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ABSTRACT
A search space expansion process is proposed in the context of
tomographic reconstruction (TR). The idea is to widen the effective
search space in a series of increasing sizes with clamping on the
search space boundary. The technique was tested on four simple
phantoms and on the clinically important Shepp-Logan phantom.
Dispersive flies optimisation (DFO), a lightweight particle swarm
optimisation (PSO) variant, is shown to produce lower reproduction
errors compared to standard TR toolbox algorithms. The expan-
sion technique demonstrably decreases salt-and-pepper noise. DFO
with 50 subspace searches was found to be superior to differential
evolution, PSO and, more importantly, a number of conventional
reconstruction techniques. To the best of our knowledge, this is
the first work where search space expansion, in its literal form, is
introduced, discussed and applied to this problem.
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1 INTRODUCTION
The reconstruction of internal structure from projected images cast
by penetrating radiation is a key technique in medical imaging
and has widespread application through science, mathematics and
industry [14, 18–20, 25, 28, 31, 36, 41]. The few-view regime is par-
ticularly important in cases where the number of projections, and
hence the quantity of absorbed radiation, should be minimal, as in,
for example, the imaging of children.

The standard reconstruction technique, filtered backprojection
(FBP), requires only a single iteration but is not suitable for few-view
imaging [27]. Algebraic Reconstruction Techniques (ART) have
recently come on stream by virtue of increased computation power.
ART is an iterative algorithm based on Kacmarz’s method [41]
and is applicable to the few-view scenario but it can introduce
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image artefacts due to overfitting and is not proven in large patient
populations [26].

Iterative statistical methods such as maximum-likelihood expec-
tation maximisation (MLEM) and the more computationally effi-
cient ordered subset expectation maximisation (OSEM), have been
trialled and found to be superior to FBP in some cases e.g. [43, 47].

In an alternative to conventional reconstruction techniques, the
task can be cast as an optimisation problem, and thereby opening up
the possibility of population-based algorithms and other metahuris-
tics: harmony search [38], tabu search [33], simulated annealing
[34], memetics [22] and evolutionary algorithms [13]. Swarm algo-
rithms have developed for binary reconstruction [35], geophysical
reconstruction [44], electrical capacitance and impedance tomogra-
phy [30, 48] and surface reconstruction from 3D data [24]. An ant
algorithm has been developed for binary reconstruction [5].

The few-view tomographic reconstruction (TR) problem is highly
underdetermined and the solution set is numerous. Only some
members of the solution set are medically feasible; often noise
and artefacts obscure important detail. Underdetermination implies
that zero reconstruction error (the difference between measured
and reconstructed projections) does not necessarily equate to zero
reproduction error (how far the reconstructed object differs from
the actual object) [6].

This paper builds on the findings of reference [6] in which a
comparative study of reconstructions by swarm algorithms and
conventional techniques on standard phantoms (TR test cases) in
the few-view regime indicated that DFO-TR, an algorithm that
formally interpolates between differential evolution and particle
swarm optimisation, produces reconstructions with lower repro-
duction error than state-of-the art ART. One drawback, however, is
that DFO-TR images are visibly peppered with noise.

Insight on the importance of clamping at the search space bound-
ary, led to a consideration of a novel search space expansion (SSE)
technique which is reported here. We find that the expansion mech-
anism can lead to a significant reduction in salt-and-pepper noise.

The paper continues with a review of search space resizing; a
formal statement of the reconstruction problem and associated
algorithms follows before a report on a series of experiments on
artificial phantoms that were designed to provide insight on SSE,
and test results on the medically pertinent Shepp-Logan phantom.

2 SEARCH SPACE RESIZING
Search space resizing is a technique primarily designed to combat
premature convergence when the optimal solution(s) 𝑥𝑜𝑝𝑡 lies/lie
within the search space 𝑋 , or, rarely, to mitigate search bias when
𝑥𝑜𝑝𝑡 lies/lie on the boundary, 𝜕𝑋 .

Consider a search space 𝑋 =
Ð𝑛

𝑑=1 𝑋𝑑 of dimension 𝑛, decision
variables (DV’s) 𝑥𝑑 ∈ 𝑋𝑑 and an objective function 𝑓 (𝑥1, 𝑥2 . . . , 𝑥𝑛).
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𝑋 might define a region of feasibility or an initialisation volume be-
lieved to contain the desired optimum; 𝑓 may or may not be defined
for 𝑥 ∉ 𝑋 . DV’s that attempt to leave 𝑋 during the optimisation
process might be evaluated if the objective function is so defined,
or they might be returned to 𝑋 according to a predefined scheme
and then evaluated; indeed, algorithm performance can depend
critically on bounds policy [29]. Resizing can be employed to deal
with search bias arising from interaction between the boundary
policy and the defined region of 𝑓 ; more commonly, 𝑥𝑜𝑝𝑡 lies within
𝑋 and resizing can mitigate premature convergence by, for example,
re-initialising the search population within a smaller volume that
contains the most promising solution.

Search space resizing refers to either reduction or expansion of
𝑋 , or to dynamic combinations of the two. Reduction might mean
the progressive narrowing of each 𝑋𝑑 , either on a DV by DV basis,
or for all DV’s at once, or it might mean the culling of unhelpful and
unnecessary dimensions. Similarly, expansion might refer to the
broadening of each 𝑋𝑑 and/or the addition of extra DV’s. Resizing
can be triggered automatically, or at preset intervals.

In practice only several of the possibilities have been explored.

2.1 Reduction
The main desideratum for reduction is to prevent premature con-
vergence by re-invigorating search within a smaller volume.

There has been a steady trickle of papers investigating search
space reduction (SSR) over the past twenty years. The technique has
been renamed, perhaps on rediscovery, as ‘compression’, ‘squeezing’
and ‘pruning’ but the essential idea is the same. SSR is most often
explored in the context of a real-world problem and schemes are
problem-specific, and often lever known properties of the solution
space.

Che and Smith applied SSR to the flowshop problem, but the
reduction was applied to the initial population [21]. A more sophis-
ticated procedure to the same problem was suggested by Yong and
Sannomiya [51]. In this work, a system of reduced search spaces by
a series of included subsets was proposed; genetic algorithm (GA)
performance over fixed search spaces was enhanced.

Search space reduction has been investigated in the context
of water distribution optimisation [46]. The motivation for their
techniquewas to exclude unpromising regions of the original search
space where solutions are either infeasible or impractical.

Izzo and co-authors devised a search space pruning step in their
solution to the problem of gravity assisted spacecraft trajectories
within the solar system [32]. The technique was specific to particu-
lar properties of the objective function but global optimisation was
demonstrably enhanced for DE, GA and PSO.

SSR has been considered for optimising quality of service in
mobile ad hoc networks [12].

A search space ‘squeezing’ was trialled by Barisal et al [11] in
the context of power generation. Resizing is applied at, or near,
stagnation and is governed by the relative distance of the global
best of a particle swarm to dynamic feasible search space limits.

Rajarathinam et al experimented with search space resizing in
dynamic systems governed by differential equations. Their tech-
nique was able to place the elite population of a GA within feasible
boundary regions of the search space [39].

Search space ‘compression’ has been proposed by Zang and
collaborators [50]. Compression is triggered when the fraction of
the population of solutions close to the best solution is reached: the
search space is resized and the population is randomised within
the reduced volume. The motivation behind the mechanism was to
prevent premature convergence and the authors find enhancement
in GA, PSO and DE.

More recently, Das and Pratihar [23] devise a search space reduc-
tion technique that kicks in at low population diversity providing
the search has not stagnated; GA diversity is claimed to be bal-
anced with selection pressure so that convergence is improved
without sacrificing global search capacity. The idea is favourably
demonstrated with real-coded GAs on a small benchmark.

There is a short history of SSR for the solution of water drainage
problems [15]; Bayas-Jimenéz et al, in this work, consider pruning
unnecessary decision variables, but the method is restricted to the
particular problem under scrutiny.

2.2 Expansion
Search space expansion (SSE), according to our research, has only
been occasionally investigated.

Tsutsui and Goldberg analysed boundary extension methods
designed to deal with real-valued GA sampling bias near the corners
of a search space [45]. The authors suggested two mechanisms. In
boundary extension by mirroring (BEM), out-flying individuals are
evaluated by placing them at themirror image of the function for the
purposes of evaluation. Boundary extension by selection is similar
to BEM except that selection can be made without evaluation for a
small number of ‘helper’ individuals that reside in borders beyond
the search space. Tsutsui and Goldberg found that either extension
method could mitigate search bias and improve performance in not
only cases when the optimum is at a search space corner, but also
for objective functions with optima at the centre of 𝑋 . This result
on the importance of boundary policy for optimisation algorithms
was later confirmed by Helwig et al [29].

Expanding the search space to a torus, again to counteract GA
crossover bias, has also been considered, although this technique
is better classified as a boundary policy rather than a search space
extension [42]. A more refined toroidal boundary method was pro-
posed by Yoon et al [49]. In this work, ambiguities in function value
at the boundary were resolved by extension.

3 TOMOGRAPHIC RECONSTRUCTION
Incident radiation is modelled by a projection matrix 𝐴 ∈ R𝑚×𝑛

≥0
where𝑚 is the total number of projections, and 𝑛 is the number
of pixels in the reconstructed image. The discrete reconstruction
problem is:

find 𝑥 ∈ {0, 1, . . . ,𝑘 − 1}𝑛,𝑘 > 1
such that 𝐴𝑥 = 𝑏

where 𝑏 ∈ R𝑚 is the vector of detector values. In the greyscale
problem considered in this paper, 𝑥 is a vector of reconstructed
pixel values and 𝑘 = 256 i.e. 𝑥 ∈ {0, 1 . . . , 255}𝑛 . The original object,
denoted 𝑥∗, also satisfying 𝐴𝑥∗ = 𝑏, is either a phantom (artificial
test case) or an imaged subject. The equation 𝐴𝑥 = 𝑏 cannot be
inverted if𝑚 < 𝑛 and there are multiple solutions.
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Suppose 𝑦 is a trial solution; 𝑦 is forward projected:
𝐴𝑦 = 𝑐

and a reconstruction error evaluated
𝑒1 (𝑦) = | |𝑏 − 𝑐 | |1 . (1)

An iterative scheme will produce a sequence of candidate solutions
of decreasing 𝑒1 error but, due to underdetermination, low recon-
struction error does not imply faithfulness to the original object 𝑥∗.
The proximity of 𝑦 to 𝑥∗ can be measured by a reproduction error:

𝑒2 = | |𝑦 − 𝑥∗ | |1 (2)
in cases where 𝑥∗ is known. 𝑒2 provides a test of the ability of an
algorithm to find a faithful reconstruction.

Facilities such as the Astra toolbox supply the forward projec-
tion operator 𝐴 as well as standard reconstruction algorithms such
as ART, FPB and SIRT. In the absence of real-world data, and for
algorithm development, a phantom 𝑥∗ is designed and 𝑏 = 𝐴𝑥∗ is
computed by forward projection. The objective function for opti-
misation is defined as 𝑒1 (𝑦) = | |𝑏 −𝐴𝑦 | | where 𝐴𝑦 is computed, for
trials 𝑦, by the toolbox.

Discrete TR can be translated into a real valued problem suitable
for optimising algorithms such as PSO and DE by allowing𝑦 to take
continuous rather than discrete values,𝑦 ∈ [0, 255]𝑛 , and to allow 𝑒1
and 𝑒2 to accept real inputs. The original object, 𝑥∗, remains discrete.
Final solutions 𝑦 can be discretised for visualisation purposes if
necessary.

4 DISPERSIVE FLIES OPTIMISATION AND THE
TR LANDSCAPE

Dispersive flies optimisation (DFO) is a lightweight particle swarm
optimisation (PSO) variant, distinguished by the abolition of par-
ticle memory: updates are computed from current, rather than
historical, position [2]. The algorithm’s exploration and exploita-
tion behaviour is studied in [3]. DFO includes component-wise
particle jumps which have been shown to be beneficial in bare
bones PSO [17].

DFO particles collaborate in a ring social network. A DFO iter-
ation at 𝑡 + 1 starts by determining the best position 𝑔𝑡 of the
𝑁 particles in the swarm and the position of the best particle
𝑛𝑡𝑖 = argmin

�
𝑓 (𝑥𝑡𝑖−1), 𝑓 (𝑥𝑡𝑖+1)

�
in each particle’s neighbourhood

(the neighbourhood does not include self) for objective function
𝑓 and mod 𝑁 index arithmetic. Arbitrary choices are made in the
case of ties in 𝑔 or 𝑛𝑖 . The particle with the best position, 𝑔, is not
updated; the position components (corresponding to the decision
variables in Sec. 2) 𝑥𝑖𝑑 of all other particles update according to

if 𝑢 ∼ 𝑈 (0, 1) < Δ

𝑥𝑡+1𝑖𝑑 ∼ 𝑈 (𝑋𝑑 )
else

𝑥𝑡+1𝑖𝑑 = 𝑛𝑡𝑖𝑑 + 𝑢′𝜙 (𝑔𝑡𝑑 − 𝑥𝑡𝑖𝑑 ) (3)
where𝑑 = 1, 2 . . . ,𝑛, Δ is a preset jump probability,𝑈 (𝑋𝑑 ) is the uni-
form distribution along axis 𝑑 of the search space 𝑋 , 𝑢,𝑢′ ∼ 𝑈 (0, 1)
and 𝜙 ∈ [0,√3]. The constraints on the convergence controller 𝜙
are derived from a convergence analysis for stochastic difference
equations [17].

Rule 3 mixes aspects of local and global PSO topologies. Search
is focused on a (usually) suboptimal position, 𝑛𝑖 ; however search
spread is governed by separation from 𝑔. DFO has two arbitrary
parameters, 𝑁 and Δ, set to 100 and 0.001 respectively, and 𝜙 is set
to 1 in the original paper [2].

The DFO mechanism depends, like differential evolution (DE),
on instantaneous position and not memory, yet retains PSO’s inter-
particle communication network. In this sense, which is only formal
and does not imply intermediate performance, DFO interpolates
between PSO and DE. The algorithm has been applied to a wide
range of problems in computer vision, aesthetics measurement
and art, optimising food processes, electronics, data science and
neuroevolution [1, 4, 7–10, 16, 37].

A comparative few-view study of PSO, DE and DFO on five stan-
dard test phantoms of sizes 322 and 642 for medical TR revealed
that, at standard settings of these algorithms, as derived by bench-
marking on low dimensional real-valued problems over several
decades, DFO was the superior algorithm, in terms of both recon-
struction and reproduction error, to DE and global PSO (GPSO) in
all cases, and to local PSO (LPSO) in 80% of the trials [6]. The ability
of any off-the-shelf algorithm that had not been adapted to high
dimensional optimisation to reconstruct images was unexpected,
but function profiling suggested that the landscape of Eq. 1 consists
of a single wide funnel with a small-scale, multi-modal bottom. Suc-
cessful optimisers are therefore expected to marry good downhill
descent behaviour with a diversity mechanism to aid small-scale
search at a valley bottom.

The parameters of the most promising population algorithm,
DFO, were tuned, in an earlier study [6], on a single phantom,
yielding optimal settings 𝑁 = 2,Δ ≈ 0.001 and 𝜙 ≈ √

3. Only
one particle of the two particle DFO swarm updates. Suppose that
particle 1 is at 𝑔 and particle 2 is at 𝑥 . Then 𝑥 is updated: 𝑥𝑡+1

𝑑
=

𝑔𝑡
𝑑
+ 𝑢′𝜙 (𝑔𝑡

𝑑
− 𝑥𝑡

𝑑
) with probability 1 − Δ; therefore, DFO reduces

to a simple hill descender. Diversity, however, is maintained by
the jump mechanism. Since the problem dimension is 1024 for
a 322 phantom, one component of 𝑥 restarts, on average, at each
iteration, and four components for the 642 phantom. The mixture of
fast descent coupled with occasional dimensional restart is unique
to DFO and might account for its superiority for these TR problems.

A final feature which might have a bearing on the ability of
the relative success of population algorithms in this context is the
boundary policy. Since the search space is strictly 𝑋 = [0, 255]𝑛 ,
out-flying individuals cannot be evaluated. Boundary clamping was
enforced in the study of Eq. 1. Therefore, any component 𝑑 straying
outside 𝑋𝑑 was moved to the nearest 𝜕𝑋𝑑 . The net effect is that
decision variables can saturate at boundary values 0 and 255 if
one of the optima is near a boundary. Saturation is advantageous
for binary reconstruction where all pixel values are either 0 or 1,
and for non-binary reconstruction where image background pixel
values are 0 because incident radiation that does not penetrate
the subject is not attenuated (images are negatives so that salient
features appear bright against a dark background).

The idea that saturation of decision variables at intermediate
values between 0 and 255 might aid the discrete case where there
are several distinct pixel values was the motivation for the search
space expansion technique delineated in the next section.
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5 TR SEARCH SPACE EXPANSION
The idea is to conduct the search in a series of progressively larger
subspaces Ξ𝑝 ⊆ 𝑋 , 𝑝 = 1, 2 . . . 𝑃 such that the final subspace is
identical to 𝑋 , the full search space. Trial solutions are clamped to
𝜕Ξ𝑝 . Expansions from Ξ𝑝 to Ξ𝑝+1 kick-in at preset intervals during
the optimisation.

This scheme differs from the expansions reported in Sec 2.2
because, rather than artificially extending the search space to raise
sampling frequency at the boundary, the effective search space is
expanded sequentially into previously unprobed territory of the
complete search space.

A simple prescription for empirical trials is to define a series of
boxes Ξ𝑝 = [0, 𝑝𝑃 × 255]𝑛 with expansions at equal divisions of
the total budget of function evaluations. For example, with four
subspaces and a budget of 100000 function evaluations (FEs), search
is conducted in the following boxes:

Ξ1 = [0, 2554 ]𝑛, 0 < 𝐹𝐸 ≤ 25000

Ξ2 = [0, 2552 ]𝑛, 25000 < 𝐹𝐸 ≤ 50000

Ξ3 = [0, 3 × 255
4 ]𝑛, 50000 < 𝐹𝐸 ≤ 75000

Ξ4 = [0, 255]𝑛, 75000 < 𝐹𝐸 ≤ 1000000.

6 PRELIMINARY EXPERIMENTS
As a proof of feasibility of TR SSE, a series of reconstructions with
differing numbers of boxes, 𝑃 , was conducted on four test phantoms
in the few-view regime. The test cases, 32 × 32 phantoms with
uniform square internal structure, are depicted in the rightmost
columns of Figs. 1-4. The phantoms were imaged with just six
projections so that the reconstruction remains challenging despite
the seeming triviality of the test cases.

The DFO optimiser was run with the empirical optimal TR set-
tings from ref. [6], 𝑁 = 2,Δ = 0.001 and 𝜙 = (nearest double
precision value to)

√
3, for 100000 FEs on each phantom, and for

box subspaces Ξ𝑝 = [0, 𝑝𝑃 × 255]𝑛 ranging from 𝑃 = 1 (i.e. the
reference case of no expansions at all) to 𝑃 = 100. Reconstructions
of single sample runs are visualised in Figs. 1-4. Each experiment
was run 30 times and the median end point reconstruction and
reproduction errors for each test phantom and each 𝑃 are tabulated
in Table 1. The results of Wilcoxon rank sum statistical analysis at
a confidence level of 95% are reported in Table 2.

Phantom W, with an internal square of pixel value (PV) 255 sur-
rounded by a frame of 0 PV, is perfectly (𝑒1 = 𝑒2 = 0) reconstructed
for 1, 2 and 3 subspace boxes (the rows in Fig. 1 are not complete
because runs are terminated at 𝑒1 = 0). SSE does no better than
default optimisation in the entire search space (𝑃 = 1) because
clamping DV’s at the edge of the search space is sufficient. The
images show the effects of clamping to the edges of the subspace
by a lightening of the central square during the corresponding FE
interval.

Phantom G, with the white internal square replaced by grey
(PV = 128) is not well reconstructed in the default, 𝑃 = 1, case. The
final image shows the kind of salt-and-peppering that was noticed

Boxes
FEs 10k 20k 30k 40k 50k 60k 70k 80k 90k 100k Phantom

1

2

3

10

50

100

Figure 1: ‘White’ phantom (W), 32 × 32, 6 projections. Row
images depict reconstructions every 10k FEs throughout the
run for differing numbers of box subspaces.

in a previous study [6]. Near perfect reconstruction is achieved by
a single expansion (𝑃 = 2); clamping to the first subspace boundary
at PV = 0 and PV = 255

2 is apparently sufficient.
Phantom WG, with its double square internal structure, is a

more difficult problem at low projections. A larger number of boxes,
𝑃 = 10, are optimal, and, although there is some noise, salt-and-
peppering is reduced compared to the default control (no subspaces,
1 box).

Phantom GG is similar to G except the background is set to
PV = 200. The problem is harder than W and G because clamping
at PV = 0 will not aid reconstruction. 10 boxes again performs well
in this case. The default algorithm is quite poor, showing extensive
salt and pepper noise in the background.

For W, 𝑃 = 1 is optimal, for G, 𝑃 = 2 is optimal, and for the more
complex, WG and GG, 𝑃 = 10 is optimal. The larger optimal P for
the more complex phantoms, WG and GG, possibly indicates that
larger 𝑃 are more suited for more complex phantoms or phantoms
with more levels of pixel value.

The series of trials on test phantoms confirms the intuition that
clamping on the edges of a series of expanding boxes can reduce
the noise that plagued previous trials with a single search space.
The hypothesis is that driving DV’s to saturation, via clamping, is
advantageous because internal structures are composed of regions
of similar PV. If the box sizes were to exactly match the intensity of
the salient internal regions, then we might expect good reconstruc-
tions, but of course algorithms do not have access to PV values of
internal structure in advance, and the boxing scheme remains em-
pirical and arbitrary, but there is a hint that more complex images
objects require more boxes.

7 SHEPP-LOGAN PHANTOM
The Shepp-Logan phantom, introduced in 1974, is a schematic rep-
resentation of a cranial slice [40]. It has become a standard phantom
for TR algorithm testing.

DFO Shepp-Logan reconstructions in the few-view regime were
studied for various expansions. Fig. 5 depicts representative recon-
structions for various search space expansions. Boxing appears to
reduce noise and produces visually more respectable reconstruc-
tions, and more expansions is preferred.

Table 3 lists 𝑒1 and 𝑒2 median errors for 30 runs. Although a
single box produces the smallest median reconstruction error, the
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Table 1: Median errors for various search space expansions Ξ𝑝 = [0, 𝑝𝑃 × 255]𝑛 for four phantoms, W, G, WG and GG. The smallest
errors are highlighted for each phantom. The values in parentheses show the number of function evaluations before reaching
the optima.

W G WG GG
Boxes 𝑒1 𝑒2 𝑒1 𝑒2 𝑒1 𝑒2 𝑒1 𝑒2
1 0 0 (27604 ) 1600 8246 5560 13532 3670 71740
2 0 0 (74624) 23 75 5068 9673 3959 63859
3 0 0 (89899) 970 3235 5784 9616 3820 49998
10 1163 395 203 445 7053 8809 2739 12752
50 3409 1534 390 758 8476 8910 2676 12999
100 3619 1645 389 743 8972 9408 2528 12855

Boxes
FEs 10k 20k 30k 40k 50k 60k 70k 80k 90k 100k Phantom

1

2

3

10

50

100

Figure 2: ‘Grey’ (G), 32 × 32, 6 projections

Boxes
FEs 10k 20k 30k 40k 50k 60k 70k 80k 90k 100k Phantom

1
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10

50

100

Figure 3: ‘White and Grey’ (WG), 32 × 32, 6 projections

Boxes
FEs 10k 20k 30k 40k 50k 60k 70k 80k 90k 100k Phantom

1

2

3

10

50

100

Figure 4: ‘Grey on Grey’ (GG), 32 × 32, 6 projections

result is very noisy (Fig. 5); 50 boxes, however, produces a more
uniform image with better reproduction error i.e. the reconstruction
is closer to the original.

Table 2: Statistically significant (Wilcoxon, 95% conf.) wins of
one boxing scenario over the others for reproduction error
𝑒2 for phantoms W, G, WG and GG. For example, entry 3 (G,
WG, GG) for 10 boxes (row) and 3 boxes (column) means that
the 10 box algorithm (𝑃 = 10) produced significantly lower
𝑒2 values on phantoms G, WG and GG than 𝑃 = 3. 𝑃 = 10,
followed by 𝑃 = 50 are the top expanding box scenarios.

Boxes 1 2 3 10 50 100
1 NA 0 0 1 (W) 1 (W) 1 (W)

2 3 (G,WG,GG) NA 1 (G) 2 (W,G) 2 (W,G) 2 (W,G)

3 3 (G,WG,GG) 1 (GG) NA 1 (W) 1 (W) 1 (W)

10 3 (G,WG,GG) 2 (WG,GG) 3 (G,WG,GG) NA 3 (G,WG,GG) 3 (G,W,WG)

50 3 (G,WG,GG) 2 (WG,GG) 3 (G,WG,GG) 0 NA 2 (W,WG)

100 3 (G,WG,GG) 2 (WG,GG) 2 (W,GG) 0 0 NA

Statistical significance was tested by Wilcoxon comparison at
95% confidence. Results for 𝑒1 and 𝑒2 are shown in Table 4. A single
box (no expansion) is confirmed to produce the lowest reconstruc-
tion error; increasing the number of expansions is significantly
favourable in reducing 𝑒2 up to 50 boxes. There is no significant
difference between 50 and 100 boxes.

Comparisons to classical reconstruction algorithms (ART, FBP
and SIRT), DE, G/LPSO are illustrated in Fig. 6 and median repro-
duction errors are tabulated in Table 5. DFO refers to the algorithm
with TR-tuned parameters, and DFO with 50 subspace searches is
labelled ‘DFO-50’.

DFO-50 is evidently the better population algorithm for the
single instance of Fig 6 and is comparable visually to the classic
algorithms. Also, DFO-50 has the lowest median reproduction error
for all projections.

Wilcoxon significance results for 30 runs for four projections
are given in Tables 6 and 7. Unsurprisingly, the best classical algo-
rithm, SIRT, produces the best 𝑒1 reconstruction and DFO, although
worse than the toolbox methods, is the best population algorithm.
Reproduction errors – which quantify how closely the reconstruc-
tions appear irrespective of 𝑒1 error – tell a different story. DFO-50
outperforms SIRT even for larger views (an entry of 4 in Table 7
indicates significantly better performance over all projections). The
beneficial nature of SSE is manifested in the 4 wins for DFO-50
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Boxes
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Figure 5: Shepp-Logan phantom reconstruction for varying
numbers of expanding boxes over 100k function evaluations,
with a 32 × 32 phantom and 6 projections.

Table 3:Median error values for 30 runs on each offive boxing
scenarios for 32 × 32 Shepp-Logan phantom imaged with 6
projections. The smallest 𝑒2 error is highlighted.

Boxes 𝑒1 𝑒2
1 10397 40392
2 11362 32779
3 12086 27131
10 12031 24684
50 11501 23852
100 11869 23884

when competing with DFO. DFO-50 produces lower reproduction
errors for all projections.

8 CONCLUSIONS
This study proposes a particular search space expansion scheme
for tomographic reconstruction: a progressively wider search in a
series of larger clamped boxes. Experiments in the few-view regime
on four test phantoms and the Shepp-Logan phantom show that
artefact-free reconstructions are possible. In particular, DFO, a pop-
ulation optimiser similar to PSO but without memory and with
component jumps, produces lower reproduction errors than the
standard TR toolbox algorithms. Clamping to a series of expand-
ing walls appears to eliminate the salt-and-pepper noise that had
plagued previous reconstructions.

A tuned version of DFO with 50 boxes was found to be superior
to single-box differential evolution and particle swarm optimisa-
tion with conventional parameter settings. The combination of
boxing and clamping might be specific to DFO or it might gener-
alise to other population algorithms. The implementation of an
adaptive boxing on the individual rather than the population level,
application of boxing and clamping to standard global optimisation
benchmarks and other few-view reconstructions are the subject of
future research.
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Figure 6: Comparison with other methods. Size: 32 × 32, projections: 6 (top), and 8, 16 and 32. See Table 5.
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