=True, downscale=10, post median=30, gamma=1. In the previous

example, to demonstrate the effect of the median filter, we disabled the downscale

low-pass filter. This results in undesirable high frequency artefacts in the output

images. To address this, we reintroduce a small amount of downscale. 160

5.33 More examples of modifying the amount of the median filter, arranged in a single

image to aid side-by-side visual comparison. The first column is for reference, and

shows the outputs with median turned off, gamma=2 and downscale=24. The

following three columns show the outputs for median=10, 20 and 30 respectively.

The last column also has downscale=10 to remove the high frequency artefacts,

while the second and third columns have downscale turned off. 161

5.34 adaptive thresh=True, downscale=0. For each pixel, we set a threshold

equal to a gaussian-weighted sum of the pixel’s neighbours within a block, mi-

nus a constant C. If the pixel value is greater than this threshold, it is set to

black, otherwise it is set to white. This behaviour can be inverted with the

invert parameter. The block size and constant C can be adjusted with the adap-

tive thresh block and adaptive thresh c parameters respectively. 162

5.35 adaptive thresh=True, downscale=16. In the previous example, we disabled

the low-pass filter, to demonstrate the effect of the adaptive threshold. The

undesirable high frequency artefacts which arise as a result of this can be resolved

with a low-pass filter such as downscale. 162

Page xix

LIST OF FIGURES

5.36 adaptive thresh=True, downscale=16, post median=10 . We can reintroduce a

median at the end of the image processing pipeline, smoothing the edges of the

shapes. 163

5.37 adaptive thresh=True, downscale=16, post median=20 . Increasing the amount

of median smooths the shapes of the structures even more. 163

5.38 The first two columns show the outputs for post median=10 and 20 respectively.

The last two columns show the outputs for pre median=10 and 20 respectively.

In all cases, the adaptive threshold and downscale settings are the same as the

previous examples. 164

5.39 canny=True, canny t1=10, canny t2=20. 165

5.40 canny=True, canny t1=1, canny t2=10. We can adjust the threshold values

for the canny algorithm using canny t1 and canny t2 to increase or decrease the

amount of detail captured. 165

5.41 pre median=10, canny=True, canny t1 =1, canny t2 =10. Applying a median

filter before the canny filter, removes some of the noise and smooths the edges

detected by the algorithm. 166

5.42 pre median=10, canny=True, canny t1 =1, canny t2 =10, post blur=20. As we

demonstrated in the previous examples, to remove the high frequency artefacts

in the output images, we can apply a low-pass filter to the input image. In

the previous examples, we used downscale as a low-pass filter. Another option

that we have available, is to use a blur. The difference between post blur and

downscale is very subtle, but for the sake of variety, we will use blur in these next

few examples. Similar to median, we can apply the blur at the start of the filter

pipeline, or at the end. In this particular case, since we would like to filter the

results of the canny edge detection, we use post blur. 166

5.43 More examples of modifying the canny thresholds and the amounts of pre median

and post blur filters. The (pre median, canny t1, canny t2, post blur) settings for

each column are as follows. 1:(10, 5, 20, 20); 2:(10, 10, 50, 20); 3:(10, 10, 100,

30); 4:(15, 10, 100, 30). 167

6.1 Photos from Deep Meditations: A brief history of almost everything in 60 minutes

at Sonar+D Barcelona, 2019 . 174

6.2 An example frame from a rendered video of a (z-sequence, video) pair. Each

of the 28 tiles in this image, shows the image produced by decoding the same

z-vector from 28 different snapshots of the same model where each snapshot is

separated by 100 iterations. The snapshot iteration number is also included in

each square panel for reference, although in a font perhaps too small for print. . 182

6.3 A screenshot of editing z-sequence videos in Kdenlive with tiled snapshots. . . . 185

6.4 An interpolated, dense Z sequence produced using spherical interpolation. Time

flows left to right. Upon close inspection, one can notice vertical notches. These

indicate discontinuities every time a keyframe is reached, and a new target

keyframe is selected. 188

Page xx

LIST OF FIGURES

6.5 An interpolated, dense Z sequence produced using physical interpolation. Time

flows left to right. The vertical notches that were visible in Fig. 6.4 are no longer

an issue. 191

Page xxi

LIST OF FIGURES

Page xxii

List of Algorithms

1 Hello World: Update loop . 105

2 Learning to see: Training pipeline . 135

3 Deep Meditations: Generation of random short journeys 184

4 Deep Meditations: Conforming the edit . 186

5 Deep Meditations: Produce a dense trajectory Z using spherical interpolation . 188

6 Deep Meditations: Produce a dense trajectory Z using physical interpolation . . 192

xxiii

LIST OF ALGORITHMS

Page xxiv

Chapter 1

Introduction & Motivations

Figure 1.1: The hand stencils at the Cuevas de las Manos in Santa Cruz, Argentina, are thought to be
over 10,000 years old. Image from Wikimedia Commons by User:Marianocecowski, licenced under CC
BY-SA 3.0.

1.1 Background

Humanity’s desire to build and use tools for artistic, creative expression dates further back than

we often realise. Recent archaeological discoveries from just the last few decades, continue to

radically question our notions of when this creative endeavor began.

1

1.1. BACKGROUND

The cave paintings of the Altamira cave in Spain, are thought to be some 36,000 years

old (Pike et al., 2012). Flutes carved out of animal bones and mammoth ivory, such as those

found in the Geissenkloesterle caves of southern Germany, are thought to be over 40,000 years

old (Higham et al., 2012). The Lion Man of the Hohlenstein Stadel from the same region, an

anthropomorphised lion-headed figurative sculpture carved out of mammoth ivory using flint

cutting tools, is also thought to be almost 40,000 years old (Ulm, n.d.). Older examples such as

the Venus of Tan-tan from Morocco, or the Venus of Berekhat Ram from the Golan Heights,

are thought to be as old as up to 300,000 to 700,000 years old!1

It is clear that even in the earliest stages of human, and potentially even pre-human history,

we have sought out the most cutting edge technology available at the time, to create tools and

instruments for artistic, creative expression.

Computers have been involved — even if only conceptually — in the creation of art and

creative endeavours for as long as computers have existed. In her 1843 Notes (On the Ana-

lytical Engine), the pioneering mathematician and computer programmer Lady Ada Lovelace

foreshadowed the creative computational revolution we are living today (Fuegi & Francis, 2003):

“We may say most aptly, the Analytical Engine weaves algebraical patterns just as

the Jacquard-loom weaves flowers and leaves.” — Ada Lovelace, 1843

While her collaborator Charles Babbage, designer of the Analytical Engine, was primarily

focused on the number crunching abilities of the machine, Lovelace saw the potential of such

apparatus to go further, and through symbolic manipulation, perform true, general purpose

computing.

“Supposing, for instance, that the fundamental relations of pitched sounds in the

science of harmony and of musical composition were susceptible of such expression

and adaptations, the engine might compose elaborate and scientific pieces of music

of any degree of complexity or extent.” — Ada Lovelace, 1843

Today, Computational Art and Design (CAAD), the use of computation and algo-

rithms in the production of artistic and creative works — be it images, video, music, sound,

text, or 3D geometry — is a well established area of research and artistic inquiry. As our

computers are becoming ‘smarter’, algorithmically generated media is becoming even more

ubiquitous. The use of Procedural Content Generation in games is gaining popularity, and

even launching whole new genres (Shaker et al., 2016). The tools available to designers are

becoming more powerful, offering more capabilities, and automating laborious tasks. Algorith-

mic media production tools are now also now being presented directly to the masses through

a plethora of ‘fun and creative’ mobile applications and ‘smart filters’ on social media such

1Due to the sub-optimal conditions of these particular prehistoric artefacts, there is some controversy regarding
their origins, and whether they were carved by human hands, or by natural geological processes.

Page 2

1.1. BACKGROUND

as Instagram, SnapChat, and TikTok. The international publication Art in America, which

typically concentrates on traditional contemporary art, has acknowledged the significance of

computational art, dedicating an entire issue to it in January 2020 (Bailey, 2020; Caplan, 2020;

Plummer-Fernandez, 2020).

Now, with the recent developments in Machine Learning, and particularly Deep Learn-

ing, as computational artists and designers, as researchers and developers of creative tools, we

are entering an exciting and fruitful new era in this field.

Machine Learning (ML) is a field of research within Artificial Intelligence (AI), that

investigates how algorithms can improve their performance on various tasks by learning from

experience. These algorithms offer tools, to help identify complex relationships and patterns in

data. In doing so, they allow us to build systems that are capable of performing tasks that we

do not explicitly know how to solve or formulate.

Deep Learning (DL) is a field of research within Machine Learning that investigates how

algorithms can learn from vast amounts of high-dimensional, highly complex ‘raw’ data, such

as images with millions of pixels, or sounds with thousands of samples per second.

ML, and even DL, have been active areas of research for many decades. In his 1948 lecture

and accompanying essay Intelligent Machinery, A Heretical Theory, the renowned computer

scientist Alan Turing described B-Type Unorganized Machines, an analog of the Artificial Neural

Networks we use today, theoretical machines that learn from experience (Turing, 1948).

With significant developments in parallel computing architectures in recent years, combined

with the availability of massive datasets assembled via the internet, and fuelled by the multi-

billion dollar investments from The Surveillance Economy and The War on Terror, researchers

have been able to develop and apply Deep Learning algorithms to highly complex, real-world

problems. Today, Deep Learning permeates every aspect of our lives. These algorithms are in

our pockets, organising our photos (Touvron et al., 2019), enabling our devices to speak (Shen

et al., 2018), and understand what we say (Veton Këpuska & Bohouta, 2017). They recommend

films and music (S. Wang et al., 2014), perform medical image analysis (Litjens et al., 2017),

predict protein folding structures (Yang et al., 2020), drive cars (Huval et al., 2015), and beat

the world’s top players at games such as Go (Silver et al., 2018) and StarCraft II (Vinyals et

al., 2019).

Very recently, we have also started seeing very impressive results in the application of Deep

Learning algorithms to the production of artistic works and creative media. These algorithms

can now produce photorealistic images (Karras et al., 2020), write poems and essays (Brown et

al., 2020), collaborate on sketches (Ha & Eck, 2017) and generate music complete with lyrics

and vocals (Dhariwal et al., 2020).

For the sake of simplicity, we will refer to the application of DL to the production of artistic

works and creative media, as Creative DL. This includes both the technical DL research within

this field, as well as the artistic and/or design practices and research.

Page 3

1.2. WHY DEEP LEARNING?

Our research is situated at this intersection. And a major limitation that we observe in this

area, is that the majority of the methods available offer very limited, if any, creative control to

a human user. This is precisely the topic that our research investigates. Furthermore, we are

not only interested in ensuring that a human user remains in creative control, but we want to

ensure that this control occurs in a realtime, continuous manner such that the interaction is

performative and expressive.

In other words, we investigate Deep Learning models as an artistic medium for new

modes of performative, creative expression .

To be more precise, our primary research question is:

How can we design and develop Deep Visual Instruments: realtime interac-

tive generative systems that exploit and leverage the capabilities of state-of-the-art

Deep Learning algorithms, while allowing Meaningful Human Control, in a Real-

time Continuous manner?

1.2 Why Deep Learning?

If Machine Learning (ML) is the study of algorithms learning from data, then Deep Learn-

ing (DL) is the study of algorithms learning from Big Data, via ‘deep‘ parametrisable com-

putation graphs that learn hierarchies of ‘concepts’ (LeCun, 2014; I. Goodfellow et al., 2016).

The fact that DL algorithms require vast amounts of data is often one of the criticisms

brought against DL. These algorithms do perform exceptionally well at many tasks, significantly

outperforming non-deep methods by large margins (Krizhevsky et al., 2012; Hinton et al., 2012;

L. Deng et al., 2013). But they require vast amounts of data to do so, often millions of training

examples (J. Deng et al., 2009), or even billions (Mikolov et al., 2013). Since millions or billions

of data points are not always available, learning from few examples, i.e. one-shot learning or

zero-shot learning, is a growing area of research (Santoro et al., 2016; Vinyals et al., 2016;

Rezende et al., 2016; Xian et al., 2018).

However, for the purposes of this thesis, the fact that DL algorithms require vast amounts

of data is not a handicap, it is a feature.

Non-deep learning algorithms — such as logistic regression, support vector machines, shallow

Neural Networks etc. — have a much harder time modelling highly complex, high-dimensional

problems2. For this reason, when working with such algorithms it is typically necessary to

preprocess the data in order to reduce the number of dimensions. These hand-crafted, domain-

specific features are then presented to the algorithm for modelling (LeCun, 2012). This process

of feature engineering itself is often difficult, time-consuming and requires expertise (Ng, 2013).

Furthermore, the performance of the model is highly dependent on the chosen hand-crafted

representation (Bengio et al., 2013). While these feature engineering based approaches do

prove useful in many domains, they can also provide inconsistent, unreliable and suboptimal

results in more complex settings.

2We discuss the expressive power of Artificial Neural Networks in section 2.3: Introduction to Deep Learning

Page 4

1.3. MEANINGFUL HUMAN CONTROL

Addressing these issues is a major motivation that drives DL research. When designing a

DL model, the feature engineering phase can be omitted. Instead, the model can be trained

directly on the much higher dimensional ‘raw’ data. In effect, something akin to a preprocessing

pipeline is learnt during training. However, to be able to model such complex, high-dimensional

data, the model requires many parameters, often millions, sometimes even hundreds of billions

(Brown et al., 2020). And with so many more model parameters to learn, this comes at the cost

of more complex architectures and implementations, much higher computational requirements,

and vastly larger datasets.

In the context of this thesis, we consider Deep Learning algorithms as tools to extract

useful information from a vast sea of humanly-unmanageable Big Data. And it is

precisely this aspect of Deep Learning that motivates our research. Our goal is to investigate

ways in which we can navigate and explore what useful information a Deep Neural Network has

learnt and extracted from the vast amounts of data. More specifically, we investigate how we

can meaningfully use such a model in the production of artistic and creative works.

In other words, if for example a DNN is trained on a massive dataset of millions of images,

how can we design and implement interactive generative systems that allows a person to use

this model to generate new images, in a way that affords them Meaningful Human Control over

the generated images, in a Realtime Continuous manner.

1.3 Meaningful Human Control

Meaningful Human Control is a term that we adopt from the Autonomous Weapons Systems

literature (Scharre & Horowitz, 2015). There should be little doubt that our research in Creative

DL is not as lethal as autonomous weapons, such that it would require security briefings at the

United Nations3. Nevertheless, the term Meaningful Human Control, especially as we adapt it,

perfectly captures the motivations behind our research.

In the context of autonomous weapons, Meaningful Human Control is defined with regards to

a threshold of human control that is considered necessary for the weapons system to be ethically,

legally, operationally and diplomatically acceptable. The specificities of that threshold in the

context of autonomous weapons is not directly applicable to our research. In fact, in the

context of our research we do not feel the need to define a threshold per se. Instead, we think of

Meaningful Human Control as a continuum where we can have more or less (or no) Meaningful

Human Control. This is analogous to how we think of creativity. Instead of trying to define

a threshold which separates creative from not creative, we consider creativity to be a (multi-

dimensional) continuum (Boden, 2004).

With that in mind, in this thesis we do not define a threshold for Meaningful Human Control.

Instead, we investigate methods of interacting with DNNs for the production and manipulation

of creative media, while always aiming to maximise the level of Meaningful Human Control.

3While it is not a focus of this thesis, developments in DeepFakes and politicized synthetic media is a very
real and increasingly growing point of concern and consideration.

Page 5

1.3. MEANINGFUL HUMAN CONTROL

1.3.1 Pressing a button

Once again borrowing from the autonomous weapons literature: “A human simply pressing a

‘fire’ button in response to indications from a computer, without cognitive clarity or awareness,

is not sufficient to be considered ‘human control’ in a substantive sense.” (Roff & Moyes, 2016).

This statement is perfectly inline with our notion of Meaningful Human Control in the context

of artistic and creative expression.

Given a generative system capable of producing ‘beautiful’ images, a human simply pressing

a ‘generate’ button, which in turn produces a stunning image, is not within the scope of this

thesis. While we acknowledge that this is a highly challenging and respectable area of study in

itself — technically, artistically and philosophically (Boden, 1998) — and with many real world

applications, our goal is not to create autonomous media creation systems4

This ‘generate’ button example may seem hypothetically extreme, but it is in fact an accurate

representation of the dominant paradigm in the current Creative DL landscape. One of the most

common workflows currently made available and employed in this area consists of training a

generative DNN on some data, and then taking ‘random’ samples from the model — i.e. the

programmatic equivalent of pressing a ‘generate’ button. In these cases, other than the act of

curation, the person has no control over the media generated.

Curation of the outputs from the model is an act of discrimination, whereas in this thesis

we are seeking to enhance the act of creation. Curation of the inputs to the model, i.e. the

training data, does not influence an individual output, but the entire space of possible outputs.

Particularly in Deep Learning — where the number of required training examples are often in

the millions, and training a model can take weeks or even months — this does not provide a

practical solution to the fine level of control that we seek in this thesis.

This is not to say that we do not value the act of curation as a creative and artistic activity.

In fact, artists such as Helena Sarin5, Sofia Crespo6 and Anna Ridler7, to name just a few,

continue to produce truly unique and impressive works that carry their own individual expressive

signatures, often through painstakingly meticulous manual curation and creation of custom

datasets. In other words, one can look at the images produced by these artists and immediately

recognize them as their respective works. In this respect, it is clear that these artists do exercise

very high levels of Meaningful Human Control over the images that they produce.

For this reason, it is important to distinguish that in this thesis we are investigating Mean-

ingful Human Control at the algorithmic level. In other words, while curation and creation of

custom datasets can be considered a creative act, we are interested in exploring additional meth-

ods of Meaningful Human Control, at the algorithmic level, that can enhance people’s experience

of the creation process, to offer more capabilities than is currently available.

4We briefly discuss a field of research focused on this question, in subsection 2.2.8: Computational Creativity.
5https://www.instagram.com/helena.sarin/
6https://sofiacrespo.com
7https://annaridler.com

Page 6

https://www.instagram.com/helena.sarin/
https://sofiacrespo.com
https://annaridler.com

1.3. MEANINGFUL HUMAN CONTROL

1.3.2 ‘Random’ faders

Instead of a single ‘generate’ button, we can imagine a scenario where a human has access to

a number of adjustable options, such as a user interface with rotary knobs or sliding faders. If

the person is unable to comprehend the connection between the faders and the output of the

generative system, we do not consider this to be Meaningful Human Control. Taking this to the

extreme, we can think of examples whereby the faders either i) don’t actually have any effect

on the system at all, or ii) are simply seeds for a random number generator used in some way

by the generative system. From our point of view, with respect to Meaningful Human Control,

these two cases are functionally equivalent to the case where the faders do in fact affect the

output but a human is unable to comprehend the connection, and use them in a meaningful

way.

This may again seem like a hypothetical example. However, it is grounded in reality. Deep

generative models learn compact, latent representations of the data that they are trained on.

These representations are high-dimensional vectors, and the individual components are typically

not related in any way to any single humanly-interpretable real-world characteristic of the data.

For this reason, from a Meaningful Human Control point of view, manually manipulating the

components of these vectors is functionally equivalent to modifying the seeds of a random

number generator. In this thesis we look for alternatives to direct manipulation of latent

vector components in this manner. Interestingly, this is currently a growing area of research,

and orthogonal to our work, there are a number of approaches that are being developed such as

disentangling these latent representations (Chen et al., 2016; Higgins et al., 2017), or discovering

human-interpretable semantic vectors (Simon, 2019; Karras et al., 2019, 2020; Härkönen et al.,

2020). We discuss these in section 2.1: Generative models.

1.3.3 Necessary and sufficient conditions

Based on the discussion above, we identify three conditions that forms the basis of Meaningful

Human Control in the context of this thesis:

Intent: For a generative system to allow Meaningful Human Control, a key requirement is

that the system, and the interaction with the system, is able to incorporate and translate a

human’s intent into the output that it produces. In the case of our research in artistic and

creative media — which, unlike autonomous weapons, is not lethal — it is not essential that a

person has a particular goal to begin with. In fact, it is very common in creative explorations

to embark on goal-less, curiosity-driven meanderings, and these can often turn out to be very

fruitful (Secretan et al., 2008; Stanley & Lehman, 2015). However, as a person interacts with

the system in such an exploratory manner, it is not uncommon that a goal, initially perhaps

just a vague direction, might begin to appear and crystallize. As this happens, an interaction

with Meaningful Human Control should be able to both deliver, and guide that intent.

Predictability: For the above to be possible, we also consider it crucial that the generative

system, and particularly the interaction with the system, is predictable. Once again, in the

case of our non-lethal research in artistic and creative media, this predictability need not be

Page 7

1.4. VISUAL INSTRUMENTS: REALTIME CONTINUOUS CONTROL

apparent instantly or absolutely. A person can eventually start to build an understanding of

the system to the extent at which they can predict the outcome of their actions and feel that

they have some level of control. If the system and interaction is too unpredictable for a person

to build an understanding of and use in such a manner, then we do not consider the system to

allow Meaningful Human Control.

Accountability and expression: When a generative system has sufficient predictability, and

a human’s intent is successfully incorporated and translated into a particular outcome, we can

consider the human to be accountable for that outcome, since it is their informed, conscious

decisions and actions which led to this specific, unique outcome. On the other hand, looking

at it not from the system’s perspective, but the human’s, we consider the generative system to

allow Meaningful Human Control if a human is able to creatively express themselves through

the system. In other words, if the outcome represents what the person sought to produce, and

it contains their personal, expressive signature.

In the context of artistic and creative works, these qualities are very difficult to systematically

quantify. We discuss our approach to evaluation in subsection 1.7.2: Research methods and

evaluation, and we reflect on our approach in more detail in section 7.2: Research methodology.

1.4 Visual instruments: Realtime Continuous Control

1.4.1 Realtime Continuous Control

In the previous section, as an integral point of focus for this thesis, we presented the concept of

Meaningful Human Control, a term that we adopt from the autonomous weapons literature. In

this section, as an additional point of focus, we present Realtime Continuous Control, a term

that we adopt from the cybernetics and control theory literature (Wiener, 1948). In the context

of this thesis we envisage a closed-loop between a human, and an interactive generative system

which incorporates a DNN. The human continuously monitors the outputs of the generative

system in realtime, and guides it towards desirable outcomes. In the following paragraphs, we

explain why we see this as a useful model of interaction.

1.4.2 Visual instruments

One analogy that we use to frame our research when thinking about interactive generative

systems, is the visual equivalent of a musical instrument. This is to say that, one can interact

with the system in a Realtime Continuous manner, analogous to how one might interact with a

musical instrument, such as a piano. We think of these visual instruments in the lineage of

Louis-Bertrand Castel’s 18th century Ocular harpsichord (Castel, 1740). This was a modified

harpsichord that on each keypress, would project light of different colours onto a large surface,

allowing a performer to simultaneously perform music and colour. In this lineage, we also think

of electronic video synthesizers such as the Paik-Abe Video Synthesizer built by Shuya Abe and

Video Art pioneer Nam June Paik in 1969–1971, and the Rutt-Etra Video Synthesizer built by

Steve Rutt and Bill Etra in 1972 (Collopy, 2014).

Page 8

1.4. VISUAL INSTRUMENTS: REALTIME CONTINUOUS CONTROL

1.4.3 Realtime performative interaction

These instruments are designed for realtime performance. However, in using the word per-

formance, it is important to underline that we do not necessarily mean a live performance in

front of an audience. Instead, we simply mean that the media is created live, in realtime, with

continuous control, in a performative manner. This may be in front of a live audience. Or it

may be in a studio, recorded and later presented as a non-interactive, non-realtime, traditional

film or animation.

Creating media in this manner, interacting with a generative system with Realtime Con-

tinuous Control, allows a user to experiment, explore, search for and find configurations that

produce desirable, and potentially more novel and previously unimaginable outcomes.

1.4.4 Goal-less exploration

We believe Realtime Continuous Control can potentially produce more novel and previously

unimaginable outcomes, because such an interaction allows a person to freely explore a massive

space of possibilities. Initially, the user may not have a clear idea of what it is they would

like to create, so they may embark on a goal-less, purely inquisitive, creative exploration.

During this exploration, they may perform investigatory interactions with the system, probing,

and observing the results, to help build an understanding of the system’s creative capabilities.

Continuously interacting with the system and observing the results with immediate feedback,

can help the user learn how to more meaningfully control the system. Goal-less explorations

such as this are known to show great potential in producing novel, unexpected discoveries which

can spark new ideas and encourage new explorations into new directions (Secretan et al., 2008;

Stanley & Lehman, 2015). Furthermore, as the user discovers interesting new territories in

the possibility-space, they may begin to visualise a clearer goal. This vision may not be very

concrete to begin with. But with time, as they explore more, while continuously monitoring

the results of their interactions, they may guide the system towards desirable outcomes.

Many early video artists used these early video synthesizers in this way to create seminal

works, and Paik himself writes in his manifesto Versatile Video Synthesizer, while demonstrating

the capabilities of his machine (Source: Kat. Nam June Paik, Videa ‘n Videology 1959–1973,

Emerson Museum of Art, Syracuse, New York, 1974 p.55 (Medienkunstnetz.de, n.d.)):

This will enable us to shape the TV screen canvas

as precisely as Leonardo

as freely as Picasso

as colorfully as Renoir

as profoundly as Mondrian

as violently as Pollock and

as lyrically as Jasper Johns.

In this respect, we are generally not interested in systems that can provide Meaningful

Human Control, but not in this Realtime Continuous manner that we describe above. For

Page 9

1.4. VISUAL INSTRUMENTS: REALTIME CONTINUOUS CONTROL

example, the Non Linear Video Editing (NLVE) software Adobe Premiere does provide Mean-

ingful Human Control. However, it cannot be considered a realtime performance instrument8.

A more suitable example that we can pull from the visual domain, is drawing or painting. These

activities, similar to playing a musical instrument, do provide Realtime Continuous Control in

a performative and expressive manner.

Again, this is not to say that we do not value the effectiveness of non-realtime, non-

continuous modes of interaction in the production of artistic and creative works. Such modes

of interaction are quite common in many typical, established creative workflows. As we have

already mentioned, traditional NLVE is an example of this. In fact, in chapter 6: Deep Medi-

tations: Latent storytelling we present a study based on this exact workflow. However, in this

thesis, we primarily focus on Realtime Continuous Control because we believe it to be a very

under-explored, yet very valuable mode of interaction.

1.4.5 Flow

A key theme that connects the activities that we mention above and use as metaphors to base

our research on, is flow.

Flow is a state of mind, and mode of being, where a person is fully immersed in an activity.

Their sense of time is distorted, they are aware of nothing but the act that they are engaged in,

and the activity itself becomes autotelic (Mihaly Csikszentmihalyi, 1996). Colloquially known

as ‘being in the zone’, many activities can induce a state of flow. These include the activities

that we have already mentioned, playing musical instruments, painting and drawing; as well

as many others such as writing, dancing, playing games or sports, and cooking etc. It is well

documented that being in a state of flow correlates with enhanced creativity, enjoyment, focus,

motivation and productivity (Csikszentmihalyi et al., 2005).

In our research, we do not focus on specifically inducing and testing for states of flow. We

also do not claim that the systems which we create do induce states of flow. Instead, we draw

inspiration from this area of research, and from the activities which are known to induce flow,

and we use them as guidelines.

One of the key requirements for being in a state of flow is a feeling of agency and control

over the activity being performed. In other words, flow requires Meaningful Human Control.

Another requirement for being in a state of flow, is immediate feedback. This establishes

the creative feedback loop between the person, and the environment in which the activity is

taking place. Actions taken by the person have an immediate effect and produce a new state or

outcome. This outcome sparks new ideas and feelings in the person, and they are able to respond

in realtime to what they are performing or creating. In other words, this is the closed-loop of

the Realtime Continuous Control system (Wiener, 1948) that we have just discussed.

All of the studies that we present in this thesis (with the exception of one, which we will

discuss the motivations for in chapter 6: Deep Meditations: Latent storytelling), we demonstrate

with realtime software systems that we have developed, that run with a minimum framerate of

8We do not claim that it is impossible to use Premiere as a realtime performance instrument. In fact, we
would not be surprised if there exists a niche community of experimental video artists who perform live entirely
using Premiere. However, the software is clearly not designed for realtime performance.

Page 10

1.5. CREATIVE DL × MEANINGFUL & REALTIME CONTINUOUS CONTROL

15 frames-per-second on affordable (high-end consumer) hardware. A user can interact with our

software via a number of different modalities at any point in time while the software is running.

The latency between user input and visible results is usually in the order of one or two frames.

In other words, the latency across all of the software systems that we have developed is in the

range 16–130 ms. We consider this to be more than sufficient Realtime Continuous Control.

1.5 Creative DL × Meaningful & Realtime Continuous Control

1.5.1 The State

At the start of our research in 2014, Deep Learning algorithms had already started to demon-

strate their superior performance — compared to other methods, and often to humans — in

many complex classification tasks in fields such as speech recognition (Hinton et al., 2012;

L. Deng et al., 2013), natural language processing (Collobert et al., 2011), handwriting recog-

nition (Pham et al., 2014), image classification (Krizhevsky et al., 2012), image scene la-

belling (Couprie et al., 2013), spam filtering (Guzella & Caminhas, 2009), and many others

(Schmidhuber, 2015).

However, the area that we call Creative DL, i.e. the application of DL to the production

of artistic works and creative media, was very much still in its infancy. Research in Creative

DL was incredibly sparse and relatively primitive in terms of quality, and far from being usable

in any production environment. Nevertheless, these early studies did demonstrate incredible

potential in fields such as MIDI music composition (Boulanger-Lewandowski et al., 2012; Nayebi

& Vitelli, 2015; Sturm, 2015), text generation (Sutskever et al., 2011; Sutskever, 2013), drawing

(Graves, 2013; Ha, 2015) and image generation (Gregor et al., 2015; Nguyen et al., 2015; Gatys

et al., 2015a, 2015b; Mordvintsev et al., 2015; Radford et al., 2015; Nayebi & Vitelli, 2015).

Today, just five years later, the resolution of the images produced by DNNs are orders of

magnitude higher (Karras et al., 2020); instead of MIDI music composition, DNNs are gen-

erating music as raw audio samples, complete with lyrics and vocals (Dhariwal et al., 2020).

Creative DL, is now a very active area of research with strong interest and support from in-

dustry giants such as Google, Facebook, Snap, Microsoft, Adobe, Autodesk, OpenAI, Nvidia,

Unity3D, Unreal Engine, Blizzard Entertainment and many more.

1.5.2 The Problem

As we have already mentioned, one theme that connects much of this research, is that they

offer a human user very limited control over the outcomes generated. Definitely not at a level

that we would consider as satisfactory levels of Meaningful Human Control. And absolutely not

in a realtime, interactive manner with continuous control. As we have explained in previous

sections, we believe this to be a very under-explored, yet vital area of research.

1.5.3 The Reason

The reason that this area is so under-explored, we believe is due to the fact that many of these

generative DL algorithms were themselves in their infancy. For this reason, the majority of

Page 11

1.6. CONCLUSION: WHY IS THIS IMPORTANT

technical research in Creative DL was not focused on Meaningful Human Control, but instead

on trying to improve the performance, reliability and stability of the learning algorithms them-

selves. Only in the last few years — as these algorithms have matured and begun to demonstrate

improved performance, reliability and stability — more research has started to shift attention

towards investigating ways of allowing Meaningful Human Control over the systems, and this is

now a rapidly growing area of research (Isola et al., 2016; Zhu et al., 2017; Ha & Eck, 2017; Kar-

ras et al., 2017; Park et al., 2019; Karras et al., 2019; Simon, 2019; Bau et al., 2019; Karras et

al., 2020; Härkönen et al., 2020; Jiang et al., 2020; Broad et al., 2020). We discuss this timeline

in more detail in subsection 2.2.7: Creative Deep Learning — from a cultural perspective

Our research has been based on the expectation that these algorithms would be rapidly

improved, optimized and stabilized, with huge engineering efforts and investments from the

likes of Google, Facebook, Microsoft, Adobe, Autodesk, OpenAI and Nvidia. And indeed this

expectation has been, and is continuing to be, met. For this reason, our research has been

focused from the start, on how these new and emerging DL algorithms and techniques can be

used in the production of artistic and creative works, with both Meaningful Human Control,

and Realtime Continuous Control, to allow for performative, creative expression.

1.6 Conclusion: why is this important

In summary, we believe:

� DL algorithms that learn hierarchies of features and semantic latent representations di-

rectly from high-dimensional raw data, without the need for hand-crafted feature engi-

neering, have tremendous potential when applied to fields involving the production of

artistic and creative works.

� Harnessing the capabilities of DL in the creative industries, does not only automate and

optimise previously very tedious tasks (such as rotoscoping or image segmentation), but

it opens up whole new avenues with regards to what is possible.

� It is incredibly valuable to develop methods that grant people — artists, designers, and

the general public — Meaningful Human Control over these generative algorithms, such

that people are able to express themselves, and execute their vision via these systems.

� These methods can be incorporated into specialist design applications across a wide range

of creative industries including video games, movies, music, graphic design, architecture,

industrial design, theatre, dance, publishing and many more. They can also be incorpo-

rated into consumer-facing products, such as ‘creative and fun’ desktop or mobile appli-

cations, or even social media ‘smart filters’.

� This potential is mirrored by the amount of recent growing interest from industry giants

such as Google, Facebook, Microsoft, Adobe, Autodesk, OpenAI, Nvidia, Snap, Unity3D,

and many others.

Page 12

1.7. RESEARCH

� A generative system incorporating a DNN has the potential to offer an incredibly large

space of possibilities. Exploring such a vast space presents many challenges.

� It is incredibly valuable that a person has the ability to freely explore such a massive space,

so that they may embark on an goal-less, purely inquisitive and creative exploration, to

build an understanding of the extents of such a system’s creative capacity (Secretan et

al., 2008; Stanley & Lehman, 2015). With time, they may begin to establish an idea, or a

vision. This may be vague to begin with, a very large ’destination’ so to speak. But with

time, as they explore further, this vision may become clearer as they seek to hone in on

a specific target.

� Meaningful Human Control, combined with Realtime Continuous Control, is essential to

allow a person, optimal balance between exploration of the yet unknown spaces of such a

complex, deep generative model, vs exploitation of their own knowledge, vision and intent.

1.7 Research

1.7.1 Research summary

Our research is situated at the intersection between state-of-the-art Deep Learning algorithms;

Computational Art and Design; and Artistic, Expressive Human-Computer Interaction. Within

this interection, we are interested in exploring Deep Learning models as an artistic medium for

new modes of performative, creative expression. Our primary research question is:

How can we design and develop Deep Visual Instruments: realtime interac-

tive generative systems that exploit and leverage the capabilities of state-of-the-art

Deep Learning algorithms, while allowing Meaningful Human Control, in a Real-

time Continuous manner?

The questions and approaches that we present could be adapted to various different domains.

However, in this thesis we choose to focus on images and videos (i.e. sequences of images). We

choose images as a starting point for a number of reasons. Due the pervasive nature of images

as a medium, there is a plethora of image data on the internet that can be collected and

organised into datasets. As a result of this, DL research in image based DNNs are more mature

in comparison to other ‘rich’ mediums such as sound or 3D geometry.

We encounter a number of challenges when addressing this topic:

� Given that most current DL architectures offer very limited control over the outputs gener-

ated, how can we design points of interaction into the architectures that allow Meaningful

Human Control?

� Given that DL algorithms are notoriously compute-intensive, how can we design systems

that are able to run on affordable hardware, in realtime, with continuous control?

� Having overcome the previous two challenges, how can we design interactions that allow

or enhance both Meaningful Human Control, in a Realtime Continuous manner?

Page 13

1.7. RESEARCH

� What is the impact of, and unique considerations for, using different learning methods

and architectures, such as Monte Carlo Tree Search (MCTS), Long Short Term Memory

Recurrent Neural Networks (LSTM RNN), Variational AutoEncoders (VAE) and variants

of conditional and unconditional Deep Convolutional Generative Adversarial Networks

(DCGAN)?

� And finally, what are the necessary characteristics of Meaningful Human Control and

Realtime Continuous Control?

1.7.2 Research methods and evaluation

As we have explained in the previous sections, we believe that DNNs have great potential

when used for the production of artistic and creative works, especially when allowing a user

Meaningful Human Control, in a Realtime Continuous manner. We also believe, that this is

currently a very under-explored area of research.

The goal of our research is not only to invent one or more specific methods that achieve this.

Instead, we wish to also demonstrate the potential, and the importance of this particular field,

and we wish to encourage more general research in this direction.

For this reason, we present five different studies in this thesis, each taking a very different

approach to this problem. For each of these studies we have developed a software tool that

demonstrates the method that we propose in the corresponding study. Using these software

tools that we have developed, we also produce and publicly share a number of artworks —

in the form of video outputs and installations — to further demonstrate the capabilities and

potential of the approaches that we investigate, hopefully inspiring more research in this field.

In each study, as opposed to extensively developing each software tool to the extent where

they can be used by the general public, we instead prefer to invest our time across different

studies, to investigate different methods. We develop each method and software enough to

demonstrate its potential to the extent that it can ideally provide a foundation for future

research. We believe that this multi-pronged approach may potentially have more impact and

may encourage more research in this field.

It’s important to note that we do not conduct user studies, and we do not make claims

regarding the generalizability of the interfaces that we develop to a wider audience. We also do

not research or make claims regarding which specific interaction models are more or less effective

at granting Meaningful Human Control or inducing a state of flow, if they were to be deployed

to a general audience. Instead, as we will shortly explain in more detail, we use the methods

and software tools that we develop in this thesis to create a number of artworks, and we use our

own subjective experience of creating these artworks as a way of reflecting upon and evaluating

the methods and software tools that we develop. We choose this route because again we believe

that focusing on a higher number of personal demonstrations — as opposed to fewer, but more

thoroughly user-tested studies — has a larger potential for impact with regards to inviting a

more diverse range of artists, creatives and researchers into thinking about Meaningful Human

Control and Realtime Continous Control within Creative DL.

We research methods that allow the introduction of any forms of realtime interaction and

control, into currently non-realtime, non-interactive, non-controllable processes. While doing

Page 14

1.8. SUMMARY OF CONTRIBUTIONS AND IMPACT

so, we take Meaningful Human Control and Realtime Continuous Control as a framework and

strong guiding points.

We evaluate our methods by assessing i) if they introduce any form of control at all, to

previously uncontrollable workflows; ii) if they introduce any form of Realtime Continuous

control, to previously non-realtime, uncontrollable workflows; iii) if they provide any Meaningful

Human Control, subjectively judged via our own ability to utilize these methods in producing

creative works that carry our intent and personal expressive signature; and iv) online and

offline response to the proposed methods and related works, and if and how they influence the

works of other practitioners and researchers. We primarily assess this through social media and

mainstream publications and coverage.

Furthermore, as a media artist who has focused on developing realtime interactive compu-

tational systems for creative expression for almost two decades, we leverage our own experience

in this field to assess the methods that we present in this thesis. Throughout this research, we

create a number of artworks using the methods that we develop, and we use these artworks as

a test-bed for evaluating the methods. It is in support of creating these artworks, that we are

able to assess, refine and reflect on the systems and methods that we develop and present in this

thesis. For the purposes of this thesis however, these creative artefacts themselves are not the

basis of contribution to knowledge, and for that reason our research should not be considered

practice-based research (Candy, 2006). Instead, the artworks that we produce during this re-

search have been independently peer-reviewed (within various exhibitions and publications, and

we share these details in the following sub-section, and throughout the thesis where relevant).

And the artworks act as demonstrations of the potential efficacy of the approaches that we

present, and the experimental subject matter which we use when testing, refining and reflecting

upon the methods that we develop.

This research methodology, especially in conjunction with the fact that we have not con-

ducted user-studies, may be considered a limitation of our research. Indeed more work —

particularly around user-testing and usability refining — would be needed before the methods

that we propose in this thesis could be used in end-user facing, production-ready environments.

And for this reason we do not make claims regarding the generalizability of our methods to

other users — although casual observations of the general public interacting with our inter-

active installations does appear to be promising. Instead, in this thesis we have focused on

demonstrating the potential of this new medium from multiple different angles, and the vast

space of possibilities that such approaches can offer. We hope that this can inspire others

to investigate similar approaches, either building directly upon our own work and methods, or

even exploring tangentially related methods. We reflect upon our research methodology in more

detail in section 7.2: Research methodology.

1.8 Summary of contributions and impact

In this thesis, we present five studies, which each take a different approach to the topic of

both Meaningful Human Control and Realtime Continuous Control over generative systems

that incorporate DNNs. These studies are:

Page 15

1.8. SUMMARY OF CONTRIBUTIONS AND IMPACT

� An agent-based, interactive, collaborative, generative sketching application using MCTS

and discriminative CNNs (section 3.2)

� A system to gesturally conduct the generation of text in different styles using an ensemble

of LSTM RNNs (section 3.3)

� Hello World: A performative tool that allows for the manipulation of hyperparameters in

realtime while a Convolutional VAE trains on a live camera feed (chapter 4)

� Learning to see: A pix2pix based live camera feed transformation software that allows for

digital puppetry and augmented drawing (chapter 5)

� Deep Meditations: A method that allows for long-form story telling within a generative

model’s latent space with meaningful control over the narrative (chapter 6)

In addition, we have produced and publicly shared a number of videos and artworks using

the tools that we developed as part of our research. We have shared these works online, on

social media, and in galleries and inter-disciplinary, academic and non-academic festivals and

conferences. In publicly sharing these outputs, we hope to demonstrate the great potential and

possibilities that DNNs have to offer in the production of artistic and creative works, especially

when Realtime Continuous Meaningful Human Control is provided. And in turn, we hope to

encourage more conversations and research in this field, which we believe is currently very

under-explored.

A selection of contributions and impact that we have made are listed below.

� For each of the five studies that we discuss in this thesis, we have presented either an

accompanying paper, a live demonstration, or both, at a conference or workshop. These

include an Art paper at SIGGRAPH (Akten et al., 2019), and three papers and a live

demonstration at Neural Information Processing Systems (NeurIPS) and associated work-

shops (Akten & Grierson, 2016b, 2016a; Akten et al., 2018).

� The software and interactive installation that we present in chapter 4: Hello World:

Realtime interactive training as an informative and performative tool, has been included

in MIT’s Open Documentary Lab docubase9.

� One of the video demonstrations that we created and discuss in chapter 5: Learning to

see: Digital puppetry through realtime video transformation, was shown during Nvidia

CEO Jensen Huang’s keynote at GTC (GPU Technology Conference) 201910, with the

voiceover “[AI is] inventing new ways to bring out the creative genius in us all”.

� Established artists such as Scott Eaton and Patrick Tresset have very successfully incor-

porated workflows similar to what we demonstrate in chapter 5: Learning to see: Digital

puppetry through realtime video transformation into their own artistic practice.

� We used the techniques and software that we developed in chapter 6: Deep Meditations:

Latent storytelling, in a collaboration with the renowned electronic musician Max Cooper

9https://docubase.mit.edu/project/learning-to-see
10Nvidia GTC 2019 Keynote: https://www.youtube.com/watch?v=Z2XlNfCtxwI&t=32

Page 16

https://docubase.mit.edu/project/learning-to-see
https://www.youtube.com/watch?v=Z2XlNfCtxwI&t=32

1.8. SUMMARY OF CONTRIBUTIONS AND IMPACT

for his seminal audio-visual performance and tour Yearning For The Infinite (Cooper &

Akten, 2019). The piece we made for the performance, Morphosis, was also released online

as a music video in 2020 (Akten & Cooper, 2020).

1.8.1 Press

Many of these works that we have shared on social media, has spread widely, both online

and offline. We consider this to be an indication to the value of the opportunities granted by

Realtime Continuous Meaningful Human Control with Creative DL, and the general interest

in the field. These works and our research, have been featured on influential mainstream blogs

and publications such as:

� Dazed Digital, 202011

� Clash, 201912

� Art in the Digital Age, 201913

� Artnome, 201814

� Hyundai Art and Technology, 201815

� Digital Trends, 201816

� Boingboing, 201817

� CreativeApplications.net, 201818

� Flabber, 201819

� Tech onliner, 201820

� popmech.ru, 201821

� Gizmodo, 201822

� Prosthetic Knowledge, 201823

� We Make Money Not Art, 201824

1.8.2 Invited presentations and panels

We have had the opportunity to present our research as an invited keynote speaker or panellist,

at a number of inter-disciplinary conferences. These include

� Ars Electronica, 2020 (online)25

11Deep Meditations on Dazed Digital
12https://www.clashmusic.com/news/beyond-the-data-memo-akten-interviewed
13http://artinthedigitalage.net/en/1902EN plu.html
14https://www.artnome.com/news/2018/12/13/machine-learning-art-an-interview-with-memo-akten
15Hyundai Art and Technology https://www.youtube.com/watch?v=1QIOoEID8kk
16https://www.digitaltrends.com/cool-tech/neural-net-rebuilds-reality
17https://boingboing.net/2018/03/21/watch-neural-networks-see-only.html
18https://www.creativeapplications.net/openframeworks/learning-to-see-making-deep-neural-network-

predictions-on-live-camera-input
19http://www.flabber.nl/artikel/wat-gebeurt-er-als-je-een-videoalgoritme-alleen-maar-beeld-van-golven-vuur-

of-bloemen-voert
20https://tech.onliner.by/2018/03/20/elektroovcy
21https://www.popmech.ru/technologies/415152-kak-obmanut-iskusstvennyy-intellekt
22https://gizmodo.com/trippy-magic-happens-when-ai-only-knows-about-flowers-1823900244
23http://prostheticknowledge.tumblr.com/post/172012841001/gloomy-sunday-latest-addition-to-memo-aktens
24https://we-make-money-not-art.com/doclab-exhibition-asks-are-robots-imitating-us-or-are-we-imitating-

robots
25https://ars.electronica.art/keplersgardens/en/returning-the-gaze-panel-1

Page 17

https://www.dazeddigital.com/science-tech/article/48037/1/memo-akten-deep-meditations-ai-sonar-me-melia-interview
https://www.clashmusic.com/news/beyond-the-data-memo-akten-interviewed
http://artinthedigitalage.net/en/1902EN_plu.html
https://www.artnome.com/news/2018/12/13/machine-learning-art-an-interview-with-memo-akten
https://www.youtube.com/watch?v=1QIOoEID8kk
https://www.digitaltrends.com/cool-tech/neural-net-rebuilds-reality
https://boingboing.net/2018/03/21/watch-neural-networks-see-only.html
https://www.creativeapplications.net/openframeworks/learning-to-see-making-deep-neural-network-predictions-on-live-camera-input
https://www.creativeapplications.net/openframeworks/learning-to-see-making-deep-neural-network-predictions-on-live-camera-input
http://www.flabber.nl/artikel/wat-gebeurt-er-als-je-een-videoalgoritme-alleen-maar-beeld-van-golven-vuur-of-bloemen-voert
http://www.flabber.nl/artikel/wat-gebeurt-er-als-je-een-videoalgoritme-alleen-maar-beeld-van-golven-vuur-of-bloemen-voert
https://tech.onliner.by/2018/03/20/elektroovcy
https://www.popmech.ru/technologies/415152-kak-obmanut-iskusstvennyy-intellekt
https://gizmodo.com/trippy-magic-happens-when-ai-only-knows-about-flowers-1823900244
http://prostheticknowledge.tumblr.com/post/172012841001/gloomy-sunday-latest-addition-to-memo-aktens
https://we-make-money-not-art.com/doclab-exhibition-asks-are-robots-imitating-us-or-are-we-imitating-robots
https://we-make-money-not-art.com/doclab-exhibition-asks-are-robots-imitating-us-or-are-we-imitating-robots
https://ars.electronica.art/keplersgardens/en/returning-the-gaze-panel-1

1.8. SUMMARY OF CONTRIBUTIONS AND IMPACT

� Kikk Festival, 2019 (Namur, BE)26

� TodaysArt, 2019 (The Hague, NL)27

� AI in the Arts and Design panel, ACM Siggraph, 2019 (Los Angeles, CA, USA)28

� Gray Area Festival, 2019 (San Francisco, CA, USA)29

� Art and Artificial Intelligence, ZKM Center for Art and Media, 2019 (Karlsruhe, DE)30

� Symposium of Interdisciplinary Artificial Intelligence Studies, Yeditepe University, 2019

(Istanbul, TR)31

� Cybernetic Consciousness Symposium, Itaú Cultural, 2019 (Sao Paolo, BR)32

� Art Innovation Symposium, Kyoto University, 2019 (Kyoto, JP)33

� TOCA ME Design Conference, 2019 (Munich DE)34

� Muovo Conference on Motion Design, 2019 (Prague, CZ)35

� Art Machines: International Symposium on Computational Media Art, Hong Kong City

University, 2019 (HK)36

� Innovative City Forum, Roppongi Hills Mori Tower, 2018 (Tokyo, JP)37

� Smart cities and urban tech conference, Strelka Institute, 2018 (Saint Petersburg, RU)38

� Workshop on Human-Computer Collaboration in Embodied Interaction, IRCAM, 2018

(Paris, FR)39

� i-Docs, 2018 (Bristol, UK)40

� Ars Electronica, 2017 (Linz, AT)41

� Sonar+D, 2017 (Barcelona, ES)42

� DocLab, International Documentary Film Festival (Amsterdam, NL)43

1.8.3 Public showings

The work that we have produced using the systems developed in this thesis, have also been

shown in galleries, museums and cultural institutions such as

� Haus der Kunst, 2020 (Munich, DE),

� UCCA Center for Contemporary Art, 2020 (Beijing, CN)

� QUAD Gallery, 2020 (Derby, UK)

� Honor Fraser Gallery, 2020 (Los Angeles, CA, US)

26https://www.kikk.be/2019/en/home
27https://todaysart.org/festivals/todaysart-2019
28https://s2019.siggraph.org/presentation/?id=bof 144&sess=sess370
29https://grayareafestival.io
30https://zkm.de/en/event/2019/05/art-and-artificial-intelligence
31http://siais.yeditepe.edu.tr
32https://www.itaucultural.org.br/conscienciacibernetica/2019
33http://art.gsais.kyoto-u.ac.jp/index-en.html
34http://www.toca-me.com
35https://mouvo.cz
36https://www.cityu.edu.hk/iscma
37https://icf.academyhills.com/2018/en
38https://inthecity.strelka.com/en
39http://mim.ircam.fr/hamac
40https://idocs2018.dcrc.org.uk
41https://ars.electronica.art/ai/en/symposium
42https://sonarplusd.com/en/programs/barcelona-2017/areas/talks/the-role-of-artists-in-the-ai-revolution
43https://www.idfa.nl/en

Page 18

https://www.kikk.be/2019/en/home
https://todaysart.org/festivals/todaysart-2019
https://s2019.siggraph.org/presentation/?id=bof_144&sess=sess370
https://grayareafestival.io
https://zkm.de/en/event/2019/05/art-and-artificial-intelligence
http://siais.yeditepe.edu.tr
https://www.itaucultural.org.br/conscienciacibernetica/2019
http://art.gsais.kyoto-u.ac.jp/index-en.html
http://www.toca-me.com
https://mouvo.cz
https://www.cityu.edu.hk/iscma
https://icf.academyhills.com/2018/en
https://inthecity.strelka.com/en
http://mim.ircam.fr/hamac
https://idocs2018.dcrc.org.uk
https://ars.electronica.art/ai/en/symposium
https://sonarplusd.com/en/programs/barcelona-2017/areas/talks/the-role-of-artists-in-the-ai-revolution
https://www.idfa.nl/en

1.8. SUMMARY OF CONTRIBUTIONS AND IMPACT

� Kellen Gallery, 2020 (New York, US)

� SUPERCOLLIDER Gallery, 2020 (Los Angeles, CA, US)

� Centro de Arte y Creación Industrial, 2019 (Gijón, ES)

� Ars Electronica Centre, 2019 (Linz, AT)

� Mori Art Museum, 2019 (Tokyo, JP)

� Kate Vass Gallery, 2019 (Zurich, CH)

� Sonar+D Festival, 2019 (Barcelona, ES)

� Itaú Cultural, 2019 (Sao Paulo, BR)

� The Barbican, 2019 (London, UK)

� Kenninji Temple, 2019 (Kyoto, JP)

� Hatcham Church Gallery, 2018 (London UK)

� Moscow Museum of Modern Art, 2018 (Moscow, RU)

� Grand Palais, 2018 (Paris, FR)

� Astana Contemporary Art Centre, 2017 (Astana, KZ)

� Ars Electronica Festival, 2017 (Linz, AT)

� International Documentary Film Festival Amsterdam / IDFA (Amsterdam, NL)

1.8.4 Opensource software

We have developed and shared a number of open-source tools that we summarise below.

ofxMSAmcts (2015)

ofxMSAmcts (Akten, 2015) is an open-source C++ implementation of Monte Carlo Tree Search

(MCTS) (Browne et al., 2012) that we developed as an addon for the very popular C++ cre-

ative development toolkit openFrameworks (Lieberman et al., 2016). OpenFrameworks has

a large and very diverse user-base of artists, designers and creative developers, with roughly

250,000 visits per month to its website. Many of its users actively engage with new technolo-

gies and develop open-source addons, allowing the community to easily integrate third party

libraries and devices. Examples of these addons include support for various hardware devices

such as Microsoft Kinect, LeapMotion, Oculus Rift, DMX lighting control, ILDA laser control,

quadrotor drones, robot arms, electroencephalography (EEG) brain activity readers, and video

capture cards, as well as numerous software libraries for computer vision, networking, physics

simulations, 2D and 3D graphics, audio synthesis and many more (ofxAddons, 2015).

Developing our MCTS addon for openFrameworks, enables us to instantly access the vast

range of other libraries and tools developed for the openFrameworks ecosystem, including our

own ofxMSATensorFlow (Akten, 2016). Our C++ library is general purpose, templated and

supports a variable number of agents, and a variable number of actions per step. We developed

and released a simple tic-tac-toe game to demonstrate how to use the library, and we use this

library in our research in section 3.2: Collaborative generative sketching with MCTS and CNNs.

The github repository currently has 43 stars and 15 forks.

Page 19

1.9. THESIS OUTLINE

ofxMSATensorFlow (2016)

There are many open-source Machine Learning libraries available, and many new ones being

released frequently. Google’s Tensorflow library (Abadi & Others, 2015) was made public in

late 2015 and immediately gained a lot of popularity. While these libraries are great for focused

Deep Learning research, they are often difficult to integrate into different workflows and a wider

ecosystem of tools. For this reason we integrated Tensorflow into openFrameworks.

ofxMSATensorFlow (Akten, 2016) is an open-source Tensorflow addon for openFrameworks

that we developed, allowing Tensorflow to run seamlessly within this ecosystem of tools.

We developed and released a number of examples to demonstrate functionality on standard

Machine Learning tasks as well as recent Deep Learning developments including classifying

MNIST digits (LeCun & Cortes, 2010) and ImageNet images (J. Deng et al., 2009) with CNNs

(Szegedy, Liu, et al., 2015), handwriting generation with LSTM RMDNs (Graves, 2013), text

generation with character based LSTM RNNs (Graves, 2013), and ‘pix2pix’ Image-to-Image

Translation with Conditional Adversarial Nets (Isola et al., 2016). The github repository cur-

rently has 445 stars and 92 forks.

webcam-pix2pix-tensorflow (2017)

In chapter 5: Learning to see: Digital puppetry through realtime video transformation, we present

a realtime video processing system that can transform a live camera feed with the aesthetic

qualities of a large image based dataset. Our system allows for the manipulation of a number of

parameters in realtime via a GUI, to further transform the image. We have released a simplified

version of this software as open-source software on github (Akten, 2017). This version contains

a subset of the filters that we mention in this thesis, and lacks many of the advanced non-DL

related options such as advanced screen layout options, changing and loading models at run-

time, midi controller support etc. In simplifying the functionality and code, we hope that it

will be more informative and educational, and can act as a base for others to build upon in the

future. The github repository currently has 311 stars and 61 forks.

py-msa-kdenlive (2018)

In chapter 6: Deep Meditations: Latent storytelling, we take a typical Non Linear Video Editing

(NLVE) workflow as a base, and we present a method that allows for long-form story telling

within a generative model’s latent space with meaningful control over the narrative. In order

to achieve this, we develop an open-source python script which can load and parse a project

file belonging to the open-source Kdenlive NLVE software for the GNU/Linux platform. Our

script can then conform the edit contained in the project, onto corresponding numpy arrays.

We discuss this process in much more detail in the chapter linked above. This open-source

script can be found on github (Akten, 2018).

1.9 Thesis outline

The remainder of this thesis is as follows.

Page 20

1.9. THESIS OUTLINE

In the following chapter, chapter 2: Background, we trace the multiple histories that span

Computational Art and Design; Artistic, Expressive Human-Computer Interaction; and Deep

Learning; until they converge and merge in the current day. We discuss major developments

in these fields, especially those within the context of Creative DL, Meaningful Human Control,

and Realtime Continuous Control. We also present the key concepts, terminology and technical

foundations relating to Deep Learning, that we will be building upon and referencing in this

thesis.

The majority of our research deals with pixel based raster images. However, since these are

incredibly high-dimensional and computationally expensive, we choose to start with a number

of lower dimensional studies. We present these two studies in chapter 3: Realtime sequence

generation with continuous control. In this chapter, we present an agent-based, interactive,

collaborative, generative sketching application using MCTS and a discriminative CNN . We

also present a system to gesturally conduct the generation of text in different styles using an

ensemble of LSTM RNNs.

The subsequent studies in this thesis focus on a number of different image based generative

models.

In chapter 4: Hello World: Realtime interactive training as an informative and performative

tool, we start with a Variational Auto-Encoder (VAE) (D. P. Kingma & Welling, 2013). We

develop a performative tool that allows for the manipulation of hyperparameters in realtime

while a Convolutional VAE trains on a live camera feed. In addition to gaining a number of

insights with regards to how DNNs learn, and how the hyperparameters influence the results, the

software that we developed also demonstrates great potential as a realtime visual performance

tool.

After VAEs, in chapter 5: Learning to see: Digital puppetry through realtime video transformation

we investigate conditional Generative Adversarial Networks (cGAN). Specifically, we build upon

the application that we developed in the previous chapter, and using a custom pipeline based on

pix2Pix (Isola et al., 2016), we develop a realtime video processing system that can transform

a live camera feed with the aesthetic qualities of a large image based dataset. We demonstrate

a number of different performative modes of interaction with this software. These include live

puppetry, augmented drawing, and realtime manipulation of parameters using a graphical user

interface or faders on a hardware interface.

In our final study, in chapter 6: Deep Meditations: Latent storytelling, we investigate un-

conditional Generative Adversarial Networks (GAN). Each of the four studies that we have

presented so far, allow Meaningful Human Control, in a Realtime Continuous manner. How-

ever, in this study, we take a slight departure. We acknowledge the role that non-realtime,

non-continuous modes of interaction have played in existing, traditional creative workflows.

In particular, we look at the example of video editing as a form of long-form narrative story

telling. Taking a typical video editing workflow as a base, we present a method that allows for

long-form story telling within a generative model’s latent space, with meaningful control over

the narrative

Finally, in chapter 7: Conclusion we summarise our findings, and speculate on potential

future directions research in this field could take.

Page 21

1.9. THESIS OUTLINE

Page 22

Chapter 2

Background

Our research is located at the intersection of a number of fields: Deep Learning (DL); Com-

putational Art and Design (CAAD); and Artistic, Expressive Human-Computer

Interaction (AE-HCI).

As we mentioned in the previous chapter, we define Creative DL as the intersection of

Deep Learning and Computational Art and Design — in other words, the application of DL

techniques to the production of artistic works and creative media. We include both technical

DL research within this field, and the artistic and/or design practices and research.

At the start of our research in 2014, there was not much activity within Creative DL.

Today, this is a very active and rapidly growing area of research and practice. Within this area,

our research focuses on introducing Artistic, Expressive Human-Computer Interaction; which

we believe is still practically non-existent in this context. To be more precise, we investigate

this through Meaningful Human Control and Realtime Continuous Control for performative

interaction, which we discuss in section 1.3: Meaningful Human Control and section 1.4: Visual

instruments: Realtime Continuous Control respectively.

In this chapter, we will provide the necessary history, terminology, definitions, and technical

foundations that we will build upon in the remainder of this thesis.

We first discuss classes of models, namely discriminative and generative models. Since

we spend a significant portion of this thesis working with generative models, we will spend some

time laying the foundations of generative models in this chapter.

We follow this with a very brief history. We follow a number of independent threads which

have separate origins, and eventually converge and merge. We consider 2015 to be the year that

DL burst into the collective consciousness of artists, designers and creatives around the world

— which led to the birth of Creative DL. This was initially fuelled by the viral online release

of Deepdream (Mordvintsev et al., 2015) in June 2015, and its prevalent popularity on both

social and mainstream media. This was shortly followed by the similarly viral online release and

immense popularity of Neural Style Transfer (Gatys et al., 2015a) only a few months later,

and Deep Convolutional Generative Adversarial Networks (DCGAN) (Radford et al.,

2015), only a few months after that. Andrej Karpathy’s open-source character-level language

23

2.1. GENERATIVE MODELS

model Char-RNN (Karpathy, 2015a), based on (Graves, 2013), further cemented interest in

DL within those with artistic and creative interests. This is not to say that no research was

taking place within this field prior to 2015. However, 2015 was indeed the year that the relatively

independent trajectories of DL and CAAD became much more intertwined.

We follow these threads, discussing both artistic and technical contributions. We do not

attempt a thorough survey of DL. Instead we provide a very brief overview of key technical

innovations, focusing on those events with significant cultural impact. In other words, these

are key milestones within DL research that left the confines of academia and industry, and

reached broader audiences to affect the practices and discourse within the arts and

creative sectors. These include Deepdream, Char-RNN, Neural Style Transfer, DC-

GAN, Pix2Pix, CyleGAN, AlphaGo, AlphaZero, Sketch-RNN, ProGAN, BigGAN,

GANBreeder, ArtBreeder, StyleGAN and StyleGAN2.

Finally, we present in more technical detail, an introduction to Deep Learning as will be

necessary to parse this thesis. We start with the basics of Machine Learning, Artificial Neural

Networks, loss functions, gradient descent and backpropagation, all the way through to modern

deep architecture and methods that we use in this thesis, such as Convolutional Neural Net-

works (CNN), Variational Auto-Encoders (VAE), Deep Convolutional Generative

Adversarial Networks (DCGAN), Long Short-Term Memory (LSTM) Recurrent

Neural Networks (RNNs), and Monte Carlo Tree Search (MCTS).

2.1 Generative models

Before we go deeper into any of the topics, we will first define a few key concepts that will come

up frequently in our discussion. We will regularly refer back to these ideas and build upon them

in the following sections.

First, we discuss the two primary classes of Machine Learning models: discriminative vs

generative. And then, since the majority of this thesis deals with generative models, we will

examine them in more detail. We will leave implementation-level technical details for a later

section, and discuss them in section 2.3: Introduction to Deep Learning. In this section, we will

cover only how and what they can be used for.

Discriminative models learn to predict some output y, given an input x. More formally

speaking, they model P (y |x). These can be used for classification purposes, where the model

predicts a vector of probabilities over a number of class labels. In this case, the model only learns

the boundaries between classes. Discriminative models can also perform regression, where the

model predicts some real values. For example, what actions to take in a given situation, how

much to steer an autonomous vehicle, what the price of a particular house might be given

some conditions etc. A regression model might also predict the parameters of a parametric

probabilistic model, for example a Gaussian Mixture Model (GMM) (Bishop, 1994).

Page 24

2.1. GENERATIVE MODELS

In chapter 3: Realtime sequence generation with continuous control, we investigate how

deep discriminative models can be used to generate images. In the chapters following that, we

investigate a number of different generative deep models.

Generative models try to model observations by learning the joint distribution of the data.

More formally speaking, they model P (x,y). In other words, generative models try to model the

underlying dynamic processes that gives rise to the observations. When we take a sample from

this distribution, we are effectively executing the function which models that dynamic process.

Therefore, this generates new data that should be structurally and statistically similar to the

observations. This also implies, that when we manipulate parameters of the generative model,

we are manipulating parameters of the dynamic process. Therefore, this generates varying

outputs that are consistent with the world from which the observations came from.

There are many different deep generative architectures, and in section 2.3: Introduction to

Deep Learning, we will discuss a number of these in more technical detail. For now, we present

some common characteristics.

2.1.1 Unconditional generative models

When we train a generative model on a dataset, for example consisting of many images, the

model learns a function G that maps some vector z to an output y that resembles the training

examples. In the architectures that we work with in this thesis, z is typically sampled from a

standard normal distribution N (0, 1). This can be expressed more formally as

G : z 7→ y where z ∼ N (0, 1) (2.1)

z is a vector, with a dimensionality typically in the range 128–512 in the examples that we

work with in this thesis. This is a compact, latent representation of the output y, which

might have a dimensionality many orders of magnitude higher. For example a 1024x1024 pixel

colour image has a dimensionality of 1024 ∗ 1024 ∗ 3 = 3145728. Yet it can be represented

with a latent vector in 512 dimensions. This is effectively a compression ratio of 6144:1. For

the generative model to learn such compact representations, the dataset must have significant

amounts of structure and regularities. Furthermore, the model’s architecture must be designed

specifically to maximise the ability of the network to identify and model these regularities and

features. This is one of the major reasons as to why this is currently such an active area of

research, and why there are so many different architectures available.

The generative model that we describe above in eqn. (2.1), in which the model’s output

is not conditioned on any extra information, is an unconditional generative model. To

generate an output, we simply sample a random z ∼ N (0, 1) and feed it through the model.

In later sections, we will present a number of examples of unconditional generative models in

subsection 2.3.17: Variational Auto-Encoders (VAE) and subsection 2.3.18: Deep Convolutional

Generative Adversarial Networks (DCGAN).

Page 25

2.1. GENERATIVE MODELS

2.1.2 Conditional generative models

It is also possible to condition the output of a generative model, on an additional input x. This

is known as a conditional generative model, and it can be expressed more formally as

G : {z,x} 7→ y where z ∼ N (0, 1) (2.2)

It is quite common for the conditioning input x to be a class label. For example, if z0

represents a specific location in latent space, G(z0, ‘dog’) would produce a specific image of

a dog, that corresponds to that location z0, while G(z0, ‘cat’) would produce an image of a

cat, even though it is generating from the same latent representation. BigGAN (Brock et al.,

2019) is an example of a conditional generative model, conditioned on class labels. Interestingly

however, the authors note that class leakage may occur, whereby the visual characteristics of

images from one class, might appear in the images generated when conditioned on another class,

for example placing puppy eyes and nose on an image of a tennis ball.

Pix2pix (Isola et al., 2016), is a conditional generative model where the conditioning input x

is an image. This allows the model to generate new images, conditioned on an input image. We

use this as a basis for the work that we present in chapter 5: Learning to see: Digital puppetry

through realtime video transformation, where we present an application that we developed which

uses a conditional generative deep model to transform a live video feed in realtime.

2.1.3 Latent manipulations

One of the major motivations behind research into deep generative architectures, is to ensure

that the latent representations learnt by the model, are well structured and disentangled (Bengio

et al., 2013; Ridgeway, 2016). This ensures that given a latent representation z where G(z)

produces an output y, we can make certain meaningful manipulations on z to produce a new

latent representation z′, such that G(z′) produces y′, which has some meaningful manipulations

applied.

Latent representation recovery

Before we present examples of meaningful latent manipulations, we will first discuss the issue

of obtaining latent representations to work with.

One of the simplest methods of obtaining latent representations, is to take random sam-

ples from the distribution. For the models that we work with, we typically choose the latent

distribution during training, to be a standard normal distribution. For this reason, we can sam-

ple z ∼ N (0, 1). Once we have one or more latent representations obtained in this manner, we

can perform the latent manipulations that we describe below. However, taking random samples

in this manner, does not allow us to find the latent representation of a given data point. In

other words, if for example, we are given an image, how can we find the latent representation

of that image, such that we can apply meaningful latent manipulations to it?

There are a number of options with regards to addressing this.

Page 26

2.1. GENERATIVE MODELS

Some generative models have encoders as part of their architecture. The encoder learns a

function E, such that it can map an input x to its latent representation z. The transformation

of the entire network can then be represented as x 7→ z 7→ y. If the encoder and the generator

are trained successfully, then the output of the Generator y ≈ x, within the limitations of

the generative capacity of the model, which in turn is dependent on many factors, such as the

architecture, training hyperparameters, and size and diversity of the training data. A VAE

is an example of a generative model with an encoder. We discuss VAEs in subsection 2.3.17:

Variational Auto-Encoders (VAE), and build upon them in chapter 4: Hello World: Realtime

interactive training as an informative and performative tool. Flow-based generative models

also have encoders (Dinh et al., 2016; D. P. Kingma & Dhariwal, 2018), and while they do

allow for the latent manipulations that we describe below, they do not learn compact latent

representations. In this respect, they are computationally significantly more expensive than

VAEs, and so for our research, we decided to focus on the latter.

GANs, typically do not have encoders. However, depending on the complexity of the archi-

tecture and training data, an additional encoder network can be trained. An example of

this is VAE/GAN (Larsen et al., 2016). While this approach showed great potential to begin

with, VAE/GANs turned out to be notoriously difficult to train, and they quite often fail to

converge. For this reason, there is generally not much research in this direction.

A more popular and successful approach to integrating some kind of encoder into GANs, is

using optimisation techniques to recover approximate latent representations (Lipton &

Tripathi, 2017; Karras et al., 2020). These methods are particularly effective for data points

that are known to be within the distribution. For example, given a powerful image based

generative model such as StyleGAN2 (Karras et al., 2020) trained on faces, it is possible to

recover a latent representation for an image of a face which is not in the training data, but

is cropped and aligned in a similar manner to images of faces which are in the training data.

For data points that are outside the distribution, the ability of these methods to recover latent

representations depends again on the generative capacity of the model.

Once we have used any of these methods to obtain one or more latent vectors, we can use

meaningful latent manipulations such as those detailed below, to produce new latent represen-

tations that can be run through the generative model to produce meaningfully manipulated

outputs.

Semantic latent vectors

It has been observed that there are often certain directions in the latent space of a gener-

ative model, such that moving a latent representation in that direction, applies meaningful

manipulations to the output data point. For example in Radford et al. (2015), the authors

train a DCGAN on a large dataset of faces. They select a number of latent representations

for images of faces wearing glasses, and they calculate the mean to obtain an average face-

with-glasses latent vector zavg-face-with-glasses. They do the same to obtain an average face-

without-glasses latent vector zavg-face-without-glasses. Subtracting one from the other produces

a semantic vector zadd-glasses = zavg-face-with-glasses − zavg-face-without-glasses which indicates

Page 27

2.1. GENERATIVE MODELS

the direction of adding glasses to a face, in the latent space. Adding this semantic vector

zadd-glasses to the latent representation of any new image of a face, produces a latent represen-

tation znew-face-with-glasses = znew-face-without-glasses + zadd-glasses such that G(znew-face-with-glasses)

produces an image of that face wearing glasses, even if that image does not exist in the training

set. The authors demonstrate this with other examples including smiling and rotating.

Using semantic vectors to meaningfully manipulate images is an area that shows great

potential and is gaining popularity in recent years. The artist and educator Tom White was

one of the first researchers to explore this artistically in his Smile Vector Twitter-bot (White,

2016b). In this project, White trains a VAE on images of faces, and identifies semantic latent

vectors such as smiling. The public can interact with the Twitter-bot, to submit their own

images. The bot adds and subtracts the Smile Vector to the user-submitted images, to make

the faces smile more or less. As generative models, and DCGANs in particular, are starting to

produce more realistic outputs, research in semantic latent vector discovery is growing (Simon,

2019; Abdal et al., 2019; Karras et al., 2019, 2020; Härkönen et al., 2020).

Latent interpolation

An important and related concept to semantic latent vectors, are latent interpolations. Inter-

polating between different latent representations, produces outputs which transform gradually

and in some meaningful manner. For example, the intermediate latent representations zi that

we obtain, when slowly interpolating from a latent representation zl of a face looking to the left,

to the latent representation zr of a face looking to the right, will produces images of the face

gradually turning from left to right. Likewise, slowly moving between the latent representations

of a face frowning, to the same face smiling, effectively generates an animation of the face start-

ing with a frown, and gradually smiling more and more. When we interpolate between very

seemingly unrelated latent representations, the model produces outputs in accordance with the

set of rules that it learnt, which may or may not make sense to us. For example, interpolating

between the latent representation of a tree and a chair, will result in some kind of morphing

images, which are difficult for us to predict, and depends entirely on the structure of the latent

space. However, modern deep generative models are able to learn very well structured latent

representations, such that these interpolations do produce remarkable results. In the case of

image based generative models, fully leveraging the visual qualities of the images. We present

some examples in chapter 6: Deep Meditations: Latent storytelling.

Latent walks

Videos of latent space interpolations have become very popular, as they can demonstrate the

capabilities of the underlying generative model quite well. As a result, it is not uncommon for

researchers who investigate novel generative architectures, to release latent space interpolation

videos along with their research1.

Typically, these interpolation videos are created without much meaningful human interven-

tion. This is to say, they tend to be either very short clips, simply morphing between two states

1For example, an accompanying latent space interpolation video for StyleGAN2 (Karras et al., 2020)
https://www.youtube.com/watch?v=c-NJtV9Jvp0

Page 28

https://www.youtube.com/watch?v=c-NJtV9Jvp0

2.1. GENERATIVE MODELS

such as smiling or not smiling. Or the longer clips tend to be entirely random walks. In other

words, a number of random latent representations are sampled from the latent distribution,

and then they are interpolated between. This is primarily because there are no tools currently

available, which allow for the design of trajectories in the high-dimensional space of latent rep-

resentations. This is a topic that we address in our work. Namely, we propose a method, and

develop a tool, that allows users to construct very specific trajectories, such that users can tell

stories in latent space with Meaningful Human Control over the narrative. We discuss this with

more detail in chapter 6: Deep Meditations: Latent storytelling.

It’s worth mentioning, that these latent manipulation methods that we describe above,

are applicable to not only images, but they can be applied to potentially any domain. In

GANSynth (Engel et al., 2019), the authors use latent manipulations on short clips of raw

audio, to interpolate between the timbre and pitch of musical instruments. Skip-thought vectors

(Kiros et al., 2015) are latent representations of entire sentences, and in the open-source demo

neural-storyteller (Kiros, 2015), the author applies semantic latent manipulations to ordinary

text, to manipulate them into the style of romance novels. For the purposes of our work that

we present in this thesis however, we are currently focusing on images.

2.1.4 ‘Generative’ terminology in different domains

It is important at this point, to take a slight digression, and discuss this terminology, especially

in a cross-disciplinary context such as our research. The term generative is used frequently

in this thesis. However, it refers to slightly different concepts in different domains, which are

relevant to this thesis:

ML, inherits much of its terminology and concepts from statistics. This is also where the

definition of generative model, as we described above originates.

In section 2.2: Very brief histories, we discuss the notion of generative art, and the broader

notion of generative media, which includes art, music, design, architecture, poetry, text and

any other creative medium. In the computer graphics literature, this is often referred to as

procedural. In the art world, it is primarily known as generative, but can also be referred

to as algorithmic art. Generative art or media, and generative models refer to very different

concepts, which we will unpack shortly. However, before we do so, it is important to also

mention another similar sounding, but conceptually distinct term.

In engineering, product design and architecture, generative design, refers to a process of

iterative, parametric design involving constraints and goals. It is a family of methods used pri-

marily for solving design and engineering problems. The designer will set constraints relating to

materials, space, weight, volume, dimensions, and costs, along with functional and/or aesthetic

objectives. Through an iterative process, the generative design system tries to optimize for a

number of different solutions.

As we can see, these three definitions refer to quite different, but related concepts. Most

notably, both generative models and generative design, can be included within generative media.

In other words, an image sampled from a generative Machine Learning model, or produced

through a generative design process, could be considered to be generative media or generative

Page 29

2.2. VERY BRIEF HISTORIES

art. However, the reverse is not always true. For example, an image produced via particle

systems, circle packing, and Delaunay triangulation, is considered generative media. But it is

neither generative design, nor a generative model.

It’s also important to bear in mind, that not all Machine Learning systems that produce

generative media, are generative models. For example, a DCGAN that we will present shortly,

is a generative model. Taking a random sample from the latent distribution, a multivariate

Gaussian, produces an image. This is generative media, sampled from a generative model.

However, Deepdream, as we will shortly discuss, is not a generative model. It is an algorithm in

which we use a method known as activation maximization, on a discriminative model designed

and trained for classification. We can generate images using Deepdream, so the system is

generative, from a generative media point of view. However it is not a generative model, from

a ML or statistics point of view.

These distinctions are subtle, but they become important when communicating with re-

searchers and practitioners from different fields.

In this thesis, we do not touch upon generative design. This is because we are more interested

in realtime, expressive interaction for artistic expression; while generative design is generally

more focused on solving design problems with engineering constraints. However, both generative

media and generative models are integral to our research. In this text, whenever we use the term

generative model, we are explicitly referring to exactly that, a generative statistical model (or

more specifically in our case, a generative Deep Neural Network). Whenever we use the term

generative system, we are referring to a computational system which is capable of algorithmically

generating media. This system may be a generative model, such as a DCGAN. Or it may be a

system comprising of multiple components, one of which may be a non-generative Deep Neural

Network, such as in the case of Deepdream.

2.2 Very brief histories

In this section, we discuss the separate histories of a number of different threads that re-

late to Deep Learning (DL), Computational Art and Design (CAAD), and Artistic,

Expressive Human-Computer Interaction (AE-HCI). We initially trace these threads

independently, and we follow them through where we observe points of convergence.

Within the greater context of art history, computational art makes a very recent appear-

ance, spanning only a single human lifetime. Despite this, the genre has grown rapidly, and has

expanded into many overlapping sub-genres. Just to name a few, these include generative art,

new media art, interactive art, net art, post-internet art, digital art, software art, algorithmic

art, data art, evolutionary art, robotic art, techno art, glitch art, video game art, bot art, AI

art, and many more. In this section, we only touch upon aspects of computational art that

connect themes which are directly relevant to our research, such as expressive interaction, Ar-

tificial Intelligence and Machine Learning. For a more comprehensive review of computational

art in general, please refer to (Levin, 2000; Grierson, 2005; Bailey, 2020).

Page 30

2.2. VERY BRIEF HISTORIES

2.2.1 Generative art

The term generative art (and the broader term generative media — which includes art,

music, design, architecture, poetry, text and any other creative medium), refers to works cre-

ated as a result of working with rule-based and semi-or-fully autonomous systems. Instead of

designing and producing the final artefact directly, the generative artist designs a process, which

in turn produces the final artefact. The lineage of generative art exists outside of purely com-

putational practices, and can be traced to composers such as Iannis Xenakis, Steve Reich, John

Cage, Terry Riley, Brian Eno; and artists such as Lillian Schwartz, Sol Lewitt, Sonia Sheridan;

Muriel Cooper and Nam June Paik. Generative art also includes artists working with biological

systems, such as Tomás Saraceno’s works with spiders and spider webs, and Heather Barnett’s

work with slime mould. It is worth noting, that the term generative art, is very different to

the terms generative models — which we use frequently in this thesis — and generative

design. To avoid confusion, we expand on this in subsection 2.1.4: ‘Generative’ terminology in

different domains.

As we mentioned in chapter 1: Introduction & Motivations, even before the concept of gen-

erative art existed, Lady Ada Lovelace had already foreseen in 1843, the impact that computers

would have, in the creation of ‘algebraical patterns’ and ‘elaborate and scientific pieces of music’.

Indeed, the introduction of computers — first analog, and then digital — radically expanded

the field of generative art, and led to the birth of may new genres, collectively known under the

umbrella title of computational art.

The use of computers for the purposes of making art dates back to the 1950s and 1960s. John

Whitney built DIY analog computers from World War II M5 and M7 targeting computers, and

anti-aircraft machinery (Alves, 2005). With these DIY computers, Whitney created abstract,

animated, visual works, which were not only pioneering technically, leading to the birth of

computer graphics and special effects in scenes such as Stanley Kubrick’s 2001: A Space Odyssey,

but in addition they pioneered the field of computer-aided audio-visual composition (Grierson,

2005). His work continues in the tradition of experimental abstract animators and filmmakers

such as Normal McLaren and Oskar Fischinger. Throughout the 1960s and 1970s, he was joined

by software artists such as Paul Brown, Vera Molnar, Manfred Mohr, Lillian Schwartz, Frieder

Nake, Grace Hertlein, Larry Cuba, George Nees and many more, collectively giving birth to the

digital generative art movement.

2.2.2 AI and ML in art, pre-Deepdream

It was Harold Cohen’s AARON software from 1973 (Cohen, 1973) which first explicitly brought

Artificial Intelligence into the world of computer art. In this respect, it can be considered the

first example of AI art. AARON was ostensibly a piece of software, written to understand

colour and form. Cohen often spoke about the concept of training his software (Cohen, 1994).

However, he uses the term rhetorically. The learning that takes place within AARON, is not

what we consider to be true Machine Learning as we will discuss in the following sections.

AARON does not learn through experience. AARON does not learn through observations, or

analysing data. Instead, when Cohen wanted AARON to learn something new, and perform a

Page 31

2.2. VERY BRIEF HISTORIES

particular new task, Cohen had to first analyse the task himself. Cohen identified the sets of

rules that governed the behaviour that he wanted AARON to perform. And then he explicitly

programmed those rules into AARON, so that AARON could perform the desired behaviour.

Often, these were very complex sets of rules, that took years for Cohen himself to decipher and

learn, before he could program them into AARON (Cohen, 2006).

As computers started becoming more accessible in the 1980s and 1990s, this brought a

new generation of computer graphics artists working with Artificial Intelligence. These include

William Latham and Stephen Todd (Todd & Latham, 1992), Karl Sims (Sims, 1994) and Scott

Draves (Draves, 2005). Inspired by Darwinian evolution, these artists appropriated genetic

algorithms, to pioneer the discipline of evolutionary art. Genetic algorithms do learn from

experience, and are technically considered to be Machine Learning algorithms, and for this

reason, these works from the 1980s and 1990s can be thought of as among the earliest examples

of true Machine Learning based artworks.

During this same period, David Cope developed an algorithm for composing music. His

Experiments in Musical Intelligence (EMI) began in 1981, and he developed it for many decades,

until he eventually patented the algorithm Recombinant music composition algorithm (Cope,

2010). Using this algorithm, Cope generated musical sequences in the style of many classical

composers, such as Bach, Vivaldi, Beethoven, Mozart, Chopin and Debussy. His latest software

Emily Howell has albums being released under its name. The algorithm he uses is based

on Markov chains, an early 20th century probabilistic model capable of capturing temporal

patterns. We will leave the technical discussion for later sections,

Throughout the late 1990s and early 2000s, François Pachet, based at the Sony Computer

Science Laboratory in Paris, developed the Continuator (Pachet, 2003). Also based on Markov

models, this is an interactive musical system that is capable of learning in realtime, stylistic

characteristics of music, such as rhythm, beat, and harmony. The system can improvise and

accompany a live musician, or given a sequence of music, it can continue in a similar style.

2.2.3 Interactive media art

The artists mentioned above, were primarily concerned with the algorithmic creation of images

and/or sound, and can be thought of as practicing in the lineage of generative art.

Since the 1960s, Myron Kruger was primarily interested in gesturally interactive computer

artworks set in Responsive Environments. Kruger developed his large-scale immersive,

responsive installations throughout the 1960s, 1970s and 1980s, culminating in his seminal

artificial reality environment Videoplace (Krueger et al., 1985). Videoplace tracked users with

cameras, enabling them to interact with virtual objects in the scene using projectors.

David Rokeby’s Very Nervous System, first developed in 1986, explores similar themes of

gestural full body interaction, in this case to generate music (Rokeby, 1986). Throughout the

1980s and 1990s, artists such as Ed Tannenbaum, Scott Snibbe, Michael Naimark, Golan Levin

and Camille Utterback created interactive media artworks.

While many of these works might not be immediately considered AI based works, they use

sensors, cameras, projections and robotics, to create immersive and interactive environments

that respond intelligently to a users actions. They often incorporated complex algorithms, both

Page 32

2.2. VERY BRIEF HISTORIES

on the input and sensing side, for example using computer vision or voice analysis techniques;

and on the output side, for example mapping inputs to complex behaviours of images, sounds, or

motors. And using these complex algorithms, they provide gestural and expressive interaction

for the realtime creation and manipulation of images and sounds.

2.2.4 Visual instruments

We have already discussed Visual Instruments in section 1.4: Visual instruments: Realtime

Continuous Control. Similar to Louis-Bertrand Castel’s Ocular harpsichord, many mechani-

cal visual instruments were built throughout the 19th and early 20th century. These include

Frederic Kastner’s Pyrophone in 1869, Bainbridge Bishop’s high voltage powered light emitting

pipe organ in 1877, Thomas Wilfred’s Clavilux in 1919, George Hall’s Musichrome and Charles

Dockum’s MobilColor Projectors in the 1930s, and Oskar Fischinger’s Lumigraph in the 1940s.

For a more in-depth discussion regarding these, please refer to (Levin, 2000). For a more in-

depth discussion regarding video synthesizers such as the Bill-Etra or Paik-Abe, please refer to

(Collopy, 2014).

2.2.5 Convergence

From the late 1990s onwards, we see an intersection in these initially disparate fields of compu-

tational art.

With the birth of the web, and the introduction of first Macromedia Director, and then

Macromedia (Adobe) Flash, a new generation of digital generative artists blossomed. These

include artists such as Lia, Joshua Davis, Jared Tarbell, Mario Klingemann, and many more.

Around the same time, John Maeda and his Aesthetics and Computation research group at

MIT Media Lab developed the Design by Numbers program aimed at teaching programming to

artists. Developing this further, and inspired by Muriel Cooper’s Visual Language Workshop,

Casey Reas and Ben Fry’s open-source creative programming environment Processing was born

in 2001.

With the introduction of these new artist-friendly programming environments, and perhaps

more importantly — their respective communities, the generative and new media art movements

converged and grew exponentially.

Initially, the majority of these artists and works were situated more in the lineage ofgenerative

art. However, as more open-source tools and communities became available over the years, dif-

ferent technologies such as computer vision and physical computing became more accessible to

a wider and more diverse audience. This encouraged the rapid growth of interactive media art

in the early-mid 2000s. Some of these tools and communities include openFrameworks, Cinder,

vvvv, Max/MSP/Jitter, PureData, SuperCollider, TouchDesigner, QuartzComposer, Threejs,

p5js and many more.

2.2.6 Creative DL ← AI Art ∪ Creative AI

With the emergence of Deepdream, Neural Style Transfer, DCGANs and Char-RNN in 2015,

Deep Learning become a dominant paradigm within CAAD, and Creative DL was born.

Page 33

2.2. VERY BRIEF HISTORIES

Over the next five years, alongside the technical innovations being developed by DL re-

searchers; artists, designers and creative developers also became very interested in the field.

The terms AI Art and Creative AI began to emerge, referring to both the methods, and the

community of people who were interested in DL for artistic or other creative purposes. One

could point out that there are subtle differences between AI Art, which is focused on more

purely aesthetic applications, and Creative AI, which is broader and considers any creative

applications including design and architecture.

Despite having ‘AI’ in their names, these terms don’t necessarily refer to ‘Artificial Intelli-

gence’ in the general sense, but are typically more focused on specific modern DL technologies.

For this reason, in this thesis we group them under the single title Creative DL.

In this respect, the Creative DL community is very young. However, after a very rapid

growth, today it is thriving. This rapid growth is due to a number of reasons.

The continual release of new technological innovations, and the accompanying viral social

media response is most probably a strong driving force. We will summarise these in the next

section. Another factor for the rapid growth is an increase in accessibility. Some of the key

developments include the highly popular website Artbreeder (Simon, 2019), which we will discuss

shortly; the Machine Learning For Artists (ML4A) initiative led by Gene Kogan 2, a collection

of free educational resources devoted to familiarising artists with state-of-the-art deep DL; and

DL based artist-in-residency programs such as Google’s Artists & Machine Intelligence (AMI)

and Arts & Culture residency. Finally, efforts from community leaders such as Luba Elliot and

AIArtists.org3 helped organise and bring the community together and spread the word.

While the field is incredibly popular today, some of the earliest adopters of Creative DL

(from a purely artistic perspective, we will cover more technical/creative developments shortly)

include Addie Wagenknecht, Alex Champandard, Alex Mordvintsev, Alexander Reben, Allison

Parrish, Anna Ridler, Gene Kogan, Georgia Ward Dyer. Golan Levin, Hannah Davis, Helena

Sarin, Jake Elwes, Jenna Sutela, Jennifer Walshe, Joel Simon, JT Nimoy, Kyle Mcdonald,

Lauren McCarthy, Luba Elliott, Mario Klingemann, Mike Tyka, Mimi Onuoha, Parag Mital,

Pindar Van Arman, Refik Anadol, Robbie Barrat, Ross Goodwin, Sam Lavigne, Samim Winiger,

Scott Eaton, Sofia Crespo, Sougwen Chung, Stephanie Dinkins, Tega Brain, Terence Broad and

Tom White.

It is within the intersection of all of these threads that we situate our research, where we aim

to bring more Meaningful Human Control, and Realtime Continuous Control to the methods

available to artists, designers and creatives working within this area.

2.2.7 Creative Deep Learning — from a cultural perspective

The history of Deep Learning spans many fields, including not only Machine Learning and

Artificial Intelligence; but also information theory, computational complexity theory, control

theory, neuroscience, statistics, calculus, philosophy, psychology, cognitive science, and the

social sciences.

2https://ml4a.github.io
3https://aiartists.org

Page 34

https://ml4a.github.io
https://aiartists.org

2.2. VERY BRIEF HISTORIES

For this reason, we will not attempt to present a historic survey of Deep Learning, and

instead we will provide a very brief overview of the key technical innovations, from the point

of view of artistic and cultural significance. In other words, below we identify a number of

significant events and milestones within DL research, that left the confines of academia and

industry, reached broader audiences through mainstream and social media, and affected the

discourse within the arts and creative sectors. We focus primarily on visual outputs, as that is

the focus of our thesis. This topic could become a thesis in itself, so we will keep it very brief

and only provide the top-level headlines.

We will not discuss technical contributions or details in this summary, and we leave that for

section 2.3: Introduction to Deep Learning. For a thorough historic survey of the topic, please

see Schmidhuber (2015), and for more technical details, please see I. Goodfellow et al. (2016).

Deepdream (2015)

As we previously mentioned, the first significant milestone which brought DL into the imag-

inations of the mainstream creative world, came in 2015 with what was initially known as

Inceptionism, and later rebranded as Deepdream (Mordvintsev et al., 2015).

Deepdream sits in a lineage of research that is centred around the quest to understand

how deep image classification models work, by visualising their hidden layers or inverting them

(Erhan et al., 2009; Simonyan et al., 2013; Zeiler & Fergus, 2013; Mahendran & Vedaldi, 2014;

Dosovitskiy & Brox, 2015; Nguyen et al., 2015; Olah et al., 2017; Mordvintsev et al., 2018; Olah

et al., 2018).

The Deepdream algorithm, uses a gradient ascent optimisation method4, similar to those

we reference above, to generate images that maximise activity on particular hidden neurons or

layers. The output generated by this process, is fed back into the system to create feedback

loops that incrementally amplify the activity. Combining this with image transformations such

as scale or translation, at every iteration, allows for the creation of endless fractal-like animations

and ‘hallucinations’ of abstract, but recognisable, imagery.

4We discuss this in more technical detail in subsection 2.3.10: Gradient descent and backpropagation.

Page 35

2.2. VERY BRIEF HISTORIES

Figure 2.1: Still image from video “Deepdream is blowing my mind” (2015) by Memo Akten.

Creative Deep Learning as viral marketing campaign

Deepdream became incredibly viral and popular on social and mainstream media. For a brief

moment during the summer of 2015, certain corners of the internet were flooded with the puppy-

slugs and bird-lizards of Deepdream5, to which our own experiments did contribute6. The first

version of the code that was released was notoriously painful to setup due to a complex network

of dependencies (colloquially known as dependency hell). However, shortly after, a slew of

easy to use mobile apps, websites and business services were launched to ‘Deepdream-ify’ user

submitted images78910 with the hopes of cashing in on this new ‘AI powered art craze’.

Google themselves recognised the enormous PR and marketing potential of Deepdream, and

quickly launched an exhibition in San Francisco, collaborating with the well-established Gray

Area Foundation For The Arts11, a non-profit organisation with a mission to “apply art and

technology to create social and civic impact through education, incubation and public events”.

This exhibition, called “DeepDream: The art of Neural Networks”, launched in February

2016. In fact, our own work “All watched over by machines of loving grace: Deepdream edition”

(2015)12 was included in this exhibition, and was the highest selling work at the auction, for

$8000 (Fig. 2.2).

5https://twitter.com/search?q=deepdream.
6https://twitter.com/search?q=from%3Amemotv deepdream
7https://dreamscopeapp.com/deep-dream-generator
8https://deepdreamgenerator.com
9https://apkpure.com/deep-dream/com.deepdreamnow.app.deepdream

10https://www.ostagram.me
11https://grayarea.org/event/deepdream-the-art-of-neural-networks
12http://www.memo.tv/works/all-watched-over-by-machines-of-loving-grace-deepdream-edition

Page 36

https://twitter.com/search?q=deepdream
https://twitter.com/search?q=from%3Amemotv deepdream
https://dreamscopeapp.com/deep-dream-generator
https://deepdreamgenerator.com
https://apkpure.com/deep-dream/com.deepdreamnow.app.deepdream
https://www.ostagram.me
https://grayarea.org/event/deepdream-the-art-of-neural-networks
http://www.memo.tv/works/all-watched-over-by-machines-of-loving-grace-deepdream-edition

2.2. VERY BRIEF HISTORIES

Figure 2.2: “All watched over by machines of loving grace: Deepdream edition” (2015) at the “Deep-
Dream: The art of Neural Networks” exhibition at the Gray Area Foundation, February 2016.

Page 37

2.2. VERY BRIEF HISTORIES

The exhibition further fuelled mainstream interest in Deep Learning, and gained significant

attention from mainstream publications such as Gizmodo13, Vox14, Wired15, The Wall Street

Journal16, The Washington Post17, The Verge18, and The Guardian19.

In fact, as we were involved in this exhibition, we are very aware of the intense amount of

human labour and creative decisions involved in the production of these works. In that respect,

our research in this thesis is in some way a reaction to this press, and specifically to the narrative

that was constructed in the PR campaign promoted by Google.

As can be seen by looking at the headlines in Fig. 2.3, Google’s PR campaign had clearly

decided to spin the story such that “Google’s AI is creating art”. This was further exacerbated

by the fact that the stories themselves were mostly focused on Google’s AI technologies, with

very little mention of the artists, nor the exhibition’s collaborating partner, The Gray Area

Foundation For The Arts.

This would start a trend that would follow in subsequent years: using DNNs in the produc-

tion of creative media such as images or sounds as material for online viral marketing. Nvidia’s

ProGAN (Karras et al., 2017), StyleGAN (Karras et al., 2019) and StyleGAN2 (Karras et al.,

2020) are great examples of this. These are state-of-the-art generative image models that are

currently able to produce the most cutting-edge and photo-realistic results within the field. The

authors freely share their source code. However, needless to say, they suggest that in order to

achieve the results that they demonstrate in their papers and videos, they recommend using

Nvidia’s DGX-1 with 8x Tesla V100 GPUs — Nvidia’s own PC designed for Deep Learning,

costing in the order of hundreds of thousands of dollars. Arguably, the cost of a small Deep

Learning research team, combined with state-of-the-art results in image generation, and a hype-

driven online community hungry for dazzling content, can be a very cost-effective form of PR

and marketing.

Having said that, the research behind Deepdream itself is something that we do find fasci-

nating, from multiple perspectives. This includes the point of view of trying to understand how

and what DNNs learn from a technical perspective. This line of inquiry has led to equally fasci-

nating research, often involving the same group of researchers (Olah et al., 2017; Mordvintsev

et al., 2018; Olah et al., 2018). And we also find the research behind Deepdream fascinating

from the point of view of using machines that learn, to reflect on how humans make sense of the

world. A video and article that we wrote on this topic called “Deepdream is blowing my mind”

(2015)20 was shared widely on the internet, and we touch upon this in more detail throughout

this thesis.

However, while we have experimented significantly with Deepdream, generating images in

13https://gizmodo.com/this-google-dream-bot-inspired-artwork-is-mind-blowing-1761049728
14https://www.vox.com/2016/2/27/11588302/googles-tripply-ai-neural-nets-put-on-an-art-show
15https://www.wired.com/2016/02/googles-artificial-intelligence-gets-first-art-show
16http://blogs.wsj.com/digits/2016/02/29/googles-computers-paint-like-van-gogh-and-the-art-sells-for-

thousands
17https://www.washingtonpost.com/news/innovations/wp/2016/03/10/googles-psychedelic-paint-brush-

raises-the-oldest-question-in-art/?postshare=921457638736588
18https://www.theverge.com/google/2016/3/1/11140374/google-neural-networks-deepdream-art-exhibition-

san-francisco
19https://www.theguardian.com/artanddesign/2016/mar/28/google-deep-dream-art
20http://www.memo.tv/works/deepdream-is-blowing-my-mind

Page 38

https://gizmodo.com/this-google-dream-bot-inspired-artwork-is-mind-blowing-1761049728
https://www.vox.com/2016/2/27/11588302/googles-tripply-ai-neural-nets-put-on-an-art-show
https://www.wired.com/2016/02/googles-artificial-intelligence-gets-first-art-show
http://blogs.wsj.com/digits/2016/02/29/googles-computers-paint-like-van-gogh-and-the-art-sells-for-thousands
http://blogs.wsj.com/digits/2016/02/29/googles-computers-paint-like-van-gogh-and-the-art-sells-for-thousands
https://www.washingtonpost.com/news/innovations/wp/2016/03/10/googles-psychedelic-paint-brush-raises-the-oldest-question-in-art/?postshare=921457638736588
https://www.washingtonpost.com/news/innovations/wp/2016/03/10/googles-psychedelic-paint-brush-raises-the-oldest-question-in-art/?postshare=921457638736588
https://www.theverge.com/google/2016/3/1/11140374/google-neural-networks-deepdream-art-exhibition-san-francisco
https://www.theverge.com/google/2016/3/1/11140374/google-neural-networks-deepdream-art-exhibition-san-francisco
https://www.theguardian.com/artanddesign/2016/mar/28/google-deep-dream-art
http://www.memo.tv/works/deepdream-is-blowing-my-mind

2.2. VERY BRIEF HISTORIES

Figure 2.3: A selection of press covering the “DeepDream: The art of Neural Networks” exhibition at
the Gray Area Foundation, February 2016.

Page 39

2.2. VERY BRIEF HISTORIES

this manner is a painfully slow process, as it requires an optimisation consisting of many hun-

dreds or even thousands of iterations just to produce a single image. While there is scope for

Meaningful Human Control, it is very far from realtime, or continuous control. Furthermore, as

a reaction to the press coverage of the “DeepDream: The art of Neural Networks” exhibition,

we choose to focus our research specifically on the significance of the role of the human, in a

collaborative relationship with a generative system powered by a Deep Neural Network. This

is very much in contrast to the narrative put forward by Google’s PR campaign, and absorbed

by the mainstream media, that “Google’s AI is making art”.

It is from this perspective, that Meaningful Human Control, and Realtime Continuous Con-

trol emerge as points of emphasis in this thesis.

Char-RNN

Another significant milestone came in 2015, in a different domain. While the underlying re-

search is from 2013 (Graves, 2013), it was in 2015 that Andrej Karpathy published a very

influential blog post with the title “The Unreasonable Effectiveness of Recurrent Neural Net-

works” (Karpathy, 2015a), and released an open-source LSTM RNN implementation for training

character-level language models, which he called Char-RNN. This software was later ported

to different frameworks, and has been used by countless people to generate text in the style

of Shakespeare, cooking recipes, rap lyrics, Obama speeches, the bible, Seinfeld episodes, and

many more (Karpathy, 2015b). This software was also used by researchers such as Sturm (2015)

to generate midi notes in the style of folk music, and is used extensively by artists such as Ross

Goodwin21 and Allison Parish22 to produce very creative, generative text works. In section 3.3:

Realtime interactive text generation with RNN ensembles, we go back to the original research

that Char-RNN was implemented from (Graves, 2013), and we develop a new version that

interactively allows Realtime Continuous Control over the style of the text generated.

Neural Style Transfer (2015)

Yet another significant milestone came in 2015, in the form of Neural Style Transfer, which

became popular on social media with the hashtag #Stylenet23

The basic idea behind Style Transfer, is to apply the style of one image, onto another

image which provides the content. A typical example might be to apply the style from a Monet

painting, to a photograph of a portrait or a landscape. In this case, the photograph will be

transformed to look as if it were painted by Monet. While computational approaches to such

artistic stylisations have a rich history (Hertzmann, 2001; Kyprianidis et al., 2013), a data-driven

approach using DNNs were first demonstrated in (Gatys et al., 2015a). This original method

of Neural Style Transfer, used an optimisation approach to generate an image, such that

it satisfied both constraints of having stylistic information from the style image, and content

information from the content image. In this respect, similar to Deepdream, generating images

is again very slow, and generally takes in order of minutes for a single image. Furthermore, this

21https://rossgoodwin.com/
22https://www.decontextualize.com/
23https://twitter.com/search?q=stylenet

Page 40

https://rossgoodwin.com/
https://www.decontextualize.com/
https://twitter.com/search?q=stylenet

2.2. VERY BRIEF HISTORIES

method deals with a single style image. In other words, a photograph, can be stylised with only

one style image.

In Deepdream, the majority of images generated share a very strong common aesthetic,

namely puppy-slugs and bird-lizards. For this reason, while it became very popular incredibly

quickly, its popularity — at least within the broader Creative DL community — faded equally

quickly. However, Neural Style Transfer, allows for much easier customisation of the aesthetics,

since the aesthetics is determined by the style image. In other words, simply selecting different

style images, allows a user to radically alter the look of the generated images. For this reason,

the popularity of Style Transfer did not diminish as quickly as Deepdream, and artists such as

Sofia Crespo24 and Chris Rodley25 have developed unique techniques integrating Style Transfer

into their practice to make works that carry their personal expressive signature.

Many improvements were developed such as fast style transfer (Johnson et al., 2016), multi-

ple styles (Cui et al., 2017), texture synthesis (Risser et al., 2017), applications to videos (Ruder

et al., 2016) and spherical images (Ruder et al., 2018). Image analogies, as first put forward

by (Hertzmann, 2001), also beccame a popular area of research. This involves using low-colour

semantic maps, to generate high-fidelity images such as photographs or paintings. For this

reason, within the Style Transfer discourse, this became known as Semantic Style Transfer

(Champandard, 2016).

This topic would later be taken over by a very different technical approach using GANs,

which we will discuss shortly. And it is this implementation with GANs, that we build upon for

the work that we present in chapter 5: Learning to see: Digital puppetry through realtime video

transformation. Style Transfer has been adapted to run in realtime (Johnson et al., 2016), and

versions of it can support multiple styles (Cui et al., 2017). However, they are still limited to

the order of tens of different style images, while we are interested in the question regarding what

can deep generative models learn across a dataset of tens of thousands of images. Furthermore,

even if the number of style images were not an issue, typically within Neural Style Transfer, a

user explicitly selects one or more images from which the style is extracted and used. In other

words, the style of each image is modelled individually. However, in chapter 5: Learning to see:

Digital puppetry through realtime video transformation, we are again interested in modelling the

aesthetic qualities across the entire dataset of tens of thousands of images.

It is also worth noting, that the research being conducted with the field of Style Trans-

fer, also served as inspiration for similar research in different domains. These include Neural

Style Transfer for Audio Spectrograms (Verma & Smith, 2017), Time Domain Neural Audio

Style Transfer (Mital, 2017), Style Transfer for Musical Audio Using Multiple Time-Frequency

Representations (Barry & Kim, 2018), and Style Transfer for stories in text form (Kiros, 2015).

DCGAN (2015)

Generative Adversarial Networks (GANs) were first proposed as a means to avoid having

to explicitly formulate a loss function, and instead, learn such a function via an additional DNN

(I. J. Goodfellow et al., 2014).

24https://neuralzoo.com/
25https://chrisrodley.com/2017/06/19/dinosaur-flowers

Page 41

https://neuralzoo.com/
https://chrisrodley.com/2017/06/19/dinosaur-flowers

2.2. VERY BRIEF HISTORIES

While Goodfellow et al demonstrated their first GAN on toy problems in 2014, it was

again in 2015 that Radford et al demonstrated results that were incredible for the time, and

caught the public’s imagination. Combining convolutional layers26 with GANs, the researchers

demonstrated the potential of Deep Convolutional Generative Adversarial Networks

(DCGAN). A DCGAN is a deep generative model, as we discuss in section 2.1: Generative

models, that is able to capture the distribution of a dataset of images, such that a number of

meaningful manipulations are possible in a space of compact latent representations. Radford

et al’s DCGAN were relatively low quality, with image dimensions of only 64x64 pixels. Their

model also suffered from typical GAN issues of the time, such as deformed outputs and instability

during training. Despite this, the model did demonstrate many powerful latent manipulations

as we describe in subsection 2.1.3: Latent manipulations. Inspired by this, research into GANs

continued to intensify.

Some of the notable early adopters of unconditional DCGANs, in an artistic and creative

context, are artists such as Anna Ridler, Robbie Barrat, Jake Elwes, Mike Tyka, and Gene

Kogan, to name a few.

Within the Creative DL community today, unconditional DCGANs are undoubtedly the

most popular method of producing visual content. Initially this was with Radford et al’s original

DCGAN, later ProGAN (Karras et al., 2017), BigGAN (Brock et al., 2019), StyleGAN (Karras

et al., 2019) and at this moment in time, StyleGAN2 (Karras et al., 2020).

Pix2pix (2016), CycleGAN (2017)

Another significant milestone came a year after Radford et al’s DCGAN, with a conditional

GAN colloquially known as pix2pix, Image-to-Image Translation with Conditional Adversarial

Networks (Isola et al., 2016). As we have described in subsection 2.1.2: Conditional generative

models, pix2pix is a conditional GAN, where the conditioning input is an image. This allows

the model to effectively transform an input image, into some kind of output image.

Pix2pix was shown to be very successful at learning various kinds of image mappings. These

include Style Transfer-like transformations; image analogies (Hertzmann, 2001) as we mentioned

above, transforming low-colour semantic maps into photographic detailed images; colouring

black and white images; and transforming photographs between night and day, or different

seasons.

For this reason, pix2pix also became quite popular among the early adopters of Creative

DL. One of the famous early applications of pix2pix came in the form of an online edges2cats

drawing application (Hesse, 2017). In this online app, users can sketch on-screen, and the

application then tries to turn the simple line drawings into photorealistic images of cats. This

further fuelled the popularity of pix2pix.

Pix2pix is also the architecture that we use in chapter 5: Learning to see: Digital puppetry

through realtime video transformation. We develop a parametrisable, live video processing and

transformation system. We implement a custom training pipeline that generates image pairs on

the fly, greatly improving the Generator’s ability to generalise to novel input images. We also

introduce a realtime image processing pipeline, that exposes human-understandable parameters

26We discuss these in subsection 2.3.15: Convolutional Neural Networks (CNN).

Page 42

2.2. VERY BRIEF HISTORIES

that can be manipulated continuously in realtime; and also transforms any input image to a

space that allows the Generator network to further transform the image to a desired target

image space.

One of the major constraints of Pix2pix, is that the training process requires hundreds, if

not thousands, of matching pairs of images. In other words, the training data must consist of

(input, target) image pairs, and the model tries to learn a mapping from the input image to

target image. This is not always possible, and the following year, CycleGAN was released,

addressing this issue by allowing unpaired image-to-image translation (Zhu et al., 2017).

Within the Creative DL community, while unconditional DCGANs and pix2pix are widely

used, CycleGAN did not become as popular. Helena Sarin and Mario Klingemann are amongst

notable artists who are using CycleGAN within their artistic practice.

AlphaGo (2016), AlphaZero (2018)

Another important milestone that came in 2016, is the super-human Go playing AI AlphaGo

(Silver et al., 2016), which was later developed into the more diverse, super-human Go, Chess

and Shogi playing AI AlphaZero (Silver et al., 2018).

Game-playing AI is not a topic that we generally touch upon in this thesis. And while this

may not typically be considered a ‘creative output’, we include it in this section for a number of

reasons. First, an AI system such as AlphaGo beating human Go champions such as Lee Sedol

and Fan Hui, is a very important milestone both culturally, and technically.

Second, it can be argued, that AI systems such as AlphaGo and AlphaZero, do exhibit

creative behaviour in their decision making process. This is reflected in countless commentaries

by domain experts such as Go 9-dan pro Michael Redmond, chess grandmaster Garry Kasparov,

and many others.

Third, which is perhaps the most relevant reason, is that one of the underlying methods

used in AlphaGo and AlphaZero, is very similar to a method that we developed and use in one

of our early studies.

This method involves combining a Monte Carlo Tree Search (MCTS) driven agent, with a

Convolutional Neural Network (CNN), to evaluate the state value at any given point in time

during a simulation rollout.

The purpose of our AI agent is not to play games per se. Instead, we use an agent-based

approach to collaborative, generative sketching, and we discuss this in section 3.2: Collaborative

generative sketching with MCTS and CNNs.

Sketch-RNN (2017)

The agent-based collaborative, generative sketching method that we mention above, was not

able to produce the realistic results that we were looking for, and we discuss the reasons for

this in more detail. However, a year after our work, researchers from Google released Sketch-

RNN (Ha & Eck, 2017). This is both a paper; and an accompanying online, collaborative,

generative sketching application27. The researchers use a very different technical approach to

27https://magenta.tensorflow.org/sketch-rnn-demo

Page 43

https://magenta.tensorflow.org/sketch-rnn-demo

2.2. VERY BRIEF HISTORIES

ours, however the motivations that they address, and the application that they build, are the

same as we describe in our study. Namely, this is to build a generative system that is able

to model and sketch images not as dense, pixel-based representations, but as sparse vector

representations. And most importantly, to allow for a human to meaningfully interact with

the system while it is sketching. We discuss all of these points in more detail in section 3.2:

Collaborative generative sketching with MCTS and CNNs.

Progressive Growing of GANs, ProGAN (2017)

Another key milestone came in 2017, when researchers from Nvidia released seminal research

known as Progressive Growing of GANs (ProGAN) (Karras et al., 2017). Their progressively

growing architecture — combined with immense GPU requirements — allowed them to overcome

the long standing issues with DCGANs not being able to capture cohesive structure at larger

scales. The researchers were able to produce very realistic looking images at much higher

resolution and quality compared to previous DCGANs. In just two years, DCGANs went from

generating low quality, 64x64 pixel resolution images in (Radford et al., 2015); to very high

quality, 1024x1024 pixel resolution images. With this, the focus of mainstream research began to

shift. Up until this point, the majority of research within GANs were focused on the engineering

side of trying to improve the quality and stability of GANs. Once Nvidia demonstrated that

GANs could indeed produce high quality images, more research teams started to shift into

investigating ways of allowing users to control what GANs produced.

ProGAN is one of the architectures that we use as a base in the research that we present in

chapter 6: Deep Meditations: Latent storytelling, where we investigate methods of story telling

and Meaningful Human Control over narrative in the latent space of a generative model. As

we discussed in section 2.1.3: Latent walks, typically the videos produced using an image based

DCGAN such as ProGAN, are random walks in latent space. In other words, a number of

points are sampled randomly within the latent distribution of the model, and then these points

are interpolated, and a video is produced. Effectively, this video has a random narrative. The

problem that we seek to address in our study, is to devise a method that allows Meaningful

Human Control over the narrative of a story constructed in the latent space of an unconditional

generative model, such as ProGAN. In this respect, our method is not strongly reliant on

ProGAN, but can and does work with other unconditional generative image models such as

BigGAN (Brock et al., 2019), StyleGAN (Karras et al., 2019) and StyleGAN2 (Karras et al.,

2020). However, we primarily use ProGAN, since it was the state-of-the-art unconditional

generative image model at the time that we conducted this study.

BigGAN (2018)

Despite the incredible image quality exhibited by ProGAN, this is generally limited to cases

where the dataset is relatively constrained in terms of diversity. In other words, it is possible to

successfully train a ProGAN, on a dataset such as CelebA-HQ (Karras et al., 2017), consisting

of tens of thousands of images of faces perfectly cropped and aligned in the same manner. In

this case, such a ProGAN model is able to generate very believable samples at image resolutions

Page 44

2.2. VERY BRIEF HISTORIES

as high as 1024x1024 pixels. However, incredibly diverse and complex datasets such as Ima-

geNet (J. Deng et al., 2009), which consists of millions of images across thousands of different

categories, still represent problems for ProGAN. This is to say that, ProGAN architecture is

unable to model such a diverse dataset, and sampling from such a model, produces unrealistic

images that do not represent the data distribution in terms of fidelity or variety.

In 2018, researchers at Google attempt to address this issue by investigating the impact of

increasing scale. They leverage Google’s compute resources to increase the parameter count by

four-fold, and the batch-size by eight-fold, compared to the state-of-the-art at the time. The

resulting model, colloquially known as BigGAN, demonstrates great potential in its ability

to capture the data distribution, both in terms of variety, and fidelity, outputting images at

resolutions up to 512x512 pixels without the need for progressively growing architecture. When

the researchers released pretrained models, this again captured the attention and imagination

of many artists, designers, and researchers from different disciplines, and BigGAN experiments

became wildly popular on social media28, some of which were our own29.

In addition to ProGAN, BigGAN is one of the architectures that we investigate in chapter 6:

Deep Meditations: Latent storytelling. However, since training BigGAN is not possible with the

hardware that we have access to, we test our methods on the pretrained model released by the

researchers. This is in fact one of the motivations behind the method that we present. In that,

we set out to devise a method that would work with pretrained models, when we do not have

the possibility to train our own models.

GANBreeder (2018), ArtBreeder(2019)

BigGAN was also the catalyst for computational artist and designer Joel Simon’s wildly suc-

cessful and popular website ArtBreeder (Simon, 2019). Simon was initially inspired by the

earlier large-scale online collaborative evolutionary art app Picbreeder (Secretan et al., 2008).

On Picbreeder, users can browse parametrically generated images, and select their favourites in

order to branch them. The selected images undergo subtle random mutations, and they evolve

to produce new images. Most crucially, Picbreeder is also an online community whereby users

can view and select from the images generated by other users. Across many generations and

many users, entirely brand new images are created in a massive online collaboration.

Simon realised that a very similar massively collaborative evolutionary approach could apply

to generative deep models, due to the fact that they possess a latent code z, which is in effect

a very compact representation of the image, such that minor modifications to the latent code,

results in minor modifications to the image generated. The first version of the online app came in

2018 with the name GANBreeder, and only supported the pre-trained BigGAN model as released

by the researchers (Brock et al., 2019). Later renaming this to ArtBreeder in 2019, Simon

added new StyleGAN and StyleGAN2 models trained on datasets such as portraits, anime, 3D

characters, landscapes, and album covers. The current version of the website also provides the

latent manipulation methods that we describe in subsection 2.1.3: Latent manipulations. All

of these operations can be performed via a very simple-to-use online GUI, making the system

28https://twitter.com/search?q=%23biggan
29https://twitter.com/search?q=from%3Amemotv biggan

Page 45

https://twitter.com/search?q=%23biggan
https://twitter.com/search?q=from%3Amemotv biggan

2.2. VERY BRIEF HISTORIES

very accessible. As a result, ArtBreeder is incredibly popular, and used widely by many people.

According to the website, at the time of writing, over 72 million images have been generated

using the online app.

StyleGAN (2019), StyleGAN2 (2020)

After ProGAN, researchers at Nvidia would go on to introduce two new architectures known

as StyleGAN (Karras et al., 2019), and StyleGAN2 (Karras et al., 2020). In this research, they

build upon their work in ProGAN to minimise undesirable artefacts in the images generated,

as a result, producing even more realistic results. The biggest contribution however, comes in

the form of an updated Generator architecture that learns to separate multi-scale attributes in

an unsupervised manner. Inspired by the Style Transfer literature, StyleGAN and StyleGAN2

allow for the generation of random samples such that the content and style can be controlled

independently. For example, when generating a sample of a random face from a model trained on

portraits, we can sample a random face image, and then modify the high-frequency details such

as hair or skin characteristics like wrinkles, freckles or colour, without affecting the underlying

bone structure or pose. This is made possible via an additional embedding that the authors

introduce known asw−space. This is an intermediate latent space whereby the original z-vector

is fed through an additional mapping network f , to produce an array of w-vectors. As opposed

to being conditioned on a single z-vector, as is typical in a DCGAN, each of the convolutional

layers of the Generator is conditioned on a corresponding w-vector. As a result, manipulating

multiple w-vectors instead of a single z-vector allows us to control the samples generated from

the model in a much more precise mannner.

ArtBreeder leverages this and provides a very simple to use GUI which allows users to mix

between the style and content of different samples independently.

The introduction of the StyleGAN architecture in 2019, marks another important milestone

in which Meaningful Human Control is, perhaps for the first time, becoming a prominent area

of research within creative generative DL. And as mentioend, in recent years, this is an area

that is now gaining more interest from DL researchers (Park et al., 2019; Karras et al., 2019;

Simon, 2019; Bau et al., 2019; Karras et al., 2020; Härkönen et al., 2020; Jiang et al., 2020;

Broad et al., 2020).

2.2.8 Computational Creativity

As is sometimes typical in academia, separate fields might exist which at first glance may appear

to be covering the same topics, but in fact, are asking subtly different questions, and as a result

exist as parallel fields of research. Computational Creativity is such a field of research which

is important to mention in the context of Creative DL. While there is indeed plenty of overlap

between the fields of Computational Creativity, and Creative DL as we discussed above, they

exist as distinct fields.

Computational Creativity is a slightly more mature field in comparison to Creative DL, as

it is not focused on the technology of DL, in fact it is not focused on any technology at all, but

is based around more of a philosophical question (Boden, 1998).

Page 46

2.2. VERY BRIEF HISTORIES

Whereas the field of AI was born questioning whether a machine can think, or exhibit

intelligent behaviour (Turing, 1950), Computational Creativity questions whether a machine

can be creative, or exhibit creative behaviour (Jordanous, 2014).

Computational Creativity research is not only concerned with the creative output of the

algorithms or technical implementation details, but is equally — if not more — concerned with

the philosophical, cognitive, psychological and semantic connotations of machines exhibiting

creative behaviour, or acting creative. In (McCormack & D’Inverno, 2012) and related papers

(Mccormack, 2014; McCormack et al., 2014), the authors ask — and attempt to answer —

questions regarding computers and creativity, creative agency and the role of creative tools.

As part of the philosophical angle of Computational Creativity research, there is often an

emphasis on fully autonomous systems. The field includes research into computational models

of serendipity (Corneli et al., 2014), or software which exhibits intentionality, and is able to

justify the decisions it makes when creating a piece of work by framing information in the

context of the work (Colton & Wiggins, 2012). This can be thought of as analogous to an artist

making deliberate, purposeful decisions at every step of the creative process. This aspect of

computational creativity is sometimes referred to as strong computational creativity (Al-rifaie

& Bishop, 2015) — analogous to John Searle’s strong (vs weak) AI (Searle, 1980). The field is

also accompanied by certain formalisms, proposed models and theories of creativity to ensure

the systems’ behaviour complies with what is thought to be ‘creative behaviour’ (Colton et al.,

2011). Within this context there has been research into systems that conceive fictional concepts

(Cavallo et al., 2013), design video games (M. Cook et al., 2014), write poetry (Colton et al.,

2012), and other inherently ‘creative’ tasks.

We can summarise this by stating: the field of AI is interested in hypothesising, building

and testing computational models of intelligence, while Computational Creativity is interested

in hypothesising, building and testing computational models of creativity. In contrast, Creative

DL is interested in developing and applying state-of-the-art DL techniques to the production of

artistic works and creative media.

While we do find the research within Computational Creativity to be very intriguing, these

discussions, particularly the formalisms and models of creativity, are not within the scope of

our research.

It could be argued that our research is interested in weak computational creativity — particu-

larly semi-autonomous, collaborative creativity where human interaction in the creation process

is not only relevant, it is essential — to create interactive systems whereby the human user can

guide the computationally creative system in realtime.

2.2.9 Machine Learning for Artistic, Expressive Human Computer Interac-

tion (AE-HCI)

We feel that it is also important to take a moment to acknowledge the involvement of ML in the

production of artistic works and creative media, prior to DL. This is a very rich field, especially

within the areas of music and sound. Within these topics however, we will focus again on both

Meaningful Human Control, and Realtime Continuous Control. One of the key areas that ML

has contributed to within this intersection, is in the recognition and interpretation of gestures,

Page 47

2.2. VERY BRIEF HISTORIES

and more broadly speaking, aiding Artistic Expressive Human Computer Interaction (AE-HCI)

— Human Computer Interaction for artistic expression.

In our research, we do not set out to design generative systems which allow for embodied or

gestural interaction per se. We do however, take the principles that we describe below as strong

guidelines, and we see embodied and gestural interaction as an end goal. In other words, in our

research, we seek to introduce modes of interaction which could relatively easily be translated

into embodied and gestural interfaces. We reflect on these end goals in the subsequent chapters

when we present each of our studies, and the modes of interaction that we have developed for

them.

In (Dourish, 2001) Paul Dourish proposes new models for interactive system design. Em-

bodied Interaction is interaction embodied in the environment, not just physically, but as a

fundamental component of the setting. It is an interaction design that takes into consideration

the ways we experience the everyday world. This philosophy is particularly applicable when

designing gestural interfaces for artistic expression.

As mentioned before, Myron Kruger was also interested in exploring Responsive Environ-

ments, in which ‘interaction is a central, not peripheral issue’ (Krueger et al., 1985). He saw

potential in this area for the arts, education, telecommunications as well as general human-

machine interaction and was motivated by creating playful environments which explore the

perceptual process we use to navigate the physical world.

Human Computer Interaction for music — or Musician-Computer Interaction (MCI) (Gillian,

2011) — is one of the more academically established fields related to AE-HCI, more so than ges-

tural Human Computer Interaction for visual composition. However, many of the requirements

for interaction design and particularly gesture recognition are similar. Both require low-latency,

realtime systems that can be configured on-the-fly. They need to be capable of detecting a wide

range of gestures, some AE-HCI systems might concentrate on subtle finger movements, while

others track whole bodies of multiple people. Furthermore, the ability to detect and respond to

subtle variations in gestures is essential to convey expressivity (Caramiaux et al., 2014). Also, in

performance situations, gesture recognition need not be generalised across different people, but

training can be specific to the performing individual to maximise personal expression (Gillian,

2011).

Due to these similarities, in our research, Musician-Computer Interaction is taken as a base

model for expressive gestural interaction, and will be built upon for general AE-HCI.

Gestures and ‘Expressive Gesture’

A survey of definitions of gesture, especially in relation to music can be found in (Cadoz &

Wanderley, 2000). The authors conclude that the many proposed definitions do not adapt to

gesture in music, but they purposefully avoid providing a new definition, focusing instead on

which aspects of the various definitions might apply.

In (Camurri et al., 2004) the authors define Expressive Gesture as “responsible of [sic]

the communication of information that we call expressive content” where “Expressive content

concerns aspects related to feelings, moods, affect, intensity of emotional experience”. This is

the definition of Expressive Gesture that is used in our thesis, complemented with the “natural,

Page 48

2.2. VERY BRIEF HISTORIES

spontaneous gestures made when a person is telling a story”, as described in (Cassell & Mcneill,

1991). Particularly those with the semiotic classification of metaphoric, indicating abstract

ideas (McNeill & Levy, 1980). A wider study of gesture expressivity and its dimensions —

especially in the context of musical performance and Human Computer Interaction — can be

found in (Caramiaux, 2015).

Gestural Interaction (and Gesture Recognition) for AE-HCI

Gestural interaction (and gesture recognition) is a very broad field. In this section, we focus on

applications within AE-HCI, particularly in context of Machine Learning. Wider surveys can

be found in (Mitra & Acharya, 2007; Gillian, 2011; LaViola Jr., 2014).

Artificial Neural Networks (ANN) are particularly useful for AE-HCI as they are able to map

m-dimensional input vectors to n-dimensional output vectors with a learned non-linear function,

allowing them to control complex parameter-sets simultaneously. This is especially useful in

regression tasks, when manipulating continuous parameters of a generative visual or sonic model.

They can be equally successful in classification tasks, for recognising gestures and triggering

desired visual or sonic outputs. In 1992 Michael Lee et al used ANNs inside the MAX/MSP

musical programming environment to investigate adaptive user interfaces for realtime musical

performance (Lee et al., 1992). They were able to successfully recognise gestures from a number

of devices including a radio baton and a continuous space controller. In 1993, Sidney Fels and

Geoffrey Hinton used ANNs to map hand movements captured via a data-glove, to a speech

synthesiser (Fels & Hinton, 1993). They achieved realtime results with a vocabulary of 203

gestures-to-words demonstrating the potential of Neural Networks for adaptive interfaces. Now,

with many open-source implementations, and also integrated into Rebecca Fiebrink’s Wekinator

(R. Fiebrink et al., 2009) and Nick Gillian’s GRTGui (Gillian, 2011), ANNs are widely used for

creative gestural interaction.

Many other Machine Learning techniques have been used for gesture recognition, with differ-

ent specific use cases. These include K-Nearest Neighbours, Gaussian Mixture Models, Random

Forests, Adaptive Naive Bayes Classifiers and Support Vector Machines to classify static data;

Dynamic Time Warping and Hidden Markov Models can be used to classify temporal gestures;

Linear Regression, Logistic Regression and Multivariate Linear Regression can be used for real-

valued outputs as opposed to classifying the input. A survey of Machine Learning techniques

and applications for musical gesture recognition can be found in (Caramiaux & Tanaka, 2013).

As mentioned previously, in an artistic, performative context, detecting subtle variations

of gestures is vital to conveying expressivity. In (Bevilacqua & Muller, 2005; Bevilacqua et

al., 2009), Bevilacqua et al design continuous gesture followers that allow temporal gesture

recognition in realtime while the gesture is still being performed. This algorithm returns time

progression information and likelihood, enabling performers to alter speed and accuracy of the

gesture to control parameters of their generative model.

In (Caramiaux et al., 2014; Caramiaux, 2015) Caramiaux et al develop systems that go

beyond classification of the gestures, to characterise the qualities of the gesture’s execution.

They use computational adaptive models for identifying temporal, geometric and dynamic vari-

ations on the trained gesture. Returning this information in realtime to the performer as they

Page 49

2.2. VERY BRIEF HISTORIES

are executing gestures, enables the performer to map the variations to parameters such as

time-stretching samples, modulations, and volume or custom synth parameters.

In (Kiefer, 2014) Kiefer investigates the use of Echo State (Recurrent Neural) Networks

(ESN) as mapping tools, to learn sequences of input gestures, and non-linearly map them

to multi-parameter output sequences. The research concludes that ESNs demonstrate good

potential in pattern classification, multi-parametric control, explorative and non-linear mapping,

but there is room for improvement to produce more accurate results in some cases.

Interactive Machine Learning (IML)

As discussed above, ML offers very successful tools for the recognition of patterns and gestures.

However using Machine Learning can be difficult and inaccessible to many, due to the technical

knowledge and time required in building classifiers and setting up the signal processing pipeline

(Fails et al., 2003).

Interactive Machine Learning (IML) is a family of human-in-the-loop techniques led by

principles from Human Computer Interaction (R. A. Fiebrink, 2011).

While ML brings huge advancements to the fields of data analysis and pattern recognition,

IML seeks to improve how ML systems can be used. Particularly, expanding its user-base from

dedicated computer scientists and closely related disciplines, to a much wider audience. One of

the ways in which this is made possible, is via a Graphical User Interface (GUI) front end to a

ML backend, with data streamed live to and from the ML backend. In this case, the training

and predictions can be performed in realtime, without writing any code making it a perfect

choice for performance and AE-HCI.

Rebecca Fiebrink et al’s previously mentioned Wekinator software released in 2009 is an

example of such an IML system aimed at musical performance (R. Fiebrink et al., 2009). Using

a GUI, users are able to setup, train and modify parameters of an ANN. The software also allows

other applications — such as existing music software, visual software, or other custom generative

software — to stream data to the Wekinator using a UDP-based protocol commonly used in

inter-app and inter-device communications called Open Sound Control (OSC) (Wright & Freed,

1997). As the Wekinator receives this data, it runs it through a Machine Learning model and

streams back predictions in realtime. Using this tool, artists, musicians, dancers, performers

and researchers from other fields can train and map gestures to arbitrary outputs, such as

notes, effects, images and sounds with little-to-none technical Machine Learning experience and

programming.

Nick Gillian’s Gesture Recognition Toolkit (GRT) from 2011 (Gillian, 2011) provides similar

functionality but with more emphasis on the signal processing / gesture recognition pipeline.

It lacks built-in input functionality such as webcam or microphone inputs, but has a number of

built-in pre-processing, feature extraction and post-processing algorithms. Examples for these

are Fast Fourier Transform, Principal Component Analysis, various filters, derivatives, dead

zones and more. In addition to being an open-source application, the underlying codebase is

released as a C++ framework allowing it to be integrated into bespoke applications.

Tools like these enable both technical and non-technical users to quickly setup, train and

test models for gesture recognition and gestural interaction. Without writing any code, users

Page 50

2.3. INTRODUCTION TO DEEP LEARNING

can start streaming input data from their sensors, and receive predictions in their application

of choice, enabling them to gesturally create, manipulate and perform audio-visual media in

realtime. An example of Fiebrink’s Wekinator can be seen in the band 000000Swan’s audio-

visual shows gesturally driven using a Microsoft Kinect and commercially available sensor bow

(Schedel et al., 2011). In addition, it has also been applied in contexts such as workshops with

people with learning and physical disabilities (Katan et al., 2015).

2.3 Introduction to Deep Learning

In this section, we take a slightly more technical approach to Deep Learning. We introduce

key concepts, concentrating on those that are most related to our research. Where relevant, we

provide theoretical and mathematical foundations, which we will build upon in later chapters.

We do not present the developments in a chronological order, neither do we discuss parallel or

orthogonal developments. Instead, here we focus on only the technical foundations that will

be necessary for the rest of this thesis. Where relevant, we also highlight key issues which

we will address in later chapters. For more comprehensive technical explanations, please see

I. Goodfellow et al. (2016), and for a thorough historic survey of Deep Learning, please refer to

Schmidhuber (2015).

2.3.1 Overview

Deep Learning (DL) is a branch of Machine Learning (ML), which in turn is a branch of Artificial

Intelligence (AI).

We will unpack these ideas more formally in the following sections. However, for the purposes

of this introduction, we can loosely define Machine Learning, especially as it relates to our

research, as: designing behaviours through examples (R. A. Fiebrink, 2011; Penny, 2017).

When we wish to design a system that performs a specific behaviour, a typical approach

might be to explicitly implement the behaviour. In order to do this however, we would first

need to identify exactly how the behaviour functions. For a very complex behaviour, we would

need to break it down step by step, to the degree that we can implement it. Unfortunately,

there are many situations where we simply might not know how a desired behaviour functions.

For example, predicting which player is more likely to win during a game of Go, by looking

at the state of the board, is not a behaviour that we currently know how to explicitly define.

There are also many situations, where we might tacitly be aware of the behaviour, without

being consciously and explicitly aware of the steps required to replicate it. For example, we can

often easily recognise objects in images, and words in sounds. Yet, we might find it impossible

to explicitly formulate behaviours which can identify those exact same objects and words.

In these situations, we can use Machine Learning algorithms to implement those behaviours,

by providing examples of the desired behaviour.

In other words, the desired behaviour can be thought of as a function f , which maps an

input x to an output y. We can think of a non-ML approach, as manually identifying and

implementing the function f . Whereas a ML approach, consists of providing examples of x and

y to some learning algorithm, and the algorithm figures out what the function f should be.

Page 51

2.3. INTRODUCTION TO DEEP LEARNING

Deep Learning is the application of this approach to very complex and high-dimensional

data — such as images with millions of pixels or sounds with tens of thousands of samples per

second — via deep parametrisable computation graphs that learn hierarchies of representations

(LeCun, 2014; I. Goodfellow et al., 2016). In essence, these algorithms are capable of identify-

ing complex relationships in vast amount of Big Data. They can recognise patterns and find

regularities in data, that either we are aware of but unable to explicitly formulate, or we are

not aware of at all. Thus, using DL enables us to create systems which exhibit more intricate

and complicated behaviour than we would otherwise be able to implement.

Furthermore, even though the behaviour of these systems will be statistically consistent

with the examples that we provide it, it is very probable that they will uncover patterns that

we were unaware of. As a result, they are very likely to exhibit unexpected behaviour.

This is a quality of DL which is integral to our research. Our goal is to try and exploit

and tame this unexpected behaviour, allowing human users to experiment with and explore this

new terrain, while simultaneously providing enough meaningful control, such that they can also

creatively express themselves, as opposed to producing entirely ‘random’ outputs.

2.3.2 Machine Learning (ML)

More formally speaking, ML is a field of Artificial Intelligence that investigates computational

systems that can improve their performance, on a particular task, as measured by a specific

metric, as they gain more experience with that task (Mitchell, 1997). In this context, the term

experience, refers to observations, examples, or in other words: data.

ML algorithms build models based on observations, and they effectively learn rules, or

functions, to make optimal decisions or predictions. There are a very large number of different

approaches that fall within the scope of ML. A very in-exhaustive list includes algorithms such as

linear regression, logistic regression, polynomial regression, support vector machines, K-means,

expectation maximisation, genetic algorithms, markov chains, decision trees, random forests,

naive bayes, bayesian networks, Artificial Neural Networks, and many many more. Each of

these methods, have qualities that make them more or less suitable to a particular problem. For

example, we would choose a particular approach, depending on the complexity of the problem,

the nature of the expected solution, and the number of data points available.

2.3.3 Artificial Neural Networks (ANN)

Artificial Neural Networks (ANN) are just one of these different approaches to Machine

Learning. An ANN consists of a graph, a network of neurons (McCulloch & Pitts, 1943),

very loosely inspired by biological Neural Networks. A numeric weight value is assigned to every

connection in the network. Each neuron performs a weighted sum of all of its inputs, effectively

a linear transformation, and optionally applies some non-linear activation function (such

as tanh, sigmoid, ReLU etc), and then passes the result onto the next neuron in the network

for a similar transformation.

A Neural Network acts as a function f , that when given an input x, computes an output

y. The structure and shape of the network, and the activation functions used on each neuron,

define the architecture of the ANN. The function f that the ANN computes, is defined by its

Page 52

2.3. INTRODUCTION TO DEEP LEARNING

architecture, and collectively, all of the weights of each connection. The weights of the ANN

are also known as its parameters, and is typically denoted by Θ. In other words, we can

define the function computed by the ANN as f(Θ) : x 7→ y. We will see in later sections, that

the act of training an ANN, involves solving for the parameters Θ in order to obtain a desired

function.

2.3.4 Feed-forward (FNN) vs Recurrent Neural Networks (RNN)

When there are no cyclic connections in the graph, and data always flows in one direction, then

the ANN is called a Feed-forward Neural Network (FNN). When there are cyclical connec-

tions, it is called a Recurrent Neural Network (RNN). RNNs allow the Neural Network to

model temporal or sequential data. We will examine RNNs in more detail in subsection 2.3.19:

Recurrent Neural Networks (RNN).

2.3.5 Layers

Typically, ANNs are neatly arranged in layers, as opposed to consisting of more unorganised

layouts as is more common in biological neural networks. This makes it simpler to mathemat-

ically model and computationally implement ANNs, especially when using highly parallelised

Graphics Processing Units (GPU) or Tensor Processing Units (TPU). Each layer — which might

consist of thousands or even millions of neurons — can be treated as a single, high-dimensional,

multi-variate unit. The ANN can be thought of as simply a chain of layers (or units). Each

layer receives a single vector from the previous layer in the chain, and outputs a single vector

to the next layer in the chain. The collection of weights between two adjacent layers, can be

represented as a weights matrix. We can also clearly define the input layer as the first

layer in the ANN which receives the inputs as a vector, the output layer as the results of the

computation performed by the ANN, and any layers in between are called hidden layers.

2.3.6 Multi-Layer Perceptrons (MLP)

When an ANN is arranged in fully connected layers, with no cyclic connections, then the ANN

is known as a Multi-Layer Perceptron (MLP) (Rumelhart et al., 1985). A simple example

of this can be seen in Fig. 2.4.

Page 53

2.3. INTRODUCTION TO DEEP LEARNING

input

hidden

output

xx

h

y

h

y

xt

ht

yt

Wxhx Wxhxt

Whhht-1

Whyh Whyht

+bh +bh

+by +by

a.) b.) c.)

dim=4

dim=5

dim=3

Figure 2.4: a.) A three layer, feed-forward, Multi-Layer Perceptron with a single hidden layer. In this
diagram, all of the neurons are displayed, and we can see that the network consists of 4 inputs and 3
outputs, and a 5 neuron hidden layer. b.) The same MLP, displayed with layers collapsed into multi-
variate units allowing simpler visualisation, mathematical modelling and computational implementation
using vectors. The dimensions of each layer is indicated with dim, W xh and W hy denote the weights of
the connections from the input layer to the hidden layer, and hidden layer to the output layer respectively,
bh and by denote the bias vectors (which are typically included as parts of the weights or parameters) of
the hidden layer and output layer respectively, and ϕ denotes the activation functions. c.) A Recurrent
Neural Network, with a cyclic connection on the hidden layer.

Each layer of a MLP can be thought of as a multi-variate unit, which transmits a vector to

the next layer, where the value of each layer is a function only of the previous layer’s output.

For a MLP with a single hidden layer such as the network presented in Fig. 2.4, this can be

formulated as

h = ϕh(W xhx+ bh), (2.3)

y = ϕy(W hyh+ by), (2.4)

where x,h,y are respectively the input, hidden and output vectors. We adopt the notation

W jk and bk to respectively denote the weights matrix from layer j to k and the bias vector for

layer k, where the subscripts x, h, y respectively denote the input, hidden and output layers.

ϕk is an element-wise (usually non-linear) activation function for layer k such as tanh, logistic

sigmoid where ϕk(x) = 1/1 + e−x, or ReLU where ϕk(x) = max(0, x) (Nair & Hinton, 2010) or

one of many others. This architecture forms the foundation for all of the architectures that we

present in the following sections.

2.3.7 Universal function approximators, expressive power

When non-linear activation functions are not applied to any of the layers, then the entire MLP

effectively acts as a linear transformation — which is not desirable if the data that the ANN is

trying to model is non-linear. However, when non-linear activation functions are applied, then

it has been shown that even a three-layer MLP, with a single hidden layer, can approximate any

continuous function to an arbitrary desired level of accuracy (Hornik, 1991). For this reason,

such Neural Networks are known as universal function approximators.

Page 54

2.3. INTRODUCTION TO DEEP LEARNING

However, not any three-layer MLP can model any function. The expressive power of

a Neural Network, is defined by its architecture (Lu et al., 2017). This poses one of the key

challenges when working with ANNs, in that we must design a Neural Network architecture

such that it provides sufficient expressive power for the data that we are trying to model.

Furthermore, in the context of learning, designing an architecture which provides sufficient

expressive power is not our only challenge. Even in the situation that an ANN’s architecture does

provide the expressive power required to model a particular function, that does not guarantee

that the ANN will be able to learn that function, especially from the data that we have available.

We will explain the reasons in the following sections.

Note that in the case of an MLP, the architecture of the network can be simplified to thinking

of the depth of the network (how many layers the network consists of), and its width (how

many neurons are in each layer). These architectural variables, are collectively referred to as

hyperparameters. (This term, helps distinguish them from the parameters of the Neural

Network, which are its weights Θ).

2.3.8 Learning

As we mentioned previously, the function f that an ANN will compute, is determined by the

network’s architecture, and its weights Θ. Within the context of ML, we generally do not know

what this function is. Instead, we have observations, i.e. training examples, which we wish

to fit a function to. Typically, we construct an ANN with a pre-defined architecture, which we

select based on experience (this is not always the case, we will expand on this in later sections).

We then treat the weights of the ANN, as unknown parameters which we wish to solve for.

We then solve for the weights of the network, such that the function that the network ultimately

computes, fits the training examples.

In other words, we assume there is a function g, that governs the behaviour that gives rise

to our training examples, the observations that we have made. We can think of this function

g, as the ground truth. Our goal is to find the weights Θ of an ANN, such that f(Θ) ≈ g.

In this respect, we can frame learning, as a search problem. It is the process of finding

the weights Θ, such that the outputs computed by an ANN when it receives some training

examples, are as close as possible to the ground truth. In other words, training an ANN,

typically consists of trying to find the weights Θ that minimize some error between f(Θ)

and the ground truth g.

2.3.9 Loss functions

For this, we define a loss function L, also known as a cost, error or objective function.

This function will compute a quantitative metric for how close f(Θ) approximates g. We can

construct many different loss functions, depending on the nature of the problem that we are

looking to solve, and the data that we are trying to model.

For example, given y, the output of an ANN for some given input x, and ŷ, the true value

of the observation for the same input, some common loss functions that we use in our research

can be formulated as

Page 55

2.3. INTRODUCTION TO DEEP LEARNING

LMSE = (y − ŷ)2 (Mean Squared Error or L2 loss) (2.5)

LMAE = |y − ŷ| (Mean Absolute Error or L1 loss) (2.6)

LCE = −(ŷ log(y) + (1− ŷ) log(1− y)) (Cross Entropy or Log loss) (2.7)

Unsurprisingly, the loss function that we select, has a very significant impact on how quickly

and efficiently the ANN learns, and the solution that it converges to. We discuss this in more

detail in later sections, particularly in chapter 4: Hello World: Realtime interactive training as

an informative and performative tool, where we present a software tool that we have developed,

that performs realtime training on a live video feed. Our software allows us to select a loss

function from a number of different options via a graphical user interface in realtime, while the

network is training, and we can immediately observe the impact of the different loss functions.

Having defined a loss function, we can now formulate the act of learning, as an optimisation

problem, and there are a number of methods for solving this. Stochastic, Monte Carlo methods

and evolutionary algorithms are a few common examples. However, the most popular methods

in use today, are based on gradient descent and backpropagation.

2.3.10 Gradient descent and backpropagation

Gradient descent, is an optimisation algorithm that tries to minimise some function, by

iteratively following the function’s gradient, the path of steepest descent. To be able to train an

ANN using gradient descent, the loss function that we wish to minimise, and the entire chain

of transformations as defined by the Neural Network, has to be end-to-end differentiable. The

typical ANNs that are most popular today, including those that we use in our research, are as

we described above: layered sequences of linear transformations, followed by simple non-linear

activation functions. For this reason, they are indeed end-to-end differentiable.

The training process can then be summarized as: i) iteratively feed one or more training

examples to an ANN to produce some outputs, ii) calculate and differentiate the loss with

respect to the parameters Θ to compute the gradient of the loss, a vector pointing in the

direction of steepest descent, and finally iii) run a backwards pass through the network, and

backpropagate the error. In other words, for every neural connection, compute the amount

by which we should nudge each weight, such that the overall loss will move in the direction of

the gradient. Running this process over many iterations — usually in the order of millions —

optimally nudges the weights such that f(Θ) approaches g.

A more detailed explanation is beyond the scope of this introduction, as we do not deviate

from a typical gradient descent and backpropagation in this thesis. However, we will expand

on this a little bit when we discuss training RNNs in section 2.3.19: Backpropagation Through

Time, and again when we present our realtime training tool in chapter 4: Hello World: Realtime

interactive training as an informative and performative tool. For more details on gradient

descent and backpropagation in general, please refer to (I. Goodfellow et al., 2016).

Page 56

2.3. INTRODUCTION TO DEEP LEARNING

2.3.11 Optimisation algorithms

Some of the typical challenges involved in an optimisation process as we describe above, is

to find the global minimum as quickly as possible, without getting caught in local minima.

There are many optimisation algorithms designed to tackle these issues, such as stochastic

gradient descent, momentum, adagrad, adadelta, rmsprop, adam, adamax, nadam etc. And

there are many variables which control the behaviour of these optimisers, such as learning

rate, momentum, gradient clipping thresholds and numerous implementation specific variables.

These are collectively included within the hyperparameters that we have already defined.

Just as we discussed with the loss function, the optimisation algorithm and the hyperpa-

rameters that we use, have a very significant impact on how quickly an ANN learns, and the

solution that it converges to. For this reason, we developed the software tool that we present

in chapter 4: Hello World: Realtime interactive training as an informative and performative

tool. This software allows us to change not only the loss function in realtime during training,

but also select between different optimisation algorithms, and adjust their hyperparameters in

realtime too, allowing us to observe the results immediately.

2.3.12 Deep Neural Networks (DNN)

We have already established that even though a simple three-layer MLP with a single hidden

layer is a universal function approximator, this does not imply that any three-layer MLP can

necessarily approximate any function, of any complexity (Hornik, 1991). The expressive power

of an ANN comes from its architecture. Furthermore, even if an ANN’s architecture does provide

sufficient expressive power to compute the function g which underlies some observations, it is

not guaranteed that the ANN will be able to learn that function from the available training

examples (Lu et al., 2017). In other words, in the context of learning, efficiency becomes key.

For example, a Neural Network with an architecture A1 might have one thousand param-

eters, while a much larger second Neural Network with an architecture A2 might have one

billion parameters. It is very plausible that both of these architectures are perfectly capable of

expressing some function g which underlies some observations. In other words, there exists a

set of one thousand parameters Θ1 such that f1(Θ1) ≈ g, and a set of one billion parameters

Θ2 such that f2(Θ2) ≈ g. However, in the case that we are given only 500 training examples,

it is potentially more likely that training the network with architecture A1 will converge to a

solution yielding the set of one thousand parameters Θ1 that approximate g. While training

the network with architecture A2 might not converge to an accurate solution.

For this reason, architecture design and hyperparameter selection becomes crucial.

Deep Learning, is the name given to a family of methods, designed to tackle this issue.

A Deep Neural Network (DNN), is an ANN as we describe above, with many layers, in

other words, with a large depth. In this case, each layer can be thought of as a parametrised, high-

dimensional, non-linear transformation. And a DNN is then a chain of these transformations,

that collectively learn a hierarchy of representations with varying levels of abstraction, in order

to model some complex, high-dimensional data.

Page 57

2.3. INTRODUCTION TO DEEP LEARNING

Deep Learning research, is primarily the study and exploration of different types of deep

architectures for different types of tasks, and the accompanying algorithms and techniques that

relate to the performance of these architectures, such as designing, training, testing, scaling,

deploying etc.

There are many architectures studied within the framework of Deep Learning. Some of the

architectures that we will cover in the following sections are: Convolutional Neural Networks

(CNN), Variational Auto-Encoders (VAE), Deep Convolutional Generative Adversarial Net-

works (DCGAN), Pix2pix and Long Short-Term Memory (LSTM) Recurrent Neural Networks

(RNN).

2.3.13 Hyperparameter search

We have already described hyperparameters, as variables that drastically impact how and

what a Neural Network learns. These include variables that relate to the architecture of the

Neural Network, for example the number of layers, and the number of neurons in each layer.

They also include the activation functions that are used on each layer. In addition, there

are hyperparameters that relate to the optimisation process. For example the optimisation

algorithm that is used, whether it be stochastic gradient descent with momentum, adagrad,

adam, or one of many other algorithms. Furthermore, there are also the hyperparameters of

these optimisation algorithms, such as learning rate, momentum, gradient clipping thresholds

and many others. In later sections, we will see even more hyperparameters, such as the filter

depth of Convolutional layers (subsection 2.3.15: Convolutional Neural Networks (CNN)), the

bottleneck size in Auto-Encoders (subsection 2.3.16: Auto-Encoders (AE)), the regularisation

weight in Variational Auto-Encoders (subsection 2.3.17: Variational Auto-Encoders (VAE)),

and many more.

Learning these hyperparameters through an automated process, is currently not possible,

although it is a very active area of research known as meta-learning, or learning to learn

(Andrychowicz et al., 2016; Finn et al., 2017; Zoph et al., 2018; Rusu et al., 2019). Instead,

optimal hyperparameters must be selected manually. And selecting hyperparameters, as opti-

mally suited for the particular dataset and problem that we wish to address, is currently still

a magical art. There are some guidelines on how to select some of the hyperparameters, based

on previous experience, if the nature of the dataset and the problem that we are dealing with

is similar to a previous problem that has already been solved. However, in general there are no

clear rules as to how to select any of these hyperparameters.

For this reason, it is not uncommon to train hundreds of models, varying the hyperparameters

slightly in each case, in order to find the optimal configuration of hyperparameters that result

in a model that converges to a desirable solution. This is known as hyperparameter search.

The hyperparameters can be varied by fixed intervals in each training session, resulting in a

grid search, or they can be varied randomly, resulting in a random search (Bergstra & Bengio,

2012).

Addressing this problem, is one of the key motivations behind the work that we present in

chapter 4: Hello World: Realtime interactive training as an informative and performative tool,

where we develop a software tool that trains on a live video feed in realtime, while allowing us

Page 58

2.3. INTRODUCTION TO DEEP LEARNING

to modify any of the hyperparameters during the process, and immediately observe the results.

2.3.14 Classes of learning

Before we discuss deep architectures in more detail, we will first describe different modes of

learning.

Supervised Learning

In supervised learning, a model is trained on labelled data where each training example is an

(input, target) pair. During training the learning algorithm tries to find the parameters of the

model Θ which effectively implement the function that maps the input of each training pair to

the associated ground truth target. For classification problems the target is usually a discrete

class label, often represented as a one-hot vector (i.e. a vector where all elements are zero,

except for the entry for the desired class, which is one). For regression problems the target is

usually a real-valued vector (or tensor). Having (input, target) pairs makes it relatively straight

forward to specify the objective function, as we simply need to calculate some kind of a difference

between the model’s output and the ground truth target, as we described in subsection 2.3.9:

Loss functions. For this reason, supervised learning is currently one of the more popular and

successful branches of ML. However, the training pairs often need to be manually associated

by people. This makes them cumbersome and very time consuming to prepare. Online crowd-

sourcing platforms such as Mechanical Turk have helped accelerate the preparation of large

labelled datasets which is one of the reasons why we’re starting to see more success in this field

(LeCun, 2014).

Unsupervised Learning

In unsupervised learning, training is performed on unlabelled data. Without an external

supervisory signal it can be more ambiguous as to how to specify an objective function. For

this reason, unsupervised learning is currently one of the big open problems in ML. A common

objective in unsupervised learning is dimensionality reduction, including methods such as t-SNE

(T-distributed Stochastic Neighbor Embedding) (Laurens van der Maaten & Geoffrey Hinton,

2008) or UMAP (Uniform Manifold Approximation and Projection) (McInnes et al., 2018).

Another common objective is clustering. In this case, the learning algorithm tries to organise

observations into groups based on similarities and regularities that it tries to identify across the

entire dataset. In this thesis, we use two other types of unsupervised learning algorithms which

we discuss in subsection 2.3.17: Variational Auto-Encoders (VAE) and subsection 2.3.18: Deep

Convolutional Generative Adversarial Networks (DCGAN).

Semi-supervised Learning

A combination of the two — semi-supervised Learning — is used when some of the data is

explicitly labelled, while some of it is not. In this case, during training, the learning algorithm

tries to learn regularities in the data in an unsupervised manner, that allow it to cluster and

Page 59

2.3. INTRODUCTION TO DEEP LEARNING

classify the data. With this knowledge, the algorithm can then associate the unlabelled items

with the correct labels based on the labelled data, and then proceed in a supervised manner.

Reinforcement Learning

Reinforcement learning (RL) is technically and conceptually quite different to the above

classes of learning, as it is rooted in a different discourse, and therefore does not necessarily

use the same language as Neural Networks. RL is a type of learning that is typically applied

to an agent, operating within a Markov Decision Process (MDP) (Bellman, 1957), where

there is a notion of time, and at each timestep, the agent can take actions and move between

different states. The actions that the agent takes, is governed by a policy, and that policy

can be controlled by anything ranging from a simple behaviour, to a complex DNN. The agent

regularly receives reward signals from the environment. However, such a reward signal might

not be an immediate reward for the most recent action taken by the agent, but instead might

be a delayed reward for an action — or even a series of actions — taken by the agent much

earlier on. Alternatively, the reward might even be related to ‘random’ events outside of the

agent’s control or knowledge. Therefore, a major challenge in RL, is to solve the attribution

problem of these delayed rewards. For this reason, RL is considered neither supervised (with

a direct supervisory signal) nor unsupervised (with no supervisory signal). Instead it is a form

of learning based on a delayed reward signal (Kaelbling et al., 1996). The general objective

of a RL algorithm, is to learn a policy that maximises the agent’s long term reward. This

process involves a balance between exploration of new actions which have not yet been made,

vs exploitation of actions which are known to reward higher than others. For this reason, RL

can also be thought of as learning by trial and error.

In the following chapter section 3.2: Collaborative generative sketching with MCTS and

CNNs, we present a method that we developed for interactive collaborative generative sketching

with a Deep Neural Network, driven by Monte-Carlo Tree Search (MCTS). While MCTS is not

considered typical RL, it has many similarities, and we unpack many of the concepts that we

described in the previous paragraph in subsection 2.3.20: Monte Carlo Tree Search.

2.3.15 Convolutional Neural Networks (CNN)

Convolutional Neural Networks (CNN) are Neural Networks which consist of, and can

learn, stacks of parametrisable convolution filters (LeCun et al., 1989; LeCun & Bengio, 1995).

In Convolutional layers, neurons from one layer are not fully connected to all neurons in the

next layer as they are in a typical MLP. Instead, small patches of neurons from one layer are

connected to a single neuron in the next layer such that the operation performed by this group

of connections acts like a convolution filter on that patch of neurons. Furthermore, this same

pattern of connectivity with identical connection weights, is shared across the entire layer in

a process known as weight sharing. This ensures that the same convolution filter is applied

across the entire layer. In addition, this also ensures that the number of weights of the Neural

Network is radically smaller compared to a Neural Network with similar connectivity that is

not using weight sharing. This in turn radically aids training, encouraging convergence to a

desirable solution in a much more efficient manner.

Page 60

2.3. INTRODUCTION TO DEEP LEARNING

Figure 2.5: A Convolutional layer consisting of many filters, applied to an input. Image from Wikimedia
Commons, licensed under CC BY-SA 4.0

CNNs are typically used for processing pixel-based raster images, and for this reason, they

form the foundation for many of the architectures that we use in this thesis, and present in

the following sections. Raster images are represented as a 2D grid — or matrix — of values.

Greyscale images are represented as a matrix of real values. While colour images are represented

as a matrix of (red, green, blue) tuples, or in other words, a tensor of rank 3, and dimensions

(w, h, 3) where w and h are the width and height of the image, respectively. For this reason,

we generally think of the inputs and outputs of Convolutional layers to be tensors, as opposed

to the one-dimensional vectors that we think of in a more typical MLP. We also do not think of

the neurons as arranged in linear layers, as they are in a typical MLP. Instead, we think of the

neurons arranged in layers of grids, with small windows of connectivity between layers that

are replicated across the width and height of each layer.

For example, in a single Convolutional layer which consists of a convolution window size

of 3x3, only 9 weights are required to represent this filter across its entire input. However, if

weight sharing were not used, this pattern of connectivity would require 9 weights per input

neuron. In other words, if this convolutional layer were applied to an image with a width and

height of 1024 pixels, it would require 9*1024*1024 ≈ 9.4 million weights instead of just 9!

CNNs have also been used in one dimension, to model raw audio (van den Oord, Dieleman,

et al., 2016); and in three dimensions, to model 3D geometry using voxel representations (Z. Wu

& Song, 2015). However, in this thesis we are primarily concerned with 2D images. For this

reason, we focus on 2D CNNs.

At each Convolutional layer, small patches of the input are processed and condensed to a

single value. For this reason, we can think of each Convolutional layer, as applying some learnt

filter to its input, to extract some kind of feature. In addition, each Convolutional layer

usually consists of many independently parametrised filters. Often called the filter depth of

the Convolutional layer, the number of filters in a single layer is typically in the range 128 to

1024. As a result, applying such a Convolutional layer, simultaneously produces a large number

of features. More formally, applying a Convolutional layer with a filter depth equal to d, to an

image of dimensions (w, h), results in a tensor of dimensions (w, h, d). This can be seen in Fig.

2.5.

Across many layers, this results in an increasing effective receptive field, whereby a single

Page 61

2.3. INTRODUCTION TO DEEP LEARNING

neuron in some high layer, will have indirectly processed, and will contain information from, a

very large patch of an input many layers down in the hierarchy of the Neural Network, perhaps

even the entirety of the original input image.

In addition, it is often very useful to reduce the dimensions of the input. For example, in

a discriminative model designed to classify images and assign probabilities based on a number

of class labels, we require an architecture which reduces an image consisting of millions of

pixels down to a handful of class probabilities. Or in an Auto-Encoder, which we discuss in the

following section, we require an architecture that compresses a large image down to a narrow

bottleneck. In these cases we apply some kind of subsampling operation. Traditionally this

was a max-pool operation whereby the maximum value of a small window replaces the entire

window. A typical window size in this case might be 2x2 pixels. This ensures that every time

the max-pool is applied, the layer size halves in width and height. For example, 8 max-pool

layers interspersed throughout a CNN with many Convolutional layers, can reduce an image

of dimensions (256, 256) pixels, down to dimensions of (1, 1), by incrementally halving it at

every stage. As we previously mentioned however, each convolution layer is typically a stack of

many parametrised filters, for example with a depth of 512. For this reason, the output of such

a CNN will in fact be a tensor of dimensions (1, 1, 512), where every value in this tensor each

represents some different, independent piece of information about the entire image. This can be

seen in Fig. 2.6.

Figure 2.6: Image from Wikimedia Commons, licensed CC under BY-SA 4.0

A more modern, equally effective and computationally more efficient method of reducing

dimensions in this manner is to use strided convolutions. In this case, instead of centring the

convolution filters on every pixel in an input layer, a number of pixels are skipped. Typically,

the filter is centred on every other pixel, in both horizontal and vertical directions. This again

halves the resolution at every application of the strided convolution. Generally, the size of the

convolution windows are in the order of 3x3, 5x5, 7x7 etc. For this reason, the information in

the pixels that are skipped are not ignored by the filter, as they are still included within the

convolution windows of the neighbouring pixels. However, the convolutions are never centred on

these particular pixels. This cuts down the processing time to one quarter, while simultaneously

providing the desired dimensionality reduction.

Depending on the desired use case of the CNN, a number of fully connected layers might

also be added after all of the Convolutional layers. For example, we can consider the case of

Page 62

2.3. INTRODUCTION TO DEEP LEARNING

a discriminative model designed to classify images. Using a number of strided Convolutional

layers we can reduce the dimensions of an input image as we described above to a tensor of

dimensions (1, 1, d), where d represents some arbitrary filter depth, such as 512. We can then

treat this tensor as a linear layer, and fully connect it to one or more linear layers, as we would

in a typical MLP. The final layer of the MLP would then output the class probabilities.

In fact, this highlights one of the greatest strengths of Deep Learning. In such an archi-

tecture, we can think of the MLP portion of the Neural Network as a simple three or four

layer MLP that takes some compressed, abstracted, high-level representation of an image, and

predicts class probabilities. The Convolutional layers leading up to the MLP are effectively an

image processing pipeline that outputs those compressed, abstracted, high-level representations.

The key point however, is that the entire chain consisting of all of the Convolutional layers and

the MLP, is end-to-end differentiable and learnt in single training session. This avoids the po-

tentially problematic hand-crafted feature engineering phase that we discussed in the previous

chapter under section 1.2: Why Deep Learning?.

Since most of our work involves images, we often use Convolutional Neural Networks. More

specifically, we use a number of different architectures, arranged in various different ways, which

make use of Convolutional layers. We discuss these in the following sections.

2.3.16 Auto-Encoders (AE)

An Auto-Encoder is a Neural Network that tries to accurately reconstruct its inputs while

passing data through a bottleneck. A simple example of such an architecture can be seen in

Fig. 2.7. While this shows a very simple Auto-Encoder, with layers arranged as one-dimensional

vectors, the layers can instead be Convolutional layers arranged in grids, as we describe in the

previous section. Given a domain of inputs that contain significant amounts of structure and

regularities, such as images of a particular category, we can for example successfully build

and train Convolutional Auto-Encoders that compress colour images with width and height of

256 pixels (256 ∗ 256 ∗ 3 = 196, 608 values) through a bottleneck of 128 dimensions, giving a

compression ratio of 1536:1.

In order to successfully achieve this compression and reconstruction, the network has to learn

how to compress the data in a meaningful manner. It has to learn how to build more concise

and optimal representations, by identifying and exploiting salient features and regularities that

occur in the data that is presented to it. Since no additional labels or training pairs are provided,

training an Auto-Encoder is considered unsupervised learning.

An Auto-Encoder can be thought of as two Neural Networks back-to-back. The encoder is

the portion of the network that learns a function E, which receives an input x and maps that

to a compressed, latent representation z in the bottleneck layer. The decoder is the portion of

the Neural Network that learns a function D, which maps a compressed, latent representation

z, to an output x′. We use a loss function to ensure that x′ ≈ x. For example, using L2 loss

we can formalise this as

Page 63

2.3. INTRODUCTION TO DEEP LEARNING

input layer (x) bottleneck layer (z) output layer (x')

encoder network
decoder network

Figure 2.7: A simple Auto-Encoder. In this example, the input and output layers consist of 10 neurons,
while the bottleneck layer consists of 3 neurons. To avoid clutter in the diagram, we have omitted drawing
all of the connections. In a MLP Auto-Encoder, all of the layers are fully connected. In a Convolutional
Auto-Encoder, the layers are arranged into grids as we describe in subsection 2.3.15: Convolutional
Neural Networks (CNN)

.

E : x 7→ z (2.8)

D : z 7→ x′ (2.9)

L = (x− x′)2 (2.10)

There are currently no clear rules as to how to determine the optimal size of the bottleneck

layer z. The dimensionality of z is a new hyperparameter that we must find as we described pre-

viously in subsection 2.3.13: Hyperparameter search. As the regularity and similarities amongst

the dataset increases, for example, in the case of a dataset consisting of only human faces,

perfectly cropped and aligned in exactly the same manner, then we can afford to decrease the

bottleneck size. As we encounter more variety in the dataset, we may have to increase the

bottleneck size. Otherwise, we may find that the expressive power of the network is insufficient

to successfully represent the full diversity of the dataset.

2.3.17 Variational Auto-Encoders (VAE)

Given suitable architecture, hyperparameters and training data, an Auto-Encoder may learn

efficient representations in its bottleneck z. However, in a typical Auto-Encoder we have no

control over how this space is distributed. The encoder may learn a mapping such that the

training examples are located in distant remote corners of the space with vast ‘empty’, unused

stretches in between. In other words, an Auto-Encoder does not learn the distribution of the

data and it is not a generative model. As a result of this, we are not able to generate new

Page 64

2.3. INTRODUCTION TO DEEP LEARNING

input layer (x) bottleneck layer (z) output layer (x')

encoder network decoder network

z

,

Figure 2.8: Variational Auto-Encoder. The output of the encoder network is the mean µ and standard
deviation σ of a Normal distribution, from which a latent vector z is sampled z ∼ N (µ,σ). This is then
fed into the decoder network for decoding.

samples that resemble the training examples. Furthermore, having compressed a particular

input x to a more concise representation z, we cannot manipulate z in any meaningful way to

obtain outputs that have been meaningfully modified, as we discuss in subsection 2.1.3: Latent

manipulations.

A Variational Auto-Encoder (VAE) addresses this issue by enforcing structure on the

bottleneck via a regulariser. This regulariser ensures that the bottleneck converges towards

a desired distribution (D. P. Kingma & Welling, 2013), which we typically select as a multi-

variate standard normal distribution N (0, 1). In this case, the encoder does not output a z

vector directly. Instead, it outputs a pair of mean µ, and standard deviation σ vectors, with

the same dimensions as z. Sampling from this Gaussian distribution, produces a z vector

that we can feed into the decoder network, to produce the final output. This is known as the

reparametrisation trick of VAEs, and is illustrated in Fig. 2.8.

To ensure that the encoder’s outputs µ and σ do converge to N (0, 1), we add to the loss

function the KL divergence between the encoder’s outputs and N (0, 1). In other words, we write

the loss as a sum of two components. The first component is the reconstruction loss. This

serves the same purpose as the loss in a standard Auto-Encoder in that it enforces the network

to successfully reconstruct its inputs. The second component is the latent loss. This is the

KL divergence which enforces the latent distribution, as output by the encoder, to converge to

N (0, 1). We can formulate this as

Page 65

2.3. INTRODUCTION TO DEEP LEARNING

L =
1

N

N∑
i=1

(L(n)reconstruction + L(n)latent) (2.11)

L(n)reconstruction =

K∑
k=1

(x
(n)
k − x

′(n)
k)2 (2.12)

L(n)latent =
1

2

J∑
j=1

(1 + log(σ
(n)
j)2 − (µ

(n)
j)2 − (σ

(n)
j)2) (2.13)

z(n) = µ(n) + σ(n) � ε where ε ∼ N (0, 1) (2.14)

where the superscript (n) denotes the nth training example, N is the number of training

examples in the given iteration, the subscript k denotes the kth element of the current data

point, K is the dimensionality of the input, J is the dimensionality of latent vector z, µ and σ

denote the outputs of the encoder, and � is an element-wise multiplication,

Both the encoder and the decoder networks, are now probabilistic models. The encoder

models the probability of P (z |x), while the decoder models P (x |z). Since the model has been

trained enforcing a N (0, 1) latent distribution, we can sample a random z ∼ N (0, 1), and run

this random z through the decoder to generate new data consistent with the training examples.

In other words, the VAE’s decoder is a generative model, and we can benefit from the types of

meaningful control that we discuss in subsection 2.1.3: Latent manipulations.

We use a VAE as the basis for our research in chapter 4: Hello World: Realtime interactive

training as an informative and performative tool, where we present a software tool that can

train in realtime on a live video feed while allowing for the realtime manipulation of a number

of hyperparameters.

We noticed that the performance of the VAE was highly dependent on the dimensions

of the inputs and the bottleneck. We observed that in certain cases the VAE was able to

reconstruct its inputs very accurately, but the decoder was not able to generate samples that

were consistent with the training examples when decoding a random z ∼ N (0, 1). This implies

that the latent distribution does not converge to N (0, 1). In other cases we saw that decoding

random z ∼ N (0, 1) did produce very consistent samples, however, the VAE was unable to

reconstruct its inputs accurately.

We found that this is due to an imbalance between the reconstruction loss and latent loss

in eqn. (2.11), and at the time of our research, this was not mentioned in any literature, or

the many open-source examples found on the internet. We implemented a solution whereby we

normalise both the reconstruction loss and latent loss, dividing by the dimensionality of input

and bottleneck layers respectively. We then weight the latent loss by a new hyperparameter

WKL, which we include in our hyperparameter search. Our new formulation can be seen below.

Page 66

2.3. INTRODUCTION TO DEEP LEARNING

L =
1

N

N∑
i=1

(L(n)reconstruction +WKLL(n)latent) (2.15)

L(n)reconstruction =
1

K

K∑
k=1

(x
(n)
k − x

′(n)
k)2 (2.16)

L(n)latent =
1

J

1

2

J∑
j=1

(1 + log(σ
(n)
j)2 − (µ

(n)
j)2 − (σ

(n)
j)2) (2.17)

We found via a thorough hyperparameter search, that a WKL value in the range of 0.01–

0.1 provides the most desirable results, depending on our priority. A higher value towards 0.1,

provides higher quality random samples, while slightly compromising reconstruction quality. On

the other hand, lower values towards 0.01, provides higher quality reconstructions, while slightly

compromising random sample quality. Outside of this range, we found that the compromise was

too large to be useful. But within this range, the overall quality was generally acceptable. Since

this weighted sum is performed on normalised loss components, WKL is independent of input

or bottleneck dimensions. We tested this on images, with many different datasets, assessing the

reconstruction and random sample qualities visually.

This was also later examined independently by Higgins et al in their Beta-VAE (Higgins et

al., 2017). The researchers propose a similar solution to ours, performing a weighted sum of the

loss components. However, Higgins et al do not normalise the loss components before summing.

They simply weight the latent loss by a hyperparameter β. While β does allow shifting balance

between reconstruction quality vs random sample quality, it is still highly dependent on the

input and bottleneck dimensions. We find this to be problematic, at least for our use case.

If for example, we change the bottleneck dimensions, and the reconstructions comes out more

blurry. We cannot be sure if this is directly a result of the bottleneck dimensions changing,

and affecting the expressive power of the network, or because the balance of the latent loss to

reconstruction loss has shifted dramatically. In other words, having found an optimal β value

through trial and error, if we were to change the input or bottleneck dimensions, our optimal β

would no longer perform in the same manner, and would not be optimal anymore. We would

either have to find a new value through trial and error, or calculate by hand what the new

optimal β should be, based on the old dimensions and new dimensions. For this reason, we

prefer to weight the normalised loss components, by our WKL hyperparameter.

We discuss these experiments and our findings in more detail in chapter 4: Hello World:

Realtime interactive training as an informative and performative tool.

2.3.18 Deep Convolutional Generative Adversarial Networks (DCGAN)

It’s worth noting, that using L2 or L1 pixel-wise loss to compare images — for example, to

compare the input image x and output image x′ of a VAE — results in the model producing

blurry images (I. Goodfellow et al., 2014; Theis et al., 2016; Larsen et al., 2016; Dumoulin

et al., 2017). This is a known issue with using these loss functions on a per-element basis in

raw data-space, and is in fact not limited to images. In the case of our own work with VAEs,

Page 67

2.3. INTRODUCTION TO DEEP LEARNING

we address this by implementing Multi-Scale Structural Similarity Index Measure (MS-SSIM)

(Z. Wang et al., 2004) as a reconstruction loss. We discuss this in chapter 4: Hello World:

Realtime interactive training as an informative and performative tool, and show that the results

are far superior to using L1 or L2 pixel-wise loss. However, MS-SSIM is a metric that has

been specifically designed to compare the similarity of images, and it cannot be used in other

domains.

noise (z) output (y)

discriminator network D

generator network G

Training examples

fake

real

0 or 1?

Figure 2.9: Generative Adversarial Network

Generative Adversarial Networks (GAN) were introduced to address this issue on a

more generic and theoretical level (I. Goodfellow et al., 2014). The motivation behind a GAN,

is that instead of explicitly formulating a loss function to measure the similarity between data

points — for example comparing a generated image to a real image, we introduce a second

Deep Neural Network to learn such a metric. We construct a Generator network G which

captures the distribution of the data, in that it learns to map a random noise vector z ∼ N (0, 1)

to some output y. We also construct a Discriminator Network D, which learns to distinguish

between real samples — i.e. sampled from the training data — and fake — i.e. produced by

the Generator network. Since we are primarily interested in images in this thesis, given a noise

vector z, G(z) will produce a fake image. And given some image x, D(x) will output a single

scalar that represents the probability that x is real, i.e. taken from the training data. A high

level schematic of this can be seen in Fig. 2.9.

Page 68

2.3. INTRODUCTION TO DEEP LEARNING

In this case, the loss function of a GAN constitutes two parts. The Discriminator network

is trained to guess whether a given sample is real or fake, in other words, to maximise the

probability of correctly assigning the real or fake label to the samples provided. The Generator

network is trained to generate samples which can fool the Discriminator, in other words, to

minimise log(1−D(G(z))). For this reason, the optimisation of a GAN is no longer a minimi-

sation problem. Rather, it involves finding a Nash equilibrium of a non-convex minimax game

with a value function V (G,D) given by (I. Goodfellow et al., 2014)

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))] (2.18)

Just as we can include convolutional layers in VAEs, we can also include convolutional layers

in the Generators and Discriminators of GANs. These are then called Deep Convolutional

Generative Adversarial Networks (DCGAN). In this thesis, as we are focusing on pixel-

based raster images, we are generally interested in architectures with 2D convolutions, and

such 2D DCGANs have seen great progress in terms of resolution and quality in recent years,

expanding from 64x64 pixels with many deformities (Radford et al., 2015), to 1024x1024 pixels

with almost no undesirable artefacts (Karras et al., 2017, 2019, 2020). While we do not work

with them in this thesis, GANs have also been used to model 3D voxel geometry (J. Wu et al.,

2016; C. Lin et al., 2016; Gwak et al., 2017; Liu et al., 2017), and audio (Engel et al., 2019).

While GANs do demonstrate the ability to produce samples consistent with the training

data, they can also be very difficult to train and suffer from a number of issues (Radford et

al., 2015; Chen et al., 2016; Salimans et al., 2016; Berthelot et al., 2017; Arjovsky et al.,

2017). For this reason, a vast amount of research has been conducted in recent years trying

to improve the stability and quality of GAN training. As a result, many variations have been

proposed. Colloquially known as The GAN Zoo, at the time of writing, there are over 500

GAN variations (Hindupur, n.d.)30. Our research is not necessarily concerned with internal or

training improvements to GANS per se, so we will not dwell on these variations.

Our research is concerned at a very high level with two broad categories of GANs. These re-

flect the classes of generative models that we discuss in subsection 2.1.2: Conditional generative

models and subsection 2.1.1: Unconditional generative models.

In chapter 5: Learning to see: Digital puppetry through realtime video transformation, we

investigate conditional DCGANs. In particular, we primarily work with pix2pix (Isola et al.,

2016), although we also test our method with pix2pixHD (T. C. Wang et al., 2018).

In chapter 6: Deep Meditations: Latent storytelling, we investigate unconditional DCGANs.

In particular, we primarily work with ProGAN (Karras et al., 2017), although we also test our

method with BigGAN (Brock et al., 2019) and StyleGAN (Karras et al., 2019).

2.3.19 Recurrent Neural Networks (RNN)

One of the early studies that we present in section 3.3: Realtime interactive text generation

with RNN ensembles, is an interactive character-level sequence model. For this we use a Long

30These include applications to different domains.

Page 69

2.3. INTRODUCTION TO DEEP LEARNING

x

h

y

xt

ht

yt

a.) Feedforward
Multi-Layer

Perceptron (MLP)

b.) Recurrent
Neural Network

(RNN)

xt-3

ht-3

yt-3

c.) RNN unrolled in time at time-step t

xt-2

ht-2

yt-2

xt-1

ht-1

yt-1

xt

ht

yt

Wxhx Wxhxt

Whhht-3

Wxhxt-3 Wxhxt-2 Wxhxt-1 Wxhxt

Whhht-1 Whhht-2 Whhht-1

Whyh Whyht Whyht-3 Whyht-2 Whyht-1 Whyht

+bh +bh

+by +by

(- non-linear activation)

+bh +bh +bh +bh

+by +by +by +by

Figure 2.10: MLP and RNN with single hidden layer.

Short-Term Memory (LSTM) Recurrent Neural Network (RNN). In this section, we

provide the necessary technical background for this architecture.

As we have briefly mentioned in subsection 2.3.4: Feed-forward (FNN) vs Recurrent Neural

Networks (RNN), RNNs are ANNs with recurrent connections. While there are many different

variations (Graves, 2008), a very simple RNN can be thought of as a MLP with recurrent

connections on one or more layers. These recurrent connections carry information forward from

previous timesteps, and allow the recurrent neurons to maintain an internal state. This enables

RNNs to create and process memories from past inputs, learn temporal regularities and model

non-linear dynamical systems (Graves, 2008; Sutskever, 2013). With a richer internal state and

greater computational capacity than other sequence models such as Hidden Markov Models,

RNNs can be seen as general purpose computers that can learn programs (Schmidhuber, 2012b;

Graves et al., 2014; Schmidhuber, 2015).

More formally, the value of a recurrent layer at a particular timestep is also dependent on

the state from the previous timestep. For a RNN with a single hidden layer as shown in Fig.

2.10, this can be formulated by augmenting eqn. (2.3) with

ht = f(xt,ht−1) (2.19)

where f(xt,ht−1) = ϕh(W xhxt +W hhht−1 + bh), (2.20)

and xt and ht are respectively the input vector and hidden state vector at time t. Note that

W hh is the recurrent weights matrix, i.e. the influence of the previous timestep’s hidden state

on the current timestep’s hidden state.

This architecture can be expanded to multi-layer, or stacked RNNs, by introducing addi-

tional weight matrices and bias vectors for inter-layer and inter-time relationships, as well as

skip-connections between layers or forward looking bi-directional connections, to capture richer

time-dependent behaviours (Schmidhuber, 1992; Schuster & Paliwal, 1997).

Page 70

2.3. INTRODUCTION TO DEEP LEARNING

Backpropagation Through Time

Training RNNs is still performed as we described in subsection 2.3.10: Gradient descent and

backpropagation. However, since RNNs also have a time component, we also have to perform

backpropagation through time (BPTT) (Werbos, 1990; Sutskever, 2013). As the name

implies, the RNN is unrolled in time for every step of the sequence as shown in Fig. 2.10. It

can then be trained with backpropagation like a regular deep network, with the constraint that

weights are shared across timesteps. Thus RNNs can be thought of as deep in time as well as

deep in layers.

However, for very long sequences this will result in very deep networks, which can be rather

slow and inefficient to train. One way to optimise this is to segment the full sequence of length L

timesteps into shorter segments of length l timesteps. We can then run BPTT on each segment,

and train the network much quicker, but at the cost of losing long-term temporal relationships

greater than l timesteps. For very long sequences where these long-term temporal relationships

are required, an efficient approximation is Truncated Backpropagation Through Time

(Sutskever, 2013). With this method we run BPTT on each segment sequentially, without

shuffling the order of the segments and without resetting the RNN’s internal state between

segments. So even though the gradients are only propagated back l timesteps, the network has

the potential to remember further back in time via its internal state.

Objective

Given a training set S of input-target pairs (x ∈X, ŷ ∈ Ŷ), and Θ the parameters of our network,

our training objective is to find the set of parameters ΘML with the maximum likelihood (ML),

i.e. that maximises the probability of training set S with (Graves, 2008)

ΘML = arg max
θ
P (S |Θ) (2.21)

= arg max
θ

S∏
(x,ŷ)

P (ŷ | x,Θ). (2.22)

Since the logarithm is a monotonic function, a common method for maximizing its likelihood

is minimizing its negative logarithm, also known as the Negative Log Likelihood (NLL),

Hamiltonian or surprisal (H. W. Lin & Tegmark, 2016). We can then define our objective

function L as

L = − ln
S∏

(x,ŷ)

P (ŷ | x,Θ) (2.23)

= −
S∑

(x,ŷ)

lnP (ŷ | x,Θ). (2.24)

Page 71

2.3. INTRODUCTION TO DEEP LEARNING

Long Short-Term Memory (LSTM)

While BPTT and variants can solve the performance issue of training RNNs deep in time (i.e.

on long sequences), backpropagating error gradients is still likely to fail due to the vanishing

and exploding gradients problem, whereby the backpropagated error can result in gradients

exponentially diminishing to zero or exploding towards infinity (Hochreiter, 1991; Bengio et

al., 1994). This has made it very difficult to use RNNs on real-world problems with long

sequences. In order to address this problem, Hochreiter and Schmidhuber (1997) have proposed

an architecture for recurrent units known as Long Short-Term Memory (LSTM). An LSTM

cell is a recurrent unit which — in addition to the normal hidden state of a recurrent unit —

contains a memory cell. Access to the memory cells are controlled via gates which open and

close as desired, allowing the information in the cell to be preserved for extended periods of

time. Gates are implemented as logistic sigmoid functions, thus their state (open vs closed) is

continuous and differentiable. This allows their behaviour to be learnt during training along

with the network weights and biases, with gradient descent and backpropagation.

Initially, Hochreiter and Schmidhuber (1997) introduced input and output gates to control

writing to and reading from the memory cells. Subsequently, Gers et al. (2000) proposed forget

gates, allowing LSTM cells to learn when to reset themselves. With this architecture, LSTM

networks can preserve and process information from many timesteps in the past.

Similar to the simple RNN demonstrated above, at timestep t, an LSTM cell outputs a

hidden state vector ht to the rest of the network. But in addition to this, it also contains a

memory cell ct of the same dimensions. Collectively these two vectors constitute the internal

state of the cell and replace eqn. (2.19) with

ht = ot � tanh(ct) (2.25)

ct = f t � ct−1 + it � tanh(W xcxt +W hcht−1 + bc), (2.26)

where � is an element-wise multiplication and it, ot, f t are respectively input, output and

forget gates at time t. The gates have the same dimensions as ht and are defined as

it = ϕ(W xixt +W hiht−1 + bi) (2.27)

ot = ϕ(W xoxt +W hoht−1 + bo) (2.28)

f t = ϕ(W xfxt +W hfht−1 + bf), (2.29)

where ϕ denotes the logistic sigmoid function. Both ϕ and tanh are applied element-wise.

While the LSTM architecture is generally successful in overcoming the vanishing gradients

problem, gradients can still tend to become quite large. This can be prevented by clipping

the gradients. A simple method is to either clip them element-wise (potentially changing the

direction of the gradient) or clip the L2 norm by re-scaling the elements (Pascanu et al., 2012).

A computationally more expensive, but more stable solution was proposed by Pascanu et al.

(2013), in which gradients are rescaled according to the global norm.

Page 72

2.3. INTRODUCTION TO DEEP LEARNING

LSTM Variants

In recent years, many variations on the LSTM architecture has been introduced. These include

Peephole connections (Gers & Schmidhuber, 2000), in which the gates also learn to respond

to the cells’ current value (from previous timestep for input and forget gates, adding a W cct−1

term; and current timestep for output gate, adding aW cct term). This has been shown to enable

the LSTM to learn more precise timing and rhythmic information. In addition, simplifications

have been proposed by pairing and omitting (effectively merging) gates, such as No Input Gate

and No Output Gate LSTM cells (Z. Wu & King, 2016). An even simpler architecture was

proposed in Cho et al. (2014) which introduces Gated Recurrent Units (GRU). These also

have only two gates — reset and update, but further simplify the LSTM architecture by omitting

the separate memory cell and storing the long term memory in the hidden state vector.

Due to fewer gates — and thus fewer weights and biases — these variants are computationally

less expensive. However, ignoring computional requirements, they have been shown to perform

roughly the same as standard three-gate LSTMs, occasionally performing marginally better

on some tasks, and occasionally worse on others depending on the domain (Greff et al., 2015;

Jozefowicz et al., 2015; Nayebi & Vitelli, 2015).

Sequence generation with Recurrent Neural Networks

Combining these techniques, and with increased compute power, large training sets and many

new insights into training deep RNNs (Graves, 2012; Sutskever, 2013; Zaremba et al., 2014;

Pham et al., 2014; Karpathy et al., 2015), LSTMs and its variants are having lots of success not

only in sequence classification (Graves et al., 2009; Hinton et al., 2012; Pham et al., 2014), but

also in sequence generation in domains such as music (Eck & Schmidhuber, 2002; Boulanger-

Lewandowski et al., 2012; Nayebi & Vitelli, 2015; Sturm, 2015), text (Sutskever et al., 2011;

Sutskever, 2013), handwriting (Graves, 2013), images (Gregor et al., 2015), machine translation

(Sutskever et al., 2014), Chinese characters (Nayebi & Vitelli, 2015; Ha, 2015), speech synthesis

(Z. Wu & King, 2016) and even choreography (Crnkovic-friis & Crnkovic-friis, 2016).

2.3.20 Monte Carlo Tree Search

In another study that we present in section 3.2: Collaborative generative sketching with MCTS

and CNNs, we use an agent-based approach to collaborative, generative sketching. The agent-

based method that we use is Monte Carlo Tree Search (MCTS). This is not a DNN architecture

per se. However, it is an agent-based approach to ML, and is used for example by DeepMind

in their AlphaGo (Silver et al., 2016) software, that beat world Go champions Lee Sedol and

Fan Hui; and AlphaZero (Silver et al., 2018) software, that beat human champions and other

programs at the games of Go, Chess and Shogi.

MCTS is a very efficient, probabilistic approach to exploring a vast decision space. A detailed

explanation and survey of MCTS can be found in (Browne et al., 2012), but for completeness

we will include a summary below.

We represent our problem as a discrete-time Markov Decision Process (MDP) (Bellman,

1957). At a particular timestep, the system is in a state s. The agent can take an action a (out

Page 73

2.3. INTRODUCTION TO DEEP LEARNING

of a number of available actions na) to go to a new state s′, and will be given a reward Ra(s, s
′)

for doing so.

Instead of trying to simulate every possible action at every timestep, MCTS uses a heuristic

to explore only what might be the most promising branches of the decision tree. At every

timestep, many simulations are run, but only from carefully chosen nodes of the decision tree.

The algorithm decides which node to expand and run a simulation from based on a balance

between exploiting known high rewards for nodes already expanded, and exploring new nodes,

not yet expanded, with unknown rewards. Many rollouts (i.e. simulations) are performed at

each timestep, and the simulated rewards are backpropagated along the partially expanded

decision tree, and accumulated in each node, assigning an estimated value to each potential

action.

The tree policy decides which action (i.e. child node) to select and unroll (i.e. run a

simulation from), and is given by the UCT formula

v

nc
+ k

√
2 ln (nt)

nc
(2.30)

where v is the value of the child node, nc is the number of times the child node has been

visited, k is the exploration parameter (theoretically equal to
√

2 but usually chosen empirically)

and nt is the total number of simulations for the node considered. The default policy decides

how to choose actions during the rollout (i.e. simulation). We use a random rollout, i.e. actions

are selected randomly from the na actions.

In a typical two-player zero-sum game such as tic-tac-toe, MCTS simulations will run until

they reach an end game state, where a simple reward of 1 is backpropagated if the agent

wins, −1 is backpropagated if the agent loses, and 0 is backpropagated if the agent draws. In

situations where rollouts could potentially last for many timesteps, combinatorially increasing

the size of the decision tree and making it very inefficient to run the simulation upto an end

state such as in the game of Go (Silver et al., 2016), it is common to end the simulation after

a predefined maximum rollout depth. In this case another heuristic is used to evaluate the

end-state of the rollout, and that is backpropagated as the reward. This process is repeated,

nodes are expanded and simulations run usually until a predefined time budget (i.e. maximum

milliseconds per timestep) is reached, after which a final decision is made by choosing the

action which was visited the most (some implementations use different policies to choose the

final action, examples can be found in (Browne et al., 2012)).

Page 74

2.4. CONCLUSION

Selection

12/21

7/10 5/8 0/3

2/4 5/6 1/2 2/3 2/3

2/3 3/3

Expansion

12/21

7/10 5/8 0/3

2/4 5/6 1/2 2/3 2/3

2/3 3/3

0/0

Simulation

12/21

7/10 5/8 0/3

2/4 5/6 1/2 2/3 2/3

2/3 3/3

0/0

0:1

Backpropagation

11/22

7/11 5/8 0/3

2/4 5/7 1/2 2/3 2/3

2/3 3/4

0/1

Figure 2.11: Overview of the steps of MCTS

2.4 Conclusion

In this section, we presented key concepts and the technical foundations that are required for

the remainder of this thesis. We discussed discriminative and generative models, within gener-

ative models we discussed conditional and unconditional generative models, and we presented

the deep architectures that we work with in this thesis. These include Recurrent Neural Net-

works, Convolutional Neural Networks, Variational Auto Encoders and Generative Adversarial

Networks. In the following chapters, we will present a number of different approaches that

we followed using these different architectures, to build Deep Visual Instruments, and we will

discuss the affordances and limitations of each approach.

Page 75

2.4. CONCLUSION

Page 76

Chapter 3

Realtime sequence generation with

continuous control

3.1 Introduction

In the previous chapters, we presented a number of examples and applications of Deep Neural

Networks being used for creative media generation across a wide range of media. While these

examples have often demonstrated very impressive results, the topic of Meaningful Human

Control1, and in particular Realtime Continuous Control2, remains an open issue.

One of the challenges that we wish to overcome, is that in many of these existing systems

the entire output is often generated in a single timestep. For example, when working with a

generative image model3 such as ProGAN, we can sample a random z ∼ N (0, 1), and an entire

1024x1024 pixel image is generated in one go. We do have the ability to modify this image

via latent manipulations4, however we envisage a system which allows more control while the

image is being generated. In other words, we imagine an image being sketched out by a software

in realtime — as if we are watching a person draw the image — and we can somehow guide

the software while it is sketching. Another example concerns generative text models such as

Char-RNN 5. These have become very popular, as they can produce believable, though often

hilariously erroneous, pieces of text. However, at the time of our research, there are no tools

available that allows a human to have any kind of meaningful control over the text generated,

let alone in a Realtime Continuous manner.

In other words, we are interested in developing generative systems which continually and

incrementally produce some kind of an output — for example drawing a sketch, or typing out

text. And at any time, a person can meaningfully interact with and guide the system with

Realtime Continuous Control. As we described in section 1.4: Visual instruments: Realtime

Continuous Control, we use musical instruments as a metaphor to think of these systems as

visual instruments. These are not used by a user, but are played by a performer.

1section 1.3: Meaningful Human Control
2section 1.4: Visual instruments: Realtime Continuous Control
3section 2.1: Generative models
4subsection 2.1.3: Latent manipulations
5section 2.2.7: Char-RNN

77

3.1. INTRODUCTION

In this chapter, we present two studies that investigate this topic, and we specifically focus

on the two examples that we mention above: drawing sketches, and generating text.

Page 78

3.2. COLLABORATIVE GENERATIVE SKETCHING WITH MCTS AND CNNS

3.2 Collaborative generative sketching with MCTS and CNNs

3.2.1 Introduction

In this section, we present a method for collaborative, generative sketching using Monte Carlo

Tree Search (MCTS) and discriminative Convolutional Neural Networks (CNN).

Even though this experiment was not able to produce the realistic results that we were

hoping for, based on our findings and the questions that our research set out to address, our

paper (Akten & Grierson, 2016a) was accepted to the Constructive Machine Learning Workshop

at the Thirtieth Conference on Neural Information Processing Systems (NeurIPS) in 2016.

Furthermore, the system that we described and were hoping to build, was later replicated —

though with a very different technical approach — in Google’s Sketch-RNN (Ha & Eck, 2017)6

and the associated online collaborative drawing applications7.

3.2.2 Background

As we mention above, in a typical Deep Learning based creative workflow, the entire output

is generated in a single timestep. This is especially true of images. One of the main reasons

for this, is that images are represented as bitmaps, a dense grid of (Red,Green,Blue) tuples.

Generative models such as VAEs8 or GANs9 model this representation, so that when we take a

sample from the latent distribution of such a model, this produces an entire image in a single

timestep.

There are a few notable exceptions to this. Auto-regressive models such as PixelRNN

(van den Oord, Kalchbrenner, & Kavukcuoglu, 2016) and PixelCNN (van den Oord, Kalch-

brenner, Vinyals, et al., 2016) also operate on bitmap images. However, in these models, each

pixel value is conditioned on all of the previously generated pixel values. Generating an image

with PixelCNN or PixelRNN does not happen in a single timestep. Instead it happens pixel

by pixel. Technically this could allow for Realtime Continuous Control, if a suitable interface

were designed. However, generating an image pixel by pixel in this way is not only incredibly

slow, we do not believe that a bitmap representation is optimal for Meaningful Human Control

in this context. The manipulations that we seek to make possible, are not on a pixel level, but

are at a higher, semantic level.

Another exception is Google’s Sketch-RNN. Sketch-RNN was released a year after we pre-

sented our research first at an internal workshop at Google’s offices in San Francisco, and later

at the Constructive Machine Learning Workshop at NeurIPS 2016. The researchers use a very

different technical implementation to what we describe below, however their motivations and

the functionality of the system and web applications that they develop is the same as what we

propose below and in our original paper. This is to say that they develop a system that is able

to draw arbitrary sketches of various different categories. Furthermore, a user can initiate the

sketch, and then the system can recognise what the user has drawn — for example, the tail of a

cat — and then complete the rest of the drawing accordingly. In Sketch-RNN, the authors train

6section 2.2.7: Sketch-RNN (2017)
7https://magenta.tensorflow.org/sketch-rnn-demo
8subsection 2.3.17: Variational Auto-Encoders (VAE)
9subsection 2.3.18: Deep Convolutional Generative Adversarial Networks (DCGAN)

Page 79

https://magenta.tensorflow.org/sketch-rnn-demo

3.2. COLLABORATIVE GENERATIVE SKETCHING WITH MCTS AND CNNS

a generative sequence model on vector representations of strokes. One of the biggest challenges

of such an approach, is having a large enough dataset of vector drawings to train on. At the

time of our research, there were no such publicly available labelled datasets. For Sketch-RNN

however, the researchers were able to use an internal dataset of over 50 million vector drawings,

which was made publicly available later that year (Quick, Draw! Dataset , 2017).

3.2.3 Overview

In this study, we aim to develop an agent that can wander around the screen, trying to sketch

out drawings that resemble specific objects as chosen by a person. The agent doesn’t create

a drawing that mimics a specific target picture. That is a relatively well established area of

research and artistic inquiry (Tresset & Deussen, 2014; Smith & Leymarie, 2017). Instead, in

this study, our aim is to allow the agent to take any actions it chooses, and follow any path that

resembles a desired image class. For example, if the agent is asked to draw a cat, the agent will

sketch any cat that it imagines, not a specific cat presented to it in any picture.

Most crucially, the agent should not decide the entirety of what the final image would be

in an instant. I.e. it should not sample a random cat image from a latent space (as one might

do with a GAN or VAE), and then sketch what it has sampled. The final image should not be

decided the instant the agent starts drawing. The agent should know what a cat looks like, it

should plan ahead and start drawing, but continuously adapt its actions as it responds to its

own drawings. This would allow for a person to interact with the agent while it is drawing. A

user could push the agent around (e.g. by exerting forces on it) and directly affect the drawing.

In addition, the user could directly draw on the canvas too. Seeing this, the agent should adapt.

E.g. while the agent is drawing, if the human draws a partial sketch that resembles a tail, the

agent might recognize that, and draw the rest of the cat to fit to the tail drawn by the human.

The agent should continuously monitor the page, and intelligently incorporate the current state

of the drawing into its future plans. It should see, imagine, plan and respond. This should be

a collaborative process, that evolves in realtime, continuously and interactively.

There has been prior work in generating bitmap images based on image classes, and prior

work in generating drawings that mimic specific target bitmap images. However, to our knowl-

edge there has not been any prior work in directly generating vector drawings based on image

classes, let alone in a way that is able to adapt and collaborate based on input from a person.

Google’s Sketch-RNN, which was released the year after this study, also does exactly this.

As a guiding framework, our system is designed around these basic principles:

� Creativity: as an efficient method of searching a large space of actions or decisions,

� Imagination: as the ability to simulate many different scenarios and outcomes,

� Evaluation: as the ability to evaluate both the current situation, as well as the outcome

of many imagined actions and scenarios, against some desired criterion,

� Collaboration: as the ability to respond — somewhat intelligently and creatively — in

realtime, to some kind of external input, such as the actions of another user.

Page 80

3.2. COLLABORATIVE GENERATIVE SKETCHING WITH MCTS AND CNNS

3.2.4 System description

Our agent acts similar to a LOGO Turtle (Papert et al., 1980). It can move forward, and rotate

left or right by a number of degrees. It can move leaving a trail (analogous to pendown in

Turtle) or without leaving a trail (analogous to penup in Turtle).

At the heart of the decision making process driving the agent, is Monte Carlo Tree Search

(MCTS) (Browne et al., 2012). MCTS is a very efficient, probabilistic approach to exploring a

vast decision space while aiming to maximise future cumulative rewards(Browne et al., 2012).

We present a more detailed explanation of MCTS in the previous chapter subsection 2.3.20:

Monte Carlo Tree Search.

Our system runs at approximately 2-5 frames per second on a medium level laptop, depend-

ing on various parameters such as rollout depth. At every timestep, the following actions are

performed (for a diagrammatic overview, please see Fig. 3.1):

1. MCTS performs many simulations, known as rollouts, where the agent takes random

actions. These rollouts are performed for an arbitrary number of timesteps into the future.

We consider this to be the agent imagining what would happen if it took particular actions.

2. At the end of each rollout, the simulated trajectory or drawing, is rendered into a texture

and fed into an image classifier, such as a CNN trained for image classification. This is to

evaluate how much the simulated, imagined drawing resembles the desired image class.

3. The desired class probability returned from the classifier is backpropagated through the

partially expanded decision tree as a reward towards choosing the optimal action for that

timestep.

4. Hundreds or even thousands of simulations are performed, trajectories imagined and eval-

uated per timestep. Because of the probabilistic nature of MCTS, and the balance between

exploration vs exploitation, the system converges towards imagining actions and trajec-

tories which are more likely to produce desired outcomes — i.e. drawings with higher

resemblance to the desired image class.

5. When a predetermined time budget is reached (e.g. 100ms), MCTS stops simulating

new actions and trajectories, and picks the most robust child, i.e. the most visited and

thus promising action. (Using a predetermined time budget allows the system to remain

realtime at interactive rates. Smaller time budgets allow higher framerates at the cost of

less optimal actions, while higher time budgets drop the framerate but allow potentially

more optimal actions).

6. The agent then performs the selected action to make that move.

7. At the next timestep, this process of imagining and evaluating is repeated.

In summary, at every timestep, hundreds of simulations are performed imagining hundreds

of alternative actions and paths. Our system is able to efficiently search this very large space

of actions via MCTS’s optimal branch selection; it is able to imagine the outcome of many

different scenarios via the MCTS rollouts; it is able to evaluate situations — both current and

Page 81

3.2. COLLABORATIVE GENERATIVE SKETCHING WITH MCTS AND CNNS

Selection

12/21

7/10 5/8 0/3

2/4 5/6 1/2 2/3 2/3

2/3 3/3

Expansion

12/21

7/10 5/8 0/3

2/4 5/6 1/2 2/3 2/3

2/3 3/3

0/0

Simulation

12/21

7/10 5/8 0/3

2/4 5/6 1/2 2/3 2/3

2/3 3/3

0/0

0:1

Backpropagation

11/22

7/11 5/8 0/3

2/4 5/7 1/2 2/3 2/3

2/3 3/4

0/1

Figure 3.1: Overview of how MCTS and the CNN is integrated

imagined, also incorporating inputs from a user — via the classifier; and it is able to integrate

all of these into its response and future plans, resulting in a collaboration.

Interestingly, parallel to our work, a similar architecture using MCTS to select actions where

a CNN is used to evaluate imagined rollouts was also later used by Google Deepmind in their

seminal AlphaGo, which beat human Go champions Lee Sedol and Fan Hui (Silver et al., 2016).

The agent can move forward with nspeeds number of different speeds to choose from, ranging

from smin to smax. It can also rotate with nrotations number of different rotations to choose

from, ranging from −rmax to +rmax. In other words, the agent can turn anywhere from −rmax
to +rmax, in

(2 ∗ rmax)

(nrotations − 1)
degree increments. Thus the agent has na = nspeeds∗nrotations total

number of actions to choose from. We have tested a wide range of configurations of parameters,

and an example configuration is as follows:

nspeeds := 2, smin := 0, smax := 2, rmax := 30, nrotations := 7 =⇒ na = 14

For more details please refer to the paper (Akten & Grierson, 2016a)

Classifiers

We performed tests with three different classifiers:

Multinomial Logistic Regression (MLR) trained on MNIST The first model we use is

a simple Multinomial Logistic Regression (MLR) that we train on the MNIST dataset of hand-

written digits (LeCun & Cortes, 2010). This model is simply a softmax activation (Bishop,

2006) on a linear transformation of the inputs, and can be formulated as

Page 82

3.2. COLLABORATIVE GENERATIVE SKETCHING WITH MCTS AND CNNS

y = softmax(Wx+ b) (3.1)

softmax(x)i =
exi∑
j e

xj
(3.2)

where x is the input vector containing the flattened input image pixels, W and b are

respectively the weights matrix and bias vector to be learnt, and softmax is a function that

converts a vector of log probabilities to a normalized probability distribution.

We train this model using stochastic gradient descent and backpropagation10 trying to min-

imise the cross-entropy (Bishop, 2006) between y the predicted probability distribution of our

model, and y′ the true distribution, i.e. the training data.

H(y′, y) = −
∑
i

y′ilog(yi) (3.3)

Unsurprisingly, this model does not generalise very well, scoring approximately 90% on

the validation dataset. Since the model is simply a softmax operating directly on a linear

transformation of the raw pixel data, it is very restrictive on the types of inputs that it can

classify, and does not provide much translational, rotational or scale invariance. In other words,

as a classifier, it is far from optimal. This is important to note, as we discover that less optimal

classifiers, perform better in a generative context. We will discuss this in more detail shortly.

LeNet (Convolutional Neural Network) trained on MNIST The second model we use,

is a Convolutional Neural Network (CNN)11 very similar to the classic LeNet5 (LeCun et al.,

1989), that we also train on the MNIST dataset. We use two convolutional stacks, each stack

consisting of 5x5 convolution kernels, followed by a rectified linear unit (ReLU), followed by

a max-pool layer. After the two convolution stacks we use a dense fully connected layer with

a softmax to convert the log probabilities into a probability distribution. We then train with

stochastic gradient descent and backpropagation to minimise the cross-entropy.

To prevent over-fitting, we use dropout regularization (Srivastava et al., 2014). During

training, neurons are randomly omitted with a fixed probability to prevent them from being too

specialized. During inference (feed-forward), all neurons are enabled. In effect this is likened

to training an ensemble, where many different networks with different architectures are trained

simultaneously and averaged for prediction. We use a dropout probability of 50%.

This model scores 99.2% accuracy on the validation data and proves to be much more

resilient to noise compared to the MLR. It demonstrates very good translation and scale invari-

ance, with acceptable rotational invariance.

Inception-v3 (Convolutional Neural Network) trained on ImageNet For the third

experiment, we download and use a pre-trained model: Google’s image classification architecture

Inception-v3 (Szegedy, Vanhoucke, et al., 2015) trained on ImageNet (J. Deng et al., 2009), a

10subsection 2.3.10: Gradient descent and backpropagation
11subsection 2.3.15: Convolutional Neural Networks (CNN)

Page 83

3.2. COLLABORATIVE GENERATIVE SKETCHING WITH MCTS AND CNNS

Figure 3.2: A screenshot from our software, running the MLR model trained on MNIST. The top left
panel shows the current state of the canvas for the current timestep, the top middle panel shows the
scaled down drawing used for evaluation, and the top right panel shows a visualization of all of the
current MCTS rollouts for the current timestep. At the bottom of the screenshot, the class probability
distribution shows that the classifier returns 100% confidence that the current state of the drawing is
the digit ‘3’.

dataset consisting of millions of labelled images classified into one thousand classes. This model

reached as low as 3.58% error in the 2012 ImageNet validation set for Top-5 error and was

state-of-the-art at the time.

3.2.5 Results and discussion

As a result of these experiments, we observed that our system seemed to perform well, but did

not always produce the results that we would expect or hope for. This unearthed some very

interesting artefacts with regards to how CNNs learn to classify images. Our key finding with

regards to these unexpected results, is that discriminative CNNs that are trained for image

classification, are not well suited to generative applications in this manner, as they provide

too many false positives. This in fact mirrors the findings of Nguyen et al. (2015), which was

published while we were conducting our own research. The researchers use a very different

method to ours. They use evolutionary algorithms to optimise for images that maximize class

probabilities. For this reason, the aesthetic qualities of the images that their system produces

is very different to ours. However, the conclusions are the same: there exists a space of images

which are very ‘unnatural’, and would be classified as ‘random’ by humans, but are classified

by CNNs with very high confidence, as belonging to specific classes.

Fig. 3.2 shows a screenshot of our software, running the MLR model trained on MNIST.

In this particular case, we set the desired class to ‘3’. As can be seen in the panel in the top

left, the current state of the agent’s drawing clearly resembles the digit ’3’. The top right panel

Page 84

3.2. COLLABORATIVE GENERATIVE SKETCHING WITH MCTS AND CNNS

shows all of the MCTS rollouts for the current timestep, i.e. these are the simulated, imagined

paths. Every single one of the rollouts are individually evaluated by classifier, and the class

probability is used as a reward for the action that led to that path. Along the bottom of the

screenshot, red and blue bars visualize the distribution of class probabilities, i.e. the classifier’s

confidence that the current state of the drawing belongs to each of the classes. In the video

it can be observed how these rise and fall as the agent draws on the canvas and the drawing

evolves. However, in Fig. 3.2, there is only one single red bar visible, because the classifier

returns 100% confidence that the drawing resembles the digit ‘3’.

Of important note, is that the classifier here is not a deep Neural Network. It is a softmax

regression on a linear transform. So as mentioned previously, as a classifier, this model does

not perform optimally. However, as we use it in this generative context, it is able to guide the

agent to create images resembling the desired class.

Using a more complex, deep architecture however, gives very different results. Fig. 3.3

shows a screenshot of our software, running the Inception-v3 model trained on ImageNet. In

this particular case, we set the desired class to ‘meerkat’. Most people would probably think

that the image in the top left panel is some kind of noise, and is quite far from resembling a

meerkat. So it seems our system has failed in this case. However, interestingly, looking at the

class probability distribution along the bottom of the image, it can be seen that the classifier

is very confident — in fact with 100% probability! — that the image drawn by the agent is

indeed a meerkat.

Similarly, looking at Fig. 3.4, we can see the results of running our system using the same

classifier, where we set the target class to ‘white wolf’. Most people would again probably think

that the image is a different kind of noise, and does not resemble a wolf at all. However, the

classifier is still very confident — with 98% probability in this case — that the image is in fact

a white wolf.

The failure in both of these cases, and all of the experiments that we ran using Inception-v3,

is not a failure of the planning performed by MCTS, or of the way that MCTS is integrated

with the classifier, or the backpropagation of the classifier confidence as a reward signal. In

fact, the MLR study is a good demonstration that the overall system architecture and concept

works. The failure in the latter cases, is because Google’s very deep model trained on ImageNet,

is incorrectly classifying these random-looking textures as the desired class, with almost 100%

confidence. In other words, the classifier is feeding an incorrect positive reward signal into

MCTS. This is causing the agent to wander around the canvas in a manner that appears to

humans to be random noise, but is classified by the network with close to 100% confidence to

be the desired class.

After many tests like this, it became clear that as image classification models become more

complex and accurate at classifying images, they became worse for use in a generative system

as this one. Discriminative models with deep, complex architectures such as Inception-v3 are

trained to classify images with high levels of translation, scale, rotation and noise invariance.

Thus they generalize very well, and can classify natural images correctly with very high accuracy

and confidence. However, as an undesired side effect, they also learn features which encourage

them to incorrectly classify unnatural images — such as very particular distributions of noise and

Page 85

3.2. COLLABORATIVE GENERATIVE SKETCHING WITH MCTS AND CNNS

Figure 3.3: A screenshot of our software, running the Inception-v3 model trained on ImageNet with
desired target class set to ‘meerkat’. At the bottom of the screenshot, the class probability distribution
shows that the classifier is 100% confident that the drawing is of a ’meerkat’.

Figure 3.4: The same configuration as Fig. 3.3 except the desired target class is ‘white wolf’, and the
class probability distribution shows that the classifier is 98% confident that the drawing is of a ’white
wolf’.

Page 86

3.2. COLLABORATIVE GENERATIVE SKETCHING WITH MCTS AND CNNS

abstract shapes — with equally high confidence. In other words, the manifolds of the classes

successfully capture the space of associated natural images, but they also include undesired,

unnatural images as well. They produce a lot of false positives.

As a result of this, our generative system was not able to produce the kinds of images that

we were hoping it could produce. For this reason, we did not invest more time into designing

and developing modes of interaction which provide Meaningful Human Control, or Realtime

Continuous Control. Instead, we chose to rethink our approach, and focus on an alternative

study, which we discuss in the next section.

Page 87

3.3. REALTIME INTERACTIVE TEXT GENERATION WITH RNN ENSEMBLES

3.3 Realtime interactive text generation with RNN ensembles

3.3.1 Introduction

In the previous section, we presented a method for collaborative generative sketching, whereby

we combine MCTS with a Deep Neural Network classifier. Our goal, was to create a generative

system which continually produces some outputs (in this case, drawing sketches), and at any

time, a person can meaningfully interact with and guide the system with Realtime Continuous

Control. While our system worked overall as intended, it was let down by the fact that a

discriminative Deep Neural Network returns too many false positives for it to provide reliable

feedback.

With this in mind, in this section we investigate the use of a generative sequence model, in a

similar Realtime Continuous interactive setting. Instead of continuing to work with images, we

choose to perform this study with generative text. This is due to a number of reasons. First, in

order to build a generative sequence model of images, we would need a suitable labelled vector-

based dataset, and this was not available at the time of our research. Google’s Quickdraw

dataset would not be available for more than a year (Quick, Draw! Dataset , 2017). Second, as

we discussed in section 2.2.7: Char-RNN, character-based generative text models were becoming

very popular. However, the tools available at the time did not provide any form of Meaningful

Human Control over the text generated, let alone in a Realtime Continuous manner.

For this reason, we adapt our question to the domain of interactive character-based text

generation. Our aim is again to create a generative system that continually produces some

outputs, in this case not drawing but producing text character-by-character, while allowing a

user to meaningfully interact with the system and guide it with Realtime Continuous Control.

We again take the idea of visual instruments, as we described in section 1.4: Visual instruments:

Realtime Continuous Control, as very strong design guidelines. And we try to design the system

such that users are more like performers that play the system.

Our paper on this study was accepted to the Recurrent Neural Networks Symposium at

the 30th Annual Conference on Neural Information Processing Systems (NeurIPS 2016) as a

poster presentation (Akten & Grierson, 2016b), and our prototype was accepted to be a live

demonstration on the general NeurIPS conference demo track.

3.3.2 Background

For this study, we use an ensemble of Long Short-Term Memory (LSTM) (Hochreiter & Schmid-

huber, 1997) RNNs. More information on these architectures can be found in subsection 2.3.19:

Recurrent Neural Networks (RNN). In particular, our implementation is based on the character-

based text model as described in Graves (2013), which is also the foundation for Karpathy’s

popular Char-RNN.

RNNs are a type of neural architecture with cyclic connections. These allow the network to

learn temporal patterns, which in turn allows RNNs to be very effective for sequence modelling.

Notably, Graves demonstrates the use of LSTM RNNs to generate many different types of

sequences, one of which is generating text character-by-character (Graves, 2013).

Page 88

3.3. REALTIME INTERACTIVE TEXT GENERATION WITH RNN ENSEMBLES

An LSTM RNN has an internal state which can be represented as a tuple of (ht, ct) where

ht and ct are the hidden state and memory cell vectors respectively at timestep t. At every

timestep, these values are fed back into the network, and this effectively allows the network to

‘remember’ events from the past, and use that information to affect the predictions it makes

for the next timestep. In order words, the predictions made by an RNN, is conditioned on the

input, and the RNN’s internal state at that point in time.

In the case of character-by-character text generation, this equates to an RNN which outputs

a probability distribution over all characters, given previous characters. To generate text, we

sample this distribution to generate a character, and then feed this character back into the RNN

to update its internal state. Repeating this procedure, we can generate long pieces of text.

However, the typical workflow at the time of our research, follows the same patterns that

we describe in section 1.3: Meaningful Human Control under the subsection Pressing a button.

This can be summarised as: i) collect some amount of data, ii) train a model on the data, and

iii) press a button or run a script to produce a large chunk of text in the style of the training

data.

With this workflow, there are two ways in which a person can influence the output of a Char-

RNN model. The first is through the curation of training data. A Char-RNN model trained on

the works of Shakespeare will generate text similar to Shakespeare, while a model trained on

C code will generate text similar to C code. But once a model is trained, a Shakespeare model

will not be able to generate text similar to C code or vice versa.

Regarding generative RNNs, there is another method of influencing the output, which is

more subtle. This is known as priming. When a forward pass is run on a trained, but unprimed

Char-RNN, its internal state will be uninitialized to begin with, so the distribution output will

be unknown, and most likely random. Sampling a character from this distribution will be also

be random, from an unknown distribution. To prime a model, we simple run forward passes on

the trained model with each character of a seed text. Each forward pass with the next character

from the seed, updates the internal state of the model. Once the entire seed has been fed into

the model in this way, the model has been primed to continue from the seed. In other words,

when the next forward pass is run, the distribution output will be biased towards continuing

from the seed text. For example, if the Char-RNN is first fed the individual characters from

‘Good Mo’, this will set the internal state such that, when a forward pass is next run, it will

output a distribution where the letter ‘r’ will have a high probability.

This is an effective way to influence the output of generative RNNs, and grant some level

of control to a user. Using these methods, artists such as Ross Goodwin12 and Allison Parish13

have created a number of influential text-based artworks.

However, the tools available still do not allow the level of control that we seek, especially

with regards to Realtime Continuous Control, and thinking about visual instruments.

The question that we set out to investigate with this particular study is: Is it possible to

control the output of text, and change its style in realtime, whilst the text is being generated.

12https://rossgoodwin.com/
13https://www.decontextualize.com/

Page 89

https://rossgoodwin.com/
https://www.decontextualize.com/

3.3. REALTIME INTERACTIVE TEXT GENERATION WITH RNN ENSEMBLES

3.3.3 Overview

We will first describe the functionality that our solution provides, as we believe this to be more

important of a contribution, compared to how we actually implemented it. We will briefly

summarise our implementation in the next section.

Our interactive Char-RNN ensemble software is designed to run across two displays presented

side by side. This original layout can be seen in Fig. 3.5. To aid reading in print, Fig. 3.6 shows

the two screens stacked vertically. On the left we have the interaction screen. This is displayed

on a touchscreen monitor to aid seamless interaction. On the right we have the output screen.

This is where the text is displayed as it is being generated, character-by-character.

Figure 3.5: Screenshot from our dual-screen interactive Char-RNN ensemble software. On the left is the
interaction screen which we typically display on a touchscreen monitor. On the right is the output screen
where the text is displayed as it is generated character-by-character.

Styles

The user is presented with two dozen icons representing text styles. These can be seen in the

top leftmost panel in Fig. 3.6 under Style activation, and they include a wide range of texts

including the works of Shakespeare, Jane Austen, Mary Shelly, Friedrich Nietzsche, Charles

Baudelaire, Carl Jung, texts from the Dalai Lama, the Iliad, love song lyrics, the King James

Bible, the Chilcot Report of the Iraq Inquiry, cooking recipes, C source code for the Linux

kernel, LATEXcode, and many more. By clicking on these icons with a mouse or finger, the

associated style is activated or deactivated. When a style is active, its icon appears in the Style

weights sliders and Style weights gestural interaction panels.

Internally, all styles are always loaded into memory. This allows for the realtime activation or

deactivation of styles with no time delay or overheads, or any negative impact on the momentary

performance of the software. Potentially, loading too many styles could have an impact on

memory requirements. However, with two dozen styles loaded, we saw no issue on a medium-

level laptop at the time of this research in 2015. Temporarily activating or deactivating a style

from this panel, simply adds it to (or removes it from) the interaction panels. This allows

the user to reduce clutter on screen and simplify the interaction by temporarily deactivating

undesired styles.

When at least one style is active, the system starts automatically generating text. This

can be seen in the output panel in Fig. 3.6. This text appears character-by-character, at

approximately 10-20 characters per second. It is reminiscent — and symbolic — of a person

typing on a typewriter.

Page 90

3.3. REALTIME INTERACTIVE TEXT GENERATION WITH RNN ENSEMBLES

Figure 3.6: The two screens from Fig. 3.5 stacked vertically for ease of reading in print.

Page 91

3.3. REALTIME INTERACTIVE TEXT GENERATION WITH RNN ENSEMBLES

Style weights sliders

While the system is generating text in this manner, the user is able to adjust weights for each

style via the onscreen Style weights sliders. These can be seen in top centre panel of Fig.

3.6. For example, while the system is generating text in the style of the Bible, the user can start

mixing in a little bit of Mary Shelley, and then mix in a little bit of the poetry of Coleridge

etc. This does not affect the text that has been generated so far. It only affects the new text

that is being generated at that moment. In this way, styles can be changed mid-sentence, even

mid-word.

Styles can be swapped fully. Bringing a new style in at 100%, will bring all of the other

styles down to 0%. Again, this can be performed at any time. So a sentence that starts in the

style of Shakespeare, can end in the style of Baudelaire.

Styles are not mutually exclusive, they can also be mixed. For example, a memorable

outcome occurred when both the love song lyrics and Linux C source code styles were mixed

together equally at 50%. Amongst the text that the system generated, was the phrase “static

unsigned love”, a mix between “static unsigned long” — a common C expression — and of

course, the word “love”.

The sliders allow very precise control over the weights of the styles. For example, it would

be possible to set one particular style to 23%, and a second style to 77%. However, we have

observed that this level of precision does not have a noticeable effect on the outcome. In

our own testing, we observed that relatively large, roughly 25% increments in weights produced

noticeable changes in the text generated. When the weights were modified in smaller increments,

we couldn’t notice any difference in the output. We qualitatively think of using such large

increments as off, a little bit on, halfway on, mostly on, and fully on. For this reason, since

incredibly fine precision is generally not necessary, we also implement gestural interaction,

which compromises precision for expressivity.

Style weights gestural interaction

The gestural interaction panel allows more performative control over the weights of the styles.

Here, the active style icons are arranged in a circle as can be seen in the top right panel in Fig.

3.6. Moving around in this space using the mouse cursor or a finger touching the screen, the user

can more expressively perform the manipulation of style weights. The weights are calculated

based on the distance from the cursor, to each of the icons. This of course does not allow as

fine control as using the sliders directly, but we believe that this is a negligible price to pay

given the expressive freedom it adds. Especially when we consider that, as we mentioned in the

previous section, high precision is not really necessary, and only large changes in weights are

noticeable.

Furthermore, using the sliders requires the user to concentrate more on the interaction

screen, and in particular on the weights sliders area. This is to ensure that their finger or mouse

cursor is on the correct slider. However, the gestural interaction interface allows the user more

freedom to look elsewhere, for example they can stay focused on the output screen. This is

because with the gestural interface, they only need to be aware of roughly where their finger is

on screen. This enables the user to more freely and expressively perform the broad strokes of

Page 92

3.3. REALTIME INTERACTIVE TEXT GENERATION WITH RNN ENSEMBLES

which styles to bring in, when, and at what approximate levels; without having to pay such close

attention to the interaction screen. This makes the gestural interaction model more suitable

for performance and expressive interaction, as we describe in section 1.4: Visual instruments:

Realtime Continuous Control. In this case, we can think of the user, as more of a performer.

LeapMotion interaction

Going one step beyond the gestural interaction panel, we also developed a LeapMotion interface.

LeapMotion (LeapMotion, n.d.) is a small, infrared sensor which is able to track hand and finger

pose information in 3D space. Our interactive Char-RNN software also includes LeapMotion

control, whereby instead of using a mouse cursor, or a finger on a touchscreen display, the

user can simply move their hand in 3D space. We track the tip of their index finger, and its

position in space is mapped to the screen to control the weights in a similar fashion to the

gestural interaction panel. Just as it was in the gestural interaction panel, very precise position

of the hand in space is not very important. Rather, it is the approximate position in space, and

when the hand was moved to that position, which is most relevant. Reflecting on the analogy

of performing with musical instruments as we describe in section 1.4: Visual instruments:

Realtime Continuous Control, this mode of interaction further reinforces the notion that this is

not a user using our system, but more like a performer playing with our system to perform the

generation of text. In this particular case, it could even be described as a conductor conducting

the generation of text.

We developed this interaction model in response to conversations with the performer and

experimental poet Jennifer Walshe14. We imagined a live performance whereby text being

generated by the system is read out loud via a text-to-speech system. In this case, we can

remove the requirement for a screen altogether. This frees the performer to move and act much

more freely. With a mode of interaction such as the LeapMotion interface, the performer does

not have very precise control over the weights. However, given that the noticeable effectiveness

of the weights can be thought of approximately and qualitatively as none, little, half, a lot, and

full ; this level of control can be learnt relatively quickly through building an intuition of how

specific points in space correspond to specific styles. For example, “hand near right shoulder”

might be one style on full ; while “hand near left shoulder” might be another style on full ; and

in-between the two shoulders, styles are mixed accordingly.

Hearing the output of the system spoken by a text-to-speech interface, the performer can

expressively respond with their body to control, steer and conduct the output of the system in

realtime, without the burden of having to sit in front of a computer and look at a screen.

We discuss the significance of the LeapMotion interface, along with more ideas in section 3.4:

Conclusion.

14https://milker.org/

Page 93

https://milker.org/

3.3. REALTIME INTERACTIVE TEXT GENERATION WITH RNN ENSEMBLES

3.3.4 System description

We implement our software by training a number of different character based LSTM models

on different datasets. Given a seed text, each model outputs a probability distribution over

all characters, from which the next character is sampled. We run each model on a common

input, and we mix the probability distributions that they output. This can be thought of as an

ensemble of generative RNNs, collectively outputting a conditional probability matrix at every

timestep. Using the style mixture weights as style probabilities, we calculate a joint probability

distribution, from which we sample the next character. We provide more details in our paper

(Akten & Grierson, 2016b).

Our software consists of two main components: i) a python-based console backend Server

which is responsible for loading and running all of the models, and ii) a C++ frontend interactive

Visualiser. The two run as separate processes, and communicate via UDP using the OSC

protocol. A summary of this architecture can be seen in Fig. 3.7.

model1 model2 model3 model...

Server
Console / Daemon

Visualiser
Interactive + OpenGL

settings,

model mixture weights

probability distributions

sensor

OSC

Figure 3.7: Software architecture for our interactive Char-RNN. The Server is a python-based console
application with no Graphical User Interface, that manages all of the models. At every timestep, the
Server receives a seed text from the Visualiser, runs it through all of the models, and returns all of
the probability distributions output from each model to the Visualiser. The Visualiser is an OpenGL
application which provides the visual interface and interaction. The screenshots in Fig. 3.5 and Fig. 3.6
are from the Visualiser. The Visualiser continually tracks the performer’s actions, either via mouse input,
tracking the performer’s hands using a LeapMotion device, or via faders on an external midi controller.
At every timestep, the Visualiser uses these inputs to calculate and update style mixture weights, which
are used to calculate the joint probability distribution for the next character. The Visualiser samples the
next character from this distribution, updates the screen with this new character, and also sends it back
to the Server via OSC, so that the Server can update the internal state of each of the models.

We separate the two processes in this manner as it provides a number of benefits.

It is essential to separate the DNN related tasks, and the graphics and interaction related

tasks into separate threads. For an interactive performative system such as ours, it is very

important to maintain a stable, high framerate, so that both the animations, and the interaction

always feels stable and fluid. For this reason, we ensure that our Visualiser always runs at a

fixed 60fps. Feeding data into models and running inference can be a slow process, taking a

variable amount of time depending on the number of models that are active. We do not want

our visual and interactive experience to suffer, slow down, or feel sluggish when the models are

being run. For this reason, it is essential to separate them into separate threads. Separating

them into separate processes, effectively gives us separate threads by default, while providing

other advantages.

Using separate processes, we can leverage the strength of different software development

Page 94

3.4. CONCLUSION

environments and frameworks. For example, we use python and Tensorflow (Abadi & Others,

2015) for the backend Server managing the DNN related tasks, and we use the C++ creative

programming toolkit openFrameworks (Lieberman et al., 2016) for the interactive frontend, as

it provides a lot of functionality related to graphics, interfaces and interaction. This greatly

speeds up and aids development.

Finally, separating the processes in this way, allows for more flexibility in the deployment of

such a system. We have generally run both processes on the same computer, one with a GPU

powerful enough to run all required models simultaneously. However, we can imagine a situation

whereby we have a lightweight client computer running the Visualiser, and a separate, much

more powerful GPU Server running the backend. This GPU Server could even be in the cloud,

while the client can be any computer with an internet connection. Migrating to a setup such

as this, involves little more than providing the IP address of the Server, to the client computer

running the Visualiser.

3.3.5 Results and discussion

When we were previously discussing the concept of mixing styles, we mentioned an interesting

outcome that we had observed. When we mixed the love song lyrics and Linux C source code

models equally, at one point our system produced the text “static unsigned love”, a mix between

“static unsigned long” and the word “love”. In our paper (Akten & Grierson, 2016b), we discuss

more of these kinds of examples, and other notable outcomes that we observed. Since these are

specific to the case of character based sequence models, we will not detail them in this thesis.

Instead, in the conclusion of this chapter, we will reflect on our findings of this study in the

context of Realtime Continuous Meaningful Human Control.

3.4 Conclusion

In this chapter, we presented two studies, both of which were investigating the same high level

goal: generative systems which continually and incrementally produce some kind of output,

while allowing a person to meaningfully interact with and guide the system with Realtime

Continuous Control.

Our first study investigated this in the context of drawing or sketching. We implemented

an agent-based method, using MCTS to guide the agent, and a discriminative CNN to evaluate

the agent’s drawings and provide a reward signal. However, due to the amount of false positives

that discriminative CNNs produce, this system was not able to produce the results that we

were hoping for.

Instead of working with discriminative models, we switched to generative models, and we

adapted our question to the domain of text. We developed a software based on an ensemble

of LSTM RNNs, that allows Realtime Continuous interaction with this system, to influence

the style of the text being generated. This interaction is possible via a number of modes,

ranging from very precise manipulation of sliders, to more expressive and performative gestural

interaction tracking the hand of the user in space with a LeapMotion sensor. In this latter

case, we think of the user more as a performer playing the system like an instrument, or even a

Page 95

3.4. CONCLUSION

conductor conducting the generation of text.

We describe why we believe in the importance of this kind of an approach in section 1.4:

Visual instruments: Realtime Continuous Control. While this is an active area of research

within the broader field of ML and performance, particularly within music as we mention in

subsection 2.2.9: Machine Learning for Artistic, Expressive Human Computer Interaction (AE-

HCI), we are not aware of such studies at the time using state-of-the-art DL algorithms.

We do not claim that we have developed the most effective solution or interface for such a

problem. Neither do we claim that our system provides optimal usability. Our aim with this

research is two-fold.

First, we are investigating how we can introduce points of interaction into DL systems that

currently do not allow any form of meaningful or Realtime Continuous Control.

Second, and more crucially, we are hoping to encourage more conversations and thinking

in this direction. We were very happy to be accepted to show a live demonstration of our

interactive Char-RNN software at NeurIPS 2016, to thousands of researchers. Having spoken

to countless researchers at this conference trying our software, we can summarise the responses

as ranging from “This is so awesome”, to “I don’t understand what this is for. What is the

application for this?”. Clearly not everybody shares our priorities. However, many people do.

And we would like to help shift thinking in that direction.

Google’s highly successful Sketch-RNN and related web applications perfectly address the

questions and motivations which we raise in our first study (though with a very different, and

more successful technical approach). The popularity and success of very recent research, also

looking into Meaningful Human Control over generative Deep Neural Networks (Park et al.,

2019; Karras et al., 2019; Simon, 2019; Bau et al., 2019; Karras et al., 2020; Härkönen et al.,

2020; Jiang et al., 2020; Broad et al., 2020) is also a prime example of this.

For the interactive Char-RNN study, we developed the LeapMotion interface, not because

we believe this is the best mode of interaction for this medium. We developed it because we

believe this is a starting point, that hopefully other researchers can follow through on. It acts

as an example to demonstrate the vast number of possibilities with regards to interfaces for

Deep Neural Network manipulation, an area which we believe is highly under-researchers.

For example, we also considered detecting facial features and mapping them to style weights.

In other words, we imagined that different kinds of facial expressions could control the style

of the text generated. A fully smiling face could correspond to the Dalai Lama style, while

a frowning face could correspond to Trump. In a similar fashion, different styles could be

assigned to eyebrows raised, lowered, looking angry, eyes closed, open etc. And then through

various facial manipulations, the style of the text is altered in realtime. In conclusion, the

interactive Char-RNN software that we developed, demonstrates perfectly what we were hoping

to demonstrate with this study.

After this, we move onto a more complex and high-dimensional domain, pixel-based images.

This will be the medium that we work with in the remainder of this thesis. We start in the

next chapter looking at how image-based Deep Neural Networks learn. For this, we develop an

interactive training software that trains in realtime on a live camera feed.

Page 96

Chapter 4

Hello World: Realtime interactive

training as an informative and

performative tool

4.1 Introduction

In this thesis, the two key points that we prioritise when thinking about the design of our

interactive generative systems, are Meaningful Human Control, as we describe in section 1.3:

Meaningful Human Control; and Realtime Continuous Control, as we describe in section 1.4:

Visual instruments: Realtime Continuous Control. In particular, we think of these systems that

we are trying to build as visual instruments, where the user can be thought of as more of a

performer that plays the system.

In the previous chapter, we examined two different approaches to this topic. The first of

these studies looked at sketching, while the second looked at character-by-character generation

of text. The second study that we presented, section 3.3: Realtime interactive text generation

with RNN ensembles, achieved perfectly what we were hoping for, demonstrating the potential

of such an approach. Our system provides both Meaningful Human Control, and Realtime

Continuous Control. And we were able to gesturally conduct the generation of text, using our

body in an expressive and performative manner, analogous to a visual instrument.

We began this inquiry in the previous chapter, working with data of relatively low dimen-

sionality. Our MCTS agent selects actions from within a dozen or so options, and our interactive

Char-RNN ensemble selects the next character from less than a hundred or so characters.

In this, and subsequent, chapters, we move onto and apply the same kind of thinking to

data that has many orders of magnitude higher dimensionality. We work with pixel-based raster

images.

In this chapter in particular, we investigate how image-based deep generative models learn.

We develop a software system that performs realtime training on a live video feed, while allowing

for the Realtime Continuous manipulation of a number of hyperparameters such as learning rate,

momentum, gradient clipping thresholds, loss function and many more 1 . Observing the results

1A full list can be seen in subsection 4.4.1: Hyperparameters

97

4.2. MOTIVATIONS

of these hyperparameter manipulations, we are able to build a qualitative understanding of how

they impact the training process.

Furthermore, an unplanned outcome of our system, is that it also provides great potential

as a performative tool.

Manipulating hyperparameters in realtime while the model is training, produces aesthetically

unique and interesting outputs, and effectively transforms the Deep Neural Network into a

medium which we can play like a visual instrument.

In addition, the affordances granted by our software is not limited to the fact that we can

manipulate hyperparameters in realtime while the model is training live. In fact the model is

training on a live video feed. This introduces a second mode of interaction, a very expressive

and performative mode of interaction. Namely, by manipulating our hands, body or objects

in front of the camera while the model is training, we can observe the results this has on the

system, and we can act accordingly. Any movements we make in front of the camera, effectively

introduces new training examples into the training dataset. We can then make experimental

gestures and movements in front of the camera, and observe how these new training examples

influence the predictions that the model makes and the images generated as a result of this.

Through this Realtime Continuous interaction with immediate feedback, we eventually build an

understanding of how to meaningfully control this process, and we can leverage this new found

knowledge and experience to use the system as a performative environment.

In this respect, combining both of these modes of interaction, we use our system not only for

technical research, for building a qualitative understanding of the effects of hyperparameters or

subtle changes to training examples. But we also used it for artistic, aesthetic and performative

research. We will build upon this aspect of the software, focusing on these two modes of

interaction that we just mentioned, more in the following chapter chapter 5: Learning to see:

Digital puppetry through realtime video transformation.

Finally, due to the fact that our system demonstrates and sheds light on how Deep Neural

Networks learn, and is especially accessible by a non-expert audience, the system itself has

garnered interest from arts and cultural institutions. As a result, we have exhibited the system

itself as an interactive video installation at events and venues including Ars Electronica (Linz,

AT, 2017), International Documentary Film Festival Amsterdam / IDFA (Amsterdam, NL,

2017), and the Moscow Museum of Modern Art (Moscow, RU, 2018) (Fig. 4.1). The work has

also been included in MIT’s Open Documentary Lab docubase2.

4.2 Motivations

There are a few key moments that led to the development of this particular study that we

present in this chapter.

In subsection 2.3.13: Hyperparameter search, we describe the importance of hyperparameters.

These are variables that are not learnable via a typical training process, and they define or

control the architecture of a DNN or various aspects of the optimisation process. These include

variables such as the number of layers in a DNN, the activations functions and number of

2https://docubase.mit.edu/project/learning-to-see

Page 98

https://docubase.mit.edu/project/learning-to-see

4.2. MOTIVATIONS

Figure 4.1: Hello World at The Moscow Museum of Modern Art, 2018 (Photo© Yuri Palmin)

neurons in each layer etc. They also include variables such as the loss function or optimisation

algorithm used, learning rate, momentum, gradient clipping thresholds, regulariser weights, and

many many more.

An optimal configuration of hyperparameters is essential to ensure that training a DNN

converges to a desired solution. However, as we mentioned, hyperparameters are not learnt

via training, but have to be set manually. Typically, there are no clearly defined rules as

to what values these hyperparameters should be set to. Instead, hyperparameter values are

selected purely based on empirical experience, which may or may not be transferable from one

domain or problem to another. For this reason, it is common to perform a hyperparameter

search, whereby up to hundreds of models are trained on the same dataset, slightly varying

hyperparameters by a small amount in each case. From these hundreds of models, the model

which performs the best, i.e. produces the most accurate predictions on a validation dataset, is

selected as the best model 3.

The difficulty and fragility of manual hyperparameter selection is a well known open prob-

lem in DL research. For this reason, under the umbrella of meta-learning, or learning to

learn, researchers are investigating more robust, automated methods of hyperparameter se-

lection (Andrychowicz et al., 2016; Finn et al., 2017; Zoph et al., 2018; Rusu et al., 2019).

In the meantime however, we are looking for ways to build a better qualitative understand-

ing of how these hyperparameters affect training, and the solution that the model converges

to. In particular, we are looking for ways of better understanding the effects of individual

3Alternatively, the top N models may be used as an ensemble. However, this is outside the scope of this thesis
so we will not dig deeper into this.

Page 99

4.3. BACKGROUND

hyperparameters.

When appropriate, we do also use the “train hundreds of different models with randomised

hyperparameters” approach. And while this may be the current best method for selecting

the most quantitatively optimal model, we do not believe it is necessarily the best method for

allowing a human to build a qualitative understanding of how the hyperparameters influence

the outcomes. Based on our experience with visual instruments, including both the study that

we presented in the previous chapter, and including our experience outside of the work that we

present in this thesis, we believe that a system that provides Realtime Continuous Control, and

allows for experimentation of parameters with immediate feedback, is an essential complement

to build such a qualitative understanding.

Our curiosity in this direction is further reinforced by the results of the sketching MCTS

agent that we discussed in the previous chapter. In particular, the capacity for the CNN classifier

to provide so many false positives, led us to inquire more about how and what DNNs learn.

This is already a very active area of research (Erhan et al., 2009; Simonyan et al., 2013; Zeiler &

Fergus, 2013; Mahendran & Vedaldi, 2014; Dosovitskiy & Brox, 2015; Nguyen et al., 2015; Olah

et al., 2017; Mordvintsev et al., 2018; Olah et al., 2018). And as we described in the previous

paragraph, we believe that a system which allows Realtime Continuous experimentation will

provide very valuable complementary insights.

Finally, at the risk of stating the obvious, the data that a model is trained on, defines what

the model will learn, and will ultimately produce. Training a generative DNN on images of cats,

will result in a model that produces images of cats; while training a generative DNN on images

of dogs, will result in a model that produces images of dogs. This should come as no surprise.

However, an interesting question arises when we consider much more subtle variations to the

training examples that we provide to a model. In order to investigate this, we again seek a

Realtime Continuous system that allows for subtle realtime manipulation of training examples,

and provides immediate feedback.

On top of all of these, which we can summarise as technical points of inquiry, we have

our usual additional agenda, which is to investigate deep visual instruments: new modes of

performative, artistic expression, using Deep Learning models as a medium and instrument.

For all of these reasons, we develop the realtime training software that we describe in this

chapter.

4.3 Background

The Deep Learning architecture that we use in this study, is a Variational Auto-Encoder (VAE)

with Convolutional layers. The Convolutional layers provide the architectural details that

makes the Neural Network suitable for 2D pixel-based image processing. We discuss these in

more detail in subsection 2.3.15: Convolutional Neural Networks (CNN).

VAEs we discuss in subsection 2.3.17: Variational Auto-Encoders (VAE). However, below

we will summarise a few points that we will build upon in this chapter, and we will refer back

to them in later sections.

Page 100

4.3. BACKGROUND

input layer (x) bottleneck layer (z) output layer (x')

encoder network decoder network

z

,

Figure 4.2: Variational Auto-Encoder. The output of the encoder network is the mean µ and standard
deviation σ of a Normal distribution, from which a latent vector z is sampled z ∼ N (µ,σ). This is then
fed into the decoder network for decoding.

1. An Auto-Encoder (AE) is a type of deep architecture whereby the model tries to effectively

compress and then decompress its inputs — which are in this case, images from a live video

feed. This is accomplished by a bottleneck layer which has much smaller dimensionality

in comparison to the AE’s inputs. For example, a colour image of dimensions 256x256

pixels, might be compressed down to pass through a bottleneck layer of dimensionality

128. The aim of this compression is to encourage the network to identify and learn to

extract salient features of the data, and learn more concise and optimal representations.

2. An AE can be thought of as consisting of two networks back-to-back. The first is an

encoder network, which compresses an input x to the bottleneck layer. We think of this as

the latent representation z. The second network is a decoder network, which decompresses

the latent representation z from the bottleneck layer, to an output x′. Given suitable

training examples, architecture and hyperparameters, the VAE should be able to produce

x′ such that x′ ≈ x.

3. A Variational Auto-Encoder is a type of AE that is also a generative model. It learns the

distribution of data. This enables us to sample new images from this latent distribution, or

perform meaningful latent manipulations. We discuss these in more detail in section 2.1:

Generative models.

4. What enables a VAE to be a generative model, is the parametrisation trick. This is a

regulariser, an additional term in the loss function, that ensures the distribution of the

bottleneck layer (also known as the latent distribution) converges to a desired distribution.

Typically, this is a standard normal distribution N (0, 1). In other words, we can sample

a random z ∼ N (0, 1) and feed this through the decoder to produce new images that

resemble the training examples.

Page 101

4.3. BACKGROUND

5. To be more precise, in a VAE, both the encoder and the decoder networks are probabilistic

models. The encoder models the probability of P (z |x), while the decoder models P (x|z).

6. The loss function of a VAE consists of two components. The first component is the

reconstruction loss, which ensures that the output of the VAE x′ resembles the input x.

We will discuss this in the next point. The second component is the latent loss. This is the

regulariser used for the parametrisation trick, which ensures that the latent distribution

converges to the standard normal distribution N (0, 1). This is typically the KL divergence

between the latent distribution, and the standard normal distribution.

7. Typically, the reconstruction loss is a pixel-wise L1, L2 or Cross Entropy loss. It is well

known that these produce blurry results (I. Goodfellow et al., 2014; Theis et al., 2016;

Larsen et al., 2016). One approach to address this has been a completely alternative

approach to VAEs altogether, in the form of Generative Adversarial Networks (GAN)

(I. Goodfellow et al., 2014). We discuss this in subsection 2.3.18: Deep Convolutional

Generative Adversarial Networks (DCGAN), and in the next two chapters we will inves-

tigate GANs. More recently, there have also been attempts at addressing this within

VAEs (S. Zhao et al., 2017; Dumoulin et al., 2017; Rezende & Viola, 2018; Shu et al.,

2018). In the work that we present in this chapter, which came before these more re-

cent studies, we take an alternative approach, which is unique to the domain of images.

We implement a loss function based on Multi-Scale Structural Similarity Index Measure

(MS-SSIM) (Z. Wang et al., 2004) to achieve perceptually significantly superior results.

8. We have also observed that the relative weight of the reconstruction loss and latent loss

is very important to how the model performs. For this reason, we introduce a new WKL

hyperparameter, which is a weight multiplier on the KL divergence loss term (i.e. the

latent loss). At the time of our work, this was not mentioned in the literature, and was

later independently investigated and confirmed (S. Zhao et al., 2017; Higgins et al., 2017;

Van Den Oord et al., 2017).

It is worth noting again, as we have mentioned above, theoretical improvements to VAEs

have been suggested (S. Zhao et al., 2017; Dumoulin et al., 2017; Rezende & Viola, 2018; Shu

et al., 2018). And in fact, GANs have also been proposed as an alternative, although they

lack efficient inference capabilities to encode existing data points to latent representations, and

we discuss this in section 2.1.3: Latent representation recovery. However, the method that we

propose in this chapter, is not strongly tied to the VAE architecture that we demonstrate it with.

Instead, our software is more of a shell that can sit around potentially any neural architecture

with suitable adaptations. In fact we have tested our software with both unconditional and

conditional DCGANs, namely pix2pix. Documentation of such an adaptation can be seen

in Fig. 4.3. However, at the time of our research, available consumer GPU hardware did

not provide satisfactory realtime interactive performance when training GANs, and generally

dropped below 1fps. For this reason, in this chapter we focus on VAEs, with which we are able

to achieve 30–60fps.

Page 102

4.3. BACKGROUND

Figure 4.3: An adaptation of Hello World at “Artists and Robots”, Astana Contemporary Art Centre,
2017

Page 103

4.4. SYSTEM DESCRIPTION

4.4 System description

We will begin by explaining what exactly our system does. Later in section 4.5: Experiments

and results, we will discuss the affordances that this grants us.

In order to realise the above stated aims, we built a bespoke system that trains in realtime

on a live camera feed, while allowing for the manipulation of a number of hyperparameters in

realtime. Our system is built from the ground up in python using the Deep Learning framework

Tensorflow (Abadi & Others, 2015) and PyQtGraph4. for frontend and visualisation. PyQt-

Graph is an open-source Scientific Graphics and GUI Library based on Qt, designed for high

performance, realtime applications.

Like many realtime systems, our system operates via an update loop. On a laptop with an

Nvidia GTX 1070 our system runs at around 10-20 frames-per-second (fps); and 30fps–60fps

on a desktop PC with an Nvidia GeForce GTX 1080 Ti. The exact figures depend on the

hyperparameters and complexity of the Neural Network architecture that we set up.

When our application is launched, the model weights are initialised to random parameters

using Xavier initialisation (Glorot & Bengio, 2010). Following the update loop detailed in

Alg. 1, for every frame of the input video feed, our software performs one forward pass to run

inference on the video input, it displays the generated images, and then runs one backwards

pass to train and update the model weights. And this update loop is repeated indefinitely at

realtime, interactive framerates.

This is a form of online learning, in which model parameters are updated dynamically, as

new data streams in. Online learning is a well established area of research, and dates back to the

earliest days of ML (Shalev-Shwartz, 2011). However, online learning is currently mostly limited

to low dimensional data, using shallow models with convex objective functions. Applications

of online learning with deep architectures is not common, although there is growing interest in

the field (Sahoo et al., 2018).

It is important to underline how different this is in comparison to typical DL workflows.

Within DL research, especially within the creative applications of DL, it is common practice

to first train a model on some data, which can often take hours, days, weeks or even months

depending on the amount of data and complexity of the architecture. And after this training

phase, the model is used for inference.

With our method, every update loop of the application consists of one inference (or forward)

pass, and one training (or backward) pass. Via a GUI, we can manipulate and experiment with

a large number of hyperparameters while this inference-training loop is running, and we can

observe the results in realtime. We do not argue that our method is capable of producing a

more optimal model, compared to a traditional hyperparameter search consisting of training

hundreds of models. However, we do claim, that our method is complementary, and can provide

valuable insights into how these hyperparameters effect the training process and the solution

that the model converges.

4http://pyqtgraph.org/

Page 104

http://pyqtgraph.org/

4.4. SYSTEM DESCRIPTION

Algorithm 1: Hello World: Update loop

// Main variables, updated every frame

1 hyperparameters: hyperparameters which can be manipulated in realtime via the GUI;

2 Θ: current DNN weights;
3 xlive: current input image grabbed from the live video feed;
4 zmode: latent representation for mode, where mode ∈ (live, perturbed, random);
5 ymode: output image generated having decoded zmode;

6 foreach update loop do

7 hyperparameters ← read all hyperparameters from GUI;
8 architecture changed ← CheckNNArchitecture(hyperparameters);
9 if architecture changed then

10 BuildNNArchitecture(hyperparameters);
11 Θ ← initialise randomly with Xavier Initialization;

12 end

13 xlive ← grab current image from live video feed;

14 begin Forward pass with current weights Θ

15 begin mode Seeing : live video input
16 zlive ∼ Encode(Θ, xlive);
17 ylive ← Decode(Θ, zlive);

18 end

19 begin mode Reminiscing : live video input perturbed with noise offset
20 zperturbed ∼ N (zlive, hyperparameters [‘noise amount’]);
21 yperturbed ← Decode(Θ, zperturbed);

22 end

23 begin mode Dreaming : random sample
24 zrandom ∼ N (0, 1);
25 yrandom ← Decode(Θ, zrandom);

26 end

27 end

28 begin Backward pass to update weights
29 loss ← CalculateLoss(xlive, ylive, hyperparameters);
30 gradients ← CalculateGradients(hyperparameters);
31 Θ ← Backpropagate(gradients, Θ, hyperparameters);

32 end

33 begin Display in GUI
34 Stimulus ← xlive;
35 Seeing ← ylive;
36 Reminiscing ← yperturbed;

37 Dreaming ← yrandom;

38 end

39 end

Page 105

4.4. SYSTEM DESCRIPTION

Fig. 4.4 shows a screenshot from our software. This is a full capture of the entire screen,

although it excludes the GUI, as that is a separate window which we usually place on a second

monitor. In the following pages, in order to save space on the page, we will crop the screenshots

to show only areas relevant to the topic at hand.

Figure 4.4: A screenshot from our Hello World software.

In this screenshot, there are four panels showing images labelled Stimulus, Seeing, Remi-

niscing and Dreaming. We use these terms as metaphorical representations of the operations

that are being performed in each panel. The details of these operations can be seen in Alg. 1,

and we summarise them below.

� The Stimulus panel shows xlive, the live video feed that is presented to the model.

� The Seeing panel shows ylive, a straight reconstruction of the live video feed. In other

words, the current image from the camera xlive, is fed through the encoder and compressed

into a latent representation zlive. This latent representation is fed through the decoder

and decompressed to produce the image ylive. This is what the model is ‘seeing’ in its

‘mind’, as a result of being presented with this stimulus.

� The live video feed’s latent representation zlive, is additionally perturbed by a small

amount of noise to produce a new latent representation zperturbed. Feeding zperturbed

through the decoder, a new image yperturbed is generated and shown in the Reminiscing

panel. Since zperturbed is essentially a random position in the local neighbourhood of zlive,

and assuming that the space of latent representations is indeed well structured, we should

expect the image generated as a result yperturbed, to be somehow similar — structurally

and/or semantically — to ylive. We discuss the reasons behind this expectation in subsec-

tion 2.1.3: Latent manipulations. This is an image that the model is being ‘reminiscent‘

of, as a result of being presented with this stimulus.

Page 106

4.4. SYSTEM DESCRIPTION

� The Dreaming panels shows a ‘random’ image yrandom, generated by sampling a random

zrandom from the latent distribution N (0, 1), and decoding through the model. This is the

model ‘dreaming’ random images that are not directly connected to the current stimulus,

but is instead a result of the model’s history and life experience.

The red graph at the bottom of the screenshot is a plot of the error . This is the loss

calculated between xlive and ylive, as per the loss function currently selected via the GUI.

The cyan/blue graph we call knowledge gain . This is loosely based on Jürgen Schmidhu-

ber’s formal theory of curiosity, creativity, compression and beauty (Schmidhuber, 2006, 2007,

2009a, 2009b, 2010a, 2010b, 2012a). In this model, an agent’s subjective view on the inter-

estingness of a phenomena is measured as the first derivative of compression. In other words,

an increase in the agent’s ability to compress previously uncompressable data, is indicative of

the agent learning about new regularities, and thus improving its model and knowledge of the

world. In Hello World, we treat the decrease of error, as an improvement of the compressor,

and thus an increase in knowledge gained about the world. We implement this by smoothing

the error plot with a rolling window, and accumulating it’s negative derivative. This is by no

means an accurate metric, as it does not take into account changes in stimulus. For example,

swapping a novel stimulus for a previously seen stimulus will also reduce the error, without an

increase in knowledge. There are ways in which this could be taken into account. However, this

is far outside the scope of our thesis, so we implement this simple metric as an approximate

indicator of knowledge gain for situations where we know the stimulus to be relatively static.

4.4.1 Hyperparameters

One of our primary motivations in building this system, is to allow for the realtime manipulation

of hyperparameters, while the system is training. The hyperparameters which our software

makes available for manipulation can be grouped into two categories.

Architecture hyperparameters define the architecture of the Neural Network. These hy-

perparameters can be modified while the system is running. However, this will reconstruct

the computation graph, and the number of weights in the network is likely to change. Hence,

changing any of these hyperparameters will result in the weights being reinitialised, and this

will effectively reset the training. For this reason, we think of these as destructive edits. This

is implemented in line 9 of Alg. 1. These hyperparameters include:

� Dimensions of the bottleneck layer z

� Number of layers

� For each layer, convolution hyperparameters such as kernel window size, filter depth, and

stride. We detail these in subsection 2.3.15: Convolutional Neural Networks (CNN)

Non-destructive hyperparameters do not affect the structure of the architecture, and can

be modified in realtime without requiring a reinitialisation of the weights. In other words, the

Neural Network can continue to train while we modify these values, and we can observe the

results in realtime. Where these are boolean or multiple-choice options, our software constructs

Page 107

4.4. SYSTEM DESCRIPTION

multiple paths in the computation graph for each of the options, and seamlessly switches between

them at runtime depending on the options selected by the user. In other words, there is a path in

the computation graph for each loss function, optimisation algorithm, and any other option that

is provided to the user. We implement the real valued hyperparameters as tf.Variable objects,

and we feed their values from the GUI at runtime. These non-destructive hyperparameters

include:

� Activation functions for each of the layers ∈ (tanh, sigmoid, ReLU, or Leaky ReLU)

� L1 and/or L2 regularisation amount on the weights

� Reconstruction loss ∈ (L1, L2, Cross Entropy, or MS-SSIM)

� A weight multiplier WKL for the latent loss KL Divergence

� An option to toggle between a variational and a normal auto-encoder

� Optimiser ∈ (SGD with momentum, RMSProp, Adagrad, Adadelta, or Adam)

� Values for optimisation hyperparameters associated with the selected optimiser. These

include learning rate, momentum, β1, β2 etc.

� Values for gradient clipping thresholds, both on L2 normals and per component

� Batch size and options for exponentially decaying memory and data augmentation

� Noise amounts, injected at input and/or in latent space

� Video input device ∈ (USB cameras, network IP cameras, video files, or folders of images)

4.4.2 Batch size, exponentially decaying memory and augmentation

As we have previously mentioned and detailed in Alg. 1, with every update, the model is trained

on a single image, which is the current image from the video feed xlive. In this case, we observe

that the model converges to reconstruct the current image very quickly, provided that the video

feed does not change dramatically. However, the model ‘forgets’ previous images it has seen,

and is unable to reconstruct images that were presented to it just a few seconds earlier. For

example, if we present to the system an object A, and hold it still for a few seconds, the images

generated will initially be very blurry, but the model will quickly learn to produce sharp images

of A. If we then present an object B, the images generated will again initially be very blurry,

but the model will quickly learn to produce sharp images of B. If we then present object A

again, the images generated will be blurry again, as the model will have forgotten about A and

will need to relearn.

In other words, the network is constantly over-fitting to the live feed, and not learning to

generalize.

To overcome this, we introduce an exponentially decaying memory. This a fixed size buffer

of length N (e.g. N := 2048). With every update, we store the current image xlive into

a random location in the memory buffer, overwriting the current contents at that location.

During training, instead of using a batch size of 1 and training on only the live image xlive, we

use a batch size of K (e.g. K=2–4) where one element of the batch is xlive, and the remaining

elements are sampled randomly from the memory buffer. We feed this batch of K images to the

model to produce a batch of K output images, which we use to calculate the loss and gradients.

Using this approach, the model is always being trained on the live video feed, as well as a

random selection of older images. And due to the random-in-random-out nature of the memory

Page 108

4.5. EXPERIMENTS AND RESULTS

buffer, the system has a higher probability of being exposed to recent images, and older images

are more likely to be eventually over-written.

Finally, we include options to augment the images during training, by taking random crops

and/or applying random brightness and contrast adjustments to them before they are fed into

the model. While we observe this to improve generalization, for aesthetic reasons, we decide not

to use this as it unsurprisingly introduces too much ‘jumping around’ in the random samples.

4.5 Experiments and results

We will now share some of the experiments that we conducted. These can be grouped into two

categories which reflect the primary modes of interaction. These are hyperparameter manipula-

tions, and video feed manipulation. We will begin by sharing our experiments in hyperparameter

manipulation.

4.5.1 Optimiser and associated hyperparameters

The optimisation algorithm determines how the parameter space is navigated with regards

to the gradients from the loss function. We implemented a number of optimisers as listed

above, and we experiment with them, switching between them, and playing with their respective

hyperparameters in realtime, and observing the results.

Explosions and oscillations

Two important phenomena to discuss, are explosions and oscillations.

Explosions occur when the optimiser completely shoots past a minima, and escapes the

valley, into some unknown territory in the parameter landscape. The model is no where near

a solution. Furthermore, the optimiser is unable to bring it back, and the system is generally

unstable and out of control. This is typically when the gradient updates being applied are way

too large.

Oscillations occur when the gradient updates are still large enough that the optimiser

shoots past a minima, and cannot converge. However, the updates are not large enough for the

optimiser to escape the valley and explode. Instead, the optimiser oscillates around the minima,

back and forth inside the valley, without ever reaching the minima.

The visual manifestation of these can be seen in Fig. 4.5, and we will explain this image in

more detail shortly.

Learning rate

A very simple way of making the optimiser explode, is by increasing the learning rate hyper-

parameter. This increases the step size that the optimiser takes with each gradient update. As

a result, increasing the learning rate will first result in oscillations, as the optimiser consistently

shoots past the minima and then returns, oscillating around the minima like a pendulum. As

learning rate is increased further, the optimiser is likely to escape the valley into uncontrollable

territories, and it will eventually explode.

Page 109

4.5. EXPERIMENTS AND RESULTS

Momentum

A tightly coupled hyperparameter, is momentum . This introduces, as the name implies,

momentum to the equation. This is typically visualised as a ball rolling around on a hilly

landscape. Higher values for momentum, equates to the optimiser preserving more of its velocity

from the previous gradient update. This helps smooth the trajectory in parameter space, and

can aid escaping local minima. This can be thought of as a heavy ball such as a cannonball,

rolling around on the hilly landscape, unaffected by wind resistance. Whereas lower values of

momentum can be thought of as a ping pong ball, losing much of its energy to wind resistance,

rolling around on the same hilly landscape.

Increasing momentum can dramatically increase the step size if the optimiser is already

moving in the direction of the gradient, as the velocity from the previous updates accumulate.

This is analogous to a ball accelerating down the slope of a hill.

For this reason, increasing momentum is also a very simple way to make the optimiser ex-

plode. Generally speaking, it is beneficial to have momentum, as this will smooth the trajectory,

and can help the optimiser escape from local minima. However, increasing momentum will need

to be paired with decreasing learning rate, in order to balance out the accumulations of velocity

across updates, and to prevent explosions.

Stable oscillation points

One of the interesting experiments that we tried, is to adjust learning rate and momentum in

such a fine balance, that the system starts oscillating. It is stable, however, it is right at the

edge of stability.

Without a Realtime Continuous interface that provides immediate feedback, such a configu-

ration of values would be very difficult to find. However, we are able to find such configurations

very quickly, within a few seconds in fact. We map our hyperparameters to faders on a midi

controller, and with one finger on each fader, we do not need to take our eyes off the screen. We

can slide our respective fingers forwards and backwards, and manipulate both hyperparameters

simultaneously, to find the balance of values such that the system approaches, but does not pass,

this tipping point into exploding.

There will of course be many such stable oscillating points, high learning rate and low mo-

mentum, vs low learning rate and high momentum, and everywhere in between. And each

configuration will behave slightly differently. Through the relative balance of these hyperpa-

rameters, we can control the amplitude and speed of the oscillation.

The impact of novel inputs

Having found a stable oscillating point, we then introduce novel inputs to the video feed. This

is typically a large, sudden movement in front of the camera, such as waving an arm. A novel

input such as this, will introduce a large loss. And a large loss will introduce a large gradient.

For this reason, if the system was already oscillating, in a stable manner but close to the edge

of the valley, this large gradient that comes from the sudden movement is likely to cause the

system to escape the valley, and ultimately explode.

Page 110

4.5. EXPERIMENTS AND RESULTS

Furthermore, here the differences in behaviour between the different optimisers become very

noticeable.

Stochastic Gradient Descent (SGD), unsurprisingly, is the most likely to explode in a situa-

tion like this. This is because the step sizes in SGD are not dynamic. They are directly related

and fixed, to the gradient, learning rate and momentum. If the optimiser is already oscillating

at the edge of tipping while the video feed is relatively still, and the gradients are small, then

it is very expected that it will explode if the gradients suddenly grow.

Optimisers such as RMSProp, AdaGrad, and Adam on the other hand, implement adaptive

measures to counteract such incidents. Adam in particular, we observed to be not only the

most stable, but also the quickest to converge. Building on RMSProp and AdaGrad, the

Adam optimiser uses exponential moving averages to estimate the first and second moments

of the gradient, to dynamically adjust both the learning rate and momentum, per parameter

(D. Kingma & Ba, 2014). For this reason, even if we increase learning rate, and make sudden big

movements in front of the camera, the Adam optimiser is likely to counteract massive gradients,

and try to prevent large oscillations or explosions. And on the flip side, when movements in

front of the camera are very subtle, and the gradients are very small, the Adam optimiser is

likely to counteract by increasing the step size, and thus converges quicker.

Interestingly, and perhaps unsurprisingly, even though SGD was the most unstable of the

optimisers, it was also the easiest for us to play with and meaningfully control. We were very

quickly able to build a qualitative understanding of the behaviours of learning rate and momen-

tum with SGD. We were also able to very quickly bring the SGD optimiser to an oscillating

stable point. And upon exploding, we were able to bring it back under control, and back to

convergence. Probably due to the non-linear complexity of the Adam optimiser, we were not

able to develop as much control over the Adam-specific decay hyperparameters β1 and β2.

Gradient clipping

Two more hyperparameters which are key to controlling this optimisation process, are the

gradient clipping hyperparameters. These rescale the gradient if the gradient gets larger

than a certain threshold, and can be a very computationally cheap and effective method for

preventing explosions, or controlling oscillations (Pascanu et al., 2013). We implement two

methods of gradient clipping, L2 norm (i.e. rescaling the gradient if its L2 norm is greater than

the threshold), and per component (i.e. clipping each component of the gradient independently

if it is larger than the threshold). We found it difficult to qualitatively assess the differences in

behaviour between clipping per component or L2 norm. However, we know that theoretically,

per-component clipping is likely to change the direction of the gradient, and this is not a

desirable behaviour. For this reason, we generally use L2 norm clipping.

An optimiser experimentation session

Fig. 4.5 shows a selection of frames from an experimentation session where we play with the

optimisation hyperparameters learning rate, momentum, and gradient clipping threshold, in a

manner that we describe above. We have these three hyperparameters mapped to faders on a

Page 111

4.5. EXPERIMENTS AND RESULTS

Figure 4.5: A selection of frames covering roughly a two minute experimentation session where we play
with the optimisation hyperparameters learning rate, momentum, and gradient clipping threshold. Time
flows from left to right, and each frame shows the live reconstruction, i.e. the Seeing panel.

Page 112

4.5. EXPERIMENTS AND RESULTS

hardware midi controller, so that we do not need to take our eyes off the screen, and we can

manipulate all three hyperparameters simultaneously.

The loss function that we use is L2, and the optimiser is SGD with momentum. The live

video feed is a webcam focused on our face and shoulders, similar (but not identical) to the

setup in Fig. 4.4.

At the start of the session, the model is initialised randomly with Xavier initialisation

(Glorot & Bengio, 2010), learning rate and momentum are set to ‘reasonable’ values 0.0003 and

0.5 respectively. The first two rows show the model converging, and by the middle of the 3rd

row, the model has converged, reconstructing the video feed accurately5.

Towards the end of the 3rd row, we decrease learning rate to zero. This effectively pauses

any gradient updates and the model stops learning. As a result, when we move to the left of

the screen, the model is unable to reconstruct these novel inputs, and our head disappears. By

the start of the 4th row, we restore the learning rate, and the model is able to reconstruct our

head in this new location on screen.

In rows 4 to 6, we increase learning rate and momentum, until the system is oscillating wildly.

This is difficult to observe in this image where the frames are spaced roughly 1-2 seconds apart.

In reality, at every update, the output is wildly different to the previous in terms of colours and

brightness, but some aspect of the composition is somehow always preserved. We can easily

observe that the generated image is oscillating around an image that would be the image from

the live video feed. The output flashes alternately brighter and darker, or between opposing

colours, while it tries but fails to converge on the desired image from the camera.

Towards the end of row 7 and beginning of row 8, we push momentum further causing the

system to explode, and the structure of the generated image is entirely lost. At every update,

the output is flashing crazy colours and shapes at this point.

Towards the end of row 8 and beginning of row 9, we introduce gradient clipping to slow

the system down and bring it back under control. We lower momentum and learning rate to

reasonable values, and in the last 2 rows, we can see that the system is stable again, however it

is oscillating. By controlling the gradient clipping, momentum and learning rate, we can control

the amplitude and speed of the oscillation.

It is worth pointing out, that we do not perform any kind of colour correction, brightness,

contrast or any other kinds of post processing on the images generated. These images are the

raw, unprocessed outputs from the model. The model is trying to reconstruct its input as

accurately as possible. The colour variations, extreme saturation, over and under exposure of

the images generated, are a result of the optimiser overshooting desired minima, and entering

remote territories in parameter space. Having Realtime Continuous Control over this system

via a number of faders on a midi controller, we are able to meaningful control the system, and

steer it towards desired directions, and in effect, we can play it like a visual instrument.

5We are using L2 loss, and for this reason the results are blurry. We will discuss this in more detail in the
next section.

Page 113

4.5. EXPERIMENTS AND RESULTS

4.5.2 Reconstruction loss

As we discussed in subsection 2.3.17: Variational Auto-Encoders (VAE), the loss function of a

VAE consists of two terms, a reconstruction loss which ensures that the output x′ of the VAE

resembles the input x, and a latent loss which ensures that the latent distribution converges to

a standard normal distribution N (0, 1).

The reconstruction loss is some function which returns a similarity metric between two

images. Typically in ML and DL applications, functions such as L1, L2 or Cross Entropy (CE)

are common, and this is known to produce blurry outputs when used with images (I. Goodfellow

et al., 2014; Theis et al., 2016; Larsen et al., 2016; Dumoulin et al., 2017).

In addition to the three loss functions mentioned above, we also implement Multi-Scale

Structural Similarity Index Measure (MS-SSIM) (Z. Wang et al., 2004). MS-SSIM is a percep-

tually motivated metric that compares patches of local neighbourhoods on multiple scales, and

is very commonly used in image processing applications such as image and video compression.

It is also differentiable, which makes it suitable for use within our gradient based optimisation

process. However, MS-SSIM is very rare in the DL literature. In the case that it does appear

within DL research, it is generally used for the evaluation and validation of DNN generated

images. For example, measuring a deep generative model’s diversity (Odena et al., 2017) or

evaluating the results of up-scaling or image restoration models (Ledig et al., 2017; Dong et al.,

2016; Lim et al., 2017; Johnson et al., 2016; Liang et al., 2017). MS-SSIM is generally not used

as a loss function, even though it has been shown that it is superior to the de facto L2 loss,

for DNN based image processing applications (H. Zhao et al., 2015). We are not entirely sure

why MS-SSIM is not used as a loss function. One possible explanation might be that perhaps a

majority of DL researchers prefer to investigate mathematically and theoretically robust solu-

tions that can apply across multiple domains, as opposed to incorporating very domain-specific,

perceptually motivated models. Though this is just a speculation. In our case however, since

we are focusing on images in this section, we are happy to use metrics optimised for images.

A qualitative comparison of using these four loss functions can be seen in Fig. 4.6, although

it is more noticeable in the accompanying video. This image shows six screenshots captured

during the training of four different models. All four models have identical architecture and

hyperparameters, with the only difference being the loss functions used. The L2 loss, one of the

most common loss functions in Machine Learning, clearly performs the worst and produces very

blurry reconstructions of the input. CE loss performs almost equivalent to L2 in terms of final

quality. However, it converges slower than L2, as can be seen in the first three screenshots. L1

loss performs noticeably better than both, converging quicker and settling on a higher quality

reconstruction. However, it still produces blurry images. MS-SSIM performs significantly better

than all three. This is not only in terms of final image quality, producing the sharpest image

which we can see in the bottom right screenshot. But it also converges the quickest, producing

a recognizable image within a few seconds, as can be seen in the first screenshot.

Interestingly, we can also see that the models first learn about the luminance of pixels, and

only once the models are able to predict luminance patterns, do they start to learn about colour.

This is not a behaviour that we have explicitly programmed. It is entirely an emergent property

of the Neural Network optimisation. The speed at which the four different models learn about

Page 114

4.5. EXPERIMENTS AND RESULTS

colour, follows the same patterns as we describe above. By iteration 293, colour has just started

to appear in the MS-SIM model while the other models are still monochromatic. The L1 model

follows shortly behind, and by iteration 502, has full colour while L2 and CE are still mostly

monochromatic.

Figure 4.6: Six screenshots showing a qualitative comparison of the four different loss functions. Four
models train in parallel, with identical architecture and hyperparameters and the only difference being
the loss functions. MS-SSIM converges the quickest, producing the sharpest reconstructions, while L2
and CE loss produce the most blurry.

4.5.3 Latent loss and variational reparametrisation

The second term of the VAE loss, is the latent loss, which consists of the KL divergence between

a standard normal N (0, 1) and the latent distribution. This ensures that the latent distribution

converges to a standard normal.

As we have briefly touched upon above, we noticed that the performance of the VAE depends

heavily on the relative weights between the reconstruction loss, and the latent loss. In other

words, there is a decision and compromise that can be made, whether we prefer the VAE to

produce more accurate reconstructions (ylive), or more believable random samples (yrandom).

This can be controlled through changing the balance of the loss terms. Prioritizing latent loss,

leads to poorer reconstructions. However, the latent space is more structured and disentangled,

Page 115

4.5. EXPERIMENTS AND RESULTS

and random samples are of higher quality. Prioritizing reconstruction loss, leads to higher

quality reconstructions. However, the latent space is less structured, and potentially sparse. It

may not be distributed in a standard normal distribution as we desire. Thus, random samples

are of a lower quality and do not always accurately resemble the training examples.

Furthermore, this balance is already dependent on and biased by the dimensionality of the

input and the latent layers. This is to say that, the reconstruction loss is already weighted

by the input layer’s dimensionality K, as seen in eqn. (2.12). And the latent loss is already

weighted by the latent layer’s dimensionality J , as seen in eqn. (2.13).

As a result of this, if we decide for example to increase the dimensionality of the latent layer,

in order to observe the impact on the model’s expressive power6, we will not in fact be observing

the effects of an isolated change. This is because, not only has the model’s architecture changed

as a result of this, but the loss function has changed dramatically as well, the latent loss is

weighted more heavily in comparison to before.

To address both of these issues, we implement the solution that we discuss in subsec-

tion 2.3.17: Variational Auto-Encoders (VAE). We normalise both the reconstruction loss

and latent loss, and we multiply the latent loss by a new hyperparameter WKL.

This WKL hyperparameter, is an additional hyperparameter that we can manipulate in

realtime. Through realtime experimentation, we found that a value in the range 0.01–0.1

provides a subjectively satisfactory compromise, with higher values prioritizing higher quality

random samples, and lower values prioritizing higher quality reconstructions. We also verified

this through thorough offline traditional hyperparameter search.

We also implement a pathway in the computation graph that bypasses the variational

reparametrisation altogether. This effectively toggles between a Variational Auto-Encoder,

and a normal Auto-Encoder. Disabling the variational component and switching to a normal

AE results in the model ceasing to be a generative model. In other words, it no longer captures

the distribution of the data. The model is still able to reconstruct the live video feed. However,

the distribution of its latent layer is no longer a standard normal. In fact, in this case we do

not have any knowledge as to how the latent layer is distributed. Furthermore, this distribution

is not structured such that we can exploit the properties that we discuss in subsection 2.1.3:

Latent manipulations.

In the following section subsection 4.5.4: Video feed manipulations, we will discuss our

experiments in video feed manipulations. And we will share our observations with regards to

the Reminiscing panel, which, as we briefly explained in section 4.4: System description, is

a random sample from the local neighbourhood of the live video feed. As a result, in a well

structured space of latent representations, we would expect the image in the Reminiscing panel,

to be somehow similar to the live feed.

In a non-Variational, normal Auto-Encoder, this is not the case. The images may be dis-

tributed anywhere in the unbounded, infinite space of the bottleneck layer. Only in the Varia-

tional Auto-Encoder do we observe this.

6subsection 2.3.7: Universal function approximators, expressive power.

Page 116

4.5. EXPERIMENTS AND RESULTS

4.5.4 Video feed manipulations

So far we have only discussed realtime manipulation of hyperparameters. However, there is

an additional mode of interaction which we have not yet discussed. That is the act of simply

moving or manipulating objects in front of the camera.

In this section, to save space on the pages, we tightly crop screenshots around the Stimulus,

Seeing and Reminiscing panels, as we will be focusing on these. In all of these example, we are

using MS-SSIM loss, and the Adam optimiser. For this reason, the reconstructions are much

sharper than our previous experimentations. We are also using a batch size of 2 for training,

where the second image is randomly selected from the exponentially decaying memory buffer.

This ensures that the model doesn’t ‘forget’ immediately, and doesn’t over-fit to the live video

feed.

Figure 4.7: Three screenshots taken during the first 30 seconds of a new experimentation session. The
model is initialised at the beginning, and by the 3rd row, has converged to the extent that the recon-
structed image Seeing is sharp and resembles the live video feed Stimulus. This indicates that the model
has become familiar with, and has learnt the necessary features required to represent and reconstruct
this Stimulus image.

Page 117

4.5. EXPERIMENTS AND RESULTS

Figure 4.8: In the top row, we hold our left arm vertical and hold it still for a few seconds while we
wait for the reconstructed image Seeing to become sharp. We then rotate our arm to be horizontal.
As can be seen in the 2nd row, the entire reconstructed image Seeing is sharp, except for our arm,
which is missing. The model has not seen our arm in a horizontal position yet, and thus lacks the
representations required to visualise it in that manner. Across the last two rows, the arm flickers and
fades in as the model learns the necessary representations for the arm in this position. Note that in the
3rd column Reminiscing, the arm flickers between horizontal and vertical. This is due to the fact that
the Reminiscing image is a random sample from the local neighbourhood of the Stimulus. And in the
well structured latent space of a generative model, this local neighbourhood will contain images that are
aesthetically, structurally, and/or semantically similar. For this reason, the Reminiscing image will be
random samples that resemble the Stimulus, without necessarily being straight reconstructions.

Page 118

4.5. EXPERIMENTS AND RESULTS

Figure 4.9: In the top row, we hold a red phone in our right hand for a few seconds while we wait for the
reconstructed image Seeing to become sharp. In the second row, we put the phone down, and quickly
lift our hand to the same position. In Seeing, trying to reconstruct this image of our hand without a
phone, the model samples the closest image it can to this Stimulus. And that is limited by what it has
seen before, and the representations that it has learnt. In this case, the red phone appears in our hand.
Over the course of the subsequent rows, the phone flashes on and off and gradually fades out as the
model learns the necessary representations for this Stimulus. In the Reminiscing panel however, we can
see that the local neighbourhood of this point in latent space is still dominated by the red phone. It will
take another minute or two for the distribution to be evened out across this larger area in latent space.

Page 119

4.5. EXPERIMENTS AND RESULTS

Figure 4.10: We hold the red phone in our left hand. However the model has not seen this. In fact
it has only seen our arm in this position with our hand open and flat, as it was in Fig. 4.8 . So in
Seeing, this is how the model reconstructs this Stimulus image. Over the next few frames, the red phone
gradually fades in, flickering in and out. After the 5th frame, we start slowly rotating our arm back and
forth between horizontal and vertical, and we observe the results in both Seeing, and Reminiscing as the
phone flickers in and out, and the arm even snaps to horizontal or vertical positions.

Page 120

4.6. CONCLUSIONS

4.6 Conclusions

In this chapter, we present a system that trains in realtime on a live video feed. While the

system is training, we are able to manipulate a number of hyperparameters in realtime via a

GUI, and immediately observe the results.

Manipulating for example WKL, a weight multiplier on the latent loss term, we were able

to immediately observe the results. With this realtime control and immediate feedback, we

were able to identify a range for WKL that we found provided a desirable balance between

reconstruction quality, and random sample quality. We were able to use this range as a starting

point for a traditional offline hyperparameter search, which we confirmed as 0.01–0.1. In this

case WKL := 0.01 provides sharper reconstructions at the cost of lower quality random samples,

and WKL := 0.1 provides blurrier reconstructions but higher quality random samples. We

discuss this in more detail in subsection 4.5.3: Latent loss and variational reparametrisation.

Manipulating the reconstruction loss function in realtime also proved to be very useful. We

saw that our MS-SSIM converged much quicker than L1, L2 and Cross Entropy. It also provided

much sharper images. L2 and Cross Entropy performed the worst, both in terms of final image

quality, and speed of convergence. We provide more details and images for comparison in

subsection 4.5.2: Reconstruction loss.

Perhaps the most useful hyperparameters to manipulate in realtime were the optimisation

parameters. These include learning rate, momentum, gradient clipping thresholds, and opti-

miser function. Unsurprisingly, we found that the more advanced Adam Optimiser, was quickest

to converge, and was also the most robust in terms stability. The simplest optimiser SGD with

momentum, was a lot more unstable. However, because of the simplicity of the momentum-

based SGD optimisation algorithm, we found that it was the easiest to learn how to control.

And this is where perhaps the biggest surprise of this particular study came. Our initial aim

with this study, was to observe how DNNs train in realtime, and hopefully build a qualitative

understanding of the hyperparameters. We realised however, that the system that we had devel-

oped had incredible performative potential. We were able to build a qualitative understanding

of the optimisation parameters such that we could play with them in realtime, and control the

outputs generated by the Neural Network in a meaningful manner. We were able to bring the

system into oscillatory states, bordering between stable and unstable. We were able to push the

system to explode, and bring it back under control again. We discuss all of these experiments

in subsection 4.5.1: Optimiser and associated hyperparameters.

The most important finding of our experience with this system, was that we were able to

generate images with the system that we did not know the system was able to create. And

we were able to explore this space in a Realtime Continuous manner, with Meaningful Human

Control, and use the system as a performative instrument.

In the next chapter, we build upon the system that we developed in this study, and we

investigate ways of providing more control over the aesthetics.

Page 121

4.6. CONCLUSIONS

Page 122

Chapter 5

Learning to see: Digital puppetry

through realtime video

transformation

5.1 Introduction

In the previous chapter chapter 4: Hello World: Realtime interactive training as an informative

and performative tool, we presented a method and software that we developed, that trains a

Deep Neural Network in realtime on a live camera feed. Using this software allowed us to

gain very valuable insights into how Artificial Neural Networks learn. Using that insight, we

were able to control the images generated by the Neural Network, in a realtime, meaningful

and continuous manner. The system that we developed made this possible via two primary

modes of interaction. The first mode of interaction is a very direct control of the input to the

system. By manipulating objects in front of a camera, a user can control the images fed to the

Neural Network for processing. This provides a very performative and playful interaction. The

second mode of interaction, is through realtime manipulation of a number of parameters via a

Graphical User Interface (GUI) or a physical device such as faders on a midi controller. We

found that these two modes of interaction, complement each other very well, and provide a wide

range of meaningful control to the user. In this chapter, we wish to investigate this further.

One of the aims of the research that we presented in Hello World, was to investigate how

DNNs learn. And in particular, we were able to adjust a large number of hyperparameters in

realtime, while a DNN was training1. With immediate feedback, we were able to observe the

effects of the various different hyperparameter configurations, and this allowed us to optimally

select values inline with the behaviours that we were looking for.

In this chapter, we move beyond that question, and we wish to investigate how we can provide

more control over the aesthetics of the images generated by a Deep Neural Network. We expand

on the software tool that we developed in the previous chapter, and we build upon what we

consider to be a very powerful aspect of the system, which are the two modes of interaction we

describe above. In Hello World, we provide no additional training data to the system. Instead,

1See subsection 2.3.13: Hyperparameter search for a discussion on hyperparameters and hyperparameter search.

123

5.1. INTRODUCTION

upon launch of the software, the Artificial Neural Network starts blank, and trains live on a

camera feed. In this chapter, we introduce to this system large datasets consisting of thousands

of images. In other words, we first pre-train Neural Networks on these large datasets, and then

we investigate how can we use these pre-trained models within our system, and provide realtime,

meaningful, continuous control to the user, via the modes of interaction that we describe above.

It is worth mentioning, that the system we developed, and will present in this chapter, is

capable of both starting with a model pre-trained on a dataset of thousands of images, while

continuing to train live on the camera feed (and/or another dataset of images) as it did in

Hello World. While this provides very interesting results, we found that it distracts from the

main question that we seek to address in this chapter, which is to meaningfully control the

aesthetics of the images generated by the Neural Network. Enabling realtime learning, on top

of pre-trained models, makes it much more difficult for a user to isolate and understand the

creative impact of any actions that they might take, as the system is far more complex, with

orders of magnitude more variables affecting the images generated. This in turn, makes the

control available to the user, less meaningful in accordance with the working definition that we

present in this thesis. For this reason, for all of the work that we present in this chapter, we

choose to disable realtime learning, and we leave that for future research which focuses solely

on the question of how do Neural Networks learn. Instead, we focus only on integrating large

datasets into our realtime, interactive system.

In this chapter, under the umbrella title Learning to see, we will present and discuss a number

of related outputs. These include a publicly released open-source software tool, a number of

public videos and artworks, and the underlying method that we used to create all of these works.

We shared our videos and artworks publicly on the internet, and this constitutes a crucial aspect

of our work. This is because, as we discuss in chapter 1: Introduction & Motivations, our primary

aim is not necessarily to invent specific methods that accomplish certain tasks. It is instead, to

demonstrate the potential power of realtime, meaningful, continuous control over the outputs

of generative Deep Neural Networks. This field, at the time of our research in 2016–2017,

is practically non-existent. We hope to help encourage more research and discourse in this

direction. Many of the works that we created, gained immense popularity via the internet,

and we consider this to be an indication that realtime, meaningful, continuous control over the

outputs of generative Deep Neural Networks is indeed a very important area of research. One

of the video demonstrations that we created, was shown during Nvidia CEO Jensen Huang’s

keynote at GTC (GPU Technology Conference) 20192, with the voiceover “[AI is] inventing

new ways to bring out the creative genius in us all”. We presented the research at SIGGRAPH

2019 (Akten et al., 2019). The work has been included in MIT’s Open Documentary Lab3,

and many of the videos have been shared widely on social media and influential mainstream

blogs and publications such as gizmodo4, boingboing5 and prostheticknowledge6. The works

2Nvidia GTC 2019 Keynote: https://www.youtube.com/watch?v=Z2XlNfCtxwI&t=32
3https://docubase.mit.edu/project/learning-to-see/
4https://gizmodo.com/trippy-magic-happens-when-ai-only-knows-about-flowers-1823900244
5https://boingboing.net/2018/03/21/watch-neural-networks-see-only.html
6https://prostheticknowledge.tumblr.com/post/172012841001/gloomy-sunday-latest-addition-to-memo-

aktens

Page 124

https://www.youtube.com/watch?v=Z2XlNfCtxwI&t=32
https://docubase.mit.edu/project/learning-to-see/
https://gizmodo.com/trippy-magic-happens-when-ai-only-knows-about-flowers-1823900244
https://boingboing.net/2018/03/21/watch-neural-networks-see-only.html
https://prostheticknowledge.tumblr.com/post/172012841001/gloomy-sunday-latest-addition-to-memo-aktens
https://prostheticknowledge.tumblr.com/post/172012841001/gloomy-sunday-latest-addition-to-memo-aktens

5.2. OVERVIEW

have also been shown in galleries, museums and cultural institutions such as The Barbican

(London, UK), Ars Electronica Centre (Linz, AT), Moscow Museum of Modern Art (Moscow,

RU), Itaú Cultural (Sao Paulo, BR), International Documentary Film Festival Amsterdam /

IDFA (Amsterdam, NL) and many more.

We have also released a simplified version of our software as open-source software on github

(Akten, 2017). This version contains a subset of the filters that we mention in this chapter, and

lacks many of the advanced non-DL related options such as advanced screen layout options,

changing and loading models at run-time, midi controller support etc. In simplifying the func-

tionality and code, we hope that it will be more informative and educational, and can act as a

base for others to build upon in the future. The github repository currently has 311 stars and

61 forks.

5.2 Overview

The key question that we seek to address in this chapter, is the exact question at the core of this

thesis, applied to images: How can we design and develop interactive generative systems that

exploit and leverage the capabilities of state-of-the-art Deep Learning algorithms, while allowing

Meaningful Human Control over the generated images, in a Realtime Continuous manner?

When we train a generative Deep Neural Network on a large dataset of images — for example,

of fire — the trained model is able to generate an infinite number of images of fire. However,

instead of generating random images of fire, we wish to design a system in which a user is able

to control the generated images in a meaningful way. If the user envisages a particular shape of

flames, or fire of a particular intensity, or embers placed in particular layouts etc., they should

be able to easily produce the types of images that they desire. Furthermore, the interaction with

the system should be in realtime, and continuous. This would allow the user to experiment,

explore, search and find configurations that produce desirable outcomes.

We present a method in this chapter, which tackles this question. The method that we

present, is not specific to fire, or any specific domain of images. It is entirely generic, and

automatically works with any categories of images, without the need for domain-specific cus-

tomization. Furthermore, our method doesn’t only operate on images, but on live video feeds,

and thus we can produce videos in realtime, through performative and playful interaction.

At the heart of all of the works that we present in this chapter, is a realtime, interactive,

video processing and transformation system. We utilize a highly customizable and parametrised

image processing pipeline, combined with a generative Deep Neural Network which we train

with a novel training and data augmentation system. This system that we’ve designed, is not

specific to flames, or flowers, waves, images of space or any other of the examples that we

present in this chapter. Instead, our system is very generic, and learns and exploits any types

of regularities or diversity that may exist in a dataset.

We think of our system as a visual instrument that allows users to create, conduct and play

with visual media, with realtime, expressive and playful interaction. Our system processes a

live video feed — either from a camera or a video file — and reconstructs new images that

resemble the input image in composition and overall shape and structure, but is comprised of

Page 125

5.2. OVERVIEW

the aesthetic characteristics determined by a large corpus of data. At first glance, this may

sound similar to Neural Style Transfer7. However, our system uses a very different approach, in

that while Style Transfer typically extracts ‘style’ information from one or a few dozen images,

we train our models on thousands of images. As a result, our models contain information from

across a much larger domain. When combined with a parametrised image processing pipeline,

this grants a user many opportunities for meaningfully controlling the images generated in a

number of different ways. Building on this system, we provide three modes of interaction:

Digital puppetry Directly controlling the contents of the video feed is one of the more

performative and playful approaches that our system allows. By manipulating our hands, body

or any kinds of objects in front of a camera, we can control the overall composition and structure

of the generated images. We see this as a kind of digital puppetry. Examples of this can be seen

in Fig. 5.1 and Fig. 5.2 and we discuss it in more depth in subsection 5.4.2: Digital puppetry.

Augmented drawing In addition to puppeteering objects in front of a camera, we can also

control the contents of the video feed by filming ourselves draw or paint on a piece of paper or

any other surface. Examples of this can be seen in Fig. 5.3 and we discuss it in more depth in

subsection 5.4.1: Augmented drawing.

Live parameter manipulation A very powerful feature of our system, is that it has a

number of human-understandable parameters that allow a user to control various characteristics

of the output image in a meaningful way. For example, these include parameters to produce

brighter or darker images. But instead of just brightening or darkening an image using a post-

processing filter as Adobe Photoshop might do, our system is able to produce images which are

naturally brighter or darker, by using appropriate features. This can be seen in Fig. 5.4 where

our system gradually introduces clouds of nebulae to reconstruct an input image with brighter

features.

These parameters can be adjusted in realtime via a Graphical User Interface (GUI), or a

physical interface such as a hardware midi controller with dials and faders. We discuss these

parameters in much more detail in subsection 5.4.3: Live parameter manipulation.

Providing a realtime, immediate feedback loop between the user’s actions and the system’s

outputs, enables the user to experiment, improvise and perform the visual media. No laborious

keyframe placements, no animation curve adjustments, no rendering options are necessary;

everything is performed and captured live.

7We discuss this in more detail in section 2.2.7: Neural Style Transfer (2015)

Page 126

5.2. OVERVIEW

Figure 5.1: Frames from Gloomy Sunday (video, 2017), demonstrating subsection 5.4.2: Digital puppetry.
Each row shows a single frame from the video, and is also a screenshot from our software (with the GUI
hidden). In each frame, the left panel shows the live video feed from a camera, and the right panel shows
the image generated in realtime by our software.

Page 127

5.2. OVERVIEW

Figure 5.2: Frames from Gloomy Sunday (video, 2017), demonstrating subsection 5.4.2: Digital puppetry.
Each row shows a single frame from the video, and is also a screenshot from our software (with the GUI
hidden). In each frame, the left panel shows the live video feed from a camera, and the right panel shows
the image generated in realtime by our software.

Page 128

5.2. OVERVIEW

Figure 5.3: Frames from a video demonstrating subsection 5.4.1: Augmented drawing. Each pair of
images shows a single frame from the video, and is also a screenshot from our software (with the GUI
hidden). In each frame, the left panel shows the live video feed from a camera, and the right panel shows
the image generated in realtime by our software.

Page 129

5.2. OVERVIEW

Figure 5.4: Frames from We are all made of star dust (video, 2017), demonstrating subsection 5.4.3:
Live parameter manipulation. In the top frame, we adjust the parameters such that the desired output
brightness is low. The system automatically uses dark features to construct the output image. In this
case, most of the output image is comprised of distant galaxies, while hints of larger and brighter distant
galaxies define the outline of the face in the video feed. In the lower two frames, we increase the desired
brightness, and the system automatically replaces the distant galaxies with brighter features, such as
nebulae. We demonstrate this in much more detail in later sections.

Page 130

5.2. OVERVIEW

Figure 5.5: Frames from a video demonstrating muliple simultaneous models. This was presented as an
interactive installation at International Documentary Film Festival Amsterdam (IDFA) 2017. Each row
shows a single frame from the video, and is also a screenshot from our software (with the GUI hidden).
In each frame, the left panel shows the live video feed from a camera, and the subsequent panels show
images generated in realtime by our software using multiple models trained on different datasets.

Page 131

5.2. OVERVIEW

]

Figure 5.6: section 5.4.2: Interactive installation as exhibited at The Barbican’s 2019 AI: More than
Human exhibition in London, UK and currently on tour around the world. We discuss this in more
detail in section 5.4.2: Interactive installation.

Page 132

5.3. SYSTEM DESCRIPTION

5.3 System description

Before we present more of our results, and demonstrate the full capabilities of our system in

more detail, we will first discuss some of the key technical implementation details. This will

allow us in later sections, to discuss our results in context of this technical information.

As we previously mentioned, in Learning to see, we do not use realtime learning. Instead, we

first train a number of models on large datasets of images, in a separate training phase. Once the

models are trained, we load them into our realtime inference software. This software feeds each

frame from a live video feed – either from a camera or a video file — to the selected model(s),

and displays the results in realtime. While this is happening, the user can also manipulate a

number of human-understandable parameters in realtime via a GUI, or a physical interface such

as a midi controller, to influence the output in a meaningful and expressive manner.

The Neural Network architecture we use is based on pix2pix image-to-image translation(Isola

et al., 2016)8. We add additional layers to provide up to 512x512 pixel resolution. At the time

of our research in Learning to see, this architecture provided state of the art results in high

resolution image-to-image translation. However a year later, researchers from Nvidia and UC

Berkeley introduced a novel architecture allowing up to 2048x1024 pixel resolution image-to-

image translation, colloquially known as pix2pixHD (T. C. Wang et al., 2018). The method

and pipeline that we discuss below, can also be adapted to pix2pixHD. However, due to the

increased complexity of the pix2pixHD architecture, the training times are drastically longer,

and inference performance falls below interactive rates on our hardware (Nvidia GeForce 1080

Ti): 5fps at 512x512 with pix2pixHD, vs 15fps with our modified 512x512 pix2pix. Since our

emphasis is on realtime, playful, expressive interaction, the results that we show in this thesis

are from our original 2017 pix2pix models.

On top of the image-to-image translation network, there are two additional key aspects that

we introduce, that allow our system to perform in the way that it does. The first of these, is the

way in which we augment the data during training. The second, is a multi-stage parametrisable

image processing pipeline. A very high level schematic of the system can be seen in Fig. 5.7.

We will discuss these in more detail in the following sections.

5.3.1 Datasets

Our models are trained on datasets consisting of thousands of images that share a desired

aesthetic or content type. In the examples that we present in this chapter, we will focus on five

different models. These models are Waves, Fire, Clouds, Flowers and Deep space. We collected

the data for these models by batch downloading images from the photo sharing website Flickr

that were tagged with the respective categories. For the Deep space model, we also downloaded

many images from the Hubble Space Telescope’s website.

In addition to the motivations that we outlined above, and inline with the premise of this

thesis, we also have additional, higher level conceptual motivations behind selecting these par-

ticular categories of images. However, as this is not relevant to the technical implementation

details, we will leave that discussion for section 5.5: Conclusion.

8Please see subsection 2.3.18: Deep Convolutional Generative Adversarial Networks (DCGAN) for details.

Page 133

5.3. SYSTEM DESCRIPTION

5.3.2 Training

The pix2pix architecture is a conditional GAN, which we discuss in more detail in subsec-

tion 2.1.2: Conditional generative models. This model is designed for paired image-to-image

translation. The generator network learns a mapping G : {input, z} 7→ target, where z is

a random noise vector within the latent distribution of the model, input is an input image,

and target is the desired target image. For this reason, the training data for pix2pix models

typically require (input, target) image pairs.

For the training of the models in our system, we only explicitly provide target images,

and do not provide input images. Instead, we implement an image processing pipeline that

constructs input images from the target images, on the fly, during training. In addition,

for each of the image transformations in the pipeline, we pre-define a range, within which the

parameters are randomised on every training iteration, individually for each image. A summary

of this training pipeline, including a typical stack of transformations with the pre-defined ranges

can be seen in Alg. 2.

The image processing pipeline can be thought of as consisting of three stages: i) training

only, ii) training & inference and iii) inference only. Training in this manner, with the input

images generated on the fly during training, and a three stage image processing pipeline, grants

our system the flexibility and power that it needs in order to behave in the way that we desire.

Phase 2. Inference (realtime, interactive)

Phase 1. Training (offline, non-interactive)

Pix2pix

Discriminator

Image 1

Image 2

Image 3

Image 4 Training &
Inference

Image processing
Pipeline

(E.g. downscale, blur,
median, threshold,

canny, adaptive
threshold, normalize,

invert, gamma,
exposure, levels etc.)

Training only
Image processing

Pipeline
(crop, scale, flip, rotate,

brightness, contrast)

Camera
or

Video file

Generator

Input Images
(generated on the fly)

Target images

error
signal

OUTPUTINPUT

Live adjustable parameters
Manipulatable in realtime via GUI or physical interface

Randomize parameters Randomize parameters

Random selection
of images

Inference only
Image processing

Pipeline

Figure 5.7: A high level schematic of the system including the training and inference stages. During
pix2pix training, the images which are to be used as inputs in the (input, target) pairs, are generated
on the fly from the target images via a custom image processing pipeline. The parameters of this
pipeline are randomised on every iteration, in order to augment the dataset and aid generalisation.
During inference, the video feed is also fed through the same image processing pipeline. In addition, a
number of additional image processing filters are applied before the images are fed into the model for
prediction. This exposes a number of human-understandable parameters for realtime manipulation and
meaningful control over the images generated.

Page 134

5.3. SYSTEM DESCRIPTION

Algorithm 2: Learning to see: Training pipeline

// Options

1 desired size: desired image size for the model. e.g. (512x512);
2 permit flip horizontal: (Boolean) depends on the nature of the dataset;
3 permit flip vertical: (Boolean) depends on the nature of the dataset;
4 permit rotate: (Boolean) depends on the nature of the dataset;

// Training image processing parameter ‘magic values’

// Found via thorough trial and error

5 scale min: 100%;
6 scale max: 130%;
7 downscale amount: 24;
8 brightness amount: 20%;
9 contrast amount: 15%;

10 foreach training iteration do

11 begin prepare targets
12 targets ← load random selection of images for this mini-batch;

// Process each target image with different random parameters

13 foreach target in targets do
14 uniformly scale target to Random(scale min, scale max) * desired size;
15 take random crop of desired size from target;
16 if permit flip horizontal and RandomBool() then flip horizontally;
17 if permit flip vertical and RandomBool() then flip vertically;
18 if permit rotate and RandomBool() then
19 rotate RandomSelect(90, 180, 270) degrees;

20 end

21 end

22 begin prepare inputs
23 inputs ← convert targets to greyscale;
24 begin apply low pass filter
25 downscale inputs by downscale amount with area filtering; // scale down

26 upscale inputs by downscale amount with cubic filtering; // restore size

27 end

// Process each input image with different random parameters

28 foreach input in inputs do
29 adjust brightness by Random(100-brightness amount,

100+brightness amount);
30 adjust contrast by Random(100-contrast amount, 100+contrast amount);

31 end

32 end

// Train on one mini-batch

33 Pix2pix Train(inputs, targets);

34 end

Page 135

5.3. SYSTEM DESCRIPTION

Data augmentation The training only stage of the image processing pipeline consists of

transformations such as scale, crop, flip, rotate, as well as brightness and contrast adjustments.

Every time a target image is selected for a mini-batch during training, it is processed with

these transformations, with parameters randomly sampled from within the pre-defined range.

This ensures that the network will never see the same images, or even the same image patches,

in the exact same way more than once. This encourages the network to generalize to novel

inputs, instead of just memorising the training data.

Most of the datasets that we use and present in this chapter, contain images that have a sense

of an absolute up and down direction, but not necessarily an absolute left or right direction.

For example, images of the ocean, or fire, etc. For this reason, we randomly flip these images

horizontally, but not vertically during training. This is denoted by the permit horizontal flip

and permit vertical flip options in Alg. 2. Images of deep space however, have no absolute

up or right directions. For this reason, we can randomly flip those images horizontally and/or

vertically, and we can also randomly rotate them by 90, 180 or 270 degrees, to further augment

the dataset. This is denoted by the permit rotate option in Alg. 2.

It is important to remember, that each of these transformations of scale, crop, flip, rotate,

brightness and contrast, are applied randomly and uniquely, to every image, at every training

iteration. As a result, our model is exposed to novel inputs on each and every training iteration,

and is able to generalise more effectively to the real world inputs that it will receive during

inference.

Input abstraction Our models are trained on datasets consisting of thousands of images

that share a desired aesthetic or content type. In our realtime inference software, when we feed

these trained models images from a video feed such as a camera, or an arbitrary video file, it

is very unlikely that the video feed will resemble the training data in any way. For this reason,

we apply filters to the images before they go into the Neural Network, both during training

and during inference. We do this in order to abstract the input images to a degree, such that

they will always share some kind of basic, abstract, aesthetic. In other words, at the end of this

filtering stage, any images that are input to the models during inference, will always resemble

the aesthetics of the filtered training inputs, to some degree.

The primary filters that we have tested and used for this purpose, include low-pass filters,

median and edge detection (canny). Many of the examples that we present in this chapter use

a low-pass filter, as we have found through many experiments, this provided the most useful

and flexible results. More specifically, we downscale the input image 24x, and then upscale it to

the original resolution. This acts as a heavy but cheap-to-compute blur. We settle on the value

of 24x, after training hundreds of models, on various different datasets, trying out many values

in the range 2x to 64x. We found 24x to provide a subjectively preferable balance, whereby

an image input for inference can be abstracted to the extent such that the trained model can

produce convincing output images, while the details of the input image are still preserved to

some degree. We also desaturate the input image.

Using these particular filters on the Neural Network inputs effectively trains the model to

unblur and colourize a very blurry, abstract, greyscale blobby image. The Neural Network

Page 136

5.3. SYSTEM DESCRIPTION

learns to do this, and constructs a new image with the aesthetic qualities and details of the

training data, and with the overall shape, structure and composition of the inference input.

In other words, during inference, the video feed is first desaturated and blurred by the image

processing pipeline, and then unblurred and colourized by the Neural Network. This can be

seen quite clearly in Figures 5.8 and 5.9. Fig. 5.8 shows examples of the training data — both

in its original form, and the processed versions generated on the fly during training. The model

tries to learn to predict the first column from the middle column, and produces the results in

the third column.

It is worth mentioning, that the image processing pipeline that we describe above, is what

we use for most of the examples presented in this chapter. However, for the subsection 5.4.1:

Augmented drawing examples, we instead use canny edge detection. In the original pix2pix (Isola

et al., 2016), the authors demonstrate a similar image-to-image translation example whereby

they translate outline drawings of handbags, to photographs of handbags. For this they use

Holistically-Nested Edge Detection (HED) (Xie & Tu, 2017) to produce outline drawings of

handbags. The internet famous edges2cats (Hesse, 2017) also uses HED to produce outline

drawings of cats. We found that HED did in fact sometimes give subjectively preferable results

over canny. However, this came at a very significant speed-performance cost. In other words,

when using HED instead of canny, the framerate of our realtime inference software fell drasti-

cally, compromising the realtime, expressive nature of the interaction. Furthermore, we found

that using canny, paired with the ability to adjust its parameters in realtime, and within an

image processing pipeline consisting of other simple filters such as median, blur, gamma etc.,

provided infinitely more control over the output, without compromising speed or quality. We

will discuss these in much more detail in subsection 5.4.3: Live parameter manipulation.

Live parameter manipulation during inference The ability to manipulate the parameters

of the image processing pipeline in realtime, is one of the most powerful aspects of our system.

We discuss this in depth with many examples in subsection 5.4.3: Live parameter manipulation.

Page 137

5.3. SYSTEM DESCRIPTION

Figure 5.8: Example images from training. Each row shows examples from a separate model. From
top to bottom, these are the Waves, Flowers and Deep space models. The left column shows an image
selected at random from the training data. This is a random crop, and may or may not have been
flipped. This will be used as a target image for this particular training iteration. I.e. it is the ground
truth. The centre column shows the input image generated on the fly via realtime processing of the
target image, with randomised parameters (i.e. random brightness and contrast). The right column
shows a prediction from the generative model, given only input. In other words, the model is learning
to predict the first column, given only the second column, and is producing the third column.

Page 138

5.3. SYSTEM DESCRIPTION

Figure 5.9: A screenshot from our realtime inference software with multiple models and the GUI enabled.
In the top left corner, we can see the live video feed, either from a camera, or a video file. In the top centre,
we can see the video feed processed by the image processing pipeline. This is the input image (labelled
capture proc in the screenshot) that is fed to the trained model(s) for inference. In this particular case,
the video feed has been downscaled 24x, and then upscaled back to its original size. This acts as a low-
pass filter. The next four panels show the outputs from four different models, simultaneously running
inference on the same input. On the far right, we can see the GUI, showing the parameters which are
adjustable in realtime. Notice how the original video feed in the top left, is radically different from the
raw training examples in the left-most column of Fig. 5.8. However, the centre image, which is actually
input into the model during inference, very much resembles the types of images in the centre column of
Fig. 5.8, which are input into the model during training.

5.3.3 Inference

For this work, we have considerably built upon the realtime video processing software that

we presented in the previous chapter chapter 4: Hello World: Realtime interactive training as

an informative and performative tool. Even though this software is still capable of training in

realtime, as we mentioned in the introduction of this chapter, for the purposes of this particular

research, we have disabled realtime learning. For this reason, we think of this software now as a

realtime inference software. In this application, we have implemented many features that vastly

streamline our research. Some of these relate to graphics and screen layout options. We also

have the ability to select between different input video feeds at runtime. Our software supports

USB cameras, network IP cameras, video files, or folders of images. We also have the ability

to load and switch between trained models at runtime. Our software can process the input

video feed through a single model, and cycle through multiple models via a keyboard input,

or automatically on a timer. Alternatively, the software can process the same input video feed

through multiple models simultaneously, and display the results side by side (Fig. 5.5), or in a

grid (Fig. 5.9). However, as these particular options do not directly relate to the focus of this

thesis, we will not dwell on them in any more detail.

Page 139

5.4. EXPERIMENTS AND RESULTS

5.4 Experiments and results

5.4.1 Augmented drawing

Videos demonstrating augmented drawing were among the first of our Learning to see outputs

that we shared publicly on social media. Figures 5.10 and 5.11 show examples from 2017 and

2018 respectively, with more examples in Fig. 5.3. We also shared the source code for this

version of our training and realtime inference software on the code sharing platform github9.

Figure 5.10: Frames from a video demonstrating augmented drawing (2017).

Figure 5.11: Frames from a video demonstrating augmented drawing (2018). More frames from this
video can be seen in 5.3.

9https://github.com/memo/webcam-pix2pix-tensorflow

Page 140

https://github.com/memo/webcam-pix2pix-tensorflow

5.4. EXPERIMENTS AND RESULTS

In this mode of interaction, a user draws simple lines on a piece of paper, and an appropri-

ately trained model will ‘colour in-between’ the lines, or re-interpret them, with the aesthetic

qualities and details of the dataset that the model was trained on. In this respect, it is similar to

some of the examples presented in the original pix2pix research (Isola et al., 2016), for example

edges-to-handbags, and the internet famous edges2cats (Hesse, 2017).

Our main point of focus however, is to integrate such a model, with a live camera feed. Most

importantly, we prioritize instantaneously realtime, and continuous interaction. This provides

immediately noticeable advantages compared to a screen-based and turn-based drawing interface

such as the one provided in edges2cats. In a turn-based drawing interface, the user first makes

a drawing, then they submit the drawing for processing, and then they can see the results after

a second or so delay. After seeing these results, they can continue drawing to repeat this cycle.

However, we believe that instantaneously realtime, and continuous interaction is essential to

maximize expressivity, and we design our system with that in mind. In other words, every little

action that a user makes, is instantly and continuously processed, and the results are displayed

instantly and continuously.

It is possible of course, to implement instantaneously realtime and continuous interaction

within a screen-based drawing interface. This would indeed improve the expressivity of the

interaction. However, a live camera feed input provides additional benefits such as independence

from the screen, greater analogue control, and potentially increased accessibility for people who

have strong skills with pens and paper, but not computers.

Shortly after we shared our videos and code, artist and roboticist Patrick Tresset started

experimenting with a similar system that he developed, quoting our work as inspiration. Tresset

trained models on thousands of drawings that he had been collecting over the years, made by

robots that he had built. In the videos that he produced 10 11 12 , it is particularly interesting to

see Tresset layer many thin lines, continuously drawing over them, gradually thickening them,

while he observes how his model responds to his actions, and he reacts accordingly. At times,

he covers parts of his drawing with his hand, or a blank piece of paper, in order to observe how

that section of his drawing influences the way that the model produces its results. In his video,

Tresset explains “I found the results interesting as a way to to explore how the model works...

Sketching with it is a fascinating process. It is a very good way to explore and try to understand

the model. It gives ideas on how to curate/compose the dataset”. Stills from these videos can

be seen in Fig. 5.12.

10Delusions #1 https://www.youtube.com/watch?v=9n65s88sFBo
11Delusions #2 https://www.youtube.com/watch?v=mQNj6–PcBw
12Delusions #3 https://www.youtube.com/watch?v=ojk9KAbqt1E

Page 141

https://www.youtube.com/watch?v=9n65s88sFBo
https://www.youtube.com/watch?v=mQNj6--PcBw
https://www.youtube.com/watch?v=ojk9KAbqt1E

5.4. EXPERIMENTS AND RESULTS

Figure 5.12: Stills from Delusions (video, 2017) by French artist and roboticist Patrick Tresset. Each
pair of images shows a single frame from the video. In each frame, the left panel shows the live video
feed from a camera, and the right panel shows the image output from his software in realtime.

Page 142

5.4. EXPERIMENTS AND RESULTS

In 2019, the American artist and human anatomy expert Scott Eaton, further distilled

this process, with models that he trained on thousands of photographs that he had taken of

the human form over the years. In the videos that he has shared online13, Eaton demonstrates

remarkable results with regards to how his models have learnt to light and shade the shapes that

they generate. Eaton sketches simple lines and curves on a piece of paper, and his system colours

in the lines with human flesh-like textures, complete with lighting, shading and shadows. Eaton

then further experiments with drawing additional lines to create creases, ledges, overhangs,

indents and outdents, observing how his actions are impacting the lighting and shading of the

models’ output. Stills from some of Eaton’s videos can be seen in Fig. 5.13. Notably, the

last row of images, show Eaton experimenting with crumpling and twisting the piece of paper

in front of the camera, and observing the results. This provides a nice transition to the next

section, in which we will discuss the mode of interaction that we call subsection 5.4.2: Digital

puppetry.

Figure 5.13: Stills from Body Network on Paper I and II (video, 2019) by American artist and human
anatomy expert Scott Eaton.

13http://www.scott-eaton.com/

Page 143

http://www.scott-eaton.com/

5.4. EXPERIMENTS AND RESULTS

5.4.2 Digital puppetry

The mode of interaction that we call digital puppetry, is simply the act of manipulating objects,

hands or other body parts, and even ones own face, in front of a camera. In this mode of

interaction, the images are quite literally performed with the body.

Videos

We created and shared a number of videos online, to demonstrate the potential of such an

approach. Frames from two of our more popular examples Gloomy Sunday (2017) and We are

all made of star dust #2 (2017) can be seen in Figures 5.14 and 5.15. For the first video, we use

a normal webcam as live video input. For the second video however, we use a USB microscope.

We discuss the significance of this in section 5.5: Conclusion.

Interactive installation

In addition to sharing the videos online, we also designed an interactive installation which has

been exhibited around the world, allowing the public to interact with the system. Photographs

of the installation can be seen in Figures 5.16 to 5.20

In the installation, we replicate the setting of the Gloomy Sunday video. We provide a large

surface, covered in a number of every day objects such as broken cables and pieces of cloth. Users

can play with these objects, and observe the output of the system — along with the overhead

camera feed — on a large projection in front of them. The installation uses the models that we

discussed previously: Waves, Fire, Clouds, Flowers and Deep space, and automatically cycles

between them every 30 seconds.

The selection of the objects that we provide for the users to interact with, is very deliberate

(Fig. 5.16). We found that providing one dark coloured cloth and one light coloured cloth,

allows a user a wide range of opportunities with respect to what they can create. The cloths

can be spread out to cover the entire surface, or they can be crumpled up into small lumps,

or they can be twisted and bent into thin and long strips. Furthermore, providing both dark

and light coloured cloths, grants a user the flexibility to control the dark and light regions of

the image that they are creating. These are essential cues for the Neural Network, when it is

constructing the output image. Just these two objects, can be combined in infinitely different

ways. And most crucially, in ways that have the potential to be visibly radically unique, and

thus can be interpreted by our system in radically different ways.

The cables provide additional opportunities to sculpt fine detail. Again we provide a mixture

of dark cables and light cables. This allows the user to add details that either lighten or darken

the underlying area. We also provide a mixture of thick cables — such as ethernet cables — and

thin cables such as headphones. We cut off one end of each cable, as we found that sometimes

having a large shape at the end of the cable is useful, while other times it is not. For example,

in Fig. 5.17, we use the white headphone earpiece to stand in as the lighter coloured central

area of a flower, while the underlying cloth becomes the petals. And in Fig. 5.18, we use the

black headphone earpieces to stand in as the darker coloured central areas of the flowers.

Page 144

5.4. EXPERIMENTS AND RESULTS

Figure 5.14: Frames from the video Gloomy Sunday (2017)

Page 145

5.4. EXPERIMENTS AND RESULTS

Figure 5.15: Frames from the video We are made of star dust #2 (2017). The live video feed for this
example comes from a USB microscope.

Page 146

5.4. EXPERIMENTS AND RESULTS

Figure 5.16: Objects provided with the Learning to see interactive installation. Users play with and
manipulate these objects. The video feed from an overhead camera is fed to our system for processing.

Figure 5.17: Learning to see interactive installation at The Barbican’s 2019 AI: More than Human
exhibition in London, UK.

Page 147

5.4. EXPERIMENTS AND RESULTS

Figure 5.18: Learning to see interactive installation at The Barbican’s 2019 AI: More than Human
exhibition in London, UK.

Page 148

5.4. EXPERIMENTS AND RESULTS

Figure 5.19: Learning to see interactive installation at The Barbican’s 2019 AI: More than Human
exhibition in London, UK.

Page 149

5.4. EXPERIMENTS AND RESULTS

Figure 5.20: Learning to see interactive installation at The Barbican’s 2019 AI: More than Human
exhibition in London, UK.

Figure 5.21: Frames from Architectural machine translation (video, 2019) by Swedish architect Erik
Swahn. In 2019, inspired by the work that we shared in this area, Swahn started experimenting with a
similar approach. He trained models on architectural plans and urban maps. Using wooden blocks, he
was able to instantly prototype potential architectural diagrams.

Page 150

5.4. EXPERIMENTS AND RESULTS

5.4.3 Live parameter manipulation

In addition to performing some kind of movement in front of a camera — whether it be with

hands, body, objects, drawing or any other means — one of the most powerful ways of interacting

with our system, that allows us to really finesse the output, is by manipulating a set of human-

understandable parameters in realtime.

In the previous two modes of interaction subsection 5.4.1: Augmented drawing and subsec-

tion 5.4.2: Digital puppetry, the control exerted by a user, comes from what is placed directly in

the video feed. This provides the overall shape and structure of the image that will be generated

by our software. Through live parameter manipulation, we allow a user more fine control, over

how that particular shape and structure will be interpreted by the system.

In this context, by human-understandable parameters we are referring to parameters which

a non-specialist person, unaware of the internal workings of a system, can quickly see and

understand the effects of. This can be contrasted with parameters that influence a large number

of variables, in a very non-linear, complex fashion. Often such parameters are very difficult,

if not impossible, to describe in a simple language, or be understood by people who are not

familiar with the inner workings of the system. For an interactive system to provide meaningful

human control, any parameters that are available for a user to play with, must be human-

understandable.

To give an example, imagine that due to some configuration of inputs, a generative system

such as ours, produces an image of a nebula. It is very natural for a human user to want to

meaningfully modify the image in certain ways. For example, they might want to make the

nebula larger, or make it stretch out more, or make it more dense, or less dense, or make the

shape of it more irregular, or smoother etc. If we apply transformations to the final image, they

will affect all of the details as well. However, we wish to apply these transformations to the

structure of the image, not the detail. Furthermore, the transformations that we wish to apply,

are not necessarily simple geometric transformations such as scale, but might be the density of

a nebula, or the intensity of a flame. The software that we have developed is not specific to

nebula, or waves, or fire etc per se, but it provides exactly these types of controls, that can act

not only on images, but on live video feeds.

With the method that we describe in the subsection 5.3.2: Training section, we train our

models to effectively construct detailed output images, from abstract, blurry, blobby, greyscale

input images. The image processing pipeline that we implement in our realtime inference

software, processes the live video feed into such abstract, blurry, greyscale images. This is

what allows our system to translate images of cables and cloth, into images of flowers, waves or

nebula. We discuss how this works in more detail in the section 34: Input abstraction section.

The true power of our system however, comes from the fact that we can manipulate the

parameters of this image processing pipeline in realtime. This allows us to control the way in

which this abstraction takes place. The filters that we use in the pipeline are relatively simple

filters, such as blur, median, canny edge detection, adaptive threshold etc. This means that they

have a negligible overhead with regards to performance, and we can stack a large number of

these filters, without comprising the framerate of the system.

Page 151

5.4. EXPERIMENTS AND RESULTS

Furthermore, while we have not conducted user surveys with regards to this, we hypothesize

that users would be able to build an understanding of the effects of these parameters relatively

quickly. This is especially reinforced by the fact that the system runs in realtime, and provides

instant and continuous interaction. This allows users to play with the parameters, and without

necessarily having any knowledge of the operations a median or canny filter actually performs,

they can observe the results of their interactions instantly.

On the next four pages, Figures 5.23 to 5.26 show a selection of outputs from the Waves,

Fire, Clouds and Deep space models respectively. Every one of these outputs was generated

from the same input video frame, which can be seen in Fig. 5.22. In other words, the variation

in the outputs in this section is not due to a variation in the input video feed. It is due to the

realtime manipulation of the image processing pipeline parameters via the GUI.

We have frozen the video feed, so that the same image is processed and fed into the models

in every example. This allows us to more accurately evaluate the effects of each parameter.

Alternatively, if the video feed itself was also updating dynamically, it would be difficult for

us to isolate the impact of changing the parameter values. Under normal circumstances, since

the software runs at interactive rates (15-60fps depending on hardware), we can manipulate

each of these parameters in realtime, while the video feed is updating. We can do this either

via the GUI, or using an input device such as a midi controller, to allow a more performative

interaction.

On these first Figures 5.23 to 5.26, we have collated a large selection of outputs from each

model into a single image to aid side-by-side visual comparison. In the following pages, we show

in more detail, how outputs such as these can be shaped via the parameters. In the captions

below, parameter(s) which are modified from the previous screenshot, are indicated in bold.

Figure 5.22: The image here in the top left shows the frozen video feed that will be used as an input for
all of the subsequent examples in this section. All of the variations in output in the subsequent examples,
come only from different configurations of parameters, which we will detail in each example.

Page 152

5.4. EXPERIMENTS AND RESULTS

Figure 5.23: A selection of outputs from the Waves model, collected in a single image to aid side-by-side
visual comparison. Note that each of these images was generated from the same input video frame. Only
the processing pipeline parameters are interactively modified in realtime via the GUI.

Page 153

5.4. EXPERIMENTS AND RESULTS

Figure 5.24: Same configuration as Fig. 5.23, with outputs from the Fire model.

Page 154

5.4. EXPERIMENTS AND RESULTS

Figure 5.25: Same configuration as Fig. 5.23, with outputs from the Clouds model.

Page 155

5.4. EXPERIMENTS AND RESULTS

Figure 5.26: Same configuration as Fig. 5.23, with outputs from the Deep space model.

Page 156

5.4. EXPERIMENTS AND RESULTS

Gamma

As we increase gamma in Figures 5.27 to 5.29, the processed video feed capture proc becomes

darker. This results in the output images becoming darker as well. However, the darkening of

the output, is visually very different from a simple post-processing effect. The content of the

output is constructed by the Neural Networks in a manner that ensures the images are darker,

while still maintaining the qualities of the training data. For example, the waves have less foam,

fire becomes less intense, clouds become thinner, the nebula becomes sparser.

Figure 5.27: downscale=24, gamma=2.

Figure 5.28: downscale=24, gamma=5.

Page 157

5.4. EXPERIMENTS AND RESULTS

Figure 5.29: More examples of modifying gamma, arranged in a single image to aid side-by-side visual
comparison. Each of the columns show the outputs for gamma=2, 3, 5 and 7 respectively, with down-
scale=24 for all.

Page 158

5.4. EXPERIMENTS AND RESULTS

Invert

When we enable invert, the output images are constructed such that the light and dark areas

are swapped. However, the details of the output images are not inverted, only the structure is.

For example, what was previously foam becomes water, flames become ember, clouds become

empty sky, nebulas become empty space, and vice versa (Fig. 5.30).

Figure 5.30: The first column is for reference, and shows the outputs with invert turned off and gamma=2.
The following three columns show the outputs with invert turned on and gamma=1, 2 and 3 respectively.

Page 159

5.4. EXPERIMENTS AND RESULTS

Median

We can use a median filter to smooth the outlines of the shapes in the processed video feed.

This results in outputs that have smoother structures. Adjusting the amount of median controls

the shapes of the structures in the output images. Increasing the amount, results in smoother

structures. Since these filters apply to the input image only, they do not compromise the level

of detail and quality of the output images. Examples can be seen in Figures 5.31 to 5.33.

Figure 5.31: invert=True, downscale=0., post median=20, gamma=1.

Figure 5.32: invert=True, downscale=10, post median=30, gamma=1. In the previous example,
to demonstrate the effect of the median filter, we disabled the downscale low-pass filter. This results
in undesirable high frequency artefacts in the output images. To address this, we reintroduce a small
amount of downscale.

Page 160

5.4. EXPERIMENTS AND RESULTS

Figure 5.33: More examples of modifying the amount of the median filter, arranged in a single image to
aid side-by-side visual comparison. The first column is for reference, and shows the outputs with median
turned off, gamma=2 and downscale=24. The following three columns show the outputs for median=10,
20 and 30 respectively. The last column also has downscale=10 to remove the high frequency artefacts,
while the second and third columns have downscale turned off.

Page 161

5.4. EXPERIMENTS AND RESULTS

Adaptive threshold

In the examples in Figures 5.34 and 5.35, we use an adaptive threshold to convert the input to

a binary image, emphasizing the edges.

Figure 5.34: adaptive thresh=True, downscale=0. For each pixel, we set a threshold equal to a
gaussian-weighted sum of the pixel’s neighbours within a block, minus a constant C. If the pixel value is
greater than this threshold, it is set to black, otherwise it is set to white. This behaviour can be inverted
with the invert parameter. The block size and constant C can be adjusted with the adaptive thresh block
and adaptive thresh c parameters respectively.

Figure 5.35: adaptive thresh=True, downscale=16. In the previous example, we disabled the low-pass
filter, to demonstrate the effect of the adaptive threshold. The undesirable high frequency artefacts
which arise as a result of this can be resolved with a low-pass filter such as downscale.

Page 162

5.4. EXPERIMENTS AND RESULTS

Post vs pre-median

In the examples in Figures 5.36 and 5.37, we apply a median filter after the adaptive threshold.

Since the median is applied at the end of the image processing pipeline, we call it post median.

Figure 5.36: adaptive thresh=True, downscale=16, post median=10 . We can reintroduce a median at
the end of the image processing pipeline, smoothing the edges of the shapes.

Figure 5.37: adaptive thresh=True, downscale=16, post median=20 . Increasing the amount of median
smooths the shapes of the structures even more.

Page 163

5.4. EXPERIMENTS AND RESULTS

The median filter can also be applied at the start of the image processing pipeline. We call

this pre median. Unsurprisingly, this has a significant effect on the images generated, as can be

seen in Fig. 5.38.

Figure 5.38: The first two columns show the outputs for post median=10 and 20 respectively. The last
two columns show the outputs for pre median=10 and 20 respectively. In all cases, the adaptive threshold
and downscale settings are the same as the previous examples.

Page 164

5.4. EXPERIMENTS AND RESULTS

Canny edge detection

We can also use a canny edge detection algorithm. The end result of this is similar to the

adaptive threshold that we used in the previous examples, in that it produces a binary image

emphasizing the edges. However, the resulting image has much greater detail and the lines

are generally thinner. In Figures 5.39 to 5.43, we show the effects of playing with the canny

thresholds, and simultaneously enabling other filters.

Figure 5.39: canny=True, canny t1=10, canny t2=20.

Figure 5.40: canny=True, canny t1=1, canny t2=10. We can adjust the threshold values for the
canny algorithm using canny t1 and canny t2 to increase or decrease the amount of detail captured.

Page 165

5.4. EXPERIMENTS AND RESULTS

Figure 5.41: pre median=10, canny=True, canny t1 =1, canny t2 =10. Applying a median filter before
the canny filter, removes some of the noise and smooths the edges detected by the algorithm.

Figure 5.42: pre median=10, canny=True, canny t1 =1, canny t2 =10, post blur=20. As we demon-
strated in the previous examples, to remove the high frequency artefacts in the output images, we can
apply a low-pass filter to the input image. In the previous examples, we used downscale as a low-pass
filter. Another option that we have available, is to use a blur. The difference between post blur and
downscale is very subtle, but for the sake of variety, we will use blur in these next few examples. Similar
to median, we can apply the blur at the start of the filter pipeline, or at the end. In this particular case,
since we would like to filter the results of the canny edge detection, we use post blur.

Page 166

5.4. EXPERIMENTS AND RESULTS

Figure 5.43: More examples of modifying the canny thresholds and the amounts of pre median and
post blur filters. The (pre median, canny t1, canny t2, post blur) settings for each column are as follows.
1:(10, 5, 20, 20); 2:(10, 10, 50, 20); 3:(10, 10, 100, 30); 4:(15, 10, 100, 30).

Page 167

5.5. CONCLUSION

5.5 Conclusion

In this chapter, we presented a live video feed processing system which leverages the capabilities

of generative Deep Neural Networks trained on large datasets of images, while allowing users

to expressively interact with the system, and meaningfully control the output in realtime.

Our system allows interaction via the video feed, either through subsection 5.4.1: Aug-

mented drawing or subsection 5.4.2: Digital puppetry. Interaction is also possible via subsec-

tion 5.4.3: Live parameter manipulation, which is an additional, very powerful aspect of our

system. Through these modes of interaction, users can play with our system, to shape, con-

duct, steer, and create compositions, images and videos in a realtime, expressive manner. In

this respect, the method that we demonstrate in this chapter, addresses every concern that we

set out to investigate in this thesis.

It is worth noting that a user of our software does not have explicit control over how objects,

or sections of objects, that are presented to the camera, are interpreted by the system. In other

words, it is not possible to explicitly instruct the software, that a particular input object A,

should be interpreted by the system as a particular output object A′, and another particular

input object B, should be interpreted by the system as a particular output object B′. For

example, we cannot instruct the software to treat large patches of cloth as flower petals, and

headphone earpieces as the central area of the flower, as we mentioned in the section 5.4.2:

Interactive installation section. Even as the developer of the software, we do not have this level

of control. This is a decision that the Neural Network makes on its own, based on everything

that it has been trained on, the entirety of the video feed that is being presented to it, and

the configuration of the image processing pipeline. In fact, in the case of the headphones and

flowers in Fig. 5.17 and Fig. 5.18, we did not know that this would happen. We discovered it,

through playing with our software. We discuss this in more detail in the final chapter section 7.3:

Summary of contributions and outcomes.

Furthermore, to provide this level of granular control is not our goal. To be able to pro-

vide that level of granular instructions to the software is not necessarily very difficult. But it

would require domain-specific configurations, such as semantic color maps or similar. In other

words, for every dataset and model, we would need to provide some kind of metadata, mapping

characteristics of input objects and image features, to output objects and images features.

Instead, our aim is to devise a versatile prototype that can automatically work with and

adapt to any dataset, with no additional configuration necessary. The most important aspect

that we take into consideration, is the learning curve of the user. A user can start playing with

our software, with zero knowledge to begin with. As the models automatically switch between

Waves, Fire, Clouds, Flowers, Deep space, and potentially any other model, users do not need

to relearn anything new. All of the knowledge and experience that they gained from working

with one dataset and model, can be transferred and adapted to other datasets and models.

An additional feature that allows our system to express such a wide range of outputs with

relative ease, is that the system provides realtime, continuous interaction and control. This

allows us to experiment, observe and learn how the system responds to our actions. This in

turn allows us to respond to the system accordingly, and shape the results as we desire. In

Page 168

5.5. CONCLUSION

the case of the headphone-flower example that we mention above, we instantly noticed how the

system was creating flowers when the headphone earpiece was positioned in the centre of a large

area of cloth. We were then able to exploit this knowledge to our advantage.

Observing the general public interacting with our interactive installation, we found that

some people might spend just a few seconds playing with the objects, before smiling and walking

away. However, many people also spent very long periods of time, many long minutes, as they

meticulously arrange their perfect bouquet of flowers; or shape their perfect wave, or nebula.

It is also worth adding, that instead of cables and cloth, we could use objects especially

designed for this purpose. For example, we could use objects that physically resemble flowers,

even before they are processed by the Neural Network. Or we could use specially manufactured

objects that are more malleable and provide greater opportunities to be bent and shaped by

the user. Undoubtedly, this has the potential to provide more realistic outcomes. However, one

of our aims with this work, is to demonstrate how the most mundane and ordinary house-hold

objects, such as broken cables and used pieces of cloth, can become perfect tools of creativity,

given the appropriate algorithmic treatment.

We produced many videos with our system, and we shared them online. These videos

were widely circulated on both mainstream and social media. They were included in academic

articles and books, and even shown during Nvidia CEO Jensen Huang’s keynote at GTC (GPU

Technology Conference) 201914. These videos captured the imagination of a diverse range of

people from many different fields. These include AI researchers, artists, designers, architects,

cognitive scientists, neuroscientists, physicists, journalists as well as members of the general

public. Having presented this work at many cross-disciplinary conferences, and through informal

conversations with many individuals from these fields, it is clear that there is a general interest in

this kind of work that demonstrates the potential of human-AI collaborative co-creation. In other

words, in AI-augmented human creativity. And expressive, continuous, realtime, meaningful

interaction is at the heart of this human-AI creative relationship.

We would like to add, that we believe our primary contribution is not necessarily the technical

specifics of what we presented in this chapter. In the realtime inference software that we

developed, we hard-coded a particular image processing pipeline that we feel covers a wide

range of use cases, and has allowed us to shape the output in a very diverse and meaningful

way. We presented many examples of these in the section 5.4: Experiments and results section.

We did spend significant amounts of time, trying to design an image processing pipeline and set

of ‘magic values’, that produced subjectively both the nicest looking, and most diverse results.

We believe we have produced what we consider to be a very powerful and flexible system.

However, we present these details, as merely a starting point, which can undoubtedly be

dramatically improved upon, especially when tailored to a user’s specific needs or vision. For

example, while we were developing and testing our software, we would often encounter situ-

ations where we envisaged a particular output image. Or to be more precise, we envisaged

particular modifications to an image generated by our system at a particular moment in time.

However, these modifications were not possible with the image processing pipeline that we had

implemented at that point in time. We would often realize, that the desired modifications would

14Nvidia GTC 2019 Keynote: https://www.youtube.com/watch?v=Z2XlNfCtxwI&t=32

Page 169

https://www.youtube.com/watch?v=Z2XlNfCtxwI&t=32

5.5. CONCLUSION

be possible, by for example moving the median filter before the canny filter instead of after it.

Since we are authors of the software, we could quickly make the required code modifications,

and achieve the desired results within a few seconds. However, undoubtedly, a more powerful

software tool, could have such capabilities to add, remove and even write new filters at runtime,

built into the GUI. In that respect, we do not claim that the software tool that we have created,

is ready to be deployed and used by artists and designers around the world, allowing them to

create and shape any image that they can imagine. For our work in this thesis, as opposed to

extensively developing one single software tool we prefer to investigate many different methods

and develop each method enough to demonstrate its potential to the extent that it can ideally

provide a foundation for future research. We believe that this may potentially have more impact

and encourage more research in this particular field of continuous, Meaningful Human Control

of Deep Neural Networks for creative expression.

One additional point worth discussing, is whether it’s really necessary to have such a manu-

ally designed, hand-crafted image processing pipeline in front of the Deep Neural Network. After

all, a Deep Neural Network is effectively a very deep image processing pipeline. And one of the

major motivations behind Deep Learning, as we discussed in section 1.2: Why Deep Learning?,

was to avoid hand-crafted feature engineering. So could we omit our hand-crafted image pro-

cessing pipeline, and instead learn a desired pipeline end-to-end? In other words, could we train

a Deep Neural Network in such a way, that it learns these meaningful, human-understandable

parameters — and potentially many more? The short answer is yes, most probably, but there

are some complications involved which we discuss with regards to potential future directions in

chapter 7: Conclusion.

We would like to end this chapter with some reflections on higher level motivations behind

this work, and in fact, also behind the work that we will present in the following chapter.

In addition to the primary questions that we seek to address in this thesis with regards to

Realtime Continuous Meaningful Human Control, we are also interested in exploring computa-

tional models of intelligence and cognition, as an analog for how humans make meaning.

As we mentioned previously, we focus our examples on five models, trained on five specific

datasets that we collected during our research. These are Waves, Fire, Clouds, Flowers and

Deep space.

The selection of these particular datasets and models are very deliberate, and tie into this

higher level motivation. These categories, represent the five classical elements of nature: water

(waves), fire, air or sky (clouds), earth (flowers) and the aether or the void (deep space). While

this list varies slightly from culture to culture, many ancient civilizations have constructed a

list of very similar basic elements, which they use to try and make sense of the world. These

basic elements are seen as the foundational building blocks of all of reality.

In the examples that we present in this chapter, Artificial Neural Networks look out onto

the world, onto objects such as broken cables or pieces of cloth, or scribbles on a piece of paper.

They try to ‘make sense‘ of what they are seeing. But they can only make sense of what they

are seeing, in context of what they have seen before.

They can see only through the filter of what they already know.

Page 170

5.5. CONCLUSION

Just like us.

Because we too, see things not as they are, but as we are.

A Deep Neural Network is effectively a highly complex filter that can receive any input —

even white noise — and transform it into an output that resembles the data that it was trained

on. The Artificial Neural Network, in effect, projects its life experience, onto the inputs that it

is receiving.

And this is how we make meaning. We yearn structure. We look for patterns, and we find

them, and we project what we know onto them. We look at stars in the night sky, and recognize

familiar shapes. So we invent stories, and we believe them. We invent rituals. We see the future

in coffee cups, in tea leaves, in crystal balls, in dreams. It’s how we deal with uncertainty, and

how we connect with each other. We see things not as they are, but as we are. Our perception

of the world is internal to us, and depends on who we are, where we’ve been and what we’ve

done. And this is not limited to ancient superstitious practices. It happens every moment of

every day of our lives.

In this context, the term seeing, refers to both the low level perceptual and phenomenological

experience of vision, as well as the higher level cognitive act of making meaning, and constructing

what we consider to be truth. Our self affirming cognitive biases and prejudices, define what we

see, and how we interact with each other as a result, fuelling our inability to see the world from

each others’ point of view, driving social and political polarization. The interesting question is

not only “when you and I look at the same image, do we see the same colors and shapes?”, but

also “when you and I read the same article, do we see the same story and perspectives?”.

Everything that we see, or read, or hear, we try to make sense of by relating to our own

past experiences, filtered by our prior beliefs and knowledge. In fact, even these sentences that

I’m typing right now, I have no idea, what any of it means to you. It’s impossible for me to see

the world through your eyes, think what you think, and feel what you feel, without having read

everything that you’ve ever read, seen everything that you’ve ever seen, and lived everything

that you’ve ever lived.

Empathy and compassion are much harder than we might realize, and that makes them all

the more valuable and essential.

Furthermore, when we consider the Deep space model, and that this Neural Network has

been trained on images from the Hubble Space Telescope, we might be tempted to think that this

model has learnt what deep space looks like. However, that is not entirely accurate. The Hubble

Space Telescope, does not provide raw snapshot photographs, as objective visual representations

of deep space. Rather, it streams numbers. And then those numbers are interpreted, by us,

humans, by engineers, by scientists, even by artists. We stitch together patches, composite

layers, and even add colours. We don’t necessarily know exactly what distant space actually

looks like, or whether it is even possible for our minds to fathom those kinds of scales, hundreds

of thousands of light years in diameter. This Neural Network is not learning what deep space

really looks like. It is learning what we think deep space should look like, tainted with our

assumptions, our biases, our romantic visions.

Speaking of romantic visions, there is one additional motivation specifically behind the

Page 171

5.5. CONCLUSION

“We are made of star dust” series of works, and in using a microscope (Fig. 5.15) with this

particular model. It is fascinating to remind ourselves, that the atoms in our bodies, and

in fact in everything that we see around us, were forged in the dying hearts of stars and

supernova, billions of years ago, billions of light years away, and spewed across the galaxies,

before they came together, for a very brief moment in time, to become you and me. To quote

the astrophysicist Neil deGrasse Tyson: “We are all connected. To each other, biologically. To

the earth, chemically. To the rest of the universe atomically.”. And Carl Sagan: “The cosmos

is within us. We are made of star-stuff. We are a way for the universe to know itself”.

Page 172

Chapter 6

Deep Meditations: Latent

storytelling

6.1 Introduction

The over-arching theme of this thesis, is to investigate methods that grants a user Meaningful

Human Control over generative systems that leverage the capabilities of Deep Neural Networks.

In the previous chapters, we have presented a number of studies that explored this in a Realtime

Continuous manner, as this is an important point of focus for our research. In this chapter

however, we investigate a non-realtime, non-continuous method.

We recognise that non-realtime, non-continuous modes of interaction have traditionally

played an important role in existing, established creative workflows, particularly in narrative

time-based media, such as the production of long-form video or film. Using this as a starting

point, we develop a system based around a typical Non-Linear Video Editing (NLVE) workflow,

and we present a method for long-form story telling within a deep generative model’s space of

latent representations.

In other words, we develop a system that gives users the ability to discover and design

desirable trajectories in the high-dimensional latent space of a generative model, allowing them

to construct stories to produce long-form videos, with meaningful control over the narrative.

We demonstrate our system by creating a number of films. These include a 60 minute

multi-screen video installation called Deep Meditations: A brief history of almost everything in

60 minutes, which we have shown at venues such as St James Hatcham Church Gallery (London,

UK), Foster & Associates’ nine storey atrium in ME by Melia Hotel in London (UK), the Zen

Buddhist Temple Kennin-ji in Kyoto (JP), the Mori Art Museum (Tokyo, JP), and Sonar+D

Festival in Barcelona (ES) (Fig. 6.1).

We have also used our system in a collaboration with the renowned electronic musician Max

Cooper for his seminal audio-visual performance and tour Yearning For The Infinite which

premiered at The Barbican in London (Cooper & Akten, 2019). The piece we made for the

performance, Morphosis, was also released online as a music video in 2020 (Akten & Cooper,

2020). We presented a paper on this research at the Machine Learning for Creativity and Design

Workshop at Neural Information Processing Systems (NeurIPS) in 2018 (Akten et al., 2018).

173

6.1. INTRODUCTION

Figure 6.1: Photos from Deep Meditations: A brief history of almost everything in 60 minutes at Sonar+D
Barcelona, 2019

Page 174

6.2. BACKGROUND AND MOTIVATIONS

6.2 Background and motivations

In subsection 2.1.3: Latent manipulations, we discuss a number of methods such as semantic

vector manipulations, and latent interpolations, that allow some level of control over the output

produced from a generative model. These techniques allow control over a single sample produced

by a generative model. In the case of an image based model such as a DCGAN, this translates to

allowing control over a single image produced by a generative model. Effectively, these methods

allow us to find interesting and desirable points in latent space.

At the time that we developed the work that we present in this chapter, in 2017–2018, we

are not aware of any research or tools which granted users any kind of control over long-form

videos produced via image-based deep generative models such as DCGANs. All DCGAN based

video work at the time, were either random trajectories sampled from the latent space of a

model, colloquially referred to as random walks in latent space; or very short semantic vector

interpolations between two end points. We discuss these in more detail in the section linked

above.

In this chapter, we do not attempt to replace any of the above mentioned methods for

discovering interesting points in latent space. These methods can in fact, be incorporated into

the methods that we describe below. Instead, we are interested in granting users methods of

control, which allow them to discover and design interesting trajectories in latent space. In an

image based generative model such as a DCGAN, a single point in latent space produces an

image. A trajectory in latent space can be thought of as a sequence of points, and thus produces

a sequence of images, a video.

Furthermore, the latent space of such a generative model is usually structured so that

points which are close to each other in latent space, produce images which are semantically and

aesthetically similar to each other. For this reason, a smooth trajectory in latent space, will

produce videos where images appear to be morphing between each other. We discussed this in

section 2.1.3: Latent interpolation.

An additional outcome of this particular study, is in what we call trajectory planning. As

we have discussed multiple times throughout this thesis, the generative models that we use,

typically have latent distributions that are high-dimensional (e.g. Nz := 512) multivariate

standard normalN (0, 1). We know that the mass of such a high-dimensional normal distribution

is concentrated in the shell of a hypersphere, often likened to a ‘soap bubble’, with a radius of

R =
√
Nz − 1, and a shell ‘thickness’ following a χ distribution with a variance of 1 (J. D. Cook,

2011). As a result, any latent points that are outside of this shell, will produce images that

are far from the distribution, and as a result, are likely to be visually undesirable. For this

reason, we investigate a number of different methods which ensure that any trajectory that we

construct, stays within this distribution, i.e. on the surface of the hypersphere. We discuss our

methods in subsection 6.4.8: Trajectory planner details.

A further point to note, is that in the previous chapter chapter 5: Learning to see: Digital

puppetry through realtime video transformation, we used a conditional generative model as

the basis for our study. In this chapter, we investigate unconditional generative models. In

particular, we work with ProGAN (Karras et al., 2017), which is a form of an unconditional

Page 175

6.3. GOAL AND REQUIREMENTS

DCGAN. We use ProGAN, as this was the state-of-the-art architecture at the time of our work1.

We have later tested our approach with StyleGAN (Karras et al., 2019)2, BigGAN (Brock et

al., 2019)3, and StyleGAN2 (Karras et al., 2020), and we have observed that our method works

without any modifications.

We choose unconditional generative models as the subject for this chapter for a number of

reasons. It is much easier to acquire unlabelled data to train an unsupervised, unconditional

model, than it is to acquire labelled data to train a conditional model. Also for this reason, there

are already many high quality, pre-trained, unconditional models available for download made

available by other researchers. Furthermore, we have already investigated conditional generative

models in the previous chapter, and we wish to explore the affordances granted by unconditional

models. For more information regarding DCGANs, please refer to subsection 2.3.18: Deep

Convolutional Generative Adversarial Networks (DCGAN), and for unconditional generative

models in general, subsection 2.1.1: Unconditional generative models.

6.3 Goal and requirements

6.3.1 Main tasks

With all of this information in mind, let us explicitly define our goal and our requirements.

We have a generative model of images, with a high-dimensional space of latent representa-

tions (e.g. Nz := 512). This could be a model that we have trained ourselves, or a pre-trained

model downloaded from the internet such as BigGAN, or a pre-trained ProGAN/StyleGAN.

The main tasks that we need to address are:

Exploration

We desire that a user should be able to explore and leverage the full scope of the latent space.

For this reason, encoding or ‘filtering’ existing images as an input, as we did in the previous

chapter chapter 5: Learning to see: Digital puppetry through realtime video transformation, is

not satisfactory in this case.

Keyframe selection/generation

Our end goal is to devise a solution which allows a user to generate or select a temporally sparse

sequence of keyframe images yi from the model, such that image y1 corresponds to time t1,

image y2 corresponds to time t2, and image yi corresponds to time ti, where the subscript i

denotes a sequential integer index, and ti is the desired point in time that the ith image appears

in the video. In other words, we require a solution that allows a user to provide or somehow

construct a list of (yi, ti) pairs.

1section 2.2.7: Progressive Growing of GANs, ProGAN (2017)
2section 2.2.7: StyleGAN (2019), StyleGAN2 (2020)
3It is worth noting that BigGAN is technically a conditional model, as it is conditioned on class labels.

However, within each class label, the latent space is still incredibly vast and open for unconditioned exploration.
For this reason, we include BigGAN as an example model that we use for this research. We briefly discuss
BigGAN in section 2.2.7: BigGAN (2018).

Page 176

6.3. GOAL AND REQUIREMENTS

z-y correspondence

We would like to work with the generic case of a generative model in which it is not always

possible to retrieve a corresponding latent representation z for an input image x via an encoder

or optimisation as we discussed in section 2.1.3: Latent representation recovery. For this reason,

our solution should work with (zi, ti) pairs instead of (yi, ti). These can be thought of as

temporally sparse keyframe z-vectors which are the latent representations of the (yi, ti) keyframe

images. However, for us, the user, dealing directly with lists of high-dimensional z-vectors is not

intuitive or even feasible. We prefer to be dealing with images, not high-dimensional z-vectors.

Therefore, our solution should operate with an interface using images and (yi, ti) pairs, while

providing the corresponding (zi, ti) pairs to the model in the background.

Trajectory planning

Given that the output will be a video with a fixed framerate (e.g. fps := 30), our solution

should plot a trajectory through the provided list of temporally sparse (zi, ti) keyframes. If ti

is provided in seconds, the trajectory planner should interpolate and generate intermediate z

points, such that each zi is reached in exactly ti ∗ fps steps. In other words, the trajectory

planner produces a new, temporally dense and smooth list of interpolated z-vectors, one per

frame of video, where the z-vector at frame ti ∗ fps is equal to zi. The task of the trajectory

planner is further complicated by the fact that the mass of the latent distribution is concentrated

in the shell of a hypersphere as we have already discussed. Our trajectory planner needs to take

this into consideration.

6.3.2 Additional issues

On top of the main tasks mentioned above, we have encountered a number of additional issues.

We summarise these below.

Biased distribution

The latent space is not distributed ‘evenly’, or as one might expect or desire. For example,

in the case of our test model, we trained on an incredibly diverse set of images — millions

of images from over dozens of categories. However, upon inspection of the model’s output, it

seems images of flowers seem to occupy a very large portion of the model’s latent space. In

other words, if we generate a few thousand random samples from the model, we can observe

that a disproportionally large percentage of the images generated are of flowers. This is most

probably because flowers are overly present in the training data. The inverse is also possible.

For example, in the same model, images of bacteria are very sparse. This is most probably

because there are not enough images of bacteria present in the training data. In addition, it’s

quite common for some areas of the latent space to produce images which are aesthetically and

subjectively undesirable, or not suitable for the specific use case we have planned.

In our exploration of the latent space, we wish to find ways of taking this into account.

One solution which may come to mind to address this, is to readjust the distribution of the

training data by adding or removing images, and then retrain the model. However, this is

Page 177

6.4. SYSTEM DESCRIPTION

not always feasible or even possible due to a number of reasons. Some of these models take

months to train, so an iterative process of tweaking training data and then retraining is not

always feasible. Furthermore, these models often require very large amounts of training data,

often tens of thousands, sometimes even millions of images, so removing images can degrade

the quality of the model, and adding images is sometimes not possible if more images cannot

be found. Finally, many researchers are releasing pre-trained models, without releasing their

dataset or even their training code. In our research, we wish to present a solution which can

also work with these pre-trained models. Due to these reasons, we look into ways of biasing

or debiasing the latent space to produce more desirable results.

Perceptually variable speed

As a result of the uneven distribution mentioned above, an additional problem which arises,

is that interpolating from latent vector zA to zB at a constant speed might produce images

changing with a perceptually variable speed. This can make it difficult to meaningfully control

the speed at which the images change when producing a video with narrative. This is especially

important when producing videos that accompany music.

Unexpected interpolation outcomes

Finally, it is very difficult to anticipate and imagine the outcomes of trajectories in high di-

mensions. For example, imagine that the latent representation zA produces yA which is an

image of a flower, and zB produces yB which is an image of a mountain. We may wish to

interpolate from zA to zB, to produce a video morphing from image yA to yB. However, in

such high dimensions, this trajectory might unexpectedly pass through point zC , producing an

undesirable output yC which for example might be an image of a dog.

6.4 System description

Based on the tasks and issues that we mention above, we will now detail our proposed solution.

The first important decision to make when starting a project such as this, is whether we build

an entire bespoke tool and User Interface (UI) from scratch, as we have done in the previous

four studies, or do we try and leverage existing tools. Both approaches have advantages and

disadvantages. Building a bespoke tool from scratch requires considerable investment of time

and effort, but eventually provides the most flexibility and power. Trying to leverage existing

tools can potentially rapidly accelerate the developent of a prototype, at the cost of limited

functionality in the long run.

For this particular study, we chose the latter option of leveraging existing tools. We chose

this route because our goal is to be able to create videos with precise control over timing. And

in many of our use cases, including our collaboration with Max Cooper, it is essential to be

able to synchronize specific points in the video with corresponding points in music. Non-Linear

Video Editing (NLVE) software have years, even decades, of research and development in this

area, with many of the features that we require. For this reason, we chose to leverage and build

upon existing NLVE software with the belief that this would save us considerable development

Page 178

6.4. SYSTEM DESCRIPTION

time, and would be the most optimal way of developing a prototype to demonstrate a proof

of concept. However, this decision presents us with many new challenges. How can we use a

standard NLVE to edit sequences of high-dimensional z-vectors?

In order to address the different tasks and issues mentioned in the previous section, we have

developed a number of different methods and tools, and we have produced many hours worth

of carefully constructed films using this method.

Workflow overview

An overview of the entire workflow can be summarized as follows:

1. Exploration of the model: bias and de-bias the latent space distribution, create short

journeys for later editing

2. The narrative edit: edit the short journeys using a NLVE to produce keyframe images,

i.e. (yi, ti) pairs

3. The narrative conform: produce the final keyframe z-vectors, i.e. (zi, ti) pairs, from

the (yi, ti) pairs

4. Trajectory planning: produce the final dense, interpolated trajectory Z from (zi, ti)

5. The final render: select a desired model snapshot and produce the final video by ren-

dering Z through the model

6.4.1 Concepts and definitions

Before we expand on each of these steps, it is important to introduce some concepts which are

key to our process.

Conforming an edit

Our solution is analogous — and in fact inspired by — a common practice in video editing

and post-production pipelines known as conforming an edit. Typically in digital video post-

production, working with full-quality, full-resolution video clips is not always feasible due to

performance reasons4. In this case, one typically performs an edit on a set of proxy clips.

These are usually lower resolution, lighter-to-decode, easier-to-manage copies of the original

videos. Editing with proxies is also known as an offline edit (this terminology dates back to

working with film and automated machines operating on reels of footage). Once the offline edit

is completed on the proxy clips, the edit is conformed by applying the same edits to the original,

high resolution rushes. To perform this conform process, a file such as an Edit Decision List

(EDL) is exported from the offline editor. This is an industry standard file format which

contains all of the reel and timecode information for each of the video clips, their in and out

points, and their position on the timeline. The EDL is transferred to an online system, i.e.

with access to the original, full quality rushes, where the final cut is reproduced.

4In the days of analogue film editing, where this terminology originates, trying out edits directly on original
rushes by cutting them was highly undesirable!

Page 179

6.4. SYSTEM DESCRIPTION

(z-sequence, video) pairs

Since both we as users, and NLVEs, are more comfortable working with images, not z-vectors,

we need to associate images with their corresponding z-vectors. In order to address this, we

define (z-sequence, video) pairs.

A z-sequence, is simply a list of z-vectors. In other words, it is a trajectory in latent space,

and we store it on disk as a numpy array. To be more specific, it is a matrix where each row is

a z-vector, the ith row is the vector zi.

A video is a normal video file — typically an mp4 file with h264 codec — where each frame

of the video is the image output from the model decoding the corresponding z-vector from the

corresponding z-sequence. In other words, the ith frame of the video, is the image yi generated

by the model decoding zi.

In our analogue of conforming an edit, these video files act as the easier-to-manage proxy

clips which we will later load into a NLVE to perform a desired edit. We will then conform,

by applying this edit to the corresponding z-sequences, using custom tools that we developed

during this research.

Rendering z-sequences

We generate the videos to be edited using a process we call rendering. We appropriate this term

from the Computer Graphics literature, where some lower dimensional, custom representation of

a scene (for example 3D geometry consisting of vertex, face, material and lighting information)

is used to produce a high quality raster image.

In our case, the lower dimensional custom representation is the latent vector sequence. The

process of rendering a z-sequence, refers to simply loading the corresponding numpy array,

and saving a video where the ith frame of the video is the image yi, generated by feeding the

row zi to the model.

Given one or more z-sequences, we can render them to produce (z-sequence, video)

pairs5. Once we have these pairs, we can then edit the videos in a NLVE as we would edit any

normal videos, and then use the tools we developed in this research, to conform the edit on the

corresponding numpy arrays containing the z-vectors.

Snapshots across time

During the training of a generative model, the model’s latent space changes with each training

iteration, to hopefully represent the data more efficiently and accurately. However, a noticeable

change across these iterations also includes transformations and shifts in space. To give an

oversimplified example, what may be an area in latent space dedicated to mountains at iteration

70K, might become flowers at iteration 80K, while mountains slides over to the area previously

used to represent clouds. This is a vast simplification, as the real effects are little bit more

subtle. Nevertheless, there have been no studies conducted on this phenomena, and specifically,

on how it may impact creative uses and explorations of generative models.

5The association between the numpy array file and video file can be stored in a database, or we choose the
much quicker method of simply giving them both the same filename.

Page 180

6.4. SYSTEM DESCRIPTION

Furthermore, when we download a pre-trained model from the internet, often we only have

access to the final model provided by the researchers that trained the model. However, when

we are training our own models, we can save intermediate snapshots at desired intervals. This

can be particularly useful while training GANs, because there is no objectively quantifiable

point at which we can measurably determine that the training has optimally converged. This

is due to the fact that while training, the optimiser is trying to satisfy two opposing objectives,

improving both the generator, and the discriminator, by finding a Nash equilibrium of a non-

convex minimax game. We discuss this in more detail in subsection 2.3.18: Deep Convolutional

Generative Adversarial Networks (DCGAN).

Since there is no objectively quantifiable point at which the training is ‘complete’, a common

workaround is to simply set a fixed number of iterations to let the optimiser run for. This is

typically in the range [12000..100000], depending on the size and complexity of the training

data. In addition, at a fixed interval (e.g. every 1000 iterations) a small selection of random

image samples (e.g. 64 samples) are saved to disk. These samples are manually inspected, and

if they appear to be subjectively satisfactory and of a desired quality, the training is manually

interrupted, and a snapshot is saved and used as the ‘final’ model.

When assessing the random selection of samples, there are a number of factors to consider.

First, one looks for satisfactory visual quality in the individual images themselves, to ensure

that both the coarse structure and fine detail are satisfactory. Second, one looks at the diversity

of the images across the selection, to ensure that the model is able to produce images with a

satisfactory level of diversity representative of the dataset.

For many typical use cases, where the model will be used only to produce still images, or

‘random walk’ videos, this method of snapshot selection may be satisfactory. However, this

method does not allow any way of seeing how the latent space of a snapshot model is organised,

how compact or sparse key points are distributed, and what it actually looks like to move from

one point to another. For example, looking at the random selection of samples, we may see

a perfect reproduction of a flower, or a mountain. We may thus conclude that the model is

ready. However, later when we plot a trajectory through this model, we may see that the space

between the flower and the mountain has many undesirable artefacts, that maybe was not there

a few thousand iterations earlier, or maybe will disappear a few thousand iterations later.

For this reason, we believe that this snapshot selection method is not ideal, particularly

when the goal is to design narratives and construct trajectories, where we desire a high level of

meaningful control.

An ideal solution would allow us, when we are designing our trajectories, to visualize the

results of those trajectories, in not just a single snapshot, but in many snapshots simultaneously,

covering a wide range of iterations.

To achieve this, we save snapshots at regular intervals, and render z-sequences from multiple

snapshots. When we render a z-sequence, instead of rendering it from just one model, we render

it from multiple snapshots. We then tile the results of each of these renders together into a

single video. In other words, the rendered video of a (z-sequence, video) pair, is no longer a

video rendered from a single model, but instead, each frame of the video contains the output

from multiple snapshots arranged in a grid. This can be seen clearer in Fig. 6.2.

Page 181

6.4. SYSTEM DESCRIPTION

Figure 6.2: An example frame from a rendered video of a (z-sequence, video) pair. Each of the 28 tiles
in this image, shows the image produced by decoding the same z-vector from 28 different snapshots of
the same model where each snapshot is separated by 100 iterations. The snapshot iteration number is
also included in each square panel for reference, although in a font perhaps too small for print.

Rendering multiple snapshots in a grid on a single frame in this way gives us an overview

of how the latent space has evolved across training iterations.

Furthermore, we do not do this simply to observe how the model’s latent space evolves

over time. This method also allows us to easily see and select the most aesthetically desirable

snapshot(s) for the particular trajectory that we have designed.

In other words, instead of first picking a snapshot as the final model, as is the current

typical workflow, and then creating a trajectory, we explore trajectories in all of the snapshots

simultaneously. Throughout the entire process that we outline below, we work with these tiled

videos. This allows us at every step, to visualise how the trajectory looks like from each of these

different snapshots. At the very end, once we have produced our final draft tiled video, we can

select the particular snapshot which provides us the most aesthetically desirable results, and

render the same trajectory in high resolution with only that snapshot.

The selection of snapshots to include is based on a simple subjective assessment of the visual

quality of the snapshots. In our specific test cases, we train a number of ProGAN models for

a fixed number of iterations, namely 12000, as suggested by the authors of the paper. Looking

at the random image samples generated during training, we noticed that the quality of the

outputs started to become satisfactory at around 10, 000 iterations. Based on this observation,

we decide to save snapshots every 100 iterations, and include the final 28 snapshots in the

render. This covers iterations 9, 300 through to 12, 000, and gives us ample options to choose

from. In addition, the 28 images can be tiled into a 7x4 grid. This makes viewing the results

on a typical 16:9 monitor very practical.

Page 182

6.4. SYSTEM DESCRIPTION

6.4.2 Exploration of the model

Exploration is the first step that we outline in section 6.4: Workflow overview, where we bias

and de-bias the latent space distribution, and create short journeys for later editing.

If we already have a strong idea of the narrative that we would like to construct, and we

are already familiar with the particular model that we are working with, we can keep this

exploration phase very brief and jump straight to the narrative edit. However, if we are dealing

with a new model, and we do not yet know what the model is capable of, this phase can provide

very valuable insights.

The exploration phase can be expanded as follows:

1. We take many — e.g. one thousand — unbiased and independent samples from the

model’s latent distribution N (0, 1). We render and save this as a (z-sequence, video)

pair, where each frame is an entirely different random image. Stepping through this video

frame by frame gives us an idea of what the model has learnt, and how the latent space

is distributed. It also gives us an idea of how the distribution changes across subsequent

training iterations, and which snapshots provide more aesthetically desirable images.

2. We edit this video in a NLVE to remove any undesirable images, and to bias or de-bias the

distribution. For example, to address the issue with flowers being overly present in our

model, we simply remove a small random selection of flowers from the video. To address

the issue with there not being enough images of bacteria, we edit the video to duplicate

frames containing bacteria. We continue performing simple edits such as this until we are

content with the overall distribution of the different types of images in the video. At this

stage we are not performing edits to construct a narrative or to tell a story. We are simply

removing or duplicating frames to bias the distribution of different types of images.

3. Once we are happy with the distribution of images in the edit, we run our script to conform

the edit on the original z-sequence. This produces a new z-sequence — which we refer

to as a zdist-sequence — where each frame is still an entirely different random image, but

which has a more desired distribution, i.e. that contains no undesirable images, and a

satisfactory balance between different images types.

4. We render the conformed zdist-sequence to a new video, and we inspect this video in the

NLVE. If necessary, we can repeat steps 2–3 to further fine-tune the distribution until we

are entirely satisfied with it. However, we have not found this to be necessary.

5. Optionally, before rendering the conformed zdist-sequence, we can add a small amount

of Gaussian noise to it, for example N (0, 0.01 − 0.05). This allows us to explore the

neighbourhoods of the currently selected frames — for example, to include and investigate

more images of bacteria, with more variation.

The steps above produce a final (zdist-sequence, video) pair, where each frame is a random

image, with desired distribution of images and no undesired images.

Page 183

6.4. SYSTEM DESCRIPTION

Short journeys Once we are satisfied with the distribution of the random samples, we gen-

erate and render hundreds of random short journeys. We do this by loading the final zdist-

sequence in python, and simply select random pairs or triplets of z-vectors, and we render

interpolations between them. This can be seen in Alg. 3.

Algorithm 3: Deep Meditations: Generation of random short journeys

1 snapshots ← Load(model snapshots);
2 zdist-sequence ← Load(zdist-sequence numpy array);

3 for i← 1 to num desired short journeys do

4 N ← RandomSelect([2, 3]); // Randomly select 2 or 3

5 zkeyframes ← RandomSelect(zdist-sequence, N); // Select N random items from

zdist-sequence

6 t ← desired time interval between keyframes, e.g. 1–10 seconds;
7 zdense ← TrajectoryPlanner(zkeyframes, t);
8 Render(snapshots, zdense);

9 end

This produces hundreds of short (z-sequence, video) pairs that contain smooth, slow inter-

polations between two or three keyframes, where the keyframes are chosen from our preferred

distribution zdist. Viewing these videos gives us an idea on how the model transitions between

selected desired images. For example, using such a method, we can quickly see that the shortest

path between an image of a mountain and an image of a flower might travel through the latent

space region of buildings, and this may not be desirable. We can use this as a cue to insert an

additional keyframe in-between.

We repeat the previous step, honing in on the short journeys which seem promising. Op-

tionally, we can again add varying amounts of Gaussian noise to the z-vectors to explore the

neighbourhoods of selected frames and journeys.

6.4.3 The narrative edit

The previous steps produce an arsenal of short snippets of (z-sequence, video) pairs, as well as

a single long (zdist-sequence, video) pair with many desirable images.

To perform the narrative edit, we simply load the videos that we like, or that contain

images or sections that we like, into the NLVE, and we edit them together. In other words, we

select frames or short sequences from these videos, and we sequence them and lay them out on

the NLVE timeline with the desired timing, synchronizing to audio if necessary.

During this edit, we essentially lay down the keyframe images yi, i.e. temporally sparse

destination points. When we place video frames onto the timeline, we have two options. The

first option is to leave gaps between the keyframes, placing only images and video frames at

specific points in time that we deem significant. The gaps will later be filled in by our trajectory

planner, which interpolates between neighbouring keyframe images. Due to the smooth nature of

the model’s latent space, this interpolation manifests itself visually as a kind of morph between

the keyframes, as we discussed in section 2.1.3: Latent interpolation. The second option, is

Page 184

6.4. SYSTEM DESCRIPTION

to leave no gaps between keyframes. In this case however, upon loading the z-sequence in the

trajectory planner, we can specify a fixed time interval, for example 5 seconds, and the keyframes

will be treated as if they are 5 seconds apart.

As a result of this edit, the NLVE project contains information regarding keyframe images,

i.e. (yi, ti) pairs.

As a side note, for our NLVE software, we chose the open-source Kdenlive for the GNU/Linux

platform. One of the reasons for this, is because we are working solely on GNU/Linux. However,

our solution does not involve any modifications or plugins to the software itself, but rather it is

a workflow involving a number of stand-alone tools, which could be adapted to other NLVEs.

This means that the same workflow that we describe in this section, could be applied to other

NLVEs which support any kind of easy-to-parse project file.

Figure 6.3: A screenshot of editing z-sequence videos in Kdenlive with tiled snapshots.

6.4.4 The narrative conform

Having constructed a list of (yi, ti) keyframe images during the narrative edit, the narrative

conform is simply a process of running our conform script on the narrative edit NLVE project

file. This produces a list of temporally sparse keyframe z-vectors, i.e. a numpy matrix of (zi, ti)

pairs.

Unfortunately, Kdenlive does not support EDL 6. However, the project file format used by

Kdenlive is itself a text based XML with open specifications. This allows us to easily parse the

project file in our own python based tools. One of the open-source tools7 that we developed

during this research, is a parser which conforms the edit as shown in Alg. 4. With relatively

6EDL is Edit Decision List, we discuss this in section 6.4.1: Conforming an edit
7https://github.com/memo/py-msa-kdenlive

Page 185

https://github.com/memo/py-msa-kdenlive

6.4. SYSTEM DESCRIPTION

minor modifications to this tool, EDL support could be implemented, which would permit the

use of other NLVEs such as Adobe Premiere, Apple Final Cut, and Avid Media Composer.

Algorithm 4: Deep Meditations: Conforming the edit

1 Load Kdenlive project XML file;
2 Inspect the edits and retrieve the names for each of the video clips;
3 Load the corresponding numpy z-sequences for each of the video clips;
4 Conform the edit by splicing the numpy arrays in the same manner as the videos;
5 Export a new z-sequence to disk;

As mentioned, the output of this conform process is a list of temporally sparse keyframe

z-vectors. This is a numpy matrix of (zi, ti) pairs, which is saved to disk, and can then be sent

to the trajectory planner for interpolation.

6.4.5 Trajectory planner

The trajectory planner takes the temporally sparse (zi, ti) keyframe z-vectors produced by

the conform, and produces the final dense trajectory Z which will eventually be rendered by

the model.

As we have mentioned before, the latent distribution of our models are concentrated in the

shell of a hypersphere. For this reason, we need to ensure that the trajector planner takes

this into account. This is a rather complex issue that we have invested considerable time into.

Instead of detailing all of our findings here, we have devoted a separate section to it below in

subsection 6.4.8: Trajectory planner details.

6.4.6 The final render

Rendering the final dense z-sequence Z produced by the trajectory planner, produces a final

tiled video. In this video, we can see the same trajectory rendered from each of the available

snapshots, just as we saw in Fig. 6.2. Viewing this video, we can see which of the snapshot(s)

provides the most aesthetically pleasing results, and we can then re-render the video in full

resolution with only one snapshot, or a smaller selection of snapshots.

6.4.7 Model architecture and data

We applied the approach mentioned in this paper on a number of different models and archi-

tectures, however the primary test case we refer to (and from which we also show the results) is

a ProGAN trained on over 100,000 images scraped from the photo sharing website Flickr. The

dataset is very diverse and includes images tagged on Flickr with: art, cosmos, everything, faith,

flower, god, landscape, life, love, micro, macro, bacteria, mountains, nature, nebula, galaxy, rit-

ual, sky, underwater, marinelife, waves, ocean, worship and more. We include three thousand

images from each category and train the network with no classification labels. Given such a di-

verse dataset without any labels, the network is forced to try and organize its distribution based

purely on aesthetics, without any semantic information. Thus in this high-dimensional latent

space we find directions allowing us to seamlessly morph from swarms of bacteria to clouds of

Page 186

6.4. SYSTEM DESCRIPTION

nebula, oceanic waves to mountains, flowers to sunsets, blood cells to technical illustrations etc.

Most interestingly, we can perform these transformations across categories while maintaining

overall composition and form.

6.4.8 Trajectory planner details

In this section, we detail some of our investigations into trajectory planning. As we have men-

tioned, the trajectory planner takes the temporally sparse (zi, ti) keyframe z-vectors produced

by the conform, and produces the final dense trajectory Z which will eventually be rendered

by the model. In order to do this, the aim is to produce the final dense trajectory Z, such that

at time ti, the trajectory goes through the point zi, and for every frame in between, z-vectors

are smoothly interpolated.

One of the challenges that we face, is that our latent distribution is a high-dimensional

standard normal N (0, 1) As a result, the mass of the distribution is concentrated in the shell

of a hypersphere with a radius R =
√
Nz − 1, and a shell ‘thickness’ following a χ distribution

with a variance of 1 (J. D. Cook, 2011). For this reason, the trajectory planner needs to ensure

that any z that it generates, needs to be on, or very close to, the surface of this hypersphere. If

this criteria is not met, the images produced will be far from the distribution, and potentially

very undesirable. We investigate a number of different methods to address this.

Spherical spatial interpolation, linear temporal interpolation

Given just two points, za and zb, if we linearly interpolate between them, this will diverge from

the distribution. This can be visualized as a straight line between two points on the surface

of a sphere, diverging from the surface of the sphere. As recommended by (J. D. Cook, 2011;

White, 2016a) and many others, spherical interpolation provides the most desirable results in

this case. However, when we have more than two points, using spherical interpolation becomes

problematic.

The first approach that might come to mind, is to use spherical interpolation between each

successive two points, zi and zi+1. An overview of this can be seen in Alg. 5. However, using

this method, we observe that this produces visibly noticeable discontinuities in the movement of

the output video, due to sudden changes in speed and direction in the latent space. Even though

we are using spherical and not linear interpolation, this simply refers to the interpolation in

space. However, temporally, the interpolation remains linear. Any experienced animator will

know that linear interpolation across time often causes temporal discontinuities at the keyframes

due to sudden changes in speed.

These artefacts can be seen in Fig. 6.4. For this test, we generate random samples from a

512 dimensional standard normal distribution N (0, 1), which can be thought of as points that

lie on or very near the surface of a hypersphere with radius R =
√

512− 1 = 22.6. We interpret

these random samples as keyframes, placed one second apart, and we use spherical interpolation

between each successive two points as outlined in Alg. 5, to produce a dense trajectory Z. In

this case we consider a video frame rate of 15 frames-per-second, which means we interpolate

between each successive keyframe in 15 equal steps.

Page 187

6.4. SYSTEM DESCRIPTION

Algorithm 5: Deep Meditations: Produce a dense trajectory Z using spherical
interpolation

// Inputs

1 zi ← [z1, z2, ...,zn]; // Array of z-vector keyframes

2 ti ← [t1, t2, ..., tn]; // Array of corresponding timestamps (in seconds) for zi
3 fps ← 15; // Desired frame rate

4 f(zA, zB, perc); // Spherical interpolation function

// Variables

5 nkeyframes ← Length(zi); // Number of keyframes

6 Z ← []; // Initialize empty array to store interpolated z-vectors

// Loop over all keyframes

7 for i← 2 to nkeyframes do
8 duration ← ti − ti−1; // Duration (in seconds) between adjacent keyframes

9 nsteps ← duration * fps; // Number of steps between keyframes

// Interpolate between adjacent keyframes

10 for step ← 1 to nsteps do
11 perc ← (step- 1) / nsteps; // Interpolation percentage 0...1

12 zcur ← f(zi−1, zi, perc); // Apply spherical interpolation to calculate

current interpolated zcur
13 Z.append(zcur); // Append to dense Z array

14 end

15 end
16 return Z

Figure 6.4: An interpolated, dense Z sequence produced using spherical interpolation. Time flows left to
right. Upon close inspection, one can notice vertical notches. These indicate discontinuities every time
a keyframe is reached, and a new target keyframe is selected.

Page 188

6.4. SYSTEM DESCRIPTION

In Fig. 6.4, a single pixel wide vertical slice represents a single z-vector, and time flows

left to right. Because we placed the keyframes one second apart, with a framerate of 15, in

this image, the keyframes occur 15 pixels apart. Upon close inspection of the image, we can

see notch-like vertical artifacts every 15 pixels. This happens when the spherical interpolation

reaches its destination z-keyframe, and a new target z-keyframe is set. In other words, the

inner loop on line 10 in Alg. 5 is reached. This creates a sudden change in speed and direction.

Spherical spatial interpolation, easing temporal interpolation

A simple remedy that may come to mind, is to smooth the movement over time, using what

are known in the field of animation as easing functions, and more formally known as sigmoid

functions. These are functions that create a linear 7→ S shaped mapping, and for this reason

they are also known as S-curves.

A very common easing function is the cubic S(t) = 3t2− 2t3, where t is limited to the range

(0, 1). We can see that S(0) = 0 and S(1) = 1. Furthermore, if we take the derivate of S(t) we

find that S′(t) = 6t− 6t2, and both S′(0) = 0 and S′(1) = 0. In other words, this cubic S-curve

goes through the points (0, 0) and (1, 1) while having a zero first derivative at both end points.

Using an easing function such as this, while interpolating between adjacent keyframes, ensures

that there are no first order discontinuities, by ensuring that velocity is zero at the keyframes.

In some sensitive cases however, using even cubic easing is not sufficient, as this can produce

second order discontinuity. For this reason a quintic easing function of S(t) = 6t5− 15t4 + 10t3

can be used where the second derivative — i.e. acceleration — is also zero at both t = 0 and

t = 1 (Perlin, 2002).

We can use these, or other similar functions on the perc parameter in Alg. 5 while performing

the spherical inteprolation in line 12. While this does remove the sudden changes in speed and

direction, it does so in an undesirable manner. We see that the whole video momentarily grinds

to a halt at every keyframe. This should not come as a surprise, as that is exactly what we

are doing by using an easing function only on time with zero derivatives at the end points. It

becomes clear, that in order to address the issue in a desirable manner, we have to smooth the

transitions at keyframes across space as well as time, ideally without dropping speed down to

zero.

Gaussian filter with reprojection

The first method we investigate to smooth transitions across space and time, involves applying

a Gaussian filter to the Z trajectory produced in section 6.4.8: Spherical spatial interpolation,

linear temporal interpolation. Z can be thought of as matrix of Nz columns, where Nz is the

dimensionality of the model’s latent distribution. Each row is an interpolated z-vector, and the

number of rows is equal to the number of frames in the final video to be rendered.

We apply a one dimensional Gaussian convolution vertically across this matrix, in other

words, only across the time dimension. This filters each dimension of the motion trajectory

individually, without filtering across the components of the z positions. This does nicely elimi-

nate any sudden changes in speed and direction. However, it also pulls the z positions towards

the center of the latent space, away from the surface of the hypersphere. Since the trajectory

Page 189

6.4. SYSTEM DESCRIPTION

diverges from the distribution, this has the potential to produce undesirable images. To allevi-

ate this, we normalize the filtered Z matrix and reproject all of the points back onto the surface

of the hypersphere. This can be seen in eqn. (6.1)

z ← R
g(z, σ)

‖g(z, σ)‖
(6.1)

where g(x,σ) is the Gaussian filter function with standard deviation σ, and R =
√
Nz − 1

is the radius of the hypersphere.

The standard deviation of the kernel depends entirely on subjective aesthetic preferences,

and certain characteristics of the video such as the general pace of the video and spacing of

keyframes. Unsurprisingly, a larger kernel provides slower and smoother movement, while a

smaller kernel provides less smoothing.

Projecting the filtered Z trajectory back onto the hypersphere in this manner does bring the

points back into the distribution, and produces more aesthetic and desirable images. However,

depending on the nature of the trajectory, the final smoothed and reprojected trajectory might

not travel exactly through the desired keyframes zi, but instead might pass nearby. This is

particularly likely to happen if the kernel size is quite large. This is not always a major problem.

Due to the nature of how the model’s latent space is organized, points which are close in latent

space, produce images which are semantically and aesthetically similar. So missing a keyframe

by a small amount, will produce an image which is very similar to the desired keyframe image.

Thus, selecting an optimal kernel size becomes a balancing act between selecting a large enough

size such that the movement is adequately smoothed, but not too large so as to minimize the

divergence between the trajectory and desired keyframes. We find that an optimal kernel size

to be in the order of half of the spacing of the keyframes. With a kernel size in this range,

the movement is smoothed enough so that keyframes are not noticable when viewing the video,

while simultaneously the trajectory goes close enough to the keyframes so that the images

produced are very similar to the desired keyframes.

To summarize, this method creates a perfectly smoothed trajectory, however it fails to hit

the desired keyframe positions perfectly. For most of the works that we created for this chapter,

we used this method of interpolation, as precise position turned out to be not very significant as

long as the trajectory passed close enough to the keyframes to be semantically and aesthetically

similar.

Physical Interpolation

Another method we investigate, is a physics based dynamical system. In the high-dimensional

latent space, we create a dynamical particle connected to the next keyframe z position with a

heavily damped spring, with zero length. This ensures that the particle always moves towards

the next keyframe, without any discontinuities in speed or direction. We also connect the

particle to the origin, i.e. all components of the vector equal to zero, with a damped spring

with length
√

512− 1 = 22.6. This ensures that the particle always stays close to the surface

of the hypersphere, i.e. the distribution. Finally, we add a maximum speed cap to the particle,

Page 190

6.4. SYSTEM DESCRIPTION

Figure 6.5: An interpolated, dense Z sequence produced using physical interpolation. Time flows left to
right. The vertical notches that were visible in Fig. 6.4 are no longer an issue.

to prevent excessive speeds. An overview of the method can be seen in Alg. 6.

A visualization of a dense Z trajectory produced using this method can be seen in Fig. 6.5.

Note that the vertical notches have disappeared. This is indicative of the transitions between

keyframes being much smoother. In other words, upon reaching a particular keyframe, there

are no sudden changes in speed or direction. Instead, the interpolated z vector, gradually

changes speed and direction before heading over to the next z-keyframe, while simultaneously

trying to stay within the shell of the hypersphere. This is also noticeable while watching the

rendered video, it is almost impossible to notice when the keyframes are occuring, and the

overall movement is incredibly smooth.

It is difficult to distinguish which method produces smoother and more aesthetically pleas-

ing results between this method, and the previously mentioned section 16: Gaussian filter with

reprojection method. However one advantage that this method has over the Gaussian reprojec-

tion method, is that the trajectory is guaranteed to travel through all of the z-keyframes with

the physical interpolation.

However, this comes at the cost of a lack of precise timing. The behaviour of this method

is highly sensitive to the dynamics parameters, particularly the spring stiffness and damping.

While it is relatively trivial to adjust these parameters to achieve aesthetically pleasing results,

it is less trivial to adjust these parameters to achieve aesthetically pleasing results while simul-

taneously hitting the desired keyframes zi at exactly the desired times ti. For this reason, we

use this method when very precise timing — such as synchronizing to music — is not necessary.

In the following section we discuss a couple of other potential approaches such as a modifi-

cation to de Casteljau’s algorithm and using differential geometry.

Page 191

6.4. SYSTEM DESCRIPTION

Algorithm 6: Deep Meditations: Produce a dense trajectory Z using physical in-
terpolation

// Inputs

1 zi ← [z1, z2, ...,zn] // Array of z-vector keyframes

2 SpringForce (pos0, pos1, spring stiffness, rest length);

// Dynamics Parameters

3 max speed ← maximum speed of particle in latent space; kt ← spring stiffness
connecting to target z;

4 ko ← spring stiffness connecting to origin;
5 damping ← higher values provide more damping, less momentum;
6 distance threshold ← distance to target keyframe z before switching to next keyframe z;

// Variables

7 Nz ← Length(z0); // number of dimensions, e.g. 512

8 R ← Sqrt(Nz-1); // radius of hypersphere

9 v ← Nz (0) // Initialize velocity vector to zero-vector of dimensions Nz

10 zcur ← z1; // Current z position, start at first keyframe

11 nkeyframes ← Length(zi); // Number of keyframes

12 Z ← []; // Initialize empty array to store interpolated z-vectors

// Loop over all keyframes

13 for i← 2 to nkeyframes do
14 while ‖zi − zi−1‖ < distance threshold do
15 v *= damping; // Apply damping

16 v += SpringForce(zcur, zi, kt, 0); // Spring force to target keyframe

17 v += SpringForce(zcur, 0, ko, R); // Spring force to origin

// Cap speed of particle

18 if ‖v‖ > max speed then
19 v = max speed * v/‖v‖
20 end

21 zcur += v; // Add velocity to current position

22 Z.append(zcur); // Append to dense Z array

23 end

24 end
25 return Z

Page 192

6.5. CONCLUSION

6.5 Conclusion

We present this research as a first step in many, towards enabling users to meaningfully explore

and control journeys in high-dimensional latent spaces to construct stories, using and building

upon industry standard tools and methods with which they may already be comfortable. Our

ultimate goal is to enable users to creatively express themselves, and meaningfully control the

way in which they produce time-based media using deep generative models as a medium.

At the time of our research, there were no methods or tools available allowing a user any

form of control — let alone what we consider Meaningful Human Control — over the narrative

of a video generated with an image based Deep Neural Network. As a first step in this direction,

the method that we present here works. Using this method, we have produced many videos

of varying lengths, ranging from very short (one minute), to almost feature length (one hour).

We have exhibited these works in different contexts including a music video and live concert

visuals for the electronic musician Max Cooper, and an immersive, architectural audio-video

installation in a hotel lobby designed by Foster & associates.

However, many aspects of our process can be improved; especially from a user experience

point of view. We chose to leverage the functionality of existing tools. Specifically, we chose

to build our workflow around an existing NLVE, and this allowed us to prototype the desired

functionality relatively quickly, since the NLVE’s user interface has been designed and developed

over decades and optimised for editing videos in a non-linear fashion, and synchronizing to

audio if need be. However, the rest of our workflow consists of a number of python scripts, and

executing various different cells of an iPython notebook. For this reason, it is not very user

friendly. As a next step, we would highly recommend incorporating the functionalities that we

mention above, into a stand-alone application where these functionalities can be triggered and

controlled via a single GUI.

In addition, the exploration of the model’s latent space is currently a bit cumbersome, as it

requires switching back and forth between the NLVE — where the viewing and editing takes

place, and the python scripts — where the conform and rendering takes place. Collating all of

this functionality into a single custom GUI would again allow for a more streamlined, realtime

experience for the user.

Finally, we have discovered that trajectory planning is a very important issue if quality

of both movement and image is to be preserved when creating videos using deep generative

models. We already know that using linear interpolation between successive keyframes causes

the trajectory to diverge from the distribution, resulting in undesirable images. In addition, we

have tested and observed that using spherical interpolation, results in noticeable discontinuities

in movement, which we find very undesirable.

We have implemented and tested two new methods, and both physical interpolation and

Gaussian reprojection interpolation provides very nice smooth trajectories with no noticeable

discontinuities at all. Physical interpolation is able to produce trajectories that travel precisely

through all desired z-keyframe positions, but not at precisely the desired times. Gaussian

reprojection interpolation is able to produce trajectories that travel close to all desired z-

keyframe positions, at precisely the desired times. We call this the Heisenberg Uncertainty

Principle of latent space navigation.

Page 193

6.5. CONCLUSION

It’s worth adding, that if one were determined to have a smooth trajectory that both travels

through all desired z-keyframe positions at precisely the desired times, a dual pass approach

we have used is to use the physical interpolation method and render a final video, and then

time remap the video in a software such as Adobe AfterEffects or Adobe Premiere. However,

we have rarely found this to be necessary, as the position precision of Gaussian reprojection has

generally been sufficient for our needs.

A more mathematically rigorous approach one could try is based on de Casteljau’s algo-

rithm. De Casteljau’s algorithm is a recursive method typically used to construct polynomial

algebraic curves (known as de Casteljau Bezier curves) from a small number of sparse data

points (known as control points) which define the overall shape. The method involves itera-

tively calculating affine linear combinations of successive sparse points to create the final smooth

curve. In our case, instead of using linear interpolations between successive points at each it-

eration, one could try using a similar recursive approach with spherical interpolation between

successive points where the initial control points are the z keyframes. This should create a

spatially and temporally smooth polynomial curve on (or near) the surface of the hypersphere.

However, since the points of a de Casteljau Bezier curve does not go through all of the control

points, this is also likely to not travel exactly through all of the desired z keyframes. For this

reason, a Hermite/Catmull-Rom based approach projected onto the hypersphere might yield

more desirable results.

Another method that we believe could work — particularly in conjunction with Hermite/

Catmull-Rom splines as discussed above — is using differential geometry and Riemannian man-

ifolds (Miolane et al., 2018). With this approach we can project an offset vector — such as

velocity — onto the tangent space of a manifold, which in our case is a hypersphere. From there,

we can ensure that all transformations take place on the surface of the hypersphere directly.

Our early investigations in this direction look promising, however, we do not yet have conclusive

results, and we recommend this as a direction to study. One of the advantages of this approach

is that it could potentially be easily adapted to run in realtime.

Page 194

Chapter 7

Conclusion

A typewriter? — why shd it only make use of the tips of the fingers as contact

points of flowing multi directional creativity. If I invented a word placing machine,

an “expression-scriber”, if you will, then I would have a kind of instrument into

which I could step & sit or sprawl or hang & use not only my fingers to make words

express feelings but elbows, feet, head, behind, and all the sounds I wanted, screams,

grunts, taps, itches, I’d have magnetically recorded, at the same time, & translated

into word–or perhaps even the final xpressed thought/feeling wd not be merely word

or sheet, but itself, the xpression, three dimensional–able to be touched, or tasted or

felt, or entered, or heard or carried like a speaking singing constantly communicating

charm. A typewriter is corny!! — Amiri Baraka (Baraka, 1969)

7.1 Summary of research background and objectives

At the time that we started our research, Creative DL — the field investigating the application

of DL to the production of artistic and creative works — was very much in its infancy, and

was just starting to show potential (Sutskever et al., 2011; Boulanger-Lewandowski et al.,

2012; Sutskever, 2013; Graves, 2013; Nayebi & Vitelli, 2015; Sturm, 2015; Ha, 2015; Gregor et

al., 2015; Nguyen et al., 2015; Gatys et al., 2015a, 2015b; Mordvintsev et al., 2015; Radford

et al., 2015; Nayebi & Vitelli, 2015). While these methods demonstrated great possibilities,

they allowed for very little, if any, Meaningful Human Control, and no Realtime Continuous

Control whatsoever. Furthermore, the outputs generated by these methods were of relatively

low quality, and the methods themselves were not necessarily very stable. As a result, the

majority of research in this area was focused more on improving the quality and stability of

such methods, without necessarily thinking about Meaningful Human Control, or Realtime

Continuous Control.

At this time, we hypothesised that both Meaningful Human Control and Realtime Con-

tinuous Control would become very important areas of research within Creative DL, and were

vastly under-explored. Operating under the expectation that these methods would be improved

in terms of quality and stability — especially with massive investments from industry giants

such as Google, Microsoft, Facebook, Adobe, OpenAI, and Nvidia — we chose to focus our

research specifically on the topic of Realtime Continuous Meaningful Human Control.

195

7.1. SUMMARY OF RESEARCH BACKGROUND AND OBJECTIVES

We set out to investigate Deep Visual Instruments: realtime interactive generative sys-

tems that exploit and leverage the capabilities of state-of-the-art Deep Learning algorithms,

while allowing Meaningful Human Control over the generated media, in a Realtime Continuous

manner. Our aim was to explore new modes of performative, artistic expression, using

Deep Learning models as a medium and visual instrument.

We are very pleased to observe that over the years, Creative DL with Meaningful Human

Control has become a rapidly growing, very exciting area of research (Isola et al., 2016; Zhu et

al., 2017; Ha & Eck, 2017; Karras et al., 2017; Park et al., 2019; Karras et al., 2019; Simon,

2019; Bau et al., 2019; Karras et al., 2020; Härkönen et al., 2020; Jiang et al., 2020; Broad et

al., 2020), and we are very pleased to have been part of this movement. However, we believe

that Realtime Continuous Control within Creative DL is still vastly under-explored. We hope

and believe, that this too will become an active area of research in the upcoming years, and we

hope that our work will be of value.

In this thesis, we first define the two key criteria that we frame our research around, and

that we believe to be incredibly valuable, and yet a major gap in current Creative DL research,

both from the artistic side, and technical side.

In section 1.3: Meaningful Human Control, we first define what we mean by Meaning-

ful Human Control, a term that we reappropiate from the Autonomous Weapons Systems

literature. We provide examples of types of interactivity that we consider do not qualify as

Meaningful Human Control. For example, ‘pressing a button’ that triggers some autonomous

process to produce some creative outputs, with no further input from a user. Or adjusting

some ‘random sliders’ which affect the output in an unpredictable manner. We discuss the act

of curation as potentially a creative act, but not demonstrative of Meaningful Human Control

over the creation process, at an algorithmic level. And we identify intent, predictability, and

accountability and expression as key factors to be considered when thinking about Meaningful

Human Control in a creative context.

In section 1.4: Visual instruments: Realtime Continuous Control, we also define what we

mean by Realtime Continuous Control in this context, a term that we reappropiate from

the cybernetics and control theory literature (Wiener, 1948). We further situate this in the

context of visual instruments, and realtime performative interaction, borrowing also from vi-

sual artists developing custom performance tools ranging from Louis-Bertrand Castel (Castel,

1740), to Shuya Abe and Nam June Paik (Medienkunstnetz.de, n.d.)), and the Rutt-Etra Video

Synthesizer (Collopy, 2014); as well as flow research (Mihaly Csikszentmihalyi, 1996; Csikszent-

mihalyi et al., 2005) and Goal-less exploration (Secretan et al., 2008; Stanley & Lehman, 2015).

We provide a more comprehensive survey of these histories in chapter 2: Background.

We discuss how a system that meets both of these criteria can grant opportunities for a

user to explore a massive space of possibilities in realtime. Without even necessarily having an

initial goal to begin with, through Realtime Continuous Meaningful Human Control,

a user can gradually steer through the space of possibilities and hone in on some previously

unknown, interesting and desirable outcomes (Secretan et al., 2008; Stanley & Lehman, 2015).

Page 196

7.2. RESEARCH METHODOLOGY

In fact, in such a system that meets these criteria, we prefer to think of the user that interacts

with the system as more like a performer that plays with the system.

We believe this to be an incredibly valuable area of research. We believe this due to

the decades of research in Artistic Expressive Human-Machine Interaction prior to DL

(Krueger et al., 1985; Cadoz & Wanderley, 2000; Levin, 2000; Gillian, 2011; R. A. Fiebrink,

2011; Caramiaux, 2015). We also believe the poetically expressed words in the quote that opens

this chapter, by the renowned African-American poet and writer Amiri Baraka.

7.2 Research methodology

With this thesis, we explore what DL can bring to this conversation, and we hope to encourage

more researchers, artists and designers to join this conversation too.

For this reason, our aim in this thesis is not only to invent and present specific methods

that bring Realtime Continuous Meaningful Human Control to Creative DL. Instead, first and

foremost, our goal is to demonstrate the potential and wide range of possibilities granted by

incorporating Realtime Continuous Meaningful Human Control into Creative DL. We wish to

do this because we wish to help open up the discourse within Creative DL towards this direction.

We wish to encourage more research, more work, more thinking and more conversations around

these particular topics.

Based on these motivations, instead of focusing on going very deep in one direction and

producing a single, very complete, thoroughly user-tested product that is ready to be deployed

to the general public for widespread use, we chose to investigate many different approaches,

and we develop each approach just enough to demonstrate its potential. We chose this route

because we believe that this can provide a wider range of opportunities to build upon in future

work.

We developed a total of five studies, and for each study we developed a software application

that demonstrates a particular method. In addition to publishing peer-reviewed academic pa-

pers, we also use the software that we create, to produce a number of artworks that we share

online and exhibit at galleries, museums and festivals. Furthermore, we use these artworks —

and our own experience of producing these artworks using the methods and software that we

develop — as a way of evaluating and refining our methods and software tools.

As summarised in the previous section, prior research within Creative DL did not provide

any realtime continuous control over the outputs generated by a DNN. For this reason, the first

step in evaluating the methods that we develop in this thesis can be assessed objectively, if the

methods that we present do in fact introduce any forms of realtime, continuous interaction and

control to previously non-realtime, non-interactive, non-controllable processes. However, this is

not sufficient for Meaningful Human Control, and to pass the criteria that we set for ourselves

in this thesis.

For this reason, through an iterative subjective evaluation process, we then fine-tune our

methods and software, until we subjectively feel that they allow us to produce works that carry

our intent and personal expressive signature. In other words, we create a number of artworks

Page 197

7.2. RESEARCH METHODOLOGY

with the methods and software tools that we develop in this thesis, and we use these artworks

to reflect upon, test, and refine the effectiveness of our methods.

At every iteration of our software, we subjectively assess i) how ‘generic’ vs ‘unique’ the

output of our software is (in other words, how easily could it have been made by other, simpler

methods; or how much it resembles existing works or outputs by others); and most importantly

ii) how much of our ‘intent’ is included in the output. In other words, we iteratively develop the

software, continually assessing how in control of the output we — as an artist, and the alleged

author of the output — feel.

It is important to note that in this context ‘being in control’ does not necessarily mean that

we must have absolute control over every aspect of the output, and over every pixel, as this

would negate the need for using such complex systems as DNNs to begin with.

As a media artist developing and working with realtime interactive computational systems

for creative expression for almost two decades, there’s a number of metaphors which we have

fostered over the years that adapt in context of our research within Creative DL.

The first borrows from more traditional Art practices, and in particular, Abstract Expres-

sionism. When action painters such as Jackson Pollock or Lee Krasner splash and drip paint

onto a canvas, we can think of the system that they are interacting with — comprising of a

brush, paint, canvas, gravity, and fluid dynamics — as a generative system. This generative

system may seem to an untrained eye (or hand) to be ‘random’, unpredictable and even uncon-

trollable. However, over time, the Artists learn to master this system, to the extent that they

are able to meaningfully control the output such that the images that they produce carries their

intent, and their personal expressive signatures.

While this metaphor may feel suitable in the context of simpler generative computational

systems, once we introduce higher complexity such as DNNs, we may need suitably more com-

plex metaphors. In this latter case, and in the context of our thesis, the desired relationship

between human and machine (and DL driven software) is less analogous to the relationship

between an Action Painter and their paint splashing and dripping on canvas, and it is more

analogous to the relationship between a director (e.g. an Art Director or a Film Director) and

a skilled crafts-person such as a graphic designer, video editor, or a cinematographer. In all

of these cases, a ‘visionary’ (i.e. the director) communicates their vision to an ‘executor’ (e.g.

graphic designer, video editor, or cinematographer) who produces the final output under the

direction of the visionary. Needless to say, the skills and experience of the executor is critical

in shaping the output. However, the influence of the executor is not only in how they produce

the output. The executor may also influence the vision of the director, in that as the director

sees what the executor is capable of, and how they work, their own vision may evolve.

In this sense — provided they are not micro-managing every little detail — the director is

not in full control over every aspect of the output. However, it is their vision that is being

executed by a skilled executor, and they may even continually update their vision, as they see

what the executor is capable of. It’s also worth noting that the communication between director

and executor is often realtime and continuous, in that the director can see the output produced

by the executor while the executor is working, and the director can provide feedback, steering

the results in a direction that they desire.

Page 198

7.3. SUMMARY OF CONTRIBUTIONS AND OUTCOMES

In the context of our research, we wish to put human users, artists, creators in the position

of visionary director, and DNN powered Creative DL software tools in the position of skilled ex-

ecutors, analogous to talented graphic designers, video editors, cinematographers etc. However,

we should be very clear that this analogy is merely with regards to the relationship between

director and executor. Our goal is absolutely not to automate the specific tasks of graphic de-

sign, video editing or cinematography. Instead, we wish to develop these kinds of relationships

between human users and semi-automated tools, while simultaneously exploring new creative

roles and mediums that do not currently exist.

7.3 Summary of contributions and outcomes

As mentioned in the previous section, we developed five studies. In some ways each study builds

upon the previous study, leveraging the lessons that we learnt from our experience with that

study. But in many other ways, each study is quite independent and tackles the topic from very

different angles.

In section 3.2: Collaborative generative sketching with MCTS and CNNs, our aim was to

develop a collaborative generative sketching application in which a human user could collaborate

with a DNN driven AI-agent in realtime. While our system showed potential, and technically

worked, it did not produce the aesthetic results that we desired. To be more precise, the images

produced by the agent consistently resemble noise. We discovered that this is due to the fact

that discriminative CNN image classifiers, while performing at super-human level on natural

images, produce many false positives on unnatural images. For this reason, we changed our

approach, and this led to the next study that we will present. In the meantime however, the

questions that we were asking in this study and the application that we were looking to build,

was later replicated by researchers at Google using a very different technical approach (Ha &

Eck, 2017)1.

Despite the failure of this study to achieve the aesthetic results that we were hoping to

achieve, we feel that the questions that we were asking and our proposed approach were in-

teresting enough to be included in this thesis. And presumably for similar reasons, our paper

(Akten & Grierson, 2016a) was accepted to the Constructive Machine Learning Workshop at

the Thirtieth Conference on Neural Information Processing Systems (NeurIPS) in 2016. And

again despite this failure, seeing our collaborative agent sketch something in realtime driven by

a DNN with continuous human interaction and control, was exciting and encouraging enough

to lay the foundations for our next study.

In section 3.3: Realtime interactive text generation with RNN ensembles we present a method

based on an ensemble of LSTM RNNs that allows a user, or indeed a performer, to gesturally

conduct the generation of text in different styles. We implement a number of different modes of

interaction, ranging from playing with faders on a GUI, to gesturally and expressively conducting

the generation of text through simply waving hands in the air. This latter mode of interaction,

when paired with a text-to-speech system for example, removes the need for a screen altogether.

1https://magenta.tensorflow.org/sketch-rnn-demo

Page 199

https://magenta.tensorflow.org/sketch-rnn-demo

7.3. SUMMARY OF CONTRIBUTIONS AND OUTCOMES

This relieves the performer from having to sit behind a computer, and they can instead freely

move around, while gesturally controlling the generation of a flow of text, just as a conductor

conducts an orchestra.

It is important to note, that we do not claim this form of gestural interaction to be the most

optimal mode of interaction for producing text. However, we do believe that it demonstrates

perfectly what we set out to investigate in this thesis. That is, to demonstrate that it is

possible to build visual instruments that leverage the power of generative deep models. And

it is possible to design such interactive systems with both Meaningful Human Control, and

Realtime Continuous Control. And that such an approach opens up a large range of new

possibilities when combined with the expressive capacity of deep generative models.

We were delighted to have this work selected to be shown at the Neural Information Pro-

cessing Systems (NeurIPS) 2016 conference, not just as a paper (Akten & Grierson, 2016b),

but also as a live demo. In fact we showed the live demo at a number of other conferences and

events. As a result, hundreds of researchers have experienced the work first-hand, and hopefully

have seen the potential opportunities that Deep Visual Instruments have to offer. As expected,

a (surprisingly small) number of researchers did not see the point of such an application. This

is to be expected. We realise our research is quite far from current mainstream DL research.

This demonstration in particular, gesturally conducting the generation of text, is perhaps too

obscure for those researching applications of DL to Natural Language Processing (NLP) and Un-

derstanding (NLU). However, the majority of the feedback we received was incredibly positive.

And seeing the trend in DL research in more recent years further confirms this.

This was the first of our studies that we consider to be fully successful in allowing Realtime

Continuous Meaningful Human Control over the output of a generative system incorporating a

DNN. Having accomplished this, working with relatively low-dimensional data (in the order of

tens), we now switch to higher dimensions (in the order of hundreds of thousands to millions).

Namely, we work with pixel based images.

In chapter 4: Hello World: Realtime interactive training as an informative and performative

tool we develop an application that trains in realtime on a live video feed. We initially develop

this application out of curiosity, in order to observe a DNN train in realtime, and hopefully

gain some insights. In particular, we build our system around a Convolutional Variational

Auto-Encoder (VAE). We develop an interface where we can manipulate hyperparameters in

realtime via a GUI while the model is training, and we can observe the results instantly with

immediate feedback. Using this system we are indeed able to observe and build a qualitative

understanding of hyperparameters such as different loss functions and optimisers, varying latent

dimensionality, learning-rate, momentum, gradient clipping thresholds etc.

Furthermore, an unexpected outcome of this study came as we realised the incredible per-

formative potential of the system. We were not only able to build a qualitative understanding

of these hyperparameters, but we were able to use them creatively, in an expressive and per-

formative manner. Mapping the hyperparameters to faders on a hardware midi controller, we

could manipulate multiple hyperparameters simultaneously and continuously, without taking

our eyes off the screen. This allowed us to for example, find delicately balanced configurations

of hyperparameters such as learning rate, momentum, and gradient clipping, such that the opti-

Page 200

7.3. SUMMARY OF CONTRIBUTIONS AND OUTCOMES

miser converges to stable oscillation points. Through further hyperparameter manipulations, we

were able to cause the system to explode, and then we could bring it back under control again.

Finally, on top of the hyperparameter manipulations, a second mode of interaction proved to

be incredibly fruitful. This is manipulation of the video feed. In other words, simply moving

ourselves or objects in front of the camera.

With these two modes of interaction combined, we felt the system really had the capacity

to be performed and played, just like a visual instrument. In that sense this study also perfectly

encapsulates our goal in this thesis. Through the bespoke system that we developed, we were

able to manipulate the outputs of a generative DNN in realtime, with continuous and meaningful

control. As a result, we were able to generate moving images and performances as we desired,

that were not only not possible to create and manipulate via other means, but prior to working

with this system, we did not even know that the DNN we were working with was capable of

producing such images and image manipulations. This again demonstrates one of the most

exciting aspects of working with systems that offer Realtime Continuous Meaningful Control.

In chapter 5: Learning to see: Digital puppetry through realtime video transformation, we

build upon the application that we developed in the previous study, and we extend it into a

new direction to allow more control over the aesthetic qualities of the images generated. We

devise a system that allows us to train models on large datasets of images, that we can use

in our software to transform a live video feed. We again employ the two modes of interaction

that we found to be so useful in Hello World. The first mode of interaction involves directly

manipulating the video feed which is to be transformed. This includes moving hands or objects

in front of the camera, to allow for a very expressive and performative mode of interaction,

resulting in a form of digital puppetry. Alternatively, sketching or painting on a surface that the

camera is pointed to, allows for a form of AI augmented drawing. On top of this, we introduce

a number of parameters that can be adjusted in realtime via a GUI, or faders on a hardware

midi controller. This allows for more fine control over the structure and aesthetic qualities

of the images generated. Combined, we found that these two modes of interaction allows for

the creation of various compositions, images and videos in a very expressive and performative

manner. In this respect, the system that we develop in this study again perfectly demonstrates

the core principles that we investigate in this thesis.

In order to achieve this, we introduce a parametrised image processing pipeline before the

DNN. This pipeline is used both during training, and during inference, and serves a number

of purposes. First, during training, it acts as a form of data augmentation, as we randomise

the parameters such that the model never sees the same inputs twice. This helps the model

generalise to more novel inputs. As a result, it is more likely to perform more optimally when

presented with the live video feed. Second, during inference, this pipeline transforms the live

video feed into an aesthetic that is similar to the inputs that the model was trained on, further

helping the model to more effectively parse the video feed in a desirable manner. Finally, during

inference again, we allow for the realtime manipulation of the parameters. The effects of these

parameters on the images generated are generally not very difficult to ascertain, as the filters

themselves are relatively simple and deterministic. The fact that our system provides Realtime

Continuous Control with instantaneous feedback, further aids in quickly building an intuition of

Page 201

7.3. SUMMARY OF CONTRIBUTIONS AND OUTCOMES

how the parameters influence the images generated. As a result, we found that using an image

processing pipeline in this manner, and in particular, the specific image processing pipeline that

we detail in the study, affords ample opportunities for Realtime Continuous Meaningful Human

Control.

We develop a number of video artworks with our system and we share them online, primar-

ily on social media. These videos have been circulated widely on both social and mainstream

media. They have been exhibited in numerous galleries and exhibitions involving AI, featured

in books, and even shown during Nvidia CEO Jensen Huang’s keynote at GTC (GPU Technol-

ogy Conference) 20192, with the voiceover “[AI is] inventing new ways to bring out the creative

genius in us all”. Researchers from fields ranging from philosophy to architecture to cardio-

vascular medicine have shown interest in these videos, asking to feature them in books and

lectures. We see this as an indication that creative human-machine collaboration is indeed a

topic that is of major interest to a broad range parties.

In creating the video artworks, the system that we developed went through many iterations.

We found that even the objects that we use in front of the camera have a significant effect on

the results. Particularly with respect to how much flexibility and variety they grant the user.

After trying many different kinds of objects, we found that cloth is a very versatile object in

this context, as they can be scrumpled up or stretched out or twisted into all kinds of different

shapes. And we found that including one dark cloth and one light cloth allows the user to

combine them in different ways to sculpt a variety of different scenes. Complimenting the cloth

with cables, allows the user to add many different levels of flexible detail. Again we include

a mixture of dark and light, thick and thin cables to allow for maximum flexibility. As an

additional bit of detail, we use some cables that have larger heads on one end (e.g. ethernet

cables, headphones etc.) and we cut the heads off the other end of the cable. This again provides

even more flexibility for the user to sculpt different kinds of detail where needed.

As we mention in section 5.5: Conclusion, in the images Fig. 5.17 and Fig. 5.18 where

we create bouquets of flowers from cloth and headphones, we initially had no idea that these

images could be created in this manner. It was through realtime playing with our own system

and trying various different objects that we had lying around on our desk, that we were noticed

that the cloth-and-cables combination proved to be so versatile. When we tried placing various

different objects on the cloth, we saw that the earpiece of the headphones was interpreted by

our software as the central area of a flower, while the cloth was interpreted as the flower’s petals.

Realising this, and further playing with the system in realtime with immediate feedback, we

were able to arrange the composition of the physical objects in such a manner as to sculpt the

final generated image as we desired. We could slightly crumple up the cloth and fine-tune it in

this manner to appear more ‘petal-like’ to our software, while we could fine-tune the placement

and orientation of the headphone cable and earpiece to maximize the overall aesthetics and

‘flower-ness’ of the final image. Again this discovery, and the images and performances that

we were able to create, would not have been possible without an interaction that allowed for

Realtime Continuous Meaningful Human Control.

2Nvidia GTC 2019 Keynote: https://www.youtube.com/watch?v=Z2XlNfCtxwI&t=32

Page 202

https://www.youtube.com/watch?v=Z2XlNfCtxwI&t=32

7.3. SUMMARY OF CONTRIBUTIONS AND OUTCOMES

In our final study chapter 6: Deep Meditations: Latent storytelling, we turn to a slightly

different question. Having created a system in the previous study that allowed us to perform

images in realtime with Meaningful Human Control, we now investigate methods of allowing

users to construct stories in the latent space of a generative model. Specifically, we are interested

in giving users the ability to freely explore this high-dimensional latent space, and then hone in

on specific journeys to ultimately produce films. Our aim is to design a system that can provide

Meaningful Human Control over the narrative of the films produced, as opposed to producing

random walks in latent space, which is still the dominant paradigm when it comes to videos

generated with deep generative models.

In contrast to our earlier studies where we place equal emphasis on both Meaningful Human

Control and Realtime Continuous Control, for this particular study we acknowledge the role that

non-realtime, non-continuous modes of interaction have played in some established, traditional

creative workflows. We take a typical Non-Linear Video Editing (NLVE) workflow as base for

this study, and we develop a number of stand-alone tools that integrate with an existing off-

the-shelf NLVE software. This allows us to leverage the decades of research and development

that went into designing and building commercial NLVE software and interfaces. As a result,

we were able to develop our prototype very quickly, and we could produce a number of videos

with narrative, told entirely through the latent space of generative models. We were able to

synchronise these videos to music, and in fact we used our system to produce live concert visuals

and a music video for the renowned electronic musician Max Cooper for his seminal audio-visual

performance and tour Yearning For The Infinite which premiered at The Barbican in London

(Cooper & Akten, 2019).

In addition, we have observed that trajectory planning in latent space is a very important

issue if quality of both movement and image is to be preserved. This is due to the fact that the

latent distribution of the generative models we are working with are typically standard normal

N (0, 1), and the mass of these distributions are concentrated in the shell of a hypersphere.

For this reason, we know that using linear interpolation between successive latent keyframes

causes the trajectory to diverge from the distribution, resulting in undesirable images. We have

tested spherical interpolation on successive latent keyframes, and we have observed that this

results in noticeable discontinuities in movement, which we find very undesirable. As a result,

we have implemented two new methods, a dynamic particle–spring based interpolation, and a

Gaussian reprojection interpolation. Both of these methods provide nice smooth trajectories

with no noticeable discontinuities at all. However, the physical interpolation is able to produce

trajectories that travel precisely through all desired z-keyframe positions, but not at precisely

the desired times. Gaussian reprojection is able to produce trajectories that travel close to

all desired z-keyframe positions, at precisely the desired times. We call this the Heisenberg

Uncertainty Principle of latent space navigation. For this reason, we choose an interpolation

method based on whether we prioritize precise timing, or precise positions. Generally we have

found that the Gaussian reprojection is often sufficiently accurate in terms of position for our

needs. We discuss this in more detail in subsection 6.4.8: Trajectory planner details.

Page 203

7.4. FUTURE DIRECTIONS

7.4 Future directions

As we have previously mentioned, our priority in this thesis was to investigate many different

approaches to Deep Visual Instruments, in order to cover as much ground as possible and

maximise the likelihood of inspiring more work in these particular directions. We developed a

number of different prototypes, and we chose to develop each prototype just up to the point

where they could demonstrate the potential capabilities of such an approach.

For this reason, we will readily accept that the methods that we propose are just scratching

the surface, and there is plenty of room to develop further. In fact, as we have mentioned

numerous times, within Creative DL Meaningful Human Control and Realtime Continuous

Control did not even exist at the start of our research, while today this is a rapidly growing

area of inquiry. Consequently, the directions one could take from here are infinitely many.

We will start by discussing some improvements that can be built upon the work that we have

presented.

Of the five studies that we presented in this thesis, we consider three of them to be successful

examples of Deep Visual Instruments which leverage the capabilities of Deep Neural Networks

while providing Realtime Continuous Meaningful Human Control over the outputs generated.

We discuss these in section 3.3: Realtime interactive text generation with RNN ensembles,

chapter 4: Hello World: Realtime interactive training as an informative and performative tool

and chapter 5: Learning to see: Digital puppetry through realtime video transformation. With

all three of these studies, we were able to achieve our goals. Nevertheless, there are many ways

in which one could build upon them. We will discuss these below.

Of the remaining two studies, section 3.2: Collaborative generative sketching with MCTS

and CNNs did not achieve the results that we were hoping for at all, and we will discuss this

shortly.

And our last study chapter 6: Deep Meditations: Latent storytelling, we do not consider

a visual instrument, because it does not provide Realtime Continuous Control. However, for

this study we intentionally wanted to replicate a typical NLVE workflow, focusing on only

Meaningful Human Control. For this reason, even though this study is not an example of a

visual instrument per se, we successfully achieved what we were hoping to achieve. Nevertheless,

we will discuss some potential future directions for this study as well.

The first study that we presented in section 3.2: Collaborative generative sketching with

MCTS and CNNs, did not produce the kinds of images that we were hoping for. We identified

the reason for this as being due to the discriminative CNN that we used. We saw the potential

solution for this as switching to using a generative LSTM RNN. Due to the lack of vector-based

training data available at the time however, we switched domains, and investigated the same

question operating on text. As a result, we produced the study that we present in section 3.3:

Realtime interactive text generation with RNN ensembles.

Researchers at Google later demonstrated that using generative LSTM RNN models with the

appropriate training data (Quick, Draw! Dataset , 2017; Ha & Eck, 2017), they were indeed able

to fully create the functionality that we describe in this study. In particular, they use a Sequence-

to-Sequence VAE. Such an architecture is able to model the entire space of possible sketches,

Page 204

7.4. FUTURE DIRECTIONS

and this allows for the kinds of latent manipulations that we discuss in subsection 2.1.3: Latent

manipulations. The researchers demonstrate this with incredible examples such as interpolating

between different sketches, or performing semantic vector operations to add or remove body

parts to sketches. They also demonstrate these with well developed online applications3. In

this respect, we consider this particular application of collaborative generative sketching rather

well explored. There can always be room for improvements of course, particularly with regards

to using more state-of-the-art architectures such as a Transformer (Vaswani et al., 2017) or

variants.

In section 3.3: Realtime interactive text generation with RNN ensembles, we use an ensemble

of LSTM RNNs. For each style of text, we train a separate model. We feed the same inputs

to each model, and then we perform a weighted sum of the output probability distributions.

In other words, we calculate a joint probability distribution. We chose this approach because

it allows more flexibility with regards to adding new styles to the system. For example, if we

would like to add a new style after having already trained models on 20 different styles, we

simply train a new model on the new dataset only. This typically takes a few hours, and then

we can drop this model into our system. We do not need to re-train with all of the previous

datasets as well.

However, if training time and compute resources are not a point of concern, then it can also

be an option to train a single model on all of the styles collectively. In this case, one could

train a conditional model, where each style dataset is associated with an additional input style

label. Interpolating between styles would then be a case of interpolating between the input style

vector. This could provide interesting results that differ from the method that we proposed.

Another interesting direction one could take, is to implement the variational sequence-

to-sequence architecture mentioned in Sketch-RNN. This would provide a generative model

whereby the entire space of possible sentences is captured in a static latent space. This would

then allow us to perform latent manipulations such as interpolating between, or even performing

semantic vector operations on sentences. This functionality has already been demonstrated with

text using a very similar architecture (Kiros et al., 2015). However, our emphasis is again always

on realtime performative interaction with Meaningful Human Control.

Finally, our realtime interactive system could be adapted to different domains. Perhaps one

of the simplest domains which our method could be adapted to, is that of MIDI music. This

would allow a performer to perform, or in this case gesturally conduct, music of different styles.

The interactive realtime training software that we developed in chapter 4: Hello World:

Realtime interactive training as an informative and performative tool, allowed us to build qual-

itative intuitions for many of the hyperparameters involved in designing an architecture and

training a model. It also allowed us to fine-tune hyperparameters in realtime such that we were

able to find very particular configurations that displayed interesting behaviour, such as stable

oscillations. We believe an interactive realtime training software could be beneficial to many

other types of architectures, and even domains such as audio or 3D. Many modern architectures

may pose a challenge with regards to performance. Even with early DCGAN architecture, our

3https://magenta.tensorflow.org/sketch-rnn-demo

Page 205

https://magenta.tensorflow.org/sketch-rnn-demo

7.4. FUTURE DIRECTIONS

software could not run in realtime with the hardware that was available to us. With more

modern, much larger architectures, it is even less likely that performance will be adequate for

realtime training. Nevertheless, we believe there is still much insight to be gained, and even

performances to be performed, with perhaps ‘lighter’ versions of modern architectures adapted

to run and train in realtime within such a system.

In our realtime video processing and transformation software chapter 5: Learning to see:

Digital puppetry through realtime video transformation, we manually introduce a custom image

processing pipeline before the Deep Neural Network. This grants us a number of opportunities

for both Meaningful Human Control, and Realtime Continuous Control, and we summarise

these in the previous section.

However, it could be questioned whether such a manually designed image processing pipeline

needs to be introduced at all, or whether such a pipeline could be learnt. As we discussed in

section 1.2: Why Deep Learning?, a deep Neural Network is essentially a chain of hierarchical

high-dimensional transformations that are learnt end-to-end. And in fact, one of the motivations

behind Deep Learning is to remove the need for such hand-crafted feature engineering pipelines.

So could we remove our custom image processing pipeline, and instead train the Deep Neural

Network in such a way, that the system preserves all of the functionality relating to Realtime

Continuous Meaningful Human Control? We believe that at this point in time, this is not

possible. However, this is exactly the area that needs more research, because we also believe

that it could be possible. There are a number of challenges involved however.

We discuss the idea of semantic vectors in section 2.1.3: Semantic latent vectors. These are

specific directions in the latent space of a generative model, such that applying these vectors

to latent representations effectively apply some kind of meaningful transformation to the cor-

responding outputs generated by the model. For example, we can use these vectors to make an

image of a face smile, or rotate an image of a car by a certain amount.

One of the key challenges of this approach, is that these semantic vectors are arbitrary

directions in a very high-dimensional space, and are in no way intuitive or predictable. Outside

of a few examples (Radford et al., 2015; White, 2016b), finding such vectors has been a relatively

unexplored field. In the last few years however, interest in semantic vector discovery has grown

rapidly (Simon, 2019; Abdal et al., 2019; Karras et al., 2019, 2020; Härkönen et al., 2020). We

also believe that this is a very promising area of research.

One of the advantages of semantic vector discovery methods, is that they can be used with

pre-trained models. In other words, semantic vector discovery can be applied to a pre-trained

model that has been made available for download for example, without requiring access to

the training code or methodology, or the training data. BigGAN (Brock et al., 2019) is an

example of such a pre-trained model which was made available for download without access to

the training code.

However, there is an issue with such semantic vector discovery methods with regards to our

application. These methods are focused on discovering semantic latent directions. In other

words, they establish key directions through analysis of the latent distribution generated by

training on a particular dataset, for example via optimisation or PCA (Härkönen et al., 2020).

For this reason, these methods can only discover vectors which are already somehow present in

Page 206

7.4. FUTURE DIRECTIONS

the distribution of the dataset. It is by no means guaranteed that these methods will discover

a vector for a particular trait that we — as a human, creative, designer — might already be

visualising in our minds. This is especially true, if the particular trait that we as the human

designer are imagining, does not even exist in reality (or at least in the training dataset). For

example, it is very natural that a human designer might look at a picture of a nebula, and

imagine that they would like to make the edges of that nebula smoother. A semantic latent

vector discovery method may or may not discover such a latent direction. In fact, if the training

examples do not contain images in which it is clear that some nebula have very smooth edges,

while others do not, then it is almost guaranteed that a semantic vector discovery method will

not discover such a ‘edge smoothness’ vector. In other words, such methods will not discover

vectors for outputs that are out-of-distribution. However, as we demonstrated when discussing

this study in depth in subsection 5.4.3: Live parameter manipulation, with our method, we can

introduce filters which allow us to shape the results to construct images that do carry the desired

aesthetic characteristics of the training examples, but can still be outside of the distribution of

the training data.

One might ask, if the latent distribution of a trained model does not contain a particular

desired semantic vector, could the model be re-trained in a specific way that enforces such

desired latent vectors? The answer to this question is open. This is currently not possible at

a level which can give the types of results that we demonstrate in our study. However, we do

believe that this is potentially possible. Having said that, this would require a pre-planning

of all desired parameters before training. In other words, before training a model, we would

need to identify all of the human-understandable parameters that we desire, and only then can

we train the model accordingly. If, after having trained the model, we realise that we desire a

new parameter, we might need to re-train the model. Given that models can take weeks, even

months to train. This is highly undesirable. With our method we do not need to retrain the

model. If we desire a new human-understandable parameter, and we can envisage a solution

with a simple filter, we can add it within seconds.

A final approach could be to introduce new layers to a pre-trained model. This is for ex-

ample the approach taken in the very recent work by Broad et al. (2020). This method works

with pre-trained models, so retraining a model to add new parameters is not necessary. The

authors insert simple transformations, similar to ours, but instead of inserting the transforma-

tions before the trained model, they insert them as layers, in-between existing hidden layers.

These transformations then directly manipulate inner representations, and can allow for out-of-

distribution — but desirable — results. The authors demonstrate results with great potential,

especially on simple affine transformations such as translation, rotation and scale. They also

investigate applying transformations not to all of the filters within a layer, but to subsets, deter-

mined via an automated feature clustering method. This allows them to isolate and apply the

transformations to only certain sections of an image. The early results of this research shows

great potential, and we believe this may be a direction that can eventually produce the kinds

of outputs that we demonstrate in our study.

In summary, an end-to-end deep architecture and method that can provide all of the same

functionalities that we presented in our Learning to see study, does not yet exist. And there

Page 207

7.5. FINAL THOUGHTS — HUMAN-MACHINE COLLABORATION

are many challenges that will need to be overcome to implement such a system, but we believe

this is a very interesting area of research.

For all of the studies that we have discussed so far in this section, we developed our own

software from the ground up, producing a stand-alone application complete with its own GUI,

and the necessary interactions and visualisations dedicated to the task at hand. For the work

that we present in chapter 6: Deep Meditations: Latent storytelling, we take a different approach.

We chose to build our solution around an existing NLVE software. As a result, we were able

to very quickly prototype a system and produce the kinds of outputs that we were looking for,

as we already had an interface that provided multiple layers, powerful video editing tools, music

synchronisation capabilities and many more useful features. The downside of this approach

however, is that it is very difficult to seamlessly integrate new DL-specific visualisation modes

that would be beneficial for such an application. For this reason, while our approach does provide

Meaningful Human Control, the user experience is far from optimal, and involves moving back

and forth between a number of separate scripts. The solution to this would be to develop

a bespoke application with a dedicated custom GUI, as we have done for the other studies.

This however, would undoubtedly require a far larger investment of time to develop such an

application.

The highly popular and successful online app Artbreeder (Simon, 2019), is moving in this

direction, and has started adding features including a very simple timeline editor to provide

functionality similar to what we produced in Deep Meditations. At the moment, this app

provides only the most basic functionality in terms of sequencing ‘keyframes’ and interpolating

between them, without allowing for fine control over timing, synchronising to music, or other

useful tools that established NLVE software provides. This is most probably due to the fact

that building such functionality requires a much larger investment of time, as we mention

above. However, we have no doubt that in the near future, either within Artbreeder, or other

applications, such functionality will be implemented.

As we mentioned in the previous section, trajectory planning in latent space is an important

topic, regardless of the UI or the host application. In addition to the methods that we have

proposed, we believe a very effective method might be one that involves differential geometry

and Riemannian manifolds. In this case all of the high-dimensional vector manipulations take

place directly on the surface of the hypersphere. Our early tests with this method look promis-

ing, however, we do not yet have conclusive results, and we recommend this as a direction to

study. Likewise another approach we believe could work, is using De Casteljau’s algorithm with

spherical interpolation. We discuss these options in more detail in section 6.5: Conclusion.

7.5 Final thoughts — Human-Machine Collaboration

In this thesis we have presented a number of studies that have attempted to demonstrate the

potential and the possibilities that Deep Visual Instruments have to offer in the exploration

and creation of artistic and creative works. We have designed and developed a number of

realtime interactive systems that leverage the generative capabilities of DNNs trained on very

large datasets. And we have tried to design these systems such that they offer Meaningful

Page 208

7.5. FINAL THOUGHTS — HUMAN-MACHINE COLLABORATION

Human Control, and Realtime Continuous Control, such that the interaction has the

potential to be expressive and performative. Given such conditions, we think of the user

of such as system, as more of a performer that plays the system.

With our studies, we set out to explore what is possible, and what can be achieved with

DNNs within the context of visual instruments. We believe this is a very rich and fertile

area, and we have only just scratched the surface. We do not claim to have explored each of

the methods that we present to their full potential. We have not conducted user studies, and

we do not make claims about optimal usability, or generalisation to a wider audience.

However, we have been able to develop and demonstrate these studies as we have intended.

We have managed to introduce realtime interactivity, to previously non-realtime, non-interactive

processes. Using these systems, we were able to create artworks — text, images and videos —

that were previously not possible to create. We have created these outputs with Meaningful

Human Control, and mostly in a Realtime Continuous manner. In other words, we consider

these systems to indeed be Deep Visual Instruments. We have shared our results online,

and they have been circulated widely, included in presentations, exhibitions, books, magazines

and the subject of many conversations.

When we started our research, creative explorations within Deep Learning was very much

in its infancy. And notions such as Meaningful Human Control or Realtime Continuous Control

were not being discussed within creative Deep Learning research. While today, this is an active

and growing area of research.

We believe that this is a very important and upcoming area of research, and we hope to have

demonstrated in this thesis that such approaches can grant affordances allowing modes of media

creation that were previously not possible. We believe that such approaches to Creative DL is

an investigation into new mediums, new kinds of art-making, new kinds of art and performance.

This will also inevitably have a significant impact on not only individual artistic expression,

but the creative industries. And as a result, we hope to see such research find its way into various

kinds of media authoring software for films, games, design, music, and creative industries in

general; or deployed at mass scale for mainstream use through online or mobile applications and

‘smart filters’ on social media. And we especially hope that the work that we have presented in

this thesis can serve as a starting point and inspiration for similar future work and contribute

to this rapidly blossoming field.

We believe this topic of Human-Machine Collaboration is a very crucial one. Not only

in the production of artistic and creative works, as is the topic of this thesis, but beyond that. As

AI enters every aspect of our lives, Meaningful Human Control and Realtime Continuous

Control, are valuable design principles that we believe should not be overlooked.

———

Page 209

7.5. FINAL THOUGHTS — HUMAN-MACHINE COLLABORATION

Page 210

References

Abadi, M., & Others, A. (2015). TensorFlow : Large-Scale Machine Learning on Heterogeneous

Distributed Systems. Retrieved from http://tensorflow.org

Abdal, R., Qin, Y., & Wonka, P. (2019). Image2StyleGAN: How to embed images into the

StyleGAN latent space? Proceedings of the IEEE International Conference on Computer

Vision, 2019-Octob, 4431–4440. doi: 10.1109/ICCV.2019.00453

Akten, M. (2015). ofxMSAmcts. Retrieved from https://github.com/memo/ofxmsamcts

Akten, M. (2016). ofxMSATensorFlow. Retrieved from https://github.com/memo/

ofxMSATensorFlow

Akten, M. (2017). webcam-pix2pix-tensorflow. Retrieved from https://github.com/memo/

webcam-pix2pix-tensorflow

Akten, M. (2018). py-msa-kdenlive. Retrieved from https://github.com/memo/py-msa

-kdenlive

Akten, M., & Cooper, M. (2020). ”Morphosis” Music video. Retrieved from https://www

.youtube.com/watch?v=7oWjgbCXp-o

Akten, M., Fiebrink, R., & Grierson, M. (2018). Deep Meditations: Controlled navigation of

latent space. Machine Learning for Creativity and Design - NIPS 2018 Workshop.

Akten, M., Fiebrink, R., & Grierson, M. (2019). Learning to see: You are what you see. ACM

SIGGRAPH 2019 Art Gallery, SIGGRAPH 2019 , 1–6. doi: 10.1145/3306211.3320143

Akten, M., & Grierson, M. (2016a). Collaborative creativity with Monte-Carlo Tree Search and

Convolutional Neural Networks. In Nips 2016, constructive machine learning workshop.

Akten, M., & Grierson, M. (2016b). Real-time interactive sequence generation and control

with Recurrent Neural Network ensembles. NIPS 2016, Recurrent Neural Networks Sym-

posium, Poster and demo presentation(Nips). Retrieved from http://arxiv.org/abs/

1612.04687

Al-rifaie, M. M., & Bishop, J. M. (2015). Weak and Strong Computational Creativity. In

Computational creativity research: Towards creative machines (Vol. 7, pp. 0–14).

Alves, B. (2005). Digital Harmony of Sound and Light. Computer Music Journal , 29 (4), 45–54.

Andrychowicz, M., Denil, M., Gomez, S., Hoffman, M. W., Pfau, D., Schaul, T., & de Freitas,

N. (2016). Learning to learn by gradient descent by gradient descent. arXiv preprint

arXiv:1606.04474 .

Arjovsky, M., Chintala, S., & Bottou, L. (2017). Wasserstein GAN. Retrieved from http://

arxiv.org/abs/1701.07875

Bailey, J. (2020). The Tools of Generative Art, from Flash to Neural Networks.

Art in America(January), 34–41. Retrieved from https://www.artnews.com/

211

http://tensorflow.org
https://github.com/memo/ofxmsamcts
https://github.com/memo/ofxMSATensorFlow
https://github.com/memo/ofxMSATensorFlow
https://github.com/memo/webcam-pix2pix-tensorflow
https://github.com/memo/webcam-pix2pix-tensorflow
https://github.com/memo/py-msa-kdenlive
https://github.com/memo/py-msa-kdenlive
https://www.youtube.com/watch?v=7oWjgbCXp-o
https://www.youtube.com/watch?v=7oWjgbCXp-o
http://arxiv.org/abs/1612.04687
http://arxiv.org/abs/1612.04687
http://arxiv.org/abs/1701.07875
http://arxiv.org/abs/1701.07875
https://www.artnews.com/art-in-america/features/generative-art-tools-flash-processing-neural-networks-1202674657/
https://www.artnews.com/art-in-america/features/generative-art-tools-flash-processing-neural-networks-1202674657/

References

art-in-america/features/generative-art-tools-flash-processing-neural

-networks-1202674657/

Baraka, I. A. (1969). Technology & Ethos. Vol. 2 Book of Life. In Raise rage rays raze: Essays

since 1965.

Barry, S., & Kim, Y. (2018). Style Transfer for Musical Audio Using Multiple Time-Frequency

Representations. OpenReview:BybQ7zWCb, V (1), 1–11.

Bau, D., Strobelt, H., Peebles, W., Wulff, J., Zhou, B., Zhu, J. Y., & Torralba, A. (2019). Seman-

tic photo manipulation with a generative image prior. ACM Transactions on Graphics,

38 (4). doi: 10.1145/3306346.3323023

Bellman, R. (1957). A Markovian decision process (Tech. Rep.). DTIC Document.

Bengio, Y., Courville, A., & Vincent, P. (2013). Representation Learning: A Review and New

Perspectives. Tpami(1993), 1–30.

Bengio, Y., Simard, P., & Frasconi, P. (1994). Learning long-term dependencies with gradient

descent is difficult. IEEE Transactions on Neural Networks, 5 (2), 157–166.

Bergstra, J., & Bengio, Y. (2012). Random Search for Hyper-Parameter Optimization. Journal

of Machine Learning Research, 13 , 281–305.

Berthelot, D., Schumm, T., & Metz, L. (2017). BEGAN: Boundary Equilibrium Generative

Adversarial Networks. , 1–10. Retrieved from http://arxiv.org/abs/1703.10717 doi:

1703.10717

Bevilacqua, F., & Muller, R. (2005). A gesture follower for performing arts. Proceedings of the

International Gesture . . . , 3–4.

Bevilacqua, F., Zamborlin, B., Sypniewski, A., Schnell, N., Guédy, F., & Rasamimanana, N.

(2009). Continuous realtime gesture following and recognition. Lecture Notes in Computer

Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics), 5934 LNAI , 73–84.

Bishop, C. M. (1994). Mixture density networks.

Bishop, C. M. (2006). Pattern recognition and machine learning. Springer.

Boden, M. A. (1998). 18 Computer Models of Creativity. Handbook of creativity , 351.

Boden, M. A. (2004). The creative mind: Myths and mechanisms. Psychology Press. doi:

10.4324/9780203508527

Boulanger-Lewandowski, N., Vincent, P., & Bengio, Y. (2012). Modeling Temporal Dependen-

cies in High-Dimensional Sequences: Application to Polyphonic Music Generation and

Transcription. arXiv preprint arXiv:1206.6392 .

Broad, T., Leymarie, F. F., & Grierson, M. (2020). Network Bending: Manipulating The Inner

Representations of Deep Generative Models. arXiv preprint arXiv:2005.12420 .

Brock, A., Donahue, J., & Simonyan, K. (2019). Large scale GaN training for high fidelity

natural image synthesis. 7th International Conference on Learning Representations, ICLR

2019 , 1–35.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., . . . Amodei, D.

(2020). Language Models are Few-Shot Learners. Retrieved from http://arxiv.org/

abs/2005.14165

Browne, C. B., Powley, E., Whitehouse, D., Lucas, S. M., Cowling, P. I., Rohlfshagen, P., . . .

Page 212

https://www.artnews.com/art-in-america/features/generative-art-tools-flash-processing-neural-networks-1202674657/
https://www.artnews.com/art-in-america/features/generative-art-tools-flash-processing-neural-networks-1202674657/
https://www.artnews.com/art-in-america/features/generative-art-tools-flash-processing-neural-networks-1202674657/
https://www.artnews.com/art-in-america/features/generative-art-tools-flash-processing-neural-networks-1202674657/
http://arxiv.org/abs/1703.10717
http://arxiv.org/abs/2005.14165
http://arxiv.org/abs/2005.14165

References

Colton, S. (2012). A survey of monte carlo tree search methods. IEEE Transactions on

Computational Intelligence and AI in Games, 4 (1), 1–43.

Cadoz, C., & Wanderley, M. (2000). Gesture-music. Trends in gestural control of music, 71–

94. Retrieved from http://www.vigliensoni.com/McGill/CURSOS/2009 09/MUMT620/

READINGS/2/2 Gesture-Music(Cadoz-Wanderley).pdf

Camurri, A., Mazzarino, B., Ricchetti, M., Timmers, R., & Volpe, G. (2004). Multi-

modal analysis of expressive gesture in music and dance performances. In Gesture-

based Communication in Human-Computer Interaction, LNAI 2915 (pp. 20–39). doi:

10.1007/978-3-540-24598-8 3

Candy, L. (2006). Practice Based Research: A Guide. CCS report , 1 (2).

Caplan, L. (2020). The Social Conscience of Generative Art. Art in America(January), 50–

57. Retrieved from https://www.artnews.com/art-in-america/features/max-bense

-gustav-metzger-generative-art-1202674265/

Caramiaux, B. (2015). Motion Modeling for Expressive Interaction A Design Proposal us-

ing Bayesian Adaptive Systems. In International workshop on movement and computing

(moco) (Vol. 5). IRCAM.

Caramiaux, B., Montecchio, N., Tanaka, A., & Bevilacqua, F. (2014). Adaptive Gesture

Recognition with Variation Estimation for Interactive Systems. ACM Transactions on

Interactive Intelligent Systems (TiiS) (In Press), V (212). doi: 10.1145/2643204

Caramiaux, B., & Tanaka, A. (2013). Machine Learning of Musical Gestures. Proceedings of the

International Conference on New Interfaces for Musical Expression, 513–518. Retrieved

from http://nime2013.kaist.ac.kr/

Cassell, J., & Mcneill, D. (1991). Gesture and the Poetics of Prose. Poetics Today , 12 (3),

375–404. doi: 10.2307/1772644

Castel, L.-B. (1740). L’Optique des Couleurs. Paris: Chez Briasson.

Cavallo, F., Pease, A., Gow, J., & Colton, S. (2013). Using Theory Formation Techniques for

the Invention of Fictional Concepts. , 176–183.

Champandard, A. J. (2016). Semantic Style Transfer and Turning Two-Bit Doodles into Fine

Artworks. arXiv preprint arXiv:1603.01768 .

Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I., & Abbeel, P. (2016). InfoGAN:

Interpretable Representation Learning by Information Maximizing Generative Adversarial

Nets. Retrieved from http://arxiv.org/abs/1606.03657

Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Ben-

gio, Y. (2014). Learning Phrase Representations using RNN Encoder-Decoder for Sta-

tistical Machine Translation. In Proceedings of the 2014 conference on empirical methods

in natural language processing (emnlp) (pp. 1724–1734). Association for Computational

Linguistics.

Cohen, H. (1973). Parallel to perception: some notes on the problem of machine-

generated art. Computer Studies, 1–10. Retrieved from http://haroldcohen.com/

aaron/publications/paralleltoperception.pdf

Cohen, H. (1994). The Further Exploits of Aaron, Painter.

Cohen, H. (2006). AARON, Colorist: from Expert System to Expert.

Page 213

http://www.vigliensoni.com/McGill/CURSOS/2009_09/MUMT620/READINGS/2/2_Gesture-Music(Cadoz-Wanderley).pdf
http://www.vigliensoni.com/McGill/CURSOS/2009_09/MUMT620/READINGS/2/2_Gesture-Music(Cadoz-Wanderley).pdf
https://www.artnews.com/art-in-america/features/max-bense-gustav-metzger-generative-art-1202674265/
https://www.artnews.com/art-in-america/features/max-bense-gustav-metzger-generative-art-1202674265/
http://nime2013.kaist.ac.kr/
http://arxiv.org/abs/1606.03657
http://haroldcohen.com/aaron/publications/paralleltoperception.pdf
http://haroldcohen.com/aaron/publications/paralleltoperception.pdf

References

Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., & Kuksa, P. (2011). Natural

language processing (almost) from scratch. The Journal of Machine Learning Research,

1 (12), 2493–2537. Retrieved from http://dl.acm.org/citation.cfm?id=2078186

Collopy, P. S. (2014). Video synthesizers: From analog computing to digital art. IEEE Annals

of the History of Computing , 36 (4), 74–86. doi: 10.1109/MAHC.2014.62

Colton, S., Goodwin, J., & Veale, T. (2012). Full-FACE Poetry Generation. Proceedings of the

Third International Conference on Computational Creativity (ICCC’12), 95–102.

Colton, S., Pease, A., & Charnley, J. (2011). Computational creativity theory: The FACE and

IDEA descriptive models. Proceedings of the Second International Conference on Com-

putational Creativity , 90–95. Retrieved from https://www.doc.ic.ac.uk/\simjwc04/

papers/conferences/colton iccc11.pdf

Colton, S., & Wiggins, G. a. (2012). Computational creativity: The final frontier? Frontiers in

Artificial Intelligence and Applications, 242 , 21–26. doi: 10.3233/978-1-61499-098-7-21

Cook, J. D. (2011). Willie Sutton and the multivariate normal distribution. Retrieved from

https://www.johndcook.com/blog/2011/09/01/multivariate-normal-shell/

Cook, M., Colton, S., & Gow, J. (2014). Automating Game Design In Three Dimensions. AISB

Symposium on AI and Games, 3–6.

Cooper, M., & Akten, M. (2019). ”Yearning For The Infinite” Audio-Visual performance.

Retrieved from https://www.yearningfortheinfinite.net/

Cope, D. H. (2010). Recombinant music composition algorithm and method of using the same.

Corneli, J., Jordanous, A., Guckelsberger, C., Pease, A., & Colton, S. (2014). Modelling

serendipity in a computational context. arXiv preprint arXiv:1411.0440 .

Couprie, C., Najman, L., & Lecun, Y. (2013). Learning Hierarchical Features for Scene Labeling.

Pattern Analysis and Machine Intelligence, IEEE Transactions on, 35 (8), 1915–1929. doi:

10.1109/TPAMI.2012.231

Crnkovic-friis, L., & Crnkovic-friis, L. (2016). Generative Choreography using Deep Learning.

arXiv preprint arXiv:1605.06921 .

Csikszentmihalyi, M., Nakamura, J., & Abuhamdeh, S. (2005). Flow. In Handbook of competence

and motivation (pp. 598–608). New York: Harper & Row. doi: 10.1007/978-94-017-9088

Cui, B., Qi, C., & Wang, A. (2017). Multi-style Transfer: Generalizing Fast Style Transfer to

Several Genres. , 2017. Retrieved from http://cs231n.stanford.edu/reports/2017/

pdfs/401.pdf doi: 10.1016/j.ecoenv.2016.05.022

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., & Fei-Fei, L. (2009). Imagenet: A large-

scale hierarchical image database. In Ieee conference on computer vision and pattern

recognition, 2009. cvpr 2009. (pp. 248–255). IEEE.

Deng, L., Hinton, G., & Kingsbury, B. (2013). New Types of Deep Neural Network Learning

for Speech Recognition and Related Applications : an Overview. , 8599–8603.

Dhariwal, P., Jun, H., Payne, C., Kim, J. W., Radford, A., & Sutskever, I. (2020). Jukebox: A

Generative Model for Music. Retrieved from https://github.com/openai/jukebox.

Dinh, L., Sohl-Dickstein, J., & Bengio, S. (2016). Density estimation using Real NVP. Retrieved

from http://arxiv.org/abs/1605.08803 doi: 1605.08803

Dong, J., Gigan, S., Krzakala, F., & Wainrib, G. (2016). Scaling up Echo-State Networks with

Page 214

http://dl.acm.org/citation.cfm?id=2078186
https://www.doc.ic.ac.uk/$\sim $jwc04/papers/conferences/colton_iccc11.pdf
https://www.doc.ic.ac.uk/$\sim $jwc04/papers/conferences/colton_iccc11.pdf
https://www.johndcook.com/blog/2011/09/01/multivariate-normal-shell/
https://www.yearningfortheinfinite.net/
http://cs231n.stanford.edu/reports/2017/pdfs/401.pdf
http://cs231n.stanford.edu/reports/2017/pdfs/401.pdf
https://github.com/openai/jukebox.
http://arxiv.org/abs/1605.08803

References

multiple light scattering. Retrieved from http://arxiv.org/abs/1609.05204

Dosovitskiy, A., & Brox, T. (2015). Inverting Convolutional Networks with Convolutional

Networks. , 1–15.

Dourish, P. (2001). Where the Action Is: The Foundations of Embodied Interaction (Vol. 36)

(No. 3). Retrieved from http://books.google.com/books?id=DCIy2zxrCqcC&pgis=1

doi: 10.1162/leon.2003.36.5.412

Draves, S. (2005). The Electric Sheep screen-saver: A case study in aesthetic evolution. Proc.

EvoMUSART , 458–467. Retrieved from http://dx.doi.org/10.1007/978-3-540-32003

-6 46 doi: 10.1007/978-3-540-32003-6 46

Dumoulin, V., Belghazi, I., Poole, B., Mastropietro, O., Lamb, A., Arjovsky, M., & Courville,

A. (2017). Adversarially learned inference. 5th International Conference on Learning

Representations, ICLR 2017 - Conference Track Proceedings.

Eck, D., & Schmidhuber, J. (2002). A First Look at Music Composition using LSTM Recurrent

Neural Networks. Istituto Dalle Molle Di Studi Sull Intelligenza Artificiale, 103 .

Engel, J., Agrawal, K. K., Chen, S., Gulrajani, I., Donahue, C., & Roberts, A. (2019). Gansynth:

Adversarial neural audio synthesis. In Iclr 2019.

Erhan, D., Bengio, Y., Courville, A., & Vincent, P. (2009). Visualizing higher-

layer features of a deep network. Bernoulli(1341), 1–13. Retrieved from

http://igva2012.wikispaces.asu.edu/file/view/Erhan+2009+Visualizing+

higher+layer+features+of+a+deep+network.pdf

Fails, J. A., Olsen, Jr., D. R., & Olsen, D. R. (2003). Interactive Machine Learning. In

Proceedings of the 8th international conference on intelligent user interfaces (pp. 39–45).

Miami, Florida, USA: ACM. Retrieved from http://portal.acm.org/citation.cfm

?doid=604045.604056 doi: 10.1145/604045.604056

Fels, S. S., & Hinton, G. E. (1993). Glove-talk: a neural network interface between a data-

glove and a speech synthesizer. IEEE Transactions on Neural Networks, 4 (1), 2–8. doi:

10.1109/72.182690

Fiebrink, R., Trueman, D., & Cook, P. (2009). A metainstrument for interactive, on-the-fly

machine learning. Proc. NIME , 2 , 3. Retrieved from http://www.cs.dartmouth.edu/

\simcs104/BodyPartRecognition.pdf%5Cnhttp://www.cs.princeton.edu/

\simfiebrink/publications/FiebrinkTruemanCook NIME2009.pdf

Fiebrink, R. A. (2011). Real-time Human Interaction with Supervised Learning Algorithms for

Music Composition and Performance. Imagine(January), 376. Retrieved from http://www

.cs.princeton.edu/\simfiebrink/drop/thesis/thesis kbow conclusions.pdf

Finn, C., Abbeel, P., & Levine, S. (2017). Model-agnostic meta-learning for fast adaptation

of deep networks. 34th International Conference on Machine Learning, ICML 2017 , 3 ,

1856–1868.

Fuegi, J., & Francis, J. (2003). Lovelace & Babbage and the creation of the 1843 ’Notes’. IEEE

Annals of the History of Computing , 25 (4), 16–26. Retrieved from https://www.scss

.tcd.ie/coghlan/repository/J Byrne/A Lovelace/J Fuegi & J Francis 2003.pdf

Gatys, L. A., Ecker, A. S., & Bethge, M. (2015a). A Neural Algorithm of Artistic Style. arXiv

preprint arXiv:1508.06576 .

Page 215

http://arxiv.org/abs/1609.05204
http://books.google.com/books?id=DCIy2zxrCqcC&pgis=1
http://dx.doi.org/10.1007/978-3-540-32003-6_46
http://dx.doi.org/10.1007/978-3-540-32003-6_46
http://igva2012.wikispaces.asu.edu/file/view/Erhan+2009+Visualizing+higher+layer+features+of+a+deep+network.pdf
http://igva2012.wikispaces.asu.edu/file/view/Erhan+2009+Visualizing+higher+layer+features+of+a+deep+network.pdf
http://portal.acm.org/citation.cfm?doid=604045.604056
http://portal.acm.org/citation.cfm?doid=604045.604056
http://www.cs.dartmouth.edu/$\sim $cs104/BodyPartRecognition.pdf%5Cnhttp://www.cs.princeton.edu/$\sim $fiebrink/publications/FiebrinkTruemanCook_NIME2009.pdf
http://www.cs.dartmouth.edu/$\sim $cs104/BodyPartRecognition.pdf%5Cnhttp://www.cs.princeton.edu/$\sim $fiebrink/publications/FiebrinkTruemanCook_NIME2009.pdf
http://www.cs.dartmouth.edu/$\sim $cs104/BodyPartRecognition.pdf%5Cnhttp://www.cs.princeton.edu/$\sim $fiebrink/publications/FiebrinkTruemanCook_NIME2009.pdf
http://www.cs.princeton.edu/$\sim $fiebrink/drop/thesis/thesis_kbow_conclusions.pdf
http://www.cs.princeton.edu/$\sim $fiebrink/drop/thesis/thesis_kbow_conclusions.pdf
https://www.scss.tcd.ie/coghlan/repository/J_Byrne/A_Lovelace/J_Fuegi_&_J_Francis_2003.pdf
https://www.scss.tcd.ie/coghlan/repository/J_Byrne/A_Lovelace/J_Fuegi_&_J_Francis_2003.pdf

References

Gatys, L. A., Ecker, A. S., & Bethge, M. (2015b). Texture Synthesis Using Convolutional

Neural Networks. Nips, 1–10. Retrieved from http://arxiv.org/abs/1505.07376

Gers, F. A., & Schmidhuber, J. (2000). Recurrent nets that time and count. In Neural networks,

2000. ijcnn 2000, proceedings of the ieee-inns-enns international joint conference on (pp.

189–194). IEEE.

Gers, F. A., Schmidhuber, J., & Cummins, F. (2000). Learning to forget: Continual prediction

with LSTM. Neural Computation, 12 (10), 2451–2471.

Gillian, N. E. (2011). Gesture Recognition for Musician Computer Interaction. Social Sci-

ences(March).

Glorot, X., & Bengio, Y. (2010). Understanding the difficulty of training deep feedforward

neural networks. Journal of Machine Learning Research, 9 , 249–256.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press. Retrieved from

http://www.deeplearningbook.org

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., . . . Bengio,

Y. (2014). Generative Adversarial Nets. Advances in Neural Information Processing

Systems, 2672–2680. Retrieved from http://papers.nips.cc/paper/5423-generative

-adversarial-nets.pdf

Goodfellow, I. J., Shlens, J., & Szegedy, C. (2014). Explaining and Harnessing Adversarial

Examples. , 1–11. Retrieved from http://arxiv.org/abs/1412.6572

Graves, A. (2008). Supervised Sequence Labelling with Recurrent Neural Networks (Unpublished

doctoral dissertation).

Graves, A. (2012). Sequence transduction with recurrent neural networks. arXiv preprint

arXiv:1211.3711 .

Graves, A. (2013). Generating sequences with Recurrent Neural Networks. arXiv preprint

arXiv:1308.0850 .

Graves, A., Liwicki, M., Fernández, S., Bertolami, R., Bunke, H., & Schmidhuber, J. (2009). A

novel connectionist system for unconstrained handwriting recognition. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 31 (5), 855–868.

Graves, A., Wayne, G., & Danihelka, I. (2014). Neural Turing Machines. arXiv preprint

arXiv:1410.5401 , 1–26. Retrieved from http://arxiv.org/abs/1410.5401

Greff, K., Srivastava, R. K., Koutńık, J., Steunebrink, B. R., & Schmidhuber, J. (2015).

LSTM: A Search Space Odyssey. arXiv preprint arXiv:1503.04069 , 10. Retrieved from

http://arxiv.org/abs/1503.04069 doi: 10.1017/CBO9781107415324.004

Gregor, K., Danihelka, I., Graves, A., & Wierstra, D. (2015). DRAW: A Recurrent Neural

Network For Image Generation. arXiv preprint arXiv:1502.04623 .

Grierson, M. (2005). Audiovisual composition (Doctoral dissertation). Retrieved from http://

www.strangeloop.co.uk/Dr.M.Grierson-AudiovisualCompositionThesis.pdf

Guzella, T. S., & Caminhas, W. M. (2009). A review of machine learning approaches to

Spam filtering. Expert Systems with Applications, 36 (7), 10206–10222. Retrieved from

http://dx.doi.org/10.1016/j.eswa.2009.02.037 doi: 10.1016/j.eswa.2009.02.037

Gwak, J., Choy, C. B., Garg, A., Chandraker, M., & Savarese, S. (2017). Weakly Supervised

Generative Adversarial Networks for 3D Reconstruction. Retrieved from http://arxiv

Page 216

http://arxiv.org/abs/1505.07376
http://www.deeplearningbook.org
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/1410.5401
http://arxiv.org/abs/1503.04069
http://www.strangeloop.co.uk/Dr.M.Grierson-AudiovisualCompositionThesis.pdf
http://www.strangeloop.co.uk/Dr.M.Grierson-AudiovisualCompositionThesis.pdf
http://dx.doi.org/10.1016/j.eswa.2009.02.037
http://arxiv.org/abs/1705.10904
http://arxiv.org/abs/1705.10904

References

.org/abs/1705.10904

Ha, D. (2015). Recurrent Net Dreams Up Fake Chinese Characters in Vector Format with Ten-

sorFlow. Retrieved from http://blog.otoro.net/2015/12/28/recurrent-net-dreams

-up-fake-chinese-characters-in-vector-format-with-tensorflow/

Ha, D., & Eck, D. (2017). A Neural Representation of Sketch Drawings. , 1–20. Retrieved from

http://arxiv.org/abs/1704.03477

Härkönen, E., Hertzmann, A., Lehtinen, J., & Paris, S. (2020). GANSpace: Discovering Inter-

pretable GAN Controls. , 1–14. Retrieved from http://arxiv.org/abs/2004.02546

Hertzmann, A. (2001). Algorithms for Rendering in Artistic Styles (Doctoral dissertation). doi:

http://doi.acm.org/10.1145/933267

Hesse, C. (2017). edges2cats Image-to-Image demo. Retrieved from https://affinelayer

.com/pixsrv/

Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X., Botvinick, M., . . . Lerchner, A. (2017).

B-VAE: Learning basic visual concepts with a constrained variational framework. 5th In-

ternational Conference on Learning Representations, ICLR 2017 - Conference Track Pro-

ceedings(July), 1–13. Retrieved from https://openreview.net/forum?id=Sy2fzU9gl

Higham, T., Basell, L., Jacobi, R., Wood, R., Ramsey, C. B., & Conard, N. J. (2012). Testing

models for the beginnings of the Aurignacian and the advent of figurative art and music:

The radiocarbon chronology of Geißenklösterle. Journal of Human Evolution, 62 (6), 664–

676. doi: 10.1016/j.jhevol.2012.03.003

Hindupur, A. (n.d.). The GAN Zoo. Retrieved 2020-08-01, from https://github.com/

hindupuravinash/the-gan-zoo

Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, A.-r., Jaitly, N., . . . Kingsbury, B.

(2012). Deep Neural Networks for Acoustic Modeling in Speech Recognition. IEEE Signal

Processing Magazine, 29 (6), 82–97.

Hochreiter, S. (1991). Untersuchungen zu dynamischen neuronalen Netzen (Unpublished doc-

toral dissertation). Technische Universität München.

Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation,

9 (8), 1735–1780.

Hornik, K. (1991). Approximation Capabilities of Multilayer Neural Network. Neural Networks,

4 (1991), 251–257.

Huval, B., Wang, T., Tandon, S., Kiske, J., Song, W., Pazhayampallil, J., . . . Ng, A. Y. (2015).

An Empirical Evaluation of Deep Learning on Highway Driving. , 1–7. Retrieved from

http://arxiv.org/abs/1504.01716

Isola, P., Zhu, J.-Y., Zhou, T., & Efros, A. A. (2016). Image-to-Image Translation with

Conditional Adversarial Networks. arXiv preprint arXiv:1611.07004 .

Jiang, L., Zhang, C., Huang, M., Liu, C., Shi, J., & Loy, C. C. (2020). TSIT: A Simple and

Versatile Framework for Image-to-Image Translation. Retrieved from http://arxiv.org/

abs/2007.12072

Johnson, J., Alahi, A., & Fei-Fei, L. (2016). Perceptual losses for real-time style transfer and

super-resolution. European conference on computer vision, 694–711.

Jordanous, A. (2014). What is Computational Creativity? Retrieved from http://

Page 217

http://arxiv.org/abs/1705.10904
http://arxiv.org/abs/1705.10904
http://arxiv.org/abs/1705.10904
http://blog.otoro.net/2015/12/28/recurrent-net-dreams-up-fake-chinese-characters-in-vector-format-with-tensorflow/
http://blog.otoro.net/2015/12/28/recurrent-net-dreams-up-fake-chinese-characters-in-vector-format-with-tensorflow/
http://arxiv.org/abs/1704.03477
http://arxiv.org/abs/2004.02546
https://affinelayer.com/pixsrv/
https://affinelayer.com/pixsrv/
https://openreview.net/forum?id=Sy2fzU9gl
https://github.com/hindupuravinash/the-gan-zoo
https://github.com/hindupuravinash/the-gan-zoo
http://arxiv.org/abs/1504.01716
http://arxiv.org/abs/2007.12072
http://arxiv.org/abs/2007.12072
http://www.creativitypost.com/science/what_is_computational_creativity
http://www.creativitypost.com/science/what_is_computational_creativity

References

www.creativitypost.com/science/what is computational creativity

Jozefowicz, R., Zaremba, W., & Sutskever, I. (2015). An Empirical Exploration of Recurrent

Network Architectures (Vol. 37).

Kaelbling, L. P., Littman, M. L., & Moore, A. W. (1996). Reinforcement Learning : A Survey.

Journal of artificial intelligence research, 4 , 237–285. Retrieved from http://arxiv.org/

abs/cs/9605103

Karpathy, A. (2015a). char-rnn. Retrieved from https://github.com/karpathy/char-rnn

Karpathy, A. (2015b). The Unreasonable Effectiveness of Recurrent Neural Networks. Retrieved

from http://karpathy.github.io/2015/05/21/rnn-effectiveness

Karpathy, A., Johnson, J., & Li, F.-F. (2015). Visualizing and Understanding Recurrent

Networks. arXiv preprint arXiv:1506.02078 .

Karras, T., Aila, T., Laine, S., & Lehtinen, J. (2017). Progressive Growing of GANs for

Improved Quality, Stability, and Variation. arXiv preprint arXiv:1710.10196 . Retrieved

from http://arxiv.org/abs/1710.10196

Karras, T., Laine, S., & Aila, T. (2019). A style-based generator architecture for generative

adversarial networks. Proceedings of the IEEE Computer Society Conference on Computer

Vision and Pattern Recognition, 2019-June, 4396–4405. doi: 10.1109/CVPR.2019.00453

Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., & Aila, T. (2020). Analyzing

and Improving the Image Quality of StyleGAN. Retrieved from http://arxiv.org/abs/

1912.04958

Katan, S., Grierson, M., & Fiebrink, R. (2015). Using Interactive Machine Learning to Support

Interface Development Through Workshops with Disabled People. In Chi ’15 proceedings

of the 33rd annual acm conference on human factors in computing systems.

Kiefer, C. (2014). Musical Instrument Mapping Design with Echo State Networks. Proceed-

ings of the International Conference on New Interfaces for Musical Expression, 293–298.

Retrieved from http://www.nime.org/proceedings/2014/nime2014 530.pdf

Kingma, D., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint

arXiv:1412.6980 , 1–13. Retrieved from http://arxiv.org/abs/1412.6980

Kingma, D. P., & Dhariwal, P. (2018). Glow: Generative Flow with Invertible 1x1 Con-

volutions. , 1–15. Retrieved from http://arxiv.org/abs/1807.03039 doi: 10.1097/

PHM.0b013e318038d39c

Kingma, D. P., & Welling, M. (2013). Auto-Encoding Variational Bayes. arXiv preprint

arXiv:1312.6114 . Retrieved from http://arxiv.org/abs/1312.6114

Kiros, R. (2015). neural-storyteller. Retrieved from https://github.com/ryankiros/neural

-storyteller

Kiros, R., Zhu, Y., Salakhutdinov, R., Zemel, R. S., Torralba, A., Urtasun, R., & Fidler, S.

(2015). Skip-thought vectors. Advances in Neural Information Processing Systems, 2015-

Janua(786), 3294–3302.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet Classification with Deep Con-

volutional Neural Networks. Advances in Neural Information Processing Systems (NIPS),

1–9.

Krueger, M. W., Gionfriddo, T., & Hinrichsen, K. (1985). VIDEOPLACE—an artificial reality.

Page 218

http://www.creativitypost.com/science/what_is_computational_creativity
http://www.creativitypost.com/science/what_is_computational_creativity
http://www.creativitypost.com/science/what_is_computational_creativity
http://arxiv.org/abs/cs/9605103
http://arxiv.org/abs/cs/9605103
https://github.com/karpathy/char-rnn
http://karpathy.github.io/2015/05/21/rnn-effectiveness
http://arxiv.org/abs/1710.10196
http://arxiv.org/abs/1912.04958
http://arxiv.org/abs/1912.04958
http://www.nime.org/proceedings/2014/nime2014_530.pdf
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1807.03039
http://arxiv.org/abs/1312.6114
https://github.com/ryankiros/neural-storyteller
https://github.com/ryankiros/neural-storyteller

References

ACM SIGCHI Bulletin, 16 (4), 35–40. doi: 10.1145/1165385.317463

Kyprianidis, J. E., Collomosse, J., Wang, T., & Isenberg, T. (2013). State of the ’Art: A

taxonomy of artistic stylization techniques for images and video. IEEE Transactions on

Visualization and Computer Graphics, 19 (5), 866–885. doi: 10.1109/TVCG.2012.160

Larsen, A. B. L., Sønderby, S. K., Larochelle, H., & Winther, O. (2016). Autoencoding beyond

pixels using a learned similarity metric. 33rd International Conference on Machine Learn-

ing, ICML 2016 , 4 , 2341–2349. Retrieved from http://arxiv.org/abs/1512.09300

Laurens van der Maaten, & Geoffrey Hinton. (2008). Visualizing Data using t-SNE. Journal

of Machine Learning Research, 9 , 2579–2605.

LaViola Jr., J. J. (2014). An Introduction to 3D Gestural Interfaces. Retrieved from http://

doi.acm.org/10.1145/2614028.2615424 doi: 10.1145/2614028.2615424

LeapMotion. (n.d.). LeapMotion. Retrieved from https://www.leapmotion.com/

LeCun, Y. (2012). Learning Invariant Feature Hierarchies. Lecture Notes in Computer Science

(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioin-

formatics), 7583 LNCS (PART 1), 496–505. doi: 10.1007/978-3-642-33863-2 51

LeCun, Y. (2014). The Unreasonable Effectiveness of Deep Learning. In Facebook ai research

& center for data science, nyu.

LeCun, Y., & Bengio, Y. (1995). Convolutional networks for images, speech, and time

series. The handbook of brain theory and neural networks, 255–258. Retrieved

from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.32.9297&rep=

rep1&type=pdf

LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., & Jackel,

L. D. (1989). Backpropagation applied to handwritten zip code recognition. Neural

Computation, 1 (4), 541–551.

LeCun, Y., & Cortes, C. (2010). MNIST handwritten digit database. AT&T Labs [Online].

Available: http://yann. lecun. com/exdb/mnist .

Ledig, C., Theis, L., Huszar, F., Caballero, J., Cunningham, A., Acosta, A., . . . Shi Twitter,

W. (2017). Photo-Realistic Single Image Super-Resolution Using a Generative Adver-

sarial Network. Cvpr , 4681–4690. Retrieved from http://openaccess.thecvf.com/

content cvpr 2017/papers/Ledig Photo-Realistic Single Image CVPR 2017 paper

.pdfhttp://arxiv.org/abs/1609.04802 doi: 10.1109/CVPR.2017.19

Lee, M., Freed, A., & Wessel, D. (1992). Neural networks for simultaneous classification

and parameter estimation in musical instrument control. Proceedings of SPIE , 1706 ,

244–255. Retrieved from http://link.aip.org/link/?PSI/1706/244/1&Agg=doi doi:

10.1117/12.139949

Levin, G. (2000). Painterly Interfaces for Audiovisual Performance. Media, 1–151. Re-

trieved from http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:

Painterly+Interfaces+for+Audiovisual+Performance#0

Liang, Y., Yang, Z., Zhang, K., He, Y., Wang, J., & Zheng, N. (2017). Single Image Super-

resolution via a Lightweight Residual Convolutional Neural Network. , 1–11. Retrieved

from http://arxiv.org/abs/1703.08173

Lieberman, Z., Watson, T., & Castro, A. (2016). OpenFrameworks. Retrieved from www

Page 219

http://arxiv.org/abs/1512.09300
http://doi.acm.org/10.1145/2614028.2615424
http://doi.acm.org/10.1145/2614028.2615424
https://www.leapmotion.com/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.32.9297&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.32.9297&rep=rep1&type=pdf
http://openaccess.thecvf.com/content_cvpr_2017/papers/Ledig_Photo-Realistic_Single_Image_CVPR_2017_paper.pdfhttp://arxiv.org/abs/1609.04802
http://openaccess.thecvf.com/content_cvpr_2017/papers/Ledig_Photo-Realistic_Single_Image_CVPR_2017_paper.pdfhttp://arxiv.org/abs/1609.04802
http://openaccess.thecvf.com/content_cvpr_2017/papers/Ledig_Photo-Realistic_Single_Image_CVPR_2017_paper.pdfhttp://arxiv.org/abs/1609.04802
http://link.aip.org/link/?PSI/1706/244/1&Agg=doi
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Painterly+Interfaces+for+Audiovisual+Performance#0
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Painterly+Interfaces+for+Audiovisual+Performance#0
http://arxiv.org/abs/1703.08173
www.openframeworks.cc
www.openframeworks.cc

References

.openframeworks.cc

Lim, B., Son, S., Kim, H., Nah, S., & Lee, K. M. (2017). Enhanced Deep Residual Networks for

Single Image Super-Resolution. IEEE Computer Society Conference on Computer Vision

and Pattern Recognition Workshops, 2017-July , 1132–1140. doi: 10.1109/CVPRW.2017

.151

Lin, C., Liu, D., & Kelly, A. (2016). Deep Adversarial 3D Shape Net. Report CMU (2013),

1–9.

Lin, H. W., & Tegmark, M. (2016). Why does deep and cheap learning work so well? arXiv

preprint arXiv:1608.08225 .

Lipton, Z. C., & Tripathi, S. (2017). Precise Recovery of Latent Vectors from Generative

Adversarial Networks. arXiv preprint arXiv:1702.04782 . Retrieved from http://arxiv

.org/abs/1702.04782

Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A., Ciompi, F., Ghafoorian, M., . . . Sánchez,

C. I. (2017). A survey on deep learning in medical image analysis. Medical Image Analysis,

42 (1995), 60–88. doi: 10.1016/j.media.2017.07.005

Liu, J., Yu, F., & Funkhouser, T. (2017). Interactive 3D Modeling with a Generative Adversarial

Network. Retrieved from http://arxiv.org/abs/1706.05170

Lu, Z., Pu, H., Wang, F., Hu, Z., & Wang, L. (2017). The expressive power of neural net-

works: A view from the width. Advances in Neural Information Processing Systems,

2017-Decem(Nips), 6232–6240.

Mahendran, A., & Vedaldi, A. (2014). Understanding Deep Image Representations by Inverting

Them.

Mccormack, J. (2014). Balancing Act : Variation and Utility in Evolutionary Art. , 26–37.

McCormack, J., Bown, O., Dorin, A., McCabe, J., Monro, G., & Whitelaw, M. (2014).

Ten Questions Concerning Generative Computer Art. Leonardo, 47 (2), 135–141. Re-

trieved from http://www.mitpressjournals.org/doi/abs/10.1162/LEON a 00533 doi:

10.1162/LEON a 00533

McCormack, J., & D’Inverno, M. (2012). Computers and Creativity: The Road Ahead.

Computers and Creativity , 421–424. Retrieved from http://dx.doi.org/10.1007/

978-3-642-31727-9 doi: 10.1007/978-3-642-31727-9

McCulloch, W. S., & Pitts, W. (1943). A Logical Calculus of the Idea Immanent in Nervous

Activity. Bulletin of Mathematical Biophysics, 5 , 115–133. Retrieved from http://

www.cse.chalmers.se/\simcoquand/AUTOMATA/mcp.pdf doi: 10.1007/BF02478259

McInnes, L., Healy, J., & Melville, J. (2018). UMAP: Uniform manifold approximation and

projection for dimension reduction. arXiv .

McNeill, D., & Levy, E. (1980). Conceptual representations in language activity and gesture

(Tech. Rep.). Spencer Foundation, Chicago, IL.; National Inst. of Mental Health (DHHS),

Bethesda, MD.

Medienkunstnetz.de. (n.d.). Paik/Abe Synthesizer. Retrieved 2020-04-03, from http://

medienkunstnetz.de/works/paik-abe-synthesizer/

Mihaly Csikszentmihalyi. (1996). Creativity: Flow and the psychology of discovery and inven-

tion.

Page 220

www.openframeworks.cc
www.openframeworks.cc
www.openframeworks.cc
http://arxiv.org/abs/1702.04782
http://arxiv.org/abs/1702.04782
http://arxiv.org/abs/1706.05170
http://www.mitpressjournals.org/doi/abs/10.1162/LEON_a_00533
http://dx.doi.org/10.1007/978-3-642-31727-9
http://dx.doi.org/10.1007/978-3-642-31727-9
http://www.cse.chalmers.se/$\sim $coquand/AUTOMATA/mcp.pdf
http://www.cse.chalmers.se/$\sim $coquand/AUTOMATA/mcp.pdf
http://medienkunstnetz.de/works/paik-abe-synthesizer/
http://medienkunstnetz.de/works/paik-abe-synthesizer/

References

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Distributed Representations of Words

and Phrases and their Compositionality. NIPS , 1–9. doi: 10.1162/jmlr.2003.3.4-5.951

Miolane, N., Mathe, J., Donnat, C., Jorda, M., & Pennec, X. (2018). geomstats: a Python

Package for Riemannian Geometry in Machine Learning. Retrieved from http://arxiv

.org/abs/1805.08308

Mital, P. K. (2017). Time Domain Neural Audio Style Transfer. Machine Learning for Creativity

and Design - NIPS 2017 Workshop(Nips). Retrieved from http://arxiv.org/abs/1711

.11160

Mitchell, T. M. (1997). Machine Learning (Vol. 1) (No. 3). McGraw Hill. Retrieved from

http://www.amazon.com/Machine-Learning-Tom-M-Mitchell/dp/0070428077 doi: 10

.1007/BF00116892

Mitra, S., & Acharya, T. (2007). Gesture Recognition : A Survey. IEEE Transactions On

Systems, Man, And Cybernetics - Part C: Applications And Reviews, 37 (3), 311–324.

doi: 10.1109/TSMCC.2007.893280

Mordvintsev, A., Olah, C., & Tyka, M. (2015). Deepdream. Retrieved from

http://googleresearch.blogspot.ch/2015/06/inceptionism-going-deeper-into

-neural.html

Mordvintsev, A., Pezzotti, N., Schubert, L., & Olah, C. (2018). Differentiable Image Parame-

terizations. Distill , 3 (7). doi: 10.23915/distill.00012

Nair, V., & Hinton, G. E. (2010). Rectified Linear Units Improve Restricted Boltzmann

Machines. In Proceedings of the 27th international conference on machine learning (icml-

10) (pp. 807–814).

Nayebi, A., & Vitelli, M. (2015). GRUV : Algorithmic Music Generation using Recurrent Neural

Networks. Retrieved from https://cs224d.stanford.edu/reports/NayebiAran.pdf

Ng, A. (2013). Machine Learning and AI via Brain Simulations. In Stanford univer-

sity. Retrieved from http://www.youtube.com/watch?v=n1ViNeWhC24%5Cnpapers3://

publication/uuid/FD4F0FE0-BB23-431D-8840-6808135CC089

Nguyen, A., Yosinski, J., & Clune, J. (2015). Deep neural networks are easily fooled: High

confidence predictions for unrecognizable images. In Proceedings of the ieee computer

society conference on computer vision and pattern recognition (Vol. 07-12-June, pp. 427–

436). doi: 10.1109/CVPR.2015.7298640

Odena, A., Olah, C., & Shlens, J. (2017). Conditional image synthesis with auxiliary classifier

gans. 34th International Conference on Machine Learning, ICML 2017 , 6 , 4043–4055.

ofxAddons. (2015). Retrieved from http://ofxaddons.com/

Olah, C., Mordvintsev, A., & Schubert, L. (2017). Feature Visualization. Distill , 2 (11). doi:

10.23915/distill.00007

Olah, C., Satyanarayan, A., Johnson, I., Carter, S., Schubert, L., Ye, K., & Mordvintsev, A.

(2018). The Building Blocks of Interpretability. Distill , 3 (3). doi: 10.23915/distill.00010

Pachet, F. (2003). The continuator: Musical interaction with style. Journal of New Music

Research, 32 (3), 333–341. doi: 10.1076/jnmr.32.3.333.16861

Papert, S., Valente, J. A., & Bitelman, B. (1980). Logo: computadores e educa. Brasiliense.

Park, T., Liu, M. Y., Wang, T. C., & Zhu, J. Y. (2019). Semantic image synthesis with

Page 221

http://arxiv.org/abs/1805.08308
http://arxiv.org/abs/1805.08308
http://arxiv.org/abs/1711.11160
http://arxiv.org/abs/1711.11160
http://www.amazon.com/Machine-Learning-Tom-M-Mitchell/dp/0070428077
http://googleresearch.blogspot.ch/2015/06/inceptionism-going-deeper-into-neural.html
http://googleresearch.blogspot.ch/2015/06/inceptionism-going-deeper-into-neural.html
https://cs224d.stanford.edu/reports/NayebiAran.pdf
http://www.youtube.com/watch?v=n1ViNeWhC24%5Cnpapers3://publication/uuid/FD4F0FE0-BB23-431D-8840-6808135CC089
http://www.youtube.com/watch?v=n1ViNeWhC24%5Cnpapers3://publication/uuid/FD4F0FE0-BB23-431D-8840-6808135CC089
http://ofxaddons.com/

References

spatially-adaptive normalization. Proceedings of the IEEE Computer Society Conference

on Computer Vision and Pattern Recognition, 2019-June, 2332–2341. doi: 10.1109/CVPR

.2019.00244

Pascanu, R., Mikolov, T., & Bengio, Y. (2012). Understanding the exploding gradient problem.

Computing Research Repository (CoRR) abs/1211.5063 .

Pascanu, R., Mikolov, T., & Bengio, Y. (2013). On the difficulty of training recurrent neural

networks. In International conference on machine learning icml (Vol. 28, pp. 1310–1318).

Penny, S. (2017). Making sense: Cognition, computing, art, and embodiment. MIT Press.

Perlin, K. (2002). Improving Noise. ACM Transactions on Graphics, 681–682. doi: 10.1145/

566570.566636

Pham, V., Bluche, T., Kermorvant, C., & Louradour, J. (2014). Dropout Improves Recurrent

Neural Networks for Handwriting Recognition. In Frontiers in handwriting recognition

(icfhr), 2014 14th international conference on (pp. 285–290). IEEE.

Pike, A. W., Hoffmann, D. L., Garćıa-Diez, M., Pettitt, P. B., Alcolea, J., De Balb́ın, R.,

. . . Zilhão, J. (2012). U-series dating of paleolithic art in 11 caves in Spain. Science,

336 (6087), 1409–1413. doi: 10.1126/science.1219957

Plummer-Fernandez, M. (2020). Bots vs. AI: Two Kinds of Software Art Take

Different Approaches to the Digital Commons. Art in America(January), 58–

63. Retrieved from https://www.artnews.com/art-in-america/features/bots-ai

-art-digital-commons-1202675976/

Quick, Draw! Dataset. (2017). Retrieved from https://github.com/googlecreativelab/

quickdraw-dataset

Radford, A., Metz, L., & Chintala, S. (2015). Unsupervised representation learning with deep

convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434 .

Rezende, D. J., Mohamed, S., Danihelka, I., Gregor, K., & Wierstra, D. (2016). One-Shot

Generalization in Deep Generative Models.

Rezende, D. J., & Viola, F. (2018). Taming VAEs. Retrieved from http://arxiv.org/abs/

1810.00597

Ridgeway, K. (2016). A Survey of Inductive Biases for Factorial Representation-Learning. ,

1–36. Retrieved from http://arxiv.org/abs/1612.05299

Risser, E., Wilmot, P., & Barnes, C. (2017). Stable and Controllable Neural Texture Synthesis

and Style Transfer Using Histogram Losses. arXiv preprint arXiv:1701.08893 .

Roff, H. M., & Moyes, R. (2016). Meaningful Human Control , Artificial Intelligence and

Autonomous Weapons (Tech. Rep.).

Rokeby, D. (1986). Very Nervous System.

Ruder, M., Dosovitskiy, A., & Brox, T. (2016). Artistic style transfer for videos. German

Conference on Pattern Recognition.

Ruder, M., Dosovitskiy, A., & Brox, T. (2018). Artistic style transfer for videos and spherical

images. International Journal of Computer Vision, 126 (11), 1199–1219.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1985). Learning Internal Representations

by Error Propagation (Tech. Rep.).

Rusu, A. A., Rao, D., Sygnowski, J., Vinyals, O., Pascanu, R., Osindero, S., & Hadsell, R.

Page 222

https://www.artnews.com/art-in-america/features/bots-ai-art-digital-commons-1202675976/
https://www.artnews.com/art-in-america/features/bots-ai-art-digital-commons-1202675976/
https://github.com/googlecreativelab/quickdraw-dataset
https://github.com/googlecreativelab/quickdraw-dataset
http://arxiv.org/abs/1810.00597
http://arxiv.org/abs/1810.00597
http://arxiv.org/abs/1612.05299

References

(2019). Meta-learning with latent embedding optimization. 7th International Conference

on Learning Representations, ICLR 2019 , 1–17.

Sahoo, D., Pham, Q., Lu, J., & Hoi, S. C. (2018). Online deep learning: Learning deep neural

networks on the fly. IJCAI International Joint Conference on Artificial Intelligence,

2018-July , 2660–2666. doi: 10.24963/ijcai.2018/369

Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., & Chen, X. (2016).

Improved Techniques for Training GANs. , 1–10. Retrieved from http://arxiv.org/

abs/1606.03498 doi: arXiv:1504.01391

Santoro, A., Bartunov, S., Botvinick, M., Wierstra, D., & Lillicrap, T. (2016). One-shot

Learning with Memory-Augmented Neural Networks. Retrieved from http://arxiv.org/

abs/1605.06065

Scharre, P., & Horowitz, M. C. (2015). Meaningful human control in weapon systens: A primer.

Schedel, M., Fiebrink, R., & Perry, P. (2011). Wekinating 000000Swan : Using Machine Learn-

ing to Create and Control Complex Artistic Systems. Proceedings of the International

Conference on New Interfaces for Musical Expression(June), 453–456. Retrieved from

http://www.nime2011.org/proceedings/papers/M10-Schedel.pdf

Schmidhuber, J. (1992). Learning complex, extended sequences using the principle of history

compression. Neural Computation, 4 (2), 234–242.

Schmidhuber, J. (2006). Developmental robotics, optimal artificial curiosity, creativity, music,

and the fine arts. Connection Science, 18 (2), 173–187. doi: 10.1080/09540090600768658

Schmidhuber, J. (2007). Simple algorithmic principles of discovery, subjective beauty, selec-

tive attention, curiosity and creativity. Lecture Notes in Computer Science (including

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),

4754 LNAI (September), 32–33. Retrieved from http://arxiv.org/abs/0709.0674 doi:

10.1007/978-3-540-75225-7 6

Schmidhuber, J. (2009a). Driven by compression progress: A simple principle explains essen-

tial aspects of subjective beauty, novelty, surprise, interestingness, attention, curiosity,

creativity, art, science, music, jokes. Lecture Notes in Computer Science (including sub-

series Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 5499

LNAI (April 2009), 48–76. doi: 10.1007/978-3-642-02565-5 4

Schmidhuber, J. (2009b). Simple Algorithmic Theory of Subjective Beauty, Novelty, Surprise,

Interestingness, Attention, Curiosity, Creativity, Art, Science, Music, Jokes. Journal of

SICE , 48 , 21–32. doi: http://dx.doi.org/10.1007/978-3-642-02565-5 4

Schmidhuber, J. (2010a). Artificial scientists & artists based on the formal theory

of creativity. Artificial General Intelligence - Proceedings of the Third Con-

ference on Artificial General Intelligence, AGI 2010 , 145–150. Retrieved from

http://agi-conf.org/2010/wp-content/uploads/2009/06/paper 46.pdfhttp://

agi-conf.org/2010/wp-content/uploads/2009/06/paper%7B %7D46.pdf doi:

10.2991/agi.2010.32

Schmidhuber, J. (2010b). Formal theory of creativity, fun, and intrinsic motivation (1990-

2010). IEEE Transactions on Autonomous Mental Development , 2 (3), 230–247. doi:

10.1109/TAMD.2010.2056368

Page 223

http://arxiv.org/abs/1606.03498
http://arxiv.org/abs/1606.03498
http://arxiv.org/abs/1605.06065
http://arxiv.org/abs/1605.06065
http://www.nime2011.org/proceedings/papers/M10-Schedel.pdf
http://arxiv.org/abs/0709.0674
http://agi-conf.org/2010/wp-content/uploads/2009/06/paper_46.pdfhttp://agi-conf.org/2010/wp-content/uploads/2009/06/paper%7B_%7D46.pdf
http://agi-conf.org/2010/wp-content/uploads/2009/06/paper_46.pdfhttp://agi-conf.org/2010/wp-content/uploads/2009/06/paper%7B_%7D46.pdf

References

Schmidhuber, J. (2012a). A formal theory of creativity to model the creation of art. Computers

and Creativity , 9783642317 , 323–337. doi: 10.1007/978-3-642-31727-9 12

Schmidhuber, J. (2012b). Self-Delimiting Neural Networks. arXiv preprint arXiv:1210.0118 .

Schmidhuber, J. (2015). Deep Learning in Neural Networks: An Overview. Neural Networks,

61 , 85–117. doi: 10.1016/j.neunet.2014.09.003

Schuster, M., & Paliwal, K. K. (1997). Bidirectional recurrent neural networks. IEEE Transac-

tions on Signal Processing , 45 (11), 2673–2681. Retrieved from http://ieeexplore.ieee

.org/xpls/abs all.jsp?arnumber=650093

Searle, J. R. (1980). Minds, Brains, and Programs. Behavioral and Brain Sciences, 3 , 1–19.

doi: 10.1017/S0140525X00005756

Secretan, J., Beato, N., D’Ambrosio, D. B., Rodriguez, A., Campbell, A., & Stanley, K. O.

(2008). Picbreeder: Evolving pictures collaboratively online. Conference on Human Fac-

tors in Computing Systems - Proceedings, 1759–1768. doi: 10.1145/1357054.1357328

Shaker, N., Togelius, J., & Nelson, M. J. (2016). Procedural content generation in games.

Switzerland: Springer International Publishing.

Shalev-Shwartz, S. (2011). Online learning and online convex optimization. Foundations and

Trends in Machine Learning , 4 (2), 107–194. doi: 10.1561/2200000018

Shen, J., Pang, R., Weiss, R. J., Schuster, M., Jaitly, N., Yang, Z., . . . Wu, Y. (2018). Natural

TTS Synthesis by Conditioning Wavenet on MEL Spectrogram Predictions. ICASSP,

IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings,

2018-April , 4779–4783. Retrieved from http://arxiv.org/abs/1712.05884 doi: 10

.1109/ICASSP.2018.8461368

Shu, R., Bui, H. H., Zhao, S., Kochenderfer, M. J., & Ermon, S. (2018). Amortized inference reg-

ularization. Advances in Neural Information Processing Systems, 2018-Decem(NeurIPS),

4393–4402.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den Driessche, G., . . . Hassabis,

D. (2016). Mastering the game of Go with deep neural networks and tree search. Nature,

529 (7587), 484–489. Retrieved from http://www.nature.com/doifinder/10.1038/

nature16961 doi: 10.1038/nature16961

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., . . . Hassabis, D.

(2018). A general reinforcement learning algorithm that masters chess, shogi, and Go

through self-play. Science, 362 (6419), 1140–1144. doi: 10.1126/science.aar6404

Simon, J. (2019). artbreeder.com. Retrieved from https://artbreeder.com/

Simonyan, K., Vedaldi, A., & Zisserman, A. (2013). Deep Inside Convolutional Networks: Visu-

alising Image Classification Models and Saliency Maps. arXiv preprint arXiv:1312.6034 ,

1–8. Retrieved from http://arxiv.org/abs/1312.6034

Sims, K. (1994). Evolving virtual creatures. Siggraph ’94 , SIGGRAPH ’ (July), 15–22.

Retrieved from http://dl.acm.org/citation.cfm?id=192167%5Cnhttp://portal.acm

.org/citation.cfm?doid=192161.192167 doi: 10.1145/192161.192167

Smith, G., & Leymarie, F. F. (2017). The Machine as Artist: An Introduction. Arts, 6 (4), 5.

doi: 10.3390/arts6020005

Srivastava, N., Hinton, G. E., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014).

Page 224

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=650093
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=650093
http://arxiv.org/abs/1712.05884
http://www.nature.com/doifinder/10.1038/nature16961
http://www.nature.com/doifinder/10.1038/nature16961
https://artbreeder.com/
http://arxiv.org/abs/1312.6034
http://dl.acm.org/citation.cfm?id=192167%5Cnhttp://portal.acm.org/citation.cfm?doid=192161.192167
http://dl.acm.org/citation.cfm?id=192167%5Cnhttp://portal.acm.org/citation.cfm?doid=192161.192167

References

Dropout: a simple way to prevent neural networks from overfitting. Journal of Machine

Learning Research (JMLR), 15 (1), 1929–1958.

Stanley, K. O., & Lehman, J. (2015). Why greatness cannot be planned: The myth of the

objective (Springer, Ed.). doi: 10.1007/978-3-319-15524-1

Sturm, B. (2015). Recurrent Neural Networks for Folk Music Generation. Retrieved from

https://highnoongmt.wordpress.com/2015/05/22/lisls-stis-recurrent-neural

-networks-for-folk-music-generation

Sutskever, I. (2013). Training Recurrent neural Networks (Unpublished doctoral dissertation).

University of Toronto.

Sutskever, I., Martens, J., & Hinton, G. (2011). Generating Text with Recurrent Neural

Networks. In Proceedings of the 28th international conference on machine learning (icml-

11) (pp. 1017–1024).

Sutskever, I., Vinyals, O., & Le, Q. V. (2014). Sequence to Sequence Learning with Neural

Networks. In Advances in neural information processing systems (nips) (pp. 3104–3112).

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., . . . Rabinovich, A. (2015).

Going deeper with convolutions. In Proceedings of the ieee conference on computer vision

and pattern recognition (pp. 1–9).

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2015). Rethinking the Inception

Architecture for Computer Vision. arXiv preprint arXiv:1512.00567 .

Theis, L., van den Oord, A., & Bethge, M. (2016). A note on the evaluation of generative

models. ICLR 2016 A.

Todd, S., & Latham, W. (1992). Evolutionary art and computers. Academic Press, Inc.

Touvron, H., Vedaldi, A., Douze, M., & Jégou, H. (2019). Fixing the train-test resolution

discrepancy: FixEfficientNe. Advances in Neural Information Processing Systems, 32 ,

12–16.

Tresset, P., & Deussen, O. (2014). Artistically Skilled Embodied Agents. (April).

Turing, A. (1948). Intelligent Machinery, A Heretical Theory (Tech. Rep.). National Physical

Laboratory. Retrieved from http://www.alanturing.net/intelligent machinery/

Turing, A. (1950). Computing Machinery and Intelligence. Mind , 59 (236), 433–460. Re-

trieved from papers2://publication/uuid/E74CAAC6-F3DD-47E7-AEA6-5FB511730877

doi: http://dx.doi.org/10.1007/978-1-4020-6710-5 3

Ulm, M. (n.d.). Das Alter des Löwenmenschen. Retrieved from http://www.loewenmensch.de/

figur 3.html

Van Den Oord, A., Vinyals, O., & Kavukcuoglu, K. (2017). Neural discrete representation

learning. Advances in Neural Information Processing Systems, 2017-Decem(Nips), 6307–

6316. Retrieved from http://arxiv.org/abs/1711.00937

van den Oord, A., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A., . . .

Kavukcuoglu, K. (2016). WaveNet: A Generative Model for Raw Audio. arXiv preprint

arXiv:1609.03499 .

van den Oord, A., Kalchbrenner, N., & Kavukcuoglu, K. (2016). Pixel Recurrent Neural

Networks. arXiv preprint arXiv:1601.06759 .

van den Oord, A., Kalchbrenner, N., Vinyals, O., Espeholt, L., Graves, A., & Kavukcuoglu,

Page 225

https://highnoongmt.wordpress.com/2015/05/22/lisls-stis-recurrent-neural-networks-for-folk-music-generation
https://highnoongmt.wordpress.com/2015/05/22/lisls-stis-recurrent-neural-networks-for-folk-music-generation
http://www.alanturing.net/intelligent_machinery/
papers2://publication/uuid/E74CAAC6-F3DD-47E7-AEA6-5FB511730877
http://www.loewenmensch.de/figur_3.html
http://www.loewenmensch.de/figur_3.html
http://arxiv.org/abs/1711.00937

References

K. (2016). Conditional Image Generation with PixelCNN Decoders. arXiv preprint

arXiv:1606.05328 .

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., . . . Polosukhin,

I. (2017). Attention is all you need. Advances in Neural Information Processing Systems,

2017-Decem, 5999–6009. Retrieved from https://zhuanlan.zhihu.com/p/34781297

Verma, P., & Smith, J. O. (2017). Neural Style Transfer for Audio Spectrograms. Machine

Learning for Creativity and Design - NIPS 2017 Workshop(Nips), 6–8.

Veton Këpuska, & Bohouta, G. (2017). Comparing Speech Recognition Systems (Microsoft

API, Google API And CMU Sphinx). International Journal of Engineering Research and

Applications, 07 (03), 20–24. doi: 10.9790/9622-0703022024

Vinyals, O., Babuschkin, I., Czarnecki, W. M., Mathieu, M., Dudzik, A., Chung, J., . . . Silver,

D. (2019). Grandmaster level in StarCraft II using multi-agent reinforcement learning.

Nature(575), 350–354.

Vinyals, O., Blundell, C., Lillicrap, T., Kavukcuoglu, K., & Wierstra, D. (2016). Matching

networks for one shot learning. Advances in Neural Information Processing Systems(Nips),

3637–3645.

Wang, S., Shao, M., & Fu, Y. (2014). Attractive or Not ? Beauty Prediction with Attractiveness-

Aware Encoders and Robust Late Fusion. ACM MM , 2–5. doi: 10.1145/2647868.2654986

Wang, T. C., Liu, M. Y., Zhu, J. Y., Tao, A., Kautz, J., & Catanzaro, B. (2018). High-Resolution

Image Synthesis and Semantic Manipulation with Conditional GANs. Proceedings of the

IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 8798–

8807. doi: 10.1109/CVPR.2018.00917

Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004). Image quality assessment:

From error visibility to structural similarity. IEEE Transactions on Image Processing ,

13 (4), 600–612. doi: 10.1109/TIP.2003.819861

Werbos, P. J. (1990). Backpropagation through time: what it does and how to do it. Proceedings

of the IEEE , 78 (10), 1559–1560.

White, T. (2016a). Sampling Generative Networks. arXiv preprint arXiv:1609.04468 . Retrieved

from http://arxiv.org/abs/1609.04468

White, T. (2016b). Smile Vector. Retrieved from https://twitter.com/smilevector

Wiener, N. (1948). Cybernetics or control and communication in the animal and the machine.

Technology Press.

Wright, M., & Freed, A. (1997). Open Sound Control: A new protocol for communicating with

sound synthesizers. In Proceedings of the 1997 international computer music conference

(icmc).

Wu, J., Zhang, C., Xue, T., Freeman, W. T., & Tenenbaum, J. B. (2016). Learning a Proba-

bilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling. (Nips).

Retrieved from http://arxiv.org/abs/1610.07584

Wu, Z., & King, S. (2016). Investigating Gated Recurrent Neural Networks for Speech Synthesis.

In Ieee international conference on acoustics, speech and signal processing (icassp) (pp.

5140–5144). IEEE.

Wu, Z., & Song, S. (2015). 3D ShapeNets : A Deep Representation for Volumetric Shapes.

Page 226

https://zhuanlan.zhihu.com/p/34781297
http://arxiv.org/abs/1609.04468
https://twitter.com/smilevector
http://arxiv.org/abs/1610.07584

References

IEEE Conference on Computer Vision and Pattern Recognition (CVPR2015), 1–9. doi:

10.1109/CVPR.2015.7298801

Xian, Y., Lampert, C. H., Schiele, B., & Akata, Z. (2018). Zero-Shot Learning - A Compre-

hensive Evaluation of the Good, the Bad and the Ugly. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 1–14. doi: 10.1109/TPAMI.2018.2857768

Xie, S., & Tu, Z. (2017). Holistically-Nested Edge Detection. International Journal of Computer

Vision, 125 (1-3), 3–18. doi: 10.1007/s11263-017-1004-z

Yang, J., Anishchenko, I., Park, H., Peng, Z., Ovchinnikov, S., & Baker, D. (2020). Improved

protein structure prediction using predicted interresidue orientations. Proceedings of the

National Academy of Sciences of the United States of America, 117 (3), 1496–1503. doi:

10.1073/pnas.1914677117

Zaremba, W., Sutskever, I., & Vinyals, O. (2014). Recurrent Neural Network Regularization.

Icrl(2013), 1–8. Retrieved from http://arxiv.org/abs/1409.2329

Zeiler, M. D., & Fergus, R. (2013). Visualizing and Understanding Convolutional Networks.

arXiv preprint arXiv:1311.2901 .

Zhao, H., Gallo, O., Frosio, I., & Kautz, J. (2015). Loss Functions for Neural Networks for

Image Processing. arXiv preprint arXiv:1511.08861 .

Zhao, S., Song, J., & Ermon, S. (2017). InfoVAE: Information Maximizing Variational Autoen-

coders. Retrieved from http://arxiv.org/abs/1706.02262

Zhu, J. Y., Park, T., Isola, P., & Efros, A. A. (2017). Unpaired Image-to-Image Translation

Using Cycle-Consistent Adversarial Networks. Proceedings of the IEEE International

Conference on Computer Vision, 2017-Octob, 2242–2251. doi: 10.1109/ICCV.2017.244

Zoph, B., Vasudevan, V., Shlens, J., & Le, Q. V. (2018). Learning Transfer-

able Architectures for Scalable Image Recognition. Proceedings of the IEEE

conference on computer vision and pattern recognition, 8697–8710. Retrieved

from http://openaccess.thecvf.com/content cvpr 2018/papers/Zoph Learning

Transferable Architectures CVPR 2018 paper.pdf

Page 227

http://arxiv.org/abs/1409.2329
http://arxiv.org/abs/1706.02262
http://openaccess.thecvf.com/content_cvpr_2018/papers/Zoph_Learning_Transferable_Architectures_CVPR_2018_paper.pdf
http://openaccess.thecvf.com/content_cvpr_2018/papers/Zoph_Learning_Transferable_Architectures_CVPR_2018_paper.pdf

	Abstract
	Acknowledgements
	List of Figures
	List of algorithms
	Introduction & Motivations
	Background
	Why Deep Learning?
	Meaningful Human Control
	Pressing a button
	`Random' faders
	Necessary and sufficient conditions

	Visual instruments: Realtime Continuous Control
	Realtime Continuous Control
	Visual instruments
	Realtime performative interaction
	Goal-less exploration
	Flow

	Creative DL Meaningful & Realtime Continuous Control
	The State
	The Problem
	The Reason

	Conclusion: why is this important
	Research
	Research summary
	Research methods and evaluation

	Summary of contributions and impact
	Press
	Invited presentations and panels
	Public showings
	Opensource software

	Thesis outline

	Background
	Generative models
	Unconditional generative models
	Conditional generative models
	Latent manipulations
	`Generative' terminology in different domains

	Very brief histories
	Generative art
	AI and ML in art, pre-Deepdream
	Interactive media art
	Visual instruments
	Convergence
	Creative DL AI Art Creative AI
	Creative Deep Learning — from a cultural perspective
	Computational Creativity
	Machine Learning for Artistic, Expressive Human Computer Interaction (AE-HCI)

	Introduction to Deep Learning
	Overview
	Machine Learning (ML)
	Artificial Neural Networks (ANN)
	Feed-forward (FNN) vs Recurrent Neural Networks (RNN)
	Layers
	Multi-Layer Perceptrons (MLP)
	Universal function approximators, expressive power
	Learning
	Loss functions
	Gradient descent and backpropagation
	Optimisation algorithms
	Deep Neural Networks (DNN)
	Hyperparameter search
	Classes of learning
	Convolutional Neural Networks (CNN)
	Auto-Encoders (AE)
	Variational Auto-Encoders (VAE)
	Deep Convolutional Generative Adversarial Networks (DCGAN)
	Recurrent Neural Networks (RNN)
	Monte Carlo Tree Search

	Conclusion

	Realtime sequence generation with continuous control
	Introduction
	Collaborative generative sketching with MCTS and CNNs
	Introduction
	Background
	Overview
	System description
	Results and discussion

	Realtime interactive text generation with RNN ensembles
	Introduction
	Background
	Overview
	System description
	Results and discussion

	Conclusion

	Hello World: Realtime interactive training as an informative and performative tool
	Introduction
	Motivations
	Background
	System description
	Hyperparameters
	Batch size, exponentially decaying memory and augmentation

	Experiments and results
	Optimiser and associated hyperparameters
	Reconstruction loss
	Latent loss and variational reparametrisation
	Video feed manipulations

	Conclusions

	Learning to see: Digital puppetry through realtime video transformation
	Introduction
	Overview
	System description
	Datasets
	Training
	Inference

	Experiments and results
	Augmented drawing
	Digital puppetry
	Live parameter manipulation

	Conclusion

	Deep Meditations: Latent storytelling
	Introduction
	Background and motivations
	Goal and requirements
	Main tasks
	Additional issues

	System description
	Concepts and definitions
	Exploration of the model
	The narrative edit
	The narrative conform
	Trajectory planner
	The final render
	Model architecture and data
	Trajectory planner details

	Conclusion

	Conclusion
	Summary of research background and objectives
	Research methodology
	Summary of contributions and outcomes
	Future directions
	Final thoughts — Human-Machine Collaboration

	References
	Untitled

