
A Comprehensive Review on Broken Hashing Algorithms

Alireza Sadeghi-Nasab, Vahid Rafe

Computer Engineering Group, Faculty of Engineering, Arak University, Arak, Iran

sadeghinasab.alireza@gmail.com, v-rafe@araku.ac.ir

Abstract

Hash functions, which were originally designed for use in a few cryptographic schemes with specific security needs, have since

become regular fare for many developers and protocol designers, who regard them as black boxes with magical characteristics.

Message digesting, password verification, data structures, compiler operation and linking file name and path together are

contemporary examples of hash functions applications. Since 2004, we've observed an exponential increase in the number and

power of attacks against standard hash algorithms. In this paper, we investigated well known broken hashing algorithms. A hash

function is said to be broken when an attack is found, which, by exploiting special details of how the hash function operates, finds

a preimage, a second preimage or a collision faster than the corresponding generic attack. We collected information on all broken

hashing algorithms, including their features, applications and attacks. To increase background knowledge, we also provide a

summary of the types of attacks in this area.

Keywords: Broken hashing algorithms; cryptography; collision attack; preimage attack.

1. Introduction

Hashing is the process of changing a sequence of characters
(string) known as the key into a usually shorter fixed-length
sequence of characters known as the hash value in computer
science. The input is used as the key in a hash function, and the
result is the hash value, or hash for short. Simply, the major
benefit and usage of hashing is to save time. Instead of searching
a database for the complete original string, for example, only the
hash value must be examined, reducing the number of resources
required for a search query [1]. The most fundamental concept
to grasp when it comes to hashing is that the hash function
should, in theory, map each key to a unique hash result. In other
words, each string can only match one hash, therefore if you use
the same input to the hash function numerous times, the result
will always be the same. Furthermore, a key should not have the
hash of another key as a result [2]. Because there are so many
different hash functions for different purposes with varied inputs
and outputs, every method must have the same goal as the
requirement mentioned above. As a result, while a given hashing
method may perform well for database operations, it is unlikely
to work well for error checking or cryptography [3].
Applications of hash functions can be listed as follows:

• File verification: The verification of message integrity
is an essential use of secure hashes. Message digests
(hash digests over the message) calculated before and
after transmission can be used to determine whether the
message or file has been modified. Malicious alterations
to the file are detected using a cryptographic hash and a
chain of trust. Non-cryptographic error-detecting codes
like cyclic redundancy checks only protect the file from
non-malicious changes, as a purposeful spoof may
easily be created with the conflicting code value [4].

• Digital signature: Almost all digital signature systems
necessitate the calculation of a cryptographic hash over
the message. This enables the signature calculation to be

done on the hash digest's relatively short, statically sized
size. If the signature verification succeeds over the
message with the signature and recalculated hash digest,
the message is regarded legitimate. As a result, the
cryptographic hash's message integrity attribute is used
to develop secure and efficient digital signature
techniques [5].

• Password verification: Cryptographic hashes are often
used to verify passwords. If the password file is
compromised, storing all user credentials in cleartext
can result in a catastrophic security breach. Only storing
the hash digest of each password is one method to
mitigate this risk. To authenticate a user, the user's
password is hashed and compared to a previously saved
hash. When password hashing is implemented, a
password reset procedure is required; original
passwords cannot be regenerated using the stored hash
value. Due to the fact that standard cryptographic hash
functions are meant to be computed quickly, it is easy to
try guessed passwords at a high pace. Every second,
common graphics processing units may try billions of
different passwords. A big random, non-secret salt value
that can be kept with the password hash is required for
a password hash. The salt randomizes the password hash
output, making it impossible for an adversary to keep
tables of passwords and precomputed hash values with
which to compare the password hash digest. A
cryptographic key can be created from the result of a
password hash function. As a result, password hashes
are also referred to as password-based key derivation
functions (PBKDFs) [6].

• Proof of work: A proof-of-work system (or protocol, or
function) is an economic mechanism that requires some
labor from the service requester, usually in the form of
computer processing time, to dissuade denial-of-service
attacks and other service abuses such as spam on a

network. The asymmetry of these systems is a critical
feature: the requester's effort must be relatively difficult
(but possible), while the service provider's labor must be
simple to verify. Partially hashed inversions are
employed in one common method – utilized in Bitcoin
mining and Hashcash – to prove that work was done, to
unlock a mining reward in Bitcoin, and as a good-will
token to send an e-mail in Hashcash. The sender must
locate a message with a hash value that starts with a
number of zero bits. The average amount of effort
required by the sender to find a valid message is
proportional to the number of zero bits in the hash value,
whereas the recipient can check the message's
correctness by executing a single hash function. In
Hashcash, for example, a sender is required to create a
header with a 160-bit SHA-1 hash value with the first
20 bits set to zero. The sender will have to try 219 times
on average to find a proper header [7].

• File or data identifier: Several source code management
systems, such as Git, Mercurial, and Monotone, use the
sha1sum of various sorts of content (file content,
directory trees, ancestry information, and so on) to
uniquely identify them. On peer-to-peer filesharing
networks, hashes are used to identify files. An MD4-
variant hash is paired with the file size in an ed2k link,
for example, providing enough information for

discovering file sources, downloading the file, and
confirming its contents. Another example is magnet
links. These file hashes are frequently the top hash of a
hash list or tree, allowing for further benefits. One of the
most common uses of a hash function is to look up data
in a hash table quickly. Cryptographic hash functions
are a special type of hash function that lends itself nicely
to this application. Cryptographic hash functions, on the
other hand, are far more computationally expensive than
ordinary hash functions. As a result, they're most
commonly utilized in situations where consumers need
to protect themselves from forging (the production of
data with the same digest as the expected data) by
possibly hostile actors [8].

Although there is a huge list of cryptographic hash functions,
many of them have been shown to be susceptible and should be
avoided. Even if a hash function has never been cracked, a
successful attack on a weakened variation may cause experts to
lose faith [9].

The rest of this paper is organized as follows. In section 2,
we review hashing algorithms construction methods. In section
3, well known types of attacks are reviewed. In section 4 which
is the main part of our paper, all known hash algorithms that
were attacked were investigated. Finally, the paper is concluded
in section 6.

2. Construction of Hashing Algorithms

Cryptographic hash functions convert arbitrary (or very
long) input strings into short, fixed-length output strings. Diffie
and Hellman highlighted the necessity for a one-way hash
function as a building element of a digital signature system in
their landmark paper on public-key cryptography from 1976
[10]. The late 1970s work of [11], [12], and [13] provided the
first definitions, analyses, and constructions for cryptographic
hash functions.

The requirement for a fast and secure hash function was well
acknowledged in the 1980s. A considerable number of designs
were made in the late 1980s and early 1990s; about 50 concepts
were known in 1993, but at least two-thirds of them were broken.
Only a few of those early schemes are still secure after fifteen
years of cryptanalysis [14].

The status of the three main groups of hash functions is then
discussed: block cipher hash functions, modular arithmetic hash
functions, and dedicated hash functions.

2.1. Hash Functions Based on Block Ciphers

The initial implementations of hash functions were all based
on block ciphers, specifically DES [15]. This approach has
numerous advantages: a block cipher's design and evaluation
effort can be reused, and very compact implementations can be
obtained. However, it's possible that a block cipher includes key
scheduling flaws that have just a minor influence on encryption
but are undesirable when employed in a hash function. The weak
keys in DES [16] and the key schedule flaws in AES-192 [17]
and AES-256 [18] are two examples.

Because most block ciphers have a block length of 64 or 128
bits, which is clearly insufficient for collision resistance, the
challenging problem is how to design hash functions with a
result that is greater than the block length. This subject has
proven to be quite tough; significant progress has been done in
terms of cryptanalysis and design [19] [20]. It is fair to say that
our grasp of how to develop hash functions from simple building
blocks is improving; yet, it is unclear if the most efficient hash
functions can be designed by starting with a block cipher [21].

2.2. Hash Functions Based on Arithmetic Primitives

Hash function structures have also drawn inspiration from
public key cryptography, particularly modular arithmetic. As a
result, hash functions with a security proof based on number
theoretic assumptions like factoring and discrete logarithm have
been developed. The performance of schemes based on additive
or multiplicative knapsacks is appealing. Despite the theoretical
basis, however, real constructs have not fared well up to this
point [22].

2.3. Dedicated Hash Functions

The constraints of hash functions based on block ciphers
necessitated a number of new designs. These hash functions
were among the first to be designed for use in software rather
than hardware implementations on microprocessors [23].

Dedicated hash functions are built from the ground up with
the goal of hashing plain text with optimal efficiency while
avoiding the use of existing system components like block
ciphers and modular arithmetic. Hard issues like factorization
and discrete logarithms aren't used to create these hash
functions. A serial sequential repetition of a small step function

is the most typical approach of building compression functions
for dedicated hash functions [24].

3. Attacks on Hashing Algorithms

Since hash algorithms are often used in critical capabilities,
they have always been attacked. In this section, we will discuss
the types of these attacks.

3.1. Collision Attack

A Hash Collision Attack aims to locate two hash function
input strings that generate the same hash result. Because hash
functions have an indefinite input length and a predefined output
length, it's unavoidable that two different inputs will create the
same output hash. A collision occurs when two different inputs
give the same hash output. Any program that compares two
hashes together, such as password hashes, file integrity checks,
and so on, can take advantage of this collision. Of course, the
chances of a collision are slim, especially for functions with
huge output values. The ability to brute force hash collisions
becomes more and more realistic as available processing power
grows [25].

In practice, there are various ways to take advantage of a
hash collision. If the attacker was giving a file download and
displaying the hash to guarantee the file's integrity, he might
substitute a new file with the same hash and the person
downloading it would have no way of knowing the difference.
Because it contains the same hash as the supposed actual file,
the file appears to be valid [26].

3.2. Preimage Attack

A preimage attack on cryptographic hash functions aims to
find a message with a certain hash value in cryptography. A
cryptographic hash function's preimage should be resistant to
attacks (set of possible inputs).

There are two types of preimage resistance in the context of
an attack:

• Preimage resistance: it is computationally infeasible to
discover any input that hashes to any pre-specified
output; that is, given y, it is difficult to find an x such
that h(x) = y.

• Second-preimage resistance: finding another input that
produces the same output for a given input is
computationally infeasible; i.e., given x, finding a

second input x′ x such that h(x) = h(x′) is tough [27].

These can be compared to collision resistance, which states

that finding any two separate inputs x, x′ that hash to the same

output (i.e., h(x) = h(x′) is computationally impossible.

Collision resistance entails second-preimage resistance, but it
does not imply preimage resistance. A collision attack, on the
other hand, is implied by a second-preimage attack (due to the

fact that, in addition to x′, x is already known) [28].

An ideal hash function is one in which a brute-force attack is
the fastest way to compute the first or second preimage. This
attack has a temporal complexity of 2𝑛 for an n-bit hash, which
is too high for a typical output size of n = 128 bits. If an opponent
can only attain this level of complexity, the hash function is

deemed preimage-resistant. However, quantum computers

undertake a structured preimage attack in √2𝑛 = 2
𝑛

2 , implying
a second preimage and consequently a collision attack [29]. By
cryptanalyzing particular hash functions, faster preimage attacks
can be discovered, and they are unique to that function.
Although several substantial preimage attacks have been
developed, they are still not feasible. Many Internet protocols
would be severely harmed if a practical preimage attack was
uncovered. In this situation, "realistic" means that an attacker
with a fair number of resources could carry it out. A preimaging
attack that costs trillions of dollars and takes decades to
preimage one desired hash value or message, for example, is not
realistic; one that costs a few thousand dollars and takes a few
weeks could be [30].

3.3. Birthday Attack

A birthday attack is a form of cryptographic attack that takes
advantage of the probability theory mathematics underpinning
the birthday problem. This attack can be used to manipulate two
or more parties' communication. The attack is based on the
increased frequency of collisions discovered between random
attack attempts and a fixed number of permutations
(pigeonholes). It is possible to find a collision of a hash function

in √2𝑛 with a birthday attack, with 2𝑛 being the standard

preimage resistant security. In √2𝑛3
, quantum computers can

undertake birthday attacks, thus bypassing collision resistance,
according to a general result [31].

A birthday attack on digital signatures is possible. Typically,
a message m is signed by computing f(m), where f is a
cryptographic hash function, and then signing using a secret key
(m). Let's say Mallory wants to dupe Bob into signing a phony
contract. Mallory drafts a legitimate contract m and a fictitious
contract m'. She then looks for places where m can be altered
without changing the meaning, such as commas, blank lines, one
vs two spaces after a sentence, synonym replacement, and so on.
She may build a tremendous number of permutations on m by
mixing these adjustments, all of which are fair contracts.
Mallory builds a large number of variations on the fraudulent
contract m' in a similar fashion. She then applies the hash
function to all of these permutations until she discovers a fair
contract version and a fraudulent contract version with the same
hash value, f(m) = f(m'). She hands Bob the fair version for him
to sign. Mallory grabs Bob's signature and attaches it to the
forged contract after he signs. This signature "proves" Bob's
involvement in the phony contract [32].

3.4. Boomerang Attack

The boomerang attack is a cryptanalysis approach for block
ciphers based on differential cryptanalysis in cryptography.
David Wagner released the attack in 1999, and it was used to
break the COCONUT98 encryption. The boomerang attack has
opened up new attack pathways for many ciphers previously
thought to be immune to differential cryptanalysis. Differential
cryptanalysis is used in the boomerang attack. In differential
cryptanalysis, an attacker takes advantage of how differences in
the plaintext input to a cipher might alter the difference at the
output (the ciphertext). All, or almost all, of the cipher must be
covered by a high-probability "differential" (that is, an input
difference that will yield a likely output difference). The

boomerang attack allows differentials that only cover a portion
of the cipher to be used [33].

3.5. Rebound Attack

The rebound attack is a cryptographic hash function
cryptanalysis technique. Florian Mendel, Christian Rechberger,
Martin Schläffer, and Sren Thomsen initially reported the attack
in 2009. The Rebound Attack is a statistical attack on hash
functions that uses rotational and differential cryptanalysis
techniques to identify collisions and other interesting
characteristics. The attack's main concept is to look for a specific
differential characteristic in a block cipher (or a portion of one),
a permutation, or another sort of primitive. the rebound attack
consists of 2 phases:

1. The inbound (or match-in-the-middle) phase
encompasses the portion of the differential
characteristic that is difficult to satisfy probabilistically.
The goal is to identify a large number of solutions with
a low average complexity for this component of the
feature. To do so, the set of equations that describes the
characteristic in this phase should be underdetermined.
When looking for a solution, there are many degrees of
freedom available, resulting in a wide range of options.
The inbound phase can be performed numerous times in
order to get a large enough number of beginning
locations for the outbound phase to succeed.

2. Each solution from the inbound phase is propagated
outwards in both directions in the outbound phase, with
the characteristic being checked in both directions. The
characteristic's probability in the outbound phase should
be as high as possible.

The capacity to efficiently calculate the problematic
elements of the differential characteristic in the inbound phase is
a benefit of using an inbound and two outbound phases. It also
ensures a high possibility of success in the outbound phase. As
a result, the total likelihood of discovering a differential feature
is increased when compared to typical differential approaches.

The inbound phase will often start with a small number of
active state bytes (bytes with non-zero differences), then
propagate to a large number of active bytes in the middle of the
round, before returning to a low number of active bytes at the
end. The concept is to have a large number of active bytes at an
S-input boxes and output in the middle of the phase.
Characteristics may therefore be determined quickly by
selecting values for the differences at the beginning and end of
the inbound phase, propagating them to the middle, and looking
for matching in the S-input boxes and output. This can usually
be done row- or column-wise for AES-like ciphers, making the
method rather efficient. In the incoming phase, differing starting
and ending values result in a variety of differential features.

The purpose of the outbound phase is to assess whether the
intended characteristics are followed by propagating the
characteristics discovered in the inbound phase backwards and
forwards. Truncated differentials are commonly employed in
this case since they provide higher probabilities and the
particular values of the differences are unimportant for the
purpose of identifying a collision. The number of active bytes in

the characteristic and how they are ordered in the characteristic
determine the likelihood of the characteristic following the
desired pattern of the outgoing phase. It is not sufficient for the
differentials in the outbound phase to be of a specified type to
achieve a collision. Any active bytes at the beginning and end of
the characteristic must have a value that cancels any feed-
forward operation. As a result, any number of active bytes at the
start and conclusion of the outgoing phase should be in the same
location while creating the characteristic. The probability of
these bytes canceling contributes to the outbound characteristic's
probability [34].

3.6. Length Extension Attack

A length extension attack is a form of attack in cryptography
and computer security in which an attacker can calculate
Hash(𝑚𝑒𝑠𝑠𝑎𝑔𝑒1 || 𝑚𝑒𝑠𝑠𝑎𝑔𝑒2) for an attacker-controlled
𝑚𝑒𝑠𝑠𝑎𝑔𝑒2 using Hash(𝑚𝑒𝑠𝑠𝑎𝑔𝑒1) and the length of
𝑚𝑒𝑠𝑠𝑎𝑔𝑒1 , without knowing the content of 𝑚𝑒𝑠𝑠𝑎𝑔𝑒1 . The
majority of algorithms based on the Merkle–Damgrd structure
are vulnerable to this type of attack. A length extension attack
allows anyone to include extra information at the end of the
message and produce a valid hash without knowing the secret
when a Merkle–Damgrd based hash is used as a message
authentication code with construction H(secret || message) and
message and the length of secret is known. HMAC hashes are
not vulnerable to length extension attacks because they do not
use this architecture [35].

The vulnerable hashing functions work by transforming an
internal state using the input message. The hash digest is formed
by outputting the internal state of the function after all of the
input has been processed. The internal state can be reconstructed
from the hash digest, which can then be utilized to process fresh
data. In this approach, the message can be extended and the hash
that is a valid signature for the new message can be computed
[36].

4. Broken Hashing Algorithms

In this section, we discuss all broken hash algorithms. We
first give a summary of their features and functions and then
explain how they are broken. It should be noted that here, the
algorithms are listed in order of their publish date.

4.1. MD2

The MD2 Message-Digest Algorithm was created by Ronald
Rivest in 1989 as a cryptographic hash function [37]. The
technique is designed for computers with an 8-bit processor.
RFC 1319 of the Internet Engineering Task Force specifies MD2
[38]. Despite the fact that MD2 has not yet been totally
penetrated, the IETF designated it as "historic" in 2011, noting
"signs of weakness." In favor of SHA-256 and other robust
hashing algorithms, it has been deprecated. Nonetheless, as of
2014, it was still being used in public key infrastructures as part
of MD2 and RSA certificates [39].

Collisions of MD2's compression function were disclosed by
Rogier and Chauvaud (1997), albeit they were unable to extend
the attack to the entire MD2 [40]. MD2 was discovered to be
vulnerable to a preimage attack with a time complexity
comparable to 2104 compression function operations in 2004.

"MD2 can no longer be called a secure one-way hash algorithm,"
writes the author [37]. MD2 improved on a preimage attack in
2008, with a time complexity of 273 compression function
evaluations and 273 message blocks in memory. MD2 was
discovered to be vulnerable to a collision attack in 2009,
requiring 263.5 compression function executions and 252 hash
values in memory. The birthday attack, which is estimated to
require 262.5 compression function evaluations, is marginally
better [41]. OpenSSL, GnuTLS, and Network Security Services
all received security patches in 2009 that disabled MD2 [42].

4.2. Snefru

Ralph Merkle devised Snefru, a cryptographic hash function,
in 1990. The function can output data in 128-bit and 256-bit
formats. It was named after Egyptian Pharaoh Sneferu, carrying
on the Khufu and Khafre block ciphers' legacy [43].

Eli Biham and Adi Shamir were able to employ differential
cryptanalysis to uncover hash collisions, proving that Snefru's
initial architecture was insecure. After then, the design was
tweaked by increasing the number of iterations in the algorithm's
main pass from two to eight. Although differential cryptanalysis
can crack the improved version with less complexity than brute
force search (a certification flaw), the attack requires 288.5
operations, making it impractical in reality at the moment [44].

4.3. MD4

Ronald Rivest created the MD4 Message-Digest Algorithm
in 1990. A 128-bit digest is used. Later designs, like the MD5,
SHA-1, and RIPEMD algorithms, were influenced by the
method [45]. On Microsoft Windows NT, XP, Vista, 7, 8, and
10, MD4 is used to create NTLM password-derived key digests
[46].

In a paper published in 1991, Den Boer and Bosselaers
revealed MD4's flaws [47]. Hans Dobbertin discovered the first
full-round MD4 collision attack in 1995, which took only
seconds to execute at the time [48]. Wang et al. discovered an
extremely effective collision attack, as well as attacks on later
hash function designs in the MD4/MD5/SHA-1/RIPEMD
family, in August 2004. Later work by Sasaki et al. enhanced
this result, and today producing a collision is as cheap as
validating it (a few microseconds) [49]. Gatan Leurent also
cracked MD4's preimage resistance in 2008, using a 2102 attack
[50]. Guo et al. disclosed a 299.7 attack in 2010 [51]. RFC 6150
stated in 2011 that RFC 1320 (MD4) is historic (obsolete).
Figure 1 shows a collision example of MD4:

Figure 1. MD4 collision example

4.4. MD5

Ronald Rivest devised and implemented MD5, a
cryptographic hash function, in 1992 with the goal of upgrading
MD4 after the algorithm was severely hacked [52]. MD5 and
MD4 are part of a sequence of message digest algorithms in
which the successors were conceived and developed to replace
the predecessors. The algorithm's output specification is a 32-
digit hexadecimal number that is a 128-bit (16-byte) hash value.
The technique is mostly based on 32-bit integers and includes
addition and bitwise operations including XOR, OR, AND,
bitwise rotation, and Add (mod 232). MD5 was once one of the
most widely used hash functions; however, due to a main flaw,
the algorithm is no longer suitable for use in applications such
as cryptographic ones [53].

In 1993, B. den Boer and A. Bosselaers discovered a
"pseudo-collision" consisting of the identical message with two
different sets of beginning values a year after MD5 was created,
revealing a flaw in the algorithm [54]. Despite this, no hard
evidence of collisions was discovered until 2004. Xiaoyun
Wang and Hongbo Yu devised a specially constructed attack
known as modular differential, which got MD5 collisions in 15
minutes to an hour of computing time [55]. This attack isn't
limited to MD5, but it can also be used to break other functions
like HAVAL-128, SHA-0, and RIPEMD. The attack is
complicated in general because it necessitates a thorough
understanding of the inner mechanics of MD5's algorithm.
Regardless, the results showed that MD5 has two pairs of
collisions, confirming its vulnerability to collisions, which
turned out to be very plausible. Many MD5 collisions have been
discovered since then, like the one depicted in Figure 2, in which
the two message blocks hash to the same value of
79054025255fb1a26e4bc422aef54eb4.

Figure 2. MD5 collision example

4.5. RIPEMD

The RIPEMD (RIPE Message Digest) family of
cryptographic hash functions was created in 1992 (the first
RIPEMD) and 1996 (the second RIPEMD) (other variants).
RIPEMD, RIPEMD-128, RIPEMD-160, RIPEMD-256, and
RIPEMD-320 are the five functions in the family, with
RIPEMD-160 being the most frequent. The original RIPEMD,
as well as RIPEMD-128, are not regarded secure due to the 128-
bit result being too small, as well as design flaws (for the original
RIPEMD). The RIPEMD 256-bit and 320-bit variants give the
same level of security as RIPEMD-128 and RIPEMD-160,
respectively; they are meant for applications where the security

level is appropriate but a longer hash result is required. While
RIPEMD functions are less well-known than SHA-1 and SHA-
2, they are utilized in Bitcoin and other Bitcoin-based coins [56].

In August 2004, a collision was reported for the original
RIPEMD [57]. This does not apply to RIPEMD-160 [58].

4.6. HAVAL

HAVAL is a hash function for cryptography. HAVAL,
unlike MD5, can generate hashes of various lengths: 128 bits,
160 bits, 192 bits, 224 bits, and 256 bits. The number of rounds
(3, 4, or 5) utilized to compute the hash can also be specified
with HAVAL. Yuliang Zheng, Josef Pieprzyk, and Jennifer
Seberry invented this algorithm in 1992. HAVAL hashes (also
known as fingerprints) are usually 32-, 40-, 48-, 56-, or 64-digit
hexadecimal values. The following shows a 43-byte ASCII input
and the HAVAL hash that corresponds (256 bits, 5 passes) [59].

The usage of HAVAL (at least the variation with 128 bits
and three passes with 26 operations) is now called into doubt
due to flaws discovered during research. Xiaoyun Wang,
Dengguo Feng, Xuejia Lai, and Hongbo Yu reported collisions
for HAVAL (128 bits, 3 passes) on August 17, 2004 [57].

4.7. SHA-0

The Secure Hash Algorithms are a set of cryptographic hash
functions published as a U.S. Federal Information Processing
Standard (FIPS) by the National Institute of Standards and
Technology (NIST). The original version of the 160-bit hash
function, known as "SHA," was released in 1993 and was given
the moniker "SHA-0." It was pulled soon after publishing due to
a disclosed "significant fault" and replaced by the slightly altered
SHA-1 version [23].

Florent Chabaud and Antoine Joux, two French researchers,
presented an attack on SHA-0 at CRYPTO 98: collisions may
be identified with a complexity of 261, which is lower than the
280 for an ideal hash function of the same size [60]. Biham and
Chen discovered SHA-0 near-collisions in 2004. two messages
that hash to virtually the same result. in this case, 142 out of 160
bits are equal. They also discovered that entire SHA-0 collisions
were decreased to 62 out of 80 cycles [61]. Joux, Carribault,
Lemuet, and Jalby then announced a collision for the complete
SHA-0 algorithm on August 12, 2004. A generalization of the
Chabaud and Joux attack was used to accomplish this. On a
supercomputer with 256 Itanium 2 processors, finding the
collision had a complexity of 251 and required roughly 80,000
processor hours (equivalent to 13 days of full-time use of the
computer) [62]. Wang, Feng, Lai, and Yu presented preliminary
results of an attack against MD5, SHA-0, and other hash
algorithms at the CRYPTO 2004 Rump Session on August 17,
2004. Their SHA-0 attack has a complexity of 240 , which is
much better than Joux et al [57]. Xiaoyun Wang, Yiqun Lisa
Yin, and Hongbo Yu announced an attack in February 2005 that
could identify collisions in SHA-0 in 239 operations [63].
Another attempt using the boomerang attack in 2008 reduced the
difficulty of discovering collisions to 233.6, which was expected
to take 1 hour on an ordinary PC in 2008 [64].

4.8. GOST

The GOST hash function is a 256-bit cryptographic hash
function established in the standards GOST R 34.11-94 and
GOST 34.311-95. It was first defined in GOST R 34.11-94
Information Technology – Cryptographic Information Security
– Hash Function, a Russian national standard. GOST converts a
variable-length message into a 256-bit fixed-length output. The
input message is divided into 256-bit blocks (eight 32-bit little
endian integers) and padded with as many zeros as are required
to get the message length up to 256 bits. The remaining bits are
filled with a 256-bit integer reflecting the length of the original
message in bits, followed by a 256-bit integer representing the
arithmetic total of all previously hashed blocks [65].

The full-round GOST hash algorithm was broken by an
attack disclosed in 2008. A collision attack in 2105 time, as well
as first and second preimage attacks in 2192 time, are presented
in this study (2𝑛 time refers to the approximate number of times
the algorithm was calculated in the attack) [66].

4.9. SHA-1

The National Security Agency (NSA) developed secure hash
algorithm 1 (SHA-1) in 1995, based on SHA-0, and the National
Institute of Standards and Technology (NIST) released it as a
Federal Processing Standard in 1996. SHA-1 is a member of the
SHA family (SHA-0, SHA-1, SHA-2, SHA-3) developed by the
National Security Agency (NSA) and adopted by several
government platforms following its release. SHA-1 produces a
160-bit (20-byte) hash value that accepts communications with
less than 264 bits as input. The hash value is usually represented
as a 40-digit hexadecimal number. The design ideas of MD4 and
MD5 were used to create SHA-1. They are the same as MD5 in
terms of operations employed in the function [67].

Unlike MD5, SHA-1 has no known clashes with message
blocks or passwords as of now. NIST, on the other hand, stopped
using SHA-1 in 2005 because cryptanalysts discovered flaws in
the function's architecture, indicating that collisions might be
found with fewer computations than a brute force attack. As a
result, NIST mandated that SHA-1 be replaced by SHA-2 by
2010. Google and Mozilla recently declared that encrypted SSL
certificates with expiration dates after December 31𝑠𝑡, 2016 will
no longer be trusted by their respective browsers [68] [69]. In
compared to MD5, however, the replacement of SHA-1 has not
progressed significantly, and its replacement from mainstream
applications is still a big work in progress.

Following the disclosure of SHA-1's flaws in 2005, Xiaoyun
Wang, Yiqun Lisa Yin, and Hongbo Yu presented research
showing that finding a collision in SHA-1 required only 269
operations. The number of processes required would be 280 in
contrast to a brute force search [70]. In 2015, a group of people
led by Marc Stevens, Pierre Karpman, and Thomas Peyrin
demonstrated a SHA-1 collision attack devised by Marc
Stevens. With 257.5 operations in 2010, Marc Steven claims to
have discovered near-working collisions against SHA-1. Using
a 16-node cluster and 64 Graphical Processing Units (GPUs), a
free-start collision was discovered. An actual collision might be
identified for $75,000 to $120,000 US, according to the authors,
which is within a criminal organization's budget and the NSA's
[71]. The SHAttered attack was announced on February 23,

2017, by the CWI (Centrum Wiskunde & Informatica) and
Google, in which they created two separate PDF files with the
identical SHA-1 hash in around 263.1 SHA-1 evaluations. This
approach is 100,000 times faster than using a birthday attack to
brute force a SHA-1 collision, which is predicted to take 280
SHA-1 evaluations. The attack requires 6,500 years of single-
CPU computations and 110 years of single-GPU computations
in order to be successful [72]. A paper presented at Eurocrypt
2019 on April 24th by Gatan Leurent and Thomas Peyrin
described an improvement to the previously greatest chosen-
prefix attack in Merkle–Damgrd–like digest functions based on
Davies–Meyer block ciphers. This approach can now discover
chosen-prefix collisions in about 268 SHA-1 evaluations thanks
to these enhancements. This is roughly 1 billion times faster (and
now usable for many targeted attacks, thanks to the ability to
choose a prefix, for example malicious code or faked identities
in signed certificates) than the previous attack's 277.1
evaluations (but without chosen prefix, which was impractical
for most targeted attacks because the found collisions were
almost random) and is fast enough to be practical for resourceful
attackers, requiring around $100,000 of coding [73]. The authors
published an enhanced attack on January 5, 2020. They show a
chosen-prefix collision attack with a complexity of 263.4 in this
work, which would cost 45k USD per created collision at the
time of publishing [74].

4.10. Tiger

Tiger is a cryptographic hash function created in 1995 by
Ross Anderson and Eli Biham for 64-bit platforms. Tiger hash
values are 192 bits in length. For compliance with protocols that
assume a specific hash size, truncated versions (known as
Tiger/128 and Tiger/160) can be utilized. Unlike the SHA-2
family, there are no distinct initialization values; instead, they
are just prefixes to the complete Tiger/192 hash value. Tiger is
widely used as part of a Merkle hash tree, which is referred to as
TTH (Tiger Tree Hash). Many clients on the Direct Connect and
Gnutella file sharing networks use TTH, and it can be put in the
BitTorrent metafile to improve content availability. Tiger was
considered for inclusion in the OpenPGP standard, but
RIPEMD-160 was chosen instead [75].

Except for pseudo-near collision, there are no known viable
attacks on the complete 24-round Tiger, unlike MD5 or SHA-
0/1 [76]. While MD5 processes its state with 64 simple 32-bit
operations per 512-bit block and SHA-1 with 80, Tiger
processes its state with a total of 144 such operations per 512-bit
block, including huge S-box look-ups for added security. John
Kelsey and Stefan Lucks discovered a collision-finding attack
on 16-round Tiger with a time complexity of roughly 244
compression function invocations, as well as another attack on
20-round Tiger that detects pseudo-near collisions with work
less than 248 compression function invocations [77]. Florian
Mendel et al. have improved on these attacks by outlining a
collision attack that spans 19 Tiger rounds and a pseudo-near-
collision attack that spans 22 rounds. These attacks demand
work equivalent to around 262 and 244 Tiger compression
function evaluations, respectively [78].

4.11. PANAMA

PANAMA is a cryptographic primitive that can be used as a
hash function or a stream cipher, however its hash function mode
has been broken and is no longer appropriate for cryptographic
application. Joan Daemen and Craig Clapp designed it and
presented it at the Fast Software Encryption (FSE) conference in
1998. The cipher has impacted a number of other schemes,
including MUGI and SHA-3 [79].

Collisions were demonstrated as a hash function by Vincent
Rijmen et al. in their article. The attack has a computational
complexity of 282 and uses very little memory [80]. Joan
Daemen and Gilles Van Assche demonstrated at FSE 2007 a
practical attack on the Panama hash function that results in a
collision after 26 evaluations of the state updating function [81].

4.12. Whirlpool

Whirlpool is a hash function for cryptographic data. It was
first defined in 2000 by Vincent Rijmen (co-creator of the
Advanced Encryption Standard) and Paulo S. L. M. Barreto.
Whirlpool is a hash that was inspired by the square block cipher
and belongs to the same family of block cipher functions. It's a
Miyaguchi-Preneel design based on a significantly altered
Advanced Encryption Standard (AES). Whirlpool returns a 512-
bit message digest from any message that is less than 2256 bits
long [82].

Full collisions against 4.5 rounds in 2120 operations, semi-
free-start collisions against 5.5 rounds in 2120 time, and semi-
free-start near-collisions against 7.5 rounds in 2128 time were
announced in 2009 [83].

4.13. RadioGatún

Guido Bertoni, Joan Daemen, Michael Peeters, and Gilles
Van Assche designed RadioGatún, a cryptographic hash
primitive. The NIST Second Cryptographic Hash Workshop,
held in Santa Barbara, California on August 24–25, 2006, was
the first time it was publicly presented as part of the NIST hash
function competition. The same team that created RadioGatún
went on to improve this cryptographic primitive significantly,
resulting in the Keccak SHA-3 algorithm [84].

RadioGatún is a collection of 64 hash functions that are
differentiated by a single parameter, the word width in bits (w),
which can be set between 1 and 64. The 32-bit and 64-bit
RadioGatún variants are the only word sizes having certified test
vectors. The algorithm stores its internal state in 58 words, each
with w bits, therefore the 32-bit version requires 232 bytes (since
each word requires 32 bits or four bytes, and 58 multiplied by
four is 232), and the 64-bit version requires 464 bytes (each
word using eight bytes) [85]. Although RadioGatún is a variant
of PANAMA, when employed as a hash function, it does not
share PANAMA's flaws. RadioGatún continues to be a safe hash
function. The version of RadioGatún with a word size of two bits
is the one that is broken the most. The 32-bit version of
RadioGatún has a security strength of 304 bits, whereas the 64-
bit version has a security strength of 608 bits. This assertion has
not been debunked by the most well-known cryptanalysis: The
32-bit version requires 352 bits of effort, whereas the 64-bit
version requires 704 bits of work. RadioGatún can be used as a
hash function or a stream cipher, and it can generate an infinite

stream of pseudo-random integers; this type of hash is now
known as Extendable-Output Function (XOF) [86].

Dmitry Khovratovich offers two attacks, one with a
complexity of 218𝑤 and the other with a complexity of 223.1𝑤,
that do not break the designers' security claims [87].
Khovratovich also wrote a paper entitled "Cryptanalysis of hash
functions with structures," in which he describes a 218𝑤 attack
[88]. With the 1-bit version of the technique, Charles
Bouillaguet and Pierre-Alain Fouque offer an attack that
requires 224.5 operations to generate collisions. Because all of
the possible trails we knew for the 1-bit version turned out to be
impossible to extend to n-bit versions, the attack can't be
extended to larger versions. This attack is less effective than the
others and does not compromise RadioGatn's security [89]. The
most effective attack against the algorithm, devised by Thomas
Fuhr and Thomas Peyrin, has a complexity of 211𝑤. They break
the 2-bit (word size of two) version of RadioGatn in the paper.
Despite being more effective than the other attacks, this one fails
to violate the security claim [90]. The developers of RadioGatún
have claimed that their "own experiments did not inspire
confidence in RadioGatún" [91].

4.14. Streebog

The Russian national standard GOST R 34.11-2012
Information Technology – Cryptographic Information Security
– Hash Function defines Streebog as a cryptographic hash
function. It was developed to replace an outmoded GOST hash
function established in GOST R 34.11-94 and as an asymmetric
response to the US National Institute of Standards and
Technology's SHA-3 competition. Streebog works with 512-bit
input blocks, and uses the Merkle–Damgrd architecture to
support inputs of any size. The new hash function's high-level
structure is similar to that of GOST R 34.11-94, however the
compression function has been drastically altered. The
compression mechanism uses a 12-round AES-like encryption
with a 512-bit block and 512-bit key in Miyaguchi–Preneel
mode. Streebog-256 differs from Streebog-512 in that it uses a
different initial state and truncates the output hash, but otherwise
is similar [92].

Ma et al. describe a preimage attack that finds a single
preimage of GOST-512 reduced to 6 rounds in 2496 time and
264 memory or 2504 time and 211 memory. In the same
publication, they describe a collision attack with a time
complexity of 2181 and a memory demand of 264 [93]. If the
message comprises more than 2259 blocks, Guo et al. describe a
second preimage attack on full Streebog-512 with a total time
complexity corresponding to 2266 compression function
evaluations [94]. An attack on a modified version of Streebog
with different round constants was published by AlTawy and
Youssef. While this attack may not have had a direct influence
on the original Streebog hash function's security, it did raise
questions regarding the provenance of the function's utilized
parameters. These are pseudorandom constants generated with a
Streebog-like hash function, presented with 12 different natural
language input messages, according to the inventors [95].
AlTawy et al discovered a 5-round free-start collision and a 7.75
free-start near collision for the internal cipher with complexities
of 28 and 240 , respectively, as well as attacks on the
compression function with 7.75 round semi free-start collisions

with time complexity 2184 and memory complexity 28, 8.75 and
9.75 round semi free-start near collisions with time complexities
of 2120 and 2196, respectively [96]. Wang et al. describe a 9.5-
round collision attack on the compression function with a time
complexity of 2176 and a memory complexity of 2128 [97].
Biryukov, Perrin, and Udovenko reverse engineered the
unpublished S-box generation structure (which had previously
been reported to be created randomly) in 2015 and discovered
that the underlying components are cryptographically weak [98].

4.15. Blake2s, Blake2b

BLAKE is a cryptographic hash function based on Daniel J.
Bernstein's ChaCha stream cipher, but before each ChaCha
round, a permuted copy of the input block is added, XORed with
round constants. There are two variations, similar to SHA-2, that
differ in word size. ChaCha is based on a 44-word array.
BLAKE truncates the ChaCha result to get the next hash value
by combining an 8-word hash value with 16 message words.
BLAKE-256 and BLAKE-224 employ 32-bit words to produce
256-bit and 224-bit digests, respectively, whereas BLAKE-512
and BLAKE-384 use 64-bit words to produce 512-bit and 384-
bit digests, respectively. Jean-Philippe Aumasson, Luca Henzen,
Willi Meier, and Raphael C.-W. Phan submitted BLAKE to the
NIST hash function competition. There were 51 submissions in
2008. BLAKE advanced to the final round of five candidates in
2012, but lost to Keccak, which was chosen for the SHA-3
algorithm. BLAKE, like SHA-2, is available in two versions:
one that uses 32-bit words for hashes up to 256 bits long, and
another that employs 64-bit words for hashes up to 512 bits long.
Only 8 words (256 or 512 bits) are retained across blocks in the
core block transformation, which combines 16 words of input
with 16 working variables. It employs a table of 16 constant
words (the leading 512 or 1024 bits of the fractional part of π)
and a table of 10 16-element permutations [99].

Jean-Philippe Aumasson, Samuel Neves, Zooko Wilcox-
O'Hearn, and Christian Winnerlein produced BLAKE2, a
cryptographic hash function based on BLAKE. The purpose of
the invention was to replace the widely used, but faulty, MD5
and SHA-1 algorithms in software applications that required
high performance. On December 21, 2012, BLAKE2 was
announced. On 64-bit x86-64 and ARM architectures,
BLAKE2b outperforms MD5, SHA-1, SHA-2, and SHA-3.
BLAKE2 is more secure than SHA-2 and similar to SHA-3 in
terms of length extension resistance, indistinguishability from a
random oracle, and so on [100]. BLAKE2 removes the addition
of constants to message words from the BLAKE round function,
changes two rotation constants, simplifies padding, adds an
XOR'ed parameter block with initialization vectors, and reduces
the number of rounds from 16 to 12 for BLAKE2b (successor of
BLAKE-512) and 14 to 10 for BLAKE2s (successor of BLAKE-
256). Keying, salting, personalization, and hash tree modes are
all supported by BLAKE2, which can output digests ranging
from 1 to 64 bytes for BLAKE2b and 32 bytes for BLAKE2s.
BLAKE2bp (4-way parallel) and BLAKE2sp (2-way parallel)
are parallel variants developed for improved performance on
multi-core systems (8-way parallel) [101].

collisions against 2.5 rounds in 2112 operations for
BLAKE2s and 2.5 rounds in 2224 operations for BLAKE2b and
near-collisions against 2.5 rounds in 2241 operations for

BLAKE2s and 2.5 rounds in 2481 operations for BLAKE2b
were announced in 2009 [102].

4.16. Kupyna

The Ukrainian national standard DSTU 7564:2014 defines
Kupyna as a cryptographic hash function. It was designed to
replace an antiquated GOST hash function described in the old
standard GOST 34.11-95, which was similar to the Russian
Streebog hash function. The Davies–Meyer compression
function, which is based on the Even–Mansour cipher, is used
by the Kupyna hash function. The compression function is made
up of four operations: AddRoundConstant, SubBytes,
ShiftBytes, and MixColumns, which are borrowed from the
Kalyna block cipher. Four separate S-boxes are used in the round
function. The function can return a digest of any length between
8 and 512 bits; the Kupyna-n function returns an n-bit digest.
256, 384, and 512 bits are the suggested digest lengths. After
four rounds of compression, the designers say that differential
and rebound attacks are ineffectual [103].

Based on rebound attacks on Grøstl, Christoph Dobraunig,
Maria Eichlseder, and Florian Mendel present a collision attack
on Kupyna-256 reduced to 4 rounds with time complexity
267and Kupyna-256 reduced to 5 rounds with time complexity
2120 [104]. Jian Zou and Le Dong also describe a 5-round
Kupyna-256 collision attack with a time complexity of 2120, as
well as a pseudo-preimage attack on 6-round Kupyna-256 with
time and memory complications of 2250 and on 8-round
Kupyna-512 with time and memory complexities of 2498. They
point out that these attacks pose no harm to Kupyna's security
claims [105]. When Kupyna is used for MAC schemes, Onur
Duman published differential fault analysis. According to the
research, retrieving one byte of the state requires 2.21–2.42
failures [106].

5. Conclusion

In This paper, we studied all of the broken hash algorithms.
We began by discussing hash functions and their applications.
Then, in order to increase the background knowledge, we
explained several well-known attacks in this field, and finally,
we listed all of the broken algorithms in order of publication year
and described the attacks that performed on them. According to
the authors of this paper, choosing a standard and secure hash
algorithm is critical, because hashing algorithms are mostly
employed in essential and sensitive applications. Reading this
article for this decision can be very helpful.

References

[1] W. Penard and T. van Werkhoven, "On the secure hash algorithm

family," Cryptography in context, pp. 1-18, 2008.

[2] L. Chi and X. Zhu, "Hashing techniques: A survey and taxonomy,"
ACM Computing Surveys (CSUR), vol. 50, no. 1, pp. 1-36, 2017.

[3] J. Wang, T. Zhang, N. Sebe, H. T. Shen and others, "A survey on

learning to hash," IEEE transactions on pattern analysis and machine
intelligence, vol. 40, no. 4, pp. 769-790, 2017.

[4] J. E. Silva, "An overview of cryptographic hash functions and their

uses," GIAC, vol. 6, 2003.

[5] C. Dods, N. P. Smart and M. Stam, "Hash based digital signature

schemes," in IMA international conference on cryptography and
coding, Springer, 2005, pp. 96-115.

[6] J. Camenisch, A. Lehmann and G. Neven, "Optimal distributed

password verification," in Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security, 2015, pp. 182-

194.

[7] R. Sobti and G. Geetha, "Cryptographic hash functions: a review,"
International Journal of Computer Science Issues (IJCSI), vol. 9, no. 2,

p. 461, 2012.

[8] J. Loeliger and M. McCullough, Version Control with Git: Powerful
tools and techniques for collaborative software development, O'Reilly

Media, Inc., 2012.

[9] A. Regenscheid, S. Zhang, J. Kelsey, M. Nandi, S. Paul, R. Perlner and
A. Regenscheid, Status report on the first round of the SHA-3

cryptographic hash algorithm competition, Citeseer, 2009.

[10] W. Diffie and M. E. Hellman, "New directions in cryptography," in
Secure communications and asymmetric cryptosystems, Routledge,

2019, pp. 143-180.

[11] R. C. Merkle, Secrecy, authentication, and public key systems, Stanford
university, 1979.

[12] M. O. Rabin, "Digitalized signatures and public-key functions as

intractable as factorization," Massachusetts Inst of Tech Cambridge Lab
for Computer Science, 1979.

[13] G. Yuval, "How to swindle Rabin," Cryptologia, vol. 3, no. 3, pp. 187-

191, 1979.

[14] B. Preneel, "Analysis and design of cryptographic hash functions,"

Citeseer, 1993.

[15] D. E. Standard and others, "Data encryption standard," Federal
Information Processing Standards Publication, vol. 112, 1992.

[16] J. H. Moore and G. J. Simmons, "Cycle structure of the DES for keys

having palindromic (or antipalindromic) sequences of round keys,"
IEEE Transactions on Software Engineering, no. 2, pp. 262-273, 1987.

[17] A. Biryukov, O. Dunkelman, N. Keller, D. Khovratovich and A.

Shamir, "Key recovery attacks of practical complexity on AES-256

variants with up to 10 rounds," in Annual International Conference on

the Theory and Applications of Cryptographic Techniques, Springer,

2010, pp. 299-319.

[18] A. Biryukov and D. Khovratovich, "Related-key cryptanalysis of the

full AES-192 and AES-256," in International conference on the theory

and application of cryptology and information security, 2008.

[19] L. R. Knudsen, X. Lai and B. Preneel, "Attacks on fast double block

length hash functions," Journal of Cryptology, vol. 11, no. 1, pp. 59-72,

1998.

[20] J. P. Steinberger, "The collision intractability of MDC-2 in the ideal-

cipher model," in Annual International Conference on the Theory and

Applications of Cryptographic Techniques, 2007.

[21] P. Rogaway and J. Steinberger, "Constructing cryptographic hash

functions from fixed-key blockciphers," in Annual International

Cryptology Conference, 2008.

[22] D. X. Charles, K. E. Lauter and E. Z. Goren, "Cryptographic hash

functions from expander graphs," Journal of CRYPTOLOGY, vol. 22,

no. 1, pp. 93-113, 2009.

[23] B. Preneel, "The first 30 years of cryptographic hash functions and the

NIST SHA-3 competition," in Cryptographers’ track at the RSA
conference, 2010.

[24] M. Bellare and T. Ristenpart, "Hash functions in the dedicated-key

setting: Design choices and MPP transforms," in International
Colloquium on Automata, Languages, and Programming, 2007.

[25] M. Daum, "Hash collisions (The poisoned message attack) The story of

Alice and her boss," Presented at the rump session of Eurocrypt'05,
2005.

[26] M. Gebhardt, G. Illies and W. Schindler, "A Note on the Practical Value

of Single Hash Collisions for Special File Formats," in Sicherheit, vol.
77, Citeseer, 2006, pp. 333-344.

[27] P. Rogaway and T. Shrimpton, "Cryptographic hash-function basics:

Definitions, implications, and separations for preimage resistance,

second-preimage resistance, and collision resistance," in International

workshop on fast software encryption, 2004.

[28] A. Maetouq, S. Daud, N. Ahmad, N. Maarop, N. N. A. Sjarif and H.
Abas, "Comparison of hash function algorithms against attacks: A

review," International Journal of Advanced Computer Science and

Applications, br, vol. 8, 2018.

[29] D. J. Bernstein, "Quantum attacks against Blue Midnight Wish, ECHO,

Fugue, Grøstl, Hamsi, JH, Keccak, Shabal, SHAvite-3, SIMD, and

Skein," Citeseer, 2010.

[30] P. Hoffman and B. Schneier, "Attacks on cryptographic hashes in

internet protocols," RFC 4270, November, 2005.

[31] D. J. Bernstein, "Cost analysis of hash collisions: Will quantum
computers make SHARCS obsolete," SHARCS, vol. 9, p. 105, 2009.

[32] A. Petzoldt, M.-S. Chen, B.-Y. Yang, C. Tao and J. Ding, "Design

principles for HFEv-based multivariate signature schemes," in
International conference on the theory and application of cryptology

and information security, 2015.

[33] C. Boura and A. Canteaut, "On the boomerang uniformity of
cryptographic sboxes," IACR Transactions on Symmetric Cryptology,

pp. 290-310, 2018.

[34] M. Lamberger, F. Mendel, M. Schlaffer, C. Rechberger and V. Rijmen,
"The rebound attack and subspace distinguishers: Application to

Whirlpool," Journal of Cryptology, vol. 28, no. 2, pp. 257-296, 2015.

[35] A. D. Myasnikov and A. Ushakov, "Length based attack and braid
groups: cryptanalysis of Anshel-Anshel-Goldfeld key exchange

protocol," in International Workshop on Public Key Cryptography,

2007.

[36] D. M. A. Cortez, A. M. Sison and R. P. Medina, "Cryptographic

randomness test of the modified hashing function of SHA256 to address

length extension attack," in Proceedings of the 2020 8th International
Conference on Communications and Broadband Networking, 2020.

[37] F. Muller, "The MD2 hash function is not one-way," in International

Conference on the Theory and Application of Cryptology and
Information Security, 2004.

[38] B. Kaliski, "RFC1319: The MD2 Message-Digest Algorithm," RFC

Editor, 1992.

[39] C. Adams and S. Lloyd, Understanding public-key infrastructure:

concepts, standards, and deployment considerations, Sams Publishing,

1999.

[40] N. Rogier and P. Chauvaud, "MD2 is not secure without the checksum

byte," Designs, Codes and Cryptography, vol. 12, no. 3, pp. 245-251,

1997.

[41] S. S. Thomsen, "An improved preimage attack on md2," Cryptology

ePrint Archive, 2008.

[42] L. R. Knudsen, J. E. Mathiassen, F. Muller and S. S. Thomsen,
"Cryptanalysis of MD2," Journal of cryptology, vol. 23, no. 1, pp. 72-

90, 2010.

[43] R. C. Merkle, "A fast software one-way hash function," Journal of
Cryptology, vol. 3, no. 1, pp. 43-58, 1990.

[44] E. Biham, "New techniques for cryptanalysis of hash functions and

improved attacks on Snefru," in International Workshop on Fast

Software Encryption, 2008.

[45] R. L. Rivest, "The MD4 message digest algorithm," in Conference on
the Theory and Application of Cryptography, 1990.

[46] B. Smith and B. Komar, Microsoft Windows security resource kit,

Microsoft Press, 2020.

[47] B. d. Boer and A. Bosselaers, "An attack on the last two rounds of

MD4," in Annual International Cryptology Conference, 1991.

[48] H. Dobbertin, "Cryptanalysis of MD4," in International Workshop on
Fast Software Encryption, 1996.

[49] Y. Sasaki, L. Wang, K. Ohta and N. Kunihiro, "New message difference

for MD4," in International Workshop on Fast Software Encryption,

2007.

[50] G. Leurent, "MD4 is not one-way," in International Workshop on Fast

Software Encryption, 2008.

[51] J. Guo, S. Ling, C. Rechberger and H. Wang, "Advanced meet-in-the-

middle preimage attacks: First results on full Tiger, and improved

results on MD4 and SHA-2," in International Conference on the Theory
and Application of Cryptology and Information Security, 2010.

[52] R. Rivest and S. Dusse, The MD5 message-digest algorithm, MIT

Laboratory for Computer Science Cambridge, 1992.

[53] S. Gupta, N. Goyal and K. Aggarwal, "A review of comparative study

of md5 and ssh security algorithm," International Journal of Computer

Applications, vol. 104, no. 14, 2014.

[54] B. d. Boer and A. Bosselaers, "Collisions for the compression function

of MD5," in Workshop on the Theory and Application of of

Cryptographic Techniques, 1993.

[55] X. Wang and H. Yu, "How to break MD5 and other hash functions," in

Annual international conference on the theory and applications of

cryptographic techniques, 2005.

[56] H. Dobbertin, A. Bosselaers and B. Preneel, "RIPEMD-160: A

strengthened version of RIPEMD," in International Workshop on Fast

Software Encryption, 1996.

[57] X. Wang, D. Feng, X. Lai and H. Yu, "Collisions for hash functions

MD4, MD5, HAVAL-128 and RIPEMD," Cryptology EPrint Archive,

2004.

[58] F. Mendel, N. Pramstaller, C. Rechberger and V. Rijmen, "On the

collision resistance of RIPEMD-160," in International Conference on

Information Security, 2006.

[59] Y. Zheng, J. Pieprzyk and J. Seberry, "HAVAL—a one-way hashing

algorithm with variable length of output," in International workshop on

the theory and application of cryptographic techniques, 1992.

[60] F. Chabaud and A. Joux, "Differential collisions in SHA-0," in Annual

International Cryptology Conference, 1998.

[61] E. Biham and R. Chen, "Near-collisions of SHA-0," in Annual
International Cryptology Conference, 2004.

[62] E. Biham, R. Chen, A. Joux, P. Carribault, C. Lemuet and W. Jalby,

"Collisions of SHA-0 and Reduced SHA-1," in Annual International
Conference on the Theory and Applications of Cryptographic

Techniques, 2005.

[63] X. Wang, H. Yu and Y. L. Yin, "Efficient collision search attacks on
SHA-0," in Annual International Cryptology Conference, 2005.

[64] S. Manuel and T. Peyrin, "Collisions on SHA-0 in one hour," in

International Workshop on Fast Software Encryption, 2008.

[65] T. Isobe, "A single-key attack on the full GOST block cipher," in

International Workshop on Fast Software Encryption, 2011.

[66] F. Mendel, N. Pramstaller, C. Rechberger, M. Kontak and J. Szmidt,
"Cryptanalysis of the GOST hash function," in Annual International

Cryptology Conference, 2008.

[67] C. Rechberger, V. Rijmen and N. Sklavos, "The NIST cryptographic
workshop on hash functions," IEEE Security & Privacy, vol. 4, no. 1,

pp. 54-56, 2006.

[68] "Google will drop SHA-1 encryption from Chrome by January 1,

2017," 18 12 2015. [Online]. Available:

https://venturebeat.com/2015/12/18/google-will-drop-sha-1-
encryption-from-chrome-by-january-1-2017/. [Accessed 18 3 2022].

[69] "The end of SHA-1 on the Public Web," Mozilla Security Blog, 23 2

2017. [Online]. Available:
https://blog.mozilla.org/security/2017/02/23/the-end-of-sha-1-on-the-

public-web/. [Accessed 18 3 2022].

[70] X. Wang, Y. L. Yin and H. Yu, "Finding collisions in the full SHA-1,"
in Annual international cryptology conference, 2005.

[71] P. Karpman, T. Peyrin and M. Stevens, "Practical free-start collision

attacks on 76-step SHA-1," in Annual Cryptology Conference, 2015.

[72] "Announcing the first SHA1 collision," Google Security Blog, 23 2

2017. [Online]. Available:

https://security.googleblog.com/2017/02/announcing-first-sha1-

collision.html. [Accessed 18 3 2022].

[73] G. Leurent and T. Peyrin, "From collisions to chosen-prefix collisions
application to full SHA-1," in Annual International Conference on the

Theory and Applications of Cryptographic Techniques, 2019.

[74] G. Leurent and T. Peyrin, "SHA-1 is a Shambles: First Chosen-Prefix
Collision on SHA-1 and Application to the PGP Web of Trust," in 29th

USENIX Security Symposium (USENIX Security 20), 2020.

[75] R. Anderson and E. Biham, "Tiger: A fast new hash function," in
International Workshop on Fast Software Encryption, 1996.

[76] J. Kelsey and S. Lucks, "Collisions and near-collisions for reduced-

round tiger," in International Workshop on Fast Software Encryption,
2006.

[77] F. Mendel and V. Rijmen, "Cryptanalysis of the Tiger hash function,"

in International Conference on the Theory and Application of
Cryptology and Information Security, 2007.

[78] F. Mendel, B. Preneel, V. Rijmen, H. Yoshida and D. Watanabe,

"Update on tiger," in International Conference on Cryptology in India,
2006.

[79] J. Daemen and C. Clapp, "The Panama cryptographic function," Dr.

Dobb's Journal: Software Tools for the Professional Programmer, vol.
23, no. 12, pp. 42-46, 1998.

[80] V. Rijmen, B. V. Rompay, B. Preneel and J. Vandewalle, "Producing

collisions for PANAMA," 2001.

[81] J. Daemen and G. V. Assche, "Producing collisions for PANAMA,

instantaneously," in International Workshop on Fast Software

Encryption, 2007.

[82] P. Barreto, V. Rijmen and others, "The Whirlpool hashing function," in

First open NESSIE Workshop, Leuven, Belgium, 2000.

[83] F. Mendel, C. Rechberger, M. Schlaffer and S. S. Thomsen, "The
rebound attack: Cryptanalysis of reduced Whirlpool and Grostl," in

International Workshop on Fast Software Encryption, 2009.

[84] G. Bertoni, J. Daemen, M. Peeters and G. Van Assche, "The road from

Panama to Keccak via RadioGatun," in Dagstuhl Seminar Proceedings,

2009.

[85] N. Kishore and P. Raina, "Parallel cryptographic hashing:
Developments in the last 25 years," Cryptologia, vol. 43, no. 6, pp. 504-

535, 2019.

[86] G. Bertoni, J. Daemen, M. Peeters and G. Van Assche, "Radiogatun, a
belt-and-mill hash function," Cryptology ePrint Archive, 2006.

[87] D. Khovratovich, "Two attacks on RadioGatun," in International

Conference on Cryptology in India, 2008.

[88] D. Khovratovich, "Cryptanalysis of hash functions with structures," in

International Workshop on Selected Areas in Cryptography, 2009.

[89] C. Bouillaguet and P.-A. Fouque, "Analysis of the Collision Resistance
of RadioGatunUsing Algebraic Techniques," in International

Workshop on Selected Areas in Cryptography, 2008.

[90] T. Fuhr and T. Peyrin, Cryptanalysis of RadioGatun, Cryptology ePrint

Archive, Report 2008/515, 2008.

[91] G. Bertoni, J. Daemen, M. Peeters, G. Van Assche and G. NIST,

"Keccak and the SHA-3 Standardization," NIST, Gaithersburg, 2013.

[92] A. Biryukov, L. Perrin and A. Udovenko, "The secret structure of the
S-box of Streebog, Kuznechik and Stribob," Cryptology ePrint Archive,

2015.

[93] B. Ma, B. Li, R. Hao and X. Li, "Improved cryptanalysis on reduced-
round GOST and Whirlpool hash function (Full version)," Cryptology

ePrint Archive, 2014.

[94] J. Guo, J. Jean, G. Leurent, T. Peyrin and L. Wang, "The usage of
counter revisited: Second-preimage attack on new russian standardized

hash function," in International Conference on Selected Areas in

Cryptography, 2014.

[95] R. AlTawy and A. M. Youssef, "Watch your constants: malicious

Streebog," IET Information Security, vol. 9, no. 6, pp. 328-333, 2015.

[96] R. AlTawy, A. Kircanski and A. M. Youssef, "Rebound attacks on
Stribog," in International Conference on Information Security and

Cryptology, 2013.

[97] Z. Wang, H. Yu and X. Wang, "Cryptanalysis of GOST R hash
function," Information Processing Letters, vol. 114, no. 12, pp. 655-

662, 2014.

[98] A. Biryukov, L. Perrin and A. Udovenko, "Reverse-Engineering the S-
Box of Streebog, Kuznyechik and STRIBOBr1 (Full Version)," in

Cryptology ePrint Archive, 2016.

[99] J.-P. Aumasson, W. Meier, R. C.-W. Phan and L. Henzen, "The hash
function BLAKE," Springer, 2014.

[100] J.-P. Aumasson, W. Meier, R. C.-W. Phan and L. Henzen, "Blake2," in

The Hash Function BLAKE, 2014.

[101] J.-P. Aumasson, S. Neves, Z. Wilcox-O’Hearn and C. Winnerlein,

"BLAKE2: simpler, smaller, fast as MD5," in International Conference

on Applied Cryptography and Network Security, 2013.

[102] J. Guo, P. Karpman, I. Nikolic, L. Wang and S. Wu, "Analysis of

BLAKE2," in Cryptographers’ Track at the RSA Conference, 2014.

[103] R. Oliynykov, I. Gorbenko, O. Kazymyrov, V. Ruzhentsev, O.

Kuznetsov, Y. Gorbenko, A. Boiko, O. Dyrda, V. Dolgov and A.

Pushkaryov, "A new standard of Ukraine: The Kupyna hash function,"

Cryptology ePrint Archive, 2015.

[104] C. Dobraunig, M. Eichlseder and F. Mendel, "Analysis of the kupyna-

256 hash function," 2016.

[105] J. Zou and L. Dong, "Cryptanalysis of the round-reduced Kupyna hash
function," Cryptology ePrint Archive, 2015.

[106] O. Duman, "Application of Fault Analysis to Some Cryptographic

Standards," Concordia University, 2016.

