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Abstract
Auditory scene analysis (ASA) is the process through which the auditory system makes sense of complex acoustic environ-
ments by organising sound mixtures into meaningful events and streams. Although music psychology has acknowledged 
the fundamental role of ASA in shaping music perception, no efficient test to quantify listeners’ ASA abilities in realistic 
musical scenarios has yet been published. This study presents a new tool for testing ASA abilities in the context of music, 
suitable for both normal-hearing (NH) and hearing-impaired (HI) individuals: the adaptive Musical Scene Analysis (MSA) 
test. The test uses a simple ‘yes–no’ task paradigm to determine whether the sound from a single target instrument is heard 
in a mixture of popular music. During the online calibration phase, 525 NH and 131 HI listeners were recruited. The level 
ratio between the target instrument and the mixture, choice of target instrument, and number of instruments in the mixture 
were found to be important factors affecting item difficulty, whereas the influence of the stereo width (induced by inter-aural 
level differences) only had a minor effect. Based on a Bayesian logistic mixed-effects model, an adaptive version of the 
MSA test was developed. In a subsequent validation experiment with 74 listeners (20 HI), MSA scores showed acceptable 
test–retest reliability and moderate correlations with other music-related tests, pure-tone-average audiograms, age, musical 
sophistication, and working memory capacities. The MSA test is a user-friendly and efficient open-source tool for evaluating 
musical ASA abilities and is suitable for profiling the effects of hearing impairment on music perception.
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Introduction

A necessary foundation for developing an advanced understand-
ing of music perception is auditory scene analysis (ASA)—the 
process by which the auditory system organises the acoustic 
environment into separate coherent events and streams (Breg-
man, 1990). This process is essential for allowing listeners to 
make sense of complex sounds and to distinguish between dif-
ferent sources or elements within an auditory scene. ASA is 

critical for normal hearing in natural environments, but it is also 
critical for music perception, because disentangling simultane-
ous streams of sound (e.g., an oboe within an orchestra, or a 
tenor voice within a choir) is a key part of music appreciation 
and can be difficult, particularly for hearing-impaired individu-
als (Greasley et al., 2020; Madsen & Moore, 2014; Siedenburg 
et al., 2021). Even though music psychology has long acknowl-
edged the fundamental role of ASA in shaping music percep-
tion, at the same time, no efficient and ecologically valid test 
to precisely quantify listeners’ ASA ability in realistic musical 
scenarios has yet been published.

Prior research on ASA has largely employed atomistic 
approaches, which involve methods to examine auditory per-
ception by isolating and analysing individual components or 
features within auditory scenes, simplifying complex stimuli 
to understand the underlying perceptual mechanisms (e.g., 
Bregman & Campbell, 1971; Micheyl et al., 2013). For 
example, one study by Bey and McAdams (2002) explored 
the role of schema-based processes in streaming using a mel-
ody recognition task with two unfamiliar six-tone sequences. 
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Their findings revealed that performance improved with 
increasing frequency difference between target and distrac-
tor tones, and listeners performed better when the target 
alone was played first, but only when there was a difference 
in mean frequency between the target and distractor tones. 
Although approaches such as these have contributed sig-
nificantly to our understanding of ASA, they may not fully 
capture the intricacies of real-world listening experiences, 
particularly in the context of music perception.

In a more recent study, Kirchberger and Russo (2015) devel-
oped the adaptive music perception (AMP) test, which includes 
subtests for metre, harmony, melody, and timbre. Additionally, 
they introduced the melody-to-chord subtest, which tapped into 
the realm of ASA by asking participants to identify a target 
melody that is presented simultaneously with a chordal accom-
paniment. The task requires participants to segregate the target 
melody from the background chords, which is an essential aspect 
of ASA. The AMP incorporates an adaptive testing method that 
dynamically adjusts the difficulty of test items presented to an 
individual based on their performance in real time. Nonetheless, 
the melody-to-chord subtest appeared to be particularly difficult 
for many participants, with roughly a quarter of normal-hearing 
(NH) participants and a third of hearing-impaired (HI) partici-
pants being unable to complete the task. Moreover, the AMP 
also uses artificial sound stimuli. Other tests similarly highlighted 
difficulties with ASA tasks. Siedenburg et al. (2020) adaptively 
measured signal-to-masker ratio thresholds of NH and HI listen-
ers in a melody and timbre discrimination task, but also needed 
to discard data from HI listeners who yielded uninterpretable 
results. Another non-adaptive study, in which participants were 
asked to track target instruments in a classical piece while also 
attending to other instruments playing simultaneously, needed to 
discard data from HI participants as well due to chance perfor-
mance (Siedenburg et al., 2021). These documented challenges 
in measuring ASA abilities motivated us to develop an adaptive, 
computer-driven measurement instrument suitable for assessing 
ASA abilities in the context of music for individuals with a broad 
range of listening abilities (that is, suitable for both NH and HI 
listeners). By employing an ecologically valid methodology that 
incorporates authentic, recorded music, our aim is to capture the 
intricate and dynamic nature of auditory scenes, integrating mul-
tiple auditory features and cognitive processes for incorporating 
the overall experience, and providing meaningful measurements 
for both NH and HI individuals.

HI listeners are known to perform poorly compared to NH 
listeners on music-related perceptual tasks such as timbre iden-
tification (e.g., Emiroglu & Kollmeier, 2008; Siedenburg et al., 
2020), rhythm perception, pitch discrimination (Uys & van 
Dijk, 2011), melodic intonation (Kirchberger & Russo, 2015; 
Siedenburg et al., 2020), and auditory scene separation (e.g., 
Bayat et al., 2013). Older HI listeners also experience degraded 
spatial auditory processing (Akeroyd et al., 2007). While these 
effects are thought to result from damage to the ear, the auditory 

nerve, or the nervous system (e.g., Cai et al., 2013), some studies 
suggest that in fact some of these low performance levels can 
be explained by the problems associated with ageing and asso-
ciated cognitive decline (Garami et al., 2020; Goossens et al., 
2017; Gordon-Salant & Cole, 2016; Vinay & Moore, 2020). 
Yet, others argue that neither ageing nor HI can fully explain 
the observed individual differences, but a combination of these 
factors (Lentz et al., 2022). Furthermore, a growing body of 
research deals with the influence of musical sophistication and 
musical training on auditory perception skills. Even though there 
is still an ongoing debate as to whether musical training has a 
beneficial effect on speech perception (e.g., Bidelman & Yoo, 
2020; McKay, 2021; Parbery-Clark et al., 2009), several stud-
ies have demonstrated a positive link between musical training 
and music perception and other acoustical abilities (e.g., Mad-
sen et al., 2019; Siedenburg et al., 2020; von Berg et al., 2021; 
Zendel & Alain, 2012). Moreover, musicians have been reported 
to outperform non-musicians in basic cognitive tasks, such as 
those related to working memory (Talamini et al., 2017).

Although there is no clear picture of the causal factors under-
lying individual differences in ASA, it may be difficult to accu-
rately understand ASA in music without taking into account these 
differences in the ability to process complex auditory scenes. One 
method which accounts for the large variability in listeners’ abili-
ties is adaptive testing. In contrast to standard testing procedures, 
where a fixed set of items is presented to all test-takers regardless 
of their abilities or performance, in adaptive testing the difficulty 
level of test items is adjusted based on the responses provided by 
the test-taker (for an overview see van der Linden & Glas, 2000). 
This allows the difficulty of the administered items to be tailored 
to the test-taker's ability level, rather than presenting a fixed set 
of items that may be too difficult or too easy for some test-takers. 
There are further benefits of adaptive testing. The comparatively 
shorter testing times can reduce inattention effects and test bias, 
making it less likely that test-takers will gain advantage by guess-
ing answers, resulting in more precise measurement estimates 
compared to standard procedures. This results in greater reliabil-
ity, even when the testing time is reduced by 50–80% compared 
to non-adaptive tests (de Ayala, 2009; van der Linden & Glass, 
2007; Weiss & Kingsbury, 1984). There are several examples 
of music-related tests that rely on adaptive testing procedures. 
Modern tests include measures of beat perception (Harrison & 
Müllensiefen, 2018), melody discrimination (Harrison et al., 
2017), and mistuning perception (Larrouy-Maestri et al., 2019). 
These tests generally apply item response theory (IRT) models, 
which is a flexible adaptation approach that can be applied to a 
wide range of testing situations. However, IRT models require a 
calibrated item bank with a known difficulty level for all items. 
We consequently explored factors suitable for manipulating the 
item difficulty in a task that entails the detection of target sounds 
in mixtures of popular music.

A common approach for identifying factors that affect the 
underlying construct of interest is to examine the underlying 
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cognitive processes involved in a task (Embretson, 1983). 
One key aspect of ASA is the ability to segregate individual 
sound sources from background signals in a complex audi-
tory mixture. This process involves identifying and grouping 
together sounds that share similar acoustical characteristics 
and similarities along perceptual dimensions such as pitch and 
timbre, and which exhibit similar temporal patterning or com-
mon onsets (which are principles of common fate, continuity, 
similarity, and proximity; see Bregman, 1990). Accordingly, 
instruments (or vocals) with distinctive timbral qualities are 
often easier to distinguish in an ensemble because their unique 
acoustic properties enable them to stand out from the mixture. 
Bürgel et al. (2021) found that participants’ performance in a 
detection task was generally dependent on the target’s instru-
ment category, with lead vocals showing a particularly robust 
attentional salience regardless of low-level acoustic cues. A 
second relevant component is the acoustical complexity of a 
mixture. The greater the number of instruments contributing 
to a musical mixture, the higher the probability of energetic 
masking (one sound spectrally masks or obscures a quieter 
sound, making it difficult or impossible to hear) and infor-
mational masking (one sound interferes with or disrupts the 
perception of another sound). Thus, by providing a more com-
plex musical scene, the segregation of individual instruments 
should become more difficult. Due to the same masking pro-
cesses, it is also expected that the relative level of the instru-
ments can provide (or hide) important cues for segregating the 
target sound from the background. Sounds that are louder are 
typically perceived as more salient than softer sounds. Thus, 
if the target instrument is presented at a lower level than the 
background mixture, it may be more difficult to segregate it 
from the mixture and detect it. Another primitive cue that 
has been identified as important for encoding perceptual fea-
tures includes signals’ spatial location, as documented by a 
large range of studies on spatial release from masking (e.g., 
Litovsky et al., 2021). The spatial separation between a tar-
get sound source and interfering sound sources leads to an 
improvement in target signal detection. The effect of a priori 
knowledge about the target location has been studied as well. 
For instance, in a study by Kidd et al. (2005), participants 
were asked to identify keywords from a target talker in the 
presence of two distractors in a setting with spatially separated 
loudspeakers. Conditions in which a priori knowledge about 
the target location was provided yielded higher performance 
than conditions in which no cue was provided.

The present study

To account for these processes with respect to individual dif-
ferences among test-takers, we designed a straightforward 
and simple 'yes–no' task (also known as the 'A–not A' task; 
see Düvel & Kopiez, 2022) that required participants to 

decide whether a single target instrument (or lead singing-
vocals) was part of a two-second mixture of instruments. In 
a calibration phase, two online experiments were conducted 
in order to establish item characteristics that could be used as 
predictors in an explanatory IRT model. This phase is neces-
sary to fine-tune the test items for the adaptive test version, 
ensuring they accurately measure the intended construct and 
provide meaningful results across a broad range of ability 
levels. Experiment 1 of the calibration phase investigated the 
influence of the target-to-mixture level ratio (designated as 
LEVEL), the choice of the target instrument (TARGET), and 
the number of instruments in the mixture (NUM) on the test 
results. Experiment 2 focused on the effect of spatial separa-
tion in azimuth (at a stereo width of 0, 90°, 180°) introduced 
by inter-aural level differences (ILD).

Cognitive model of the Musical Scene Analysis Test (MSA) In 
the present task, the full cognitive process model includes the 
following stages: (1) participants perceive the target instru-
ment as a distinct auditory object; (2) participants store the 
mental representation of the sound of the target instrument 
in working memory; (3) participants use bottom-up and top-
down processing to separate the target instrument from the 
background mixture based on its acoustic features and prior 
knowledge. Within this process, stream segregation is guided 
according to common principles such as similarity, proxim-
ity, continuity, and common fate; (4) participants selectively 
attend to the target instrument's timbre within the mixture 
(if present) based on their working memory representation 
while disregarding other sounds in the mixture. This includes 
a comparison of all segregated auditory streams to an internal 
mental representation or template of the target instrument's 
sound; (5) based on the similarity between the segregated 
auditory stream and the internal template, the listener decides 
whether the target instrument is present in the mixture or not. 
Accordingly, the test imposes demands on various cognitive 
processes, such as perception, working memory, segrega-
tion processes, attention, and decision-making. The task's 
difficulty is presumably influenced by a combination of fac-
tors, including the number and relative prominence of instru-
ments within the mixture, as well as the nature of the target 
instrument.

Based on the proposed cognitive model of the MSA task 
and the reviewed literature, we formulated four hypotheses 
for the calibration phase:

1. Decreasing the target-to-mixture level ratio will make it more 
difficult for listeners to accurately identify and separate the 
target sound from the mixture, resulting in lower accuracy.

2. The listener's ability to detect the target instrument 
within the mixture will decrease as the number of musi-
cal instruments in the excerpt increases.
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3. There will be differences in detection accuracies for vari-
ous target instruments. Although the literature provides 
limited guidance on the direction of these differences, we 
expect that lead vocals will be the easiest and bass the 
most difficult to detect, as indicated by Bürgel et al. (2021).

4. An increase in stereo width (induced by inter-aural level 
differences) will make it easier for listeners to localise 
and segregate the target sound within the mixture, lead-
ing to improved accuracy.

By examining these factors (i.e., LEVEL, TARGET, NUM, 
ILD), the calibration phase aims to optimise the MSA test items 
for effectively assessing individual differences in auditory scene 
analysis abilities in a musical context (irrespective of prior 
musical experience and hearing impairments). In addition to the 
online calibration phase, we conducted a validation experiment 
(experiment 3) in a laboratory context to verify results under 
controlled conditions. This enabled us to assess the consistency 
of the MSA test through test–retest reliability analysis and to 
compare individuals' scene analysis abilities with those in a 
range of other psychoacoustic and music listening tests.

Experiment 1: Calibration phase—Part 1

Methods

Test battery

Musical Scene Analysis Test (MSA) The MSA is a ‘yes–no’ 
test that reflects a two-alternative-forced-choice (2-AFC) 
testing paradigm. The MSA assesses participants’ ASA abil-
ities in realistic musical scenarios by asking participants to 
detect a single target instrument (or lead vocals) in a mixture 

of instruments. Each trial consisted of a two-second audio 
excerpt of a single instrument or voice (the target), followed 
by a one-second silence, and a two-second excerpt with mul-
tiple instruments (the mixture). Participants were then asked 
to decide whether the target was part of the mixture or not 
(see Fig. 1 for a schematic illustration).

All excerpts were drawn from an open-source music data-
base (MedleyDB, Bittner et al., 2014, 2016), which con-
sists of real-world multitrack music recordings represent-
ing a wide range of musical genres (e.g., pop, rock, world/
folk, fusion, jazz, rap, classical). Prior to the extraction, a 
professional musician with a background in music produc-
tion meticulously adjusted and post-processed each mix to 
improve overall audio quality. This process involved refin-
ing the balance among individual instruments, fine-tuning 
volume levels, and minimising signal leakage. The excerpts 
were generated using the programming environment MAT-
LAB (MathWorks Inc, 2020). In order to identify a set of 
suitable candidate tracks, the sound levels of each individual 
instrument within each song were analysed and calculated 
based on the root-mean-square average over 500 ms time 
windows for the full duration of the song. If one instrument 
in the target category and two to six additional instruments 
had sound levels above − 20 dB relative to the instrument’s 
maximum sound level in the song, the song qualified as a 
candidate base track. By setting a minimum sound level 
threshold of − 20 dB relative to the instrument's maximum 
sound level in the song, we aim to include only those songs 
where all chosen instruments are clearly audible.

The candidate list comprised 12,126 potential excerpts, 
each extracted from a distinct two-second time window 
within one of the 117 eligible songs in the database. From 
this list, excerpts were selected pseudo-randomly, with a 
deliberate effort to minimise duplications of the base song. 
The selection protocol also ensured an equal distribution of 

Fig. 1  Exemplary schematic illustration of the procedure. Each trial 
consisted of a two-second excerpt of a single instrument or lead 
vocals (the target), followed by a one-second gap, and a two-second 

excerpt with multiple instruments (the mixture). The listener's task 
was then to decide whether the target instrument was embedded in 
the mix or not
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excerpts in terms of the designated target instrument (lead 
vocals, guitar, bass, or piano) and the number of instruments 
in the mixture (either three or six). The specific target instru-
ments were selected due to their diverse and widespread 
accuracy reported in Bürgel et al. (2021), which employed 
a similar detection task in one of their experimental condi-
tions. The composition of instruments within each mixture 
was preserved in its original configuration, meaning that it 
could include a diverse array of instruments such as lead 
vocals, backing vocals, bass, drums, guitars, keys, piano, 
percussion, strings, or winds, depending on the base songs 
used. In half of the mixes, the target instrument did not play 
in the mixture. In such instances, only excerpts featuring an 
additional instrument were selected to guarantee the preser-
vation of three or six instrument signals within the musical 
mixtures for all items. For example, we utilised excerpts 
originally containing four instruments when a mixture with 
three instruments was required. Detailed information regard-
ing the specific composition of instruments within each 
excerpt can be found in the MSA GitHub repository (https:// 
github. com/ rhake 14/ MSA).

Overall, this yielded a 4 (target instrument categories) × 2 
(number of instruments in the instrument mixture) × 2 (pres-
ence of the target in the mixture) design, for which 160 dif-
ferent excerpts from 98 base songs were compiled. In addi-
tion to the experimental factors target instrument (1) and 
number of instruments in the mixture (2), the first calibration 
experiment explicitly examined the influences of the target's 
level ratio in comparison to the mixture (3). To this end, 
only for those excerpts in which the mix contained the target 
instrument, four versions were created that varied in their 
target-to-mixture level ratio (that is, 0, − 5, − 10, − 15 dB). 
Overall, a total of 400 items were created for the experi-
mental task. Apart from the manipulation of the target 
instrument, the musical material in the excerpts was left 
unchanged (i.e., only excerpts were chosen in which the 
number of instruments corresponded to the desired condi-
tion). A logarithmic fade-in and fade-out with a duration of 
200 ms was applied to the beginning and end of the audio 
signals. To allow for use with an online testing platform, all 
stimuli were converted from WAV format to MP3 with a bit 
rate of 320 kbit/s stereo (i.e., perceptually lossless compres-
sion). All resources, including the MSA test, task descrip-
tion, stimulus details, and example excerpts, are available 
on the project's GitHub repository (https:// github. com/ rhake 
14/ MSA).

Degree of hearing impairment Participants were asked 
to fill out an adaptation of the HAfM (Hearing Aids for 
Music) National Survey on hearing impairment (e.g., Grea-
sley, 2022). These questions aimed at assessing the type and 
degree of hearing impairment. Participants were asked ‘Do 
you feel you have a hearing loss?’ and were able to respond 

with five options ranging from: ‘No, I do not feel that I have 
a hearing loss’ to ‘Yes, I have the feeling of being profoundly 
hearing impaired’. For each option, a short description was 
given (e.g., ‘Yes, I have the feeling of being mildly hearing 
impaired: When I am talking to a person in a quiet room, I 
can usually understand a conversation. In noisy situations 
(e.g., in a pub) and in group conversations, I sometimes have 
problems understanding speech.’). See Tables A4 and A5 for 
the complete self-assessment survey.

Goldsmiths Musical Sophistication Index (GMS; Müllensiefen 
et al., 2014) The Gold-MSI is a brief, 39-item self-report 
questionnaire that assesses several aspects of musical exper-
tise. It was designed to capture subscales for active engage-
ment, emotions, musical training, perceptual abilities, and 
singing abilities. Participants were asked to respond on a a 
seven-point-Likert scale (1 = completely disagree; 4 = nei-
ther agree nor disagree; 7 = completely agree). For both cali-
bration experiments, the two sub-scores for musical training 
(7 items, for example ‘I engaged in regular, daily practice of 
a musical instrument (including voice) for ___ years.’) and 
for perceptual abilities (9 items, for example ‘I can tell when 
people sing or play out of time with the beat.’) were used. 
The final composite score ranging from 1 to 7, with 7 being 
the highest possible score, was generated for each subscale. 
Both the validated English and German versions that were 
used and other relevant materials are freely available on the 
Gold-MSI home page (https:// gold- msi. org).

Huggins headphone screening (Milne et  al., 2020) This 
3-AFC task probes for headphone usage and makes use of 
a perceptual illusory pitch phenomenon, called the Hug-
gins Pitch. The procedure involves presenting a white noise 
stimulus to one ear and the same white noise stimulus to the 
other ear, but 180° phase-shifted over a narrow frequency 
band at about 600 Hz. A faint tone can then be detected, 
but only when the stimuli are presented dichotically over 
headphones. Importantly, when the stimuli are presented 
to one ear alone or over loudspeakers, the sound is very 
weak or absent. In order to pass the test, listeners needed to 
properly identify the tone five out of six times. Participants 
with severe HI struggled with this task, and since the test 
was originally calibrated only among NH individuals, only 
NH participants needed to pass the headphone screening 
in order not to be excluded from the data analysis. A free 
demo implementation of the task can be found on GitHub 
repository (https:// github. com/ Chait LabUCL/ Headp honeC 
heck_ Test).

Demographics questionnaire The demographics question-
naire consisted of several items designed to gather partici-
pants' background information. Participants were asked to 
provide information on their age, gender, and educational 

https://github.com/rhake14/MSA
https://github.com/rhake14/MSA
https://github.com/rhake14/MSA
https://github.com/rhake14/MSA
https://gold-msi.org
https://github.com/ChaitLabUCL/HeadphoneCheck_Test
https://github.com/ChaitLabUCL/HeadphoneCheck_Test
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level. This demographic data helped to characterise the study 
sample and provided context for interpreting the results of 
the main experimental measures.

Procedure

Ethical approval for the study was obtained from the ethics 
committees at the University of Oldenburg and the Univer-
sity of Leeds. Informed consent was obtained from all par-
ticipants tested. Two different samples of participants were 
recruited for experiment 1: For Sample 1, the experiment 
was conducted using testable.org, a web-browser-based 
application for creating behavioural experiments and surveys 
online (e.g., Rezlescu et al., 2020). The study was conducted 
in a single online session, with an average completion time 
of about 35 min for participants in Sample 1. For those in 
Sample 2, the average completion time was 10 min. The 
study was available in both the English and German lan-
guages. All participants provided digital consent by signing 
an electronic form and explicitly agreed, through a checkbox 
format, to remain in a quiet and distraction-free environment 
for the duration of the experiment. Participants who usually 
wore hearing aids were instructed to remove them for the 
study. All participants were financially compensated based 
on an hourly rate of €10; participants in Sample 1 received 
€5, while those in Sample 2 received €2 (or its equivalent 
in British pounds for UK residents), reflecting the differ-
ent administration times for each sample group. Prior to the 
main experiment, a calibration sound was presented, and 
participants were instructed to adjust the volume of their 
playback device to a loud but comfortable level. Then the 
headphone screening was applied. Prior to the main experi-
ment, participants underwent an MSA training session fea-
turing five unique excerpts from the candidate list, which 
were not included in the main test set. Immediate feedback 
was provided after each response, and participants had the 
option of repeating the training phase as often as desired. 
The training phase was followed by the main experiment, 
that is, the MSA, where no feedback was given. A total of 
160 trials, each presenting a single target-to-mixture level-
ratio version of the 160 excerpts, were administered. The 
order in which the 160 items were presented and the selec-
tion of the target-to-mixture level-ratio version was ran-
domised. Participants were allowed to pause at any time, 
with a recommended pause after half of the trials. After 
completing the experimental part of the study, a question-
naire regarding personal information including degree of 
hearing impairment, age, and gender, as well as the two sub-
scales of the Gold-MSI for musical training and perceptual 
abilities, was administered. The same procedure was fol-
lowed for Sample 2, but participants were only presented 
32 items, with each combination of parameters being given 
no more than once—effectively reducing the duration of the 

experiment to approximately 10 min. The rationale for this 
approach was to obtain a diverse participant sample with 
individuals exhibiting varied profiles, such as differing hear-
ing abilities, ages, and genders. Accordingly, in Sample 2, 
we prioritised the diversity of participants over measurement 
accuracy. For Sample 2, the experiment was conducted using 
psychTestR (Harrison, 2020), an R package for creating web-
browser-based behavioural experiments.

Participants

The first sample was recruited through a newspaper arti-
cle, mailing lists, and a call for participation posted at 
the online job board of the University of Oldenburg, and 
126 participants (69 female) took part. Among these, 
47 self-reported having at least a mild hearing impair-
ment (14 female; M = 61.6 years, SD = 16.6), whereas 
79 reported having no hearing impairment (55 female; 
M = 26.9  years, SD = 9.3). The second sample of par-
ticipants was recruited via the online market research 
company SoundOut, located in the United Kingdoms, 
from which 1078 individuals completed the experiment 
(M = 30.19  years, SD = 11.72, 598 female). To ensure 
some control over the playback conditions during the 
experiment, participants were instructed to wear two-chan-
nel headphones, which was checked with a screening test 
(Milne et al., 2020). Of the initial sample, 548 individuals 
failed the headphone screening and were thus excluded. 
Consequently, the analysis for experiment 1 included a 
total of 525 NH participants with ages ranging from 18 
to 72 years (M = 28.6 years, SD = 11.02, 274 female) and 
131 HI participants with ages ranging from 23 to 82 years 
(M = 40.5 years, SD = 20.6, 67 female). The geographi-
cal location of participants was as follows: Australia (1), 
Canada (10), United Kingdom (135), Ireland (1), New 
Zealand (2), United States (322), Germany (126), and not 
specified (59). For a detailed overview with respect to the 
individuals’ degree of hearing impairment (i.e., degree of 
individuals’ self-rated hearing loss) see Fig. 2E.

Data analysis

Bayesian generalised logistic mixed-effects models 
(B-GLMM) were used for the analysis. B-GLMM are pow-
erful and flexible alternatives to more commonly used fre-
quentist approaches. In particular, they are able to account 
for uncertainty in parameter estimation and can provide 
stable estimates for categorical variables with many levels 
and smaller sample sizes with the help of informative prior 
distributions (e.g., Dienes & Mclatchie, 2018; Stegmueller, 
2013). Using (Bayesian) mixed-effect models with a binary 
dependent variable (correct/incorrect participant response), 
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Fig. 2  Results of experiment 1. Panels (A), (B), and (C) show the 
proportion of correct scores of individual test items for each of the 
parameters employed. Individual dots (left of the boxplots) repre-
sent the observed accuracy averaged over participants for each item. 
Light-blue boxplots correspond to items in which the target was pre-
sent in the mixture (orange when the target was not present in the 
mixture). ‘-∞’ corresponds to the items, in which no target was pre-
sented in the mixture. Panel (D) shows the conditional effects plot of 
the final B-GLMM (see Table A1). Median estimates with inner 50% 
(the length of the blue bars around the median) and outer 95% (the 

length of the black bars around the median) high-density intervals 
(HDI) of the estimated parameters are shown. HDIs are uncertainty 
intervals and reflect the probability of the parameter estimate being 
within the given intervals. Panel (E) shows the boxplots of partici-
pants’ average accuracy as a function of the degree of hearing impair-
ment. Panels (F, G) show scatterplots illustrating the relationship 
between the participants' observed average detection scores and the 
two subscales of the Gold-MSI (musical training and musical per-
ception). The individual dots represent the score for each participant 
averaged over all items
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we can measure how different aspects of a musical excerpt 
affect its perceptual processing difficulty. We report the 
median estimates and 95% confidence intervals of the con-
ditional effects for the final Bayesian logistic mixed-effects 
model. These values were obtained by averaging the condi-
tional effects estimates across the respective factor of inter-
est. By examining credible intervals and comparing the 
posterior probabilities of different hypotheses, we evaluate 
the extent to which detection accuracies differ among the 
respective conditions. The observed descriptive statistics, 
including the overall results averaged across items, can 
be found in the accompanying plots, which offer a visual 
representation of the data and highlight the main patterns 
observed in the study (see Figs. 2 and 4). Before conducting 
the mixed-effects analysis, the data were inspected for unex-
pected response patterns. As a result, a total of 29 items were 
removed from the final analysis. An individual inspection 
of these problematic items showed that in some cases, the 
low target-to-mixture level ratios made the target inaudible. 
In other cases, backing vocals were so highly similar to the 
lead vocals that the experimental task was in fact ill-defined. 
Eight items with lead vocals as the target instrument were 
also excluded as they showed a success rate of 100% and 
thus did not provide valuable discriminative information. It 
should be mentioned that despite some participants scoring 
below the 50% chance performance level (occurring only in 
Sample 2), all participant scores were retained in the analy-
sis. The rationale for this decision is twofold: First, the task 
inherently varies in item difficulty, and excluding low-per-
forming participants could introduce selection bias, poten-
tially underestimating the true challenge posed by certain 
items and compromising the generalisability of the results. 
Furthermore, the sample had already been subjected to a 
rigorous screening process; a significant cohort (N = 548) 
was excluded for failing the headphone screening test, pre-
sumably filtering out participants not adequately committed 
to the task. Retaining all participant scores was thus deemed 
crucial for preserving the integrity and representativeness 
of the data.

All analyses were executed in R (v2022.07.2 + 576; RStu-
dio Team, 2020) and the Stan modelling language (v2.21.7; 
Carpenter et al., 2017), using the package brms as an inter-
face from R to Stan (v2.18.0; Bürkner, 2017).

Bayesian GLMM fitting

We fitted several B-GLMM (Bernoulli family with identity 
link; estimated using Markov chain Monte Carlo [MCMC] 
sampling with 35,643 observations, four chains of 6000 
iterations, and a warmup of 3000) to predict participants’ 
performance SCORE at the level of each individual trial 
(binary item responses, with 0 = incorrect and 1 = correct). 
The model was built step by step in a hierarchical way by 

adding one parameter at a time. This allowed us to evaluate 
the individual impact of each variable. We first added each 
parameter to the same model structure separately to gain a 
first understanding of the general predictive performance 
of each parameter in isolation (as shown in Table 1).

We compared three models, each with a single fixed 
effect, using Bayes factors (BF) in contrast to a null model 
that included only random effects and no fixed effects. BF 
is a measure to quantify the evidence for one model over 
another. A BF of 1 indicates that both the null and alterna-
tive models are equally likely, while a BF greater than 1 
suggests that the data better support the alternative model. 
Because the specifications for models 1B, 2B, and 3B dif-
fer only in the fixed effect used, we interpret the BF as an 
indicator of which predictor is most strongly supported 
by the data for explaining the dependent variable, namely, 
MSA scores.

Model 1C, which incorporated the LEVEL as a fixed 
effect, and model 1A (TARGET) provided the strongest 
evidence compared to the null model  (BFLEVEL = Inf; 
 BFTARGET = 1.84e + 48).  This  was fol lowed by 
model 1B, which included the NUM as a fixed effect 
(BF = 7.39e + 07). These results suggest that incorporating 
the TARGET and especially LEVEL as fixed effects bet-
ter explains the observed data than the number of instru-
ments in the mixture (NUM), highlighting the potential 
importance of the choice of the target instrument and the 
target-to-mixture level ratio for the MSA task. However, 
it is important to interpret these results with caution, as 
the Bayes factor only provides relative evidence between 
models and does not directly quantify the effect size of 
each fixed effect. Further investigation, including effect 
size estimation and comparison, is needed to draw more 
definitive conclusions about the influence of these fac-
tors on the outcome variable (as indicated by the medians 
of the conditional effects and their accompanying density 
intervals; see Makowski et al., 2019a, 2019b).

According to this analysis, we planned four versions of 
the model, each one adding a parameter in the order of their 
hypothesised importance to predict the MSA test scores. We 
then used the leave-one-out cross-validation information cri-
terion (LOOIC) and BF to provide a statistical measure of 
the model's predictive performance. ‘LOOIC’ is a model 
comparison metric derived from the concept of cross-val-
idation. It estimates the predictive accuracy of a model by 
leaving out one observation at a time, fitting the model to 
the remaining data, and then predicting the left-out observa-
tion. A lower LOOIC value indicates better predictive per-
formance, and the model with the lowest LOOIC value is 
considered the best (Vehtari et al., 2017). The final model 
was chosen based on a combination of these measures, to 
consider the model's relative fit, its complexity, and pre-
dictive performance. Model 1G (see Table 1) was excluded 
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from the pool of candidate models, as the Pareto k estimate 
indicates potential issues with the model's convergence or 
MCMC sampling efficiency. The high BF value suggests that 
model 1F is likely to best explain the observed data when 
compared to the other models. Additionally, the low LOOIC 
value indicates that model 1F offers the optimal balance 
between its predictive ability and complexity (see Table 1). 
The final model used (1) LEVEL, (2) TARGET, and (3) 
NUM as fixed factors. For each of the factors, an interac-
tion effect with the presence of the target in the mixture 
(PRESENCE) was included. Both excerpt and participant 
were added as random effects, which allowed the intercept to 
vary across participants and excerpts. Priors over the guess-
ing and inattention parameters were set as beta distribution 
(α = 1, β = 1), with an expected lower bound for possible 
values of 0.4 and an upper bound of 0.6 for the guessing 
parameter (expected success rate if the participant were to 
answer randomly), and 0 to 0.1 for the inattention parameter 
(expected probability of a participant not paying attention), 
respectively.

Results

Model fit

The final model (1F) convergence and stability of the Bayes-
ian sampling was assessed using Ȓ, which was below 1.01 
(Vehtari et al., 2019), whereas the effective sample size 
(ESS) was above 1000 (Bürkner, 2017). All Pareto k esti-
mates were good (k < 0.5; Vehtari et al., 2019). For assessing 
the model's explanatory power we used the classification 

accuracy of our model, which represents the proportion of 
correct predictions out of the total number of predictions. 
Although classification accuracy does not provide a direct 
measure of explanatory power, it does offer insights into how 
well the model is performing in predicting binary outcomes. 
The final model was able to correctly identify 78.3% of the 
observed response data. When excluding the random-effect 
information, the three employed fixed-effect factors alone 
accounted for a reasonable proportion of the model accuracy 
at 70.7%. The estimates obtained for this model are summa-
rised in Table A1. Overall, the model assumed a guessing 
parameter of 0.43, which lies within a reasonable scope of 
the theoretically assumed 0.5. According to the model, the 
inattention parameter was below 0.01. This suggests inat-
tention effects to be negligible for the short test durations 
employed in the present research. A detailed overview of 
the estimated conditional effects of the model (effects of the 
parameter employed corresponding to all reference condi-
tions) can be found in Fig. 2D (see also Table A2). The 
results and statistical effects with regard to the individual 
experimental factors are described in the following.

Level ratio between target and mixture

Descriptive statistics and overall results are presented in 
Fig. 2A. The model estimates that as the target-to-mixture 
level ratio was decreased, the MSA task became increas-
ingly difficult. The median difference in accuracy when 
changing the level ratio from 0 dB (M = 93.6%; CI = [90%; 
96.3%]) to − 5 dB (M = 89.8%; CI = [85.4%; 93.5%]) was 
3.8 percentage points. Based on the B-GLMM, non-linear 

Table 1  Model comparison of all Bayesian (GLM) models of experiment 1

Model summary (fixed effects) shows how the model was passed to the brms package in R [SCORE = binary-coded MSA score; NUM = num-
ber of instruments in the mix; LEVEL = level ratio between target instrument and the mixture; TARGET = choice of the target instrument; 
PRESENCE = target instrument is part of the mixture. ‘:’ indicates an interaction effect; LOOIC = leave-one-out cross-validation information 
criterion; BF = Bayes factor]. Given the structural design of the task, the LEVEL parameter always includes an interaction effect with the pres-
ence of the target in the mix (PRESENCE). *Models 1A, 1B, and 1C were tested against a null model, which includes only random effects but 
no fixed effects. **Models 1D and 1E were tested against model F, to improve the interpretability of the comparison and to guide model selec-
tion. ***Pareto k values greater than 0.7 indicate potential issues with the model's convergence or sampling efficiency, that is, the model has not 
captured the underlying structure of the data accurately or there might be issues with the MCMC chains (Vehtari et al., 2019)

Model Fixed effects Random effects Pareto k check LOOIC BF

1A SCORE ~ TARGET Random intercept for excerpt and participant  < 0.7 29,191.5 1.84e +  48*

1B SCORE ~ NUM Same as A  < 0.7 29,188.9 7.39e +  07*

1C SCORE ~ LEVEL Same as A  < 0.7 27,300 Inf*

1D SCORE ~ LEVEL + TARGET Same as A  < 0.7 27,302.4 2.84e −  10**

1E SCORE ~ LEVEL + TARGET + NUM Same as A  < 0.7 27,295.2 7.12e −  15**

1F SCORE ~ LEVEL + TARGET:PRESEN
CE + NUM:PRESENCE

Same as A  < 0.7 27,290.45 (Reference 
for 1D and 
1E)**

1G SCORE ~ LEVEL + TARGET:PRESEN
CE + NUM:PRESENCE

Random slope and random intercept for 
excerpt and participant

 > 0.7*** 25,590.3 (Excluded)***
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one-sided hypothesis testing was performed, indicating that 
the posterior probability (PP) negative difference between 
0 dB and − 5 dB was above 0.95. This can be interpreted as 
evidence for a difference between conditions (for uniform 
priors, the posterior probabilities will exactly correspond 
to frequentist one-sided p-values; see, e.g., Marsman & 
Wagenmakers, 2017). A substantial difference in perfor-
mance was also observed as the level ratio between the tar-
get and mixture was further decreased, with the detection 
rate dropping from a median percentage correct of 80.1% 
(CI = [73.3%, 85.5%]) at − 10 dB to 56.6% (CI = [50.5%, 
64.2%]) at − 15 dB. When there was no target in the mix, the 
median detection accuracy was 79% (CI = [70.2%, 86.6%]). 
In short, the model yielded strong evidence that this differ-
ence was meaningful. The congruence between the descrip-
tives of the observed data and the model estimates highlights 
the strong model fit and underscores the robustness of the 
observed effect.

Choice of the target instrument

The model indicates strong interaction effects of both the 
number of instruments in the mix and the target category 
with the presence of the target in the mix (PRESENCE). 
Thus, differences in correct detection rates must be inter-
preted according to this interaction. In line with previ-
ous research (e.g., see Bürgel et al., 2021), lead vocals 
yielded outstanding accuracy. Even though several items 
were excluded from this condition due to their perfect 
detection rates (100% of participants answered correctly), 
lead vocals still demonstrated the highest detection rates 
both when the target was presented in the mix (M = 87.2%; 
CI = [82.5%; 91.2%]) and when the target was not pre-
sented in the mix (M = 94.1%; CI = [88.7%; 97.0%]). The 
bass, on the other hand, was the most difficult to detect and 
also showed the greatest variation: for items with the target 
in the mix the median was 60.8% (CI = [54.3%; 68.0%]), 
and it was 80.2% (CI = [70.3%; 88.5%]) when the target 
instrument was not included. Both guitar (M = 84.8%; 
CI = [80.0%; 89.1%]) and piano (M = 87.1%; CI = [82.4%; 
91.3%]) remained in an easy difficulty range for items in 
which the target was present, but became moderately dif-
ficult when the target was not present (i.e., Mguitar = 70.8%; 
CI = [61.1%; 80.5%] and Mpiano = 70.2%; CI = [60.7%; 
80.3%]). Similar to the LEVEL factor, non-linear hypoth-
esis testing was performed. Non-negligible differences 
were found between the bass and all other target instru-
ments, both when the items included the target in the mix-
ture and when the target was missing. When the target 
was not part of the mixture, the lead vocals also showed 
substantial differences in detection rates compared to all 
other instruments. For items in which the target played in 
the mixture, the differences in performance for lead vocals 

were apparent only in comparison to the bass. Guitar and 
piano had comparable detection rates.

Number of instruments in the mixture

The B-GLMM indicated a relevant interaction effect for 
the number of the instruments and the presence of the 
target in the mixture. Overall, when the target did not play 
in the mixture, more complex musical excerpts with six 
instruments in the mixture showed lower detection rates 
(M = 74.1%; CI = [65.4%; 82.7%]) compared to simpler 
mixtures with three instruments (M = 83.6%; CI = [75.0%; 
90.4%]). When the target was present in the mixture, the 
median detection accuracy was slightly different for both 
groups: 77.4% (CI = [72.2%; 82.5%]) for the six-instru-
ment mix and 82.5% (CI = [77.4%; 87.3%]) for the three-
instrument mix. Based on the model, this difference was 
found to be meaningful.

Individual differences factors

We assessed the relationship between the model-derived 
MSA scores, which include participant random intercepts 
adjusted for guessing and inattention parameters, and the 
GMS perceptual and training scores using Pearson's prod-
uct–moment correlation. We found a marginal correlation 
between participants' model-based MSA scores and the 
musical training subscale of the GMS (r = 0.103, p = 0.008), 
and a slightly larger correlation between MSA scores and 
the musical perception subscale (r = 0.188, p < 0.001). Even 
though the inter-individual variation was quite large within 
each hearing group of subjects, we observed a decrease in 
performance with the self-reported degree of hearing impair-
ment. Averaged across all items, the mean instrument detec-
tion accuracy decreased from 79.8% (CI = [78.7%; 80.9%]) 
for participants with no HI, to 73.9% (CI = [69.8%; 77.9%]) 
for individuals with mild HI, 77.1% (CI = [72.8%; 81.4%]) 
for those with moderate HI, 74.5% (CI = [69.3%; 79.6%]) 
for participants with severe HI, and 69.0% (CI = [53.2%; 
84.9%]) for individuals with profound hearing impairment. 
Participants’ observed responses are displayed in Fig. 2E, 
F, G.

Discussion

As hypothesised, the model estimates suggested all three 
employed parameters had a robust influence on the partici-
pants’ accuracy. Experiment 1 showed that the accuracy in 
the MSA test depends on the choice of the target instrument, 
the number of instruments in the mixture, and the level ratio 
between the target and mixture. Lead vocals had the high-
est detection rates, while the bass was the most difficult 
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to process. The detection rates were lower for more com-
plex musical excerpts with six instruments in the mixture 
compared to simpler mixtures with three instruments. As 
indicated by the sequential model comparison (see BF in 
Table 1), the effect of the level ratio between the target and 
mixture had the most substantial effect on the difficulty of 
the task, with the task becoming increasingly difficult as the 
target-to-mixture level ratio decreased. When included in 
the model, both the number of instruments in the mixture 
and the choice of the target instruments added comparatively 
smaller but non-negligible improvements to the predictive 
performance of the model. The degree of hearing impair-
ment also showed a relationship with the MSA test, with a 
decrease in performance as the degree of hearing impairment 
increased. There was a weak correlation between simple 
MSA sum scores and musical training and a slightly larger 
correlation between MSA scores and musical perception. 
Even among the most highly musically trained participants 
in this sample, no ceiling effects could be observed, whereas 
some of the more severely hearing-impaired individuals per-
formed at chance level (see Fig. 2E and G). This suggests 
that the test was challenging enough to provide meaningful 
results for individuals with prior musical expertise and is 
also likely sufficient to measure ASA performance in the 
context of complex multi-source music for individuals with 
both normal hearing and severe hearing impairments.

Experiment 1 showed the strongest effects for the factor 
of the level ratio between target and mixture. In experiment 
2, we explored whether another important factor of music 
production, spatialisation in terms of a stereo image, proved 
to be similarly powerful for adjusting item difficulty.

Experiment 2: Calibration phase—Part 2

Methods

Stimuli

In the second experiment, the same stimuli as in experiment 
1 were used. For this experiment, however, instruments were 
presented spatially separated along the azimuth. To create the 
stereo image, inter-aural level differences (ILD) were adjusted. 
ILDs are critical binaural cues that contribute to sound source 
localisation (e.g., Stecker & Gallun, 2012). Here, we used the 
equal-power-panning method (e.g., Blauert & Braasch, 2008). 
Four conditions were thus generated, each characterised by 
varying panning widths, leading to stereo images with angular 
widths of (A) 0°, (B) 90°, and (C and D) 180°, yielding a total 
of 640 items (see Fig. 3 for a schematic illustration). Specifi-
cally, condition A served as a reference, where all instruments 
and the target were centrally localised. In condition B, both the 
target and the other instruments were randomly allocated to one 
of the positions at − 45°, − 27°, − 9°, 9°, 27°, or 45° (i.e., 90° 
of the frontal azimuth) within the stereo field. In conditions C 
and D, the positions were expanded to − 90°, − 45°, − 18°, 18°, 
45°, or 90° (i.e., 180° of the frontal azimuth). In contrast to the 
fixed spatial positions of the target instrument in the preceding 
conditions, condition D introduced a modification: the spatial 
location of the target changed between its isolated presentation 
and its occurrence within the mixture. This alteration effectively 
removed the informative cue provided by a consistent target 
location. To avoid ceiling effects, the target-to-mixture level 
ratio was kept constant at − 10 dB in all conditions.

Fig. 3  Schematic illustration of the stereo width conditions in frontal 
azimuth in experiment 2. (A) All instruments are presented at 0°, i.e., 
the monaural reference; (B) the instruments are distributed evenly at a 
stereo width of 90° (that is, each instrument is randomly allocated to 
one of the positions at − 45°, − 27°, − 9°, 9°, 27°, 45°); (C) all instru-
ments were distributed evenly across the full stereo width of 180°; 

(D) all instruments were distributed evenly across the full stereo 
width of 180°, but the position of the target instrument was changed 
when it was presented during the target presentation phase compared 
to when it was presented within the mixture (during the mixture pres-
entation phase)
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Procedure

The procedure and materials used in this experiment 
were similar to those of experiment 1 and progressed 
in the following order: sound level calibration, Huggins 
headphone screening task, training phase of the MSA, 
data collection phase of the MSA, demographics ques-
tionnaire, and the two subscales for musical training and 
perceptual abilities of the German version of the Gold-
MSI self-report questionnaire. Participants listened to 
all 160 audio excerpts, and for each excerpt, they were 
presented with one of the four different stereo width con-
ditions. The order in which the excerpts were presented 
and the selection of the stereo width conditions were 
randomised across trials.

Participants

The second experiment included a total of 81 participants 
(53% female), of whom 40 were self-reported NH listen-
ers and 41 self-reported HI listeners. One HI listener was 
removed from the analysis for stating that he did not use 
headphones. The remaining 80 participants were on aver-
age 43.2 years old (SD = 21.45) whereas NH individuals 
were predominantly younger, with a mean age of 26.4 years 
(SD = 8.4, range: 20–62 years), and the HI predominantly 
older, with a mean age of 60.2  years (SD = 17, range: 
17–84 years). For a detailed overview with respect to the 
degree of hearing impairment, see Fig. 4F.

Data analysis

Bayesian GLMM fitting

Similar to the first experiment, we used a Bayesian 
GLMM (Bernoulli family with an identity link; estimated 
using MCMC sampling with 12,800 observations, four 
chains of 6000 iterations, and a warmup of 3000) to pre-
dict participant performance. The strategy for building 
the random- and fixed-effects model structure was highly 
similar to experiment 1. However, instead of using the 
LEVEL parameter, the stereo width condition ILD (i.e., 
inter-aural level differences) with an interaction with 
the presence of the target in the mixture (PRESENCE), 
was included as fixed effect. First, we compared three 
models which each included one fixed effect only using 
Bayes factors (see Table 2). Model 2B, which included 
the TARGET as a fixed effect, provided the strongest 
evidence compared to the null model (BF = 1.84e + 06), 
followed by model 2A, which included NUM as a fixed 
effect (BF = 1.67e + 06), and model 2C, with ILD as fixed 

effects (BF = 1.21e + 05). Similar to experiment 1, these 
results emphasise the potential importance of the choice 
of the target instrument. In comparison, the effect size for 
ILD was the lowest.

For the model selection process, the same sequential com-
parison approach as in experiment 1 was used. Based on this 
approach, model 2F was selected as the best model, due to its 
balance between fitting performance and model complexity. 
Model 2G was not considered, as the effective sample size 
(ESS) was too low, indicating that the model did not fully 
converge. Model 2F included the factors ILD, TARGET, and 
NUM, each with an interaction effect with PRESENCE. Fur-
thermore, a random intercept was included to account for the 
variation in the intercept across participants and excerpts, and 
the prior was defined as in experiment 1.

Results

Model fit

The model (2F) converged (Ȓ < 1.01, ESS > 1000) and all 
Pareto k estimates were in an acceptable range (i.e., k < 0.5). 
Overall, the model was able to predict 79% of the trial-level 
observations. When excluding the random effects (random 
intercepts for excerpts and participants), the model could 
correctly identify 70.4% of the observed data. See Table A2 
for a detailed model summary of the estimates and model fit. 
In line with the procedure in the first experiment, all items 
with 100% detection rates were excluded from the analysis 
(4 items with bass as target, 14 with guitar, 20 with piano, 
and 41 with lead vocals).

Stereo width

In this experiment, we investigated the impact of ILD 
on accuracy across four distinct stereo conditions. The 
B-GLMM identified a relevant interaction between stereo 
conditions and target presence within the mixture, emphasis-
ing the need to account for this interaction when interpreting 
the results. With the target absent from the mixture, median 
accuracy was as follows: 77.5% (CI = [67.8%; 86.0%]) for 
condition A (0°), 78.8% (CI = [68.9%; 87.1%]) for condi-
tion B (90°), 81.8% (CI = [72.3%; 89.4%]) for condition C 
(180°), and 77.4% (CI = [67.5%; 86.0%]) for condition D 
(180° + R). Accordingly, when the target was absent in the 
mix, a trend was present only from condition A to C (see 
Fig. 4E). Conversely, when the target was present in the mix-
ture, a consistent trend in the median accuracy was apparent: 
Median accuracy was 79.5% (CI = [70.7%; 86.4%]) for con-
dition A (0°), 82.1% (CI = [73.9%; 88.6%]) for condition B 
(90°), 82.8% (CI = [74.8%; 89.1%]) for condition C (180°), 
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and 86.9% (CI = [79.9%; 92.2%]) for condition D (180° + R). 
In line with experiment 1, non-linear hypothesis tests were 
conducted, confirming a trend of improved accuracy. This 

improvement was most pronounced in the full stereo width 
conditions of 180° (C and D) in comparison to the monaural 
condition A (refer to Fig. 4D).

Fig. 4  Results of experiment 2. Panels (A), (B), and (C) show the 
proportion of correct scores of individual test items for each of the 
parameters employed. Individual dots (left of the boxplots) repre-
sent the observed accuracy averaged over participants for each item. 
Light-blue boxplots correspond to items in which the target was pre-
sent in the mixture. Panels (D) and (E) show the conditional effects 
plot for all conditions of the final B-GLMM (see Table  2). Median 
estimates with inner 50% (the length of the blue bars around the 
median) and outer 95% (the length of the black bars around the 

median) high-density intervals (HDI) of the estimated parameters 
are shown. HDIs are uncertainty intervals and reflect the probability 
of the parameter estimate being within the given intervals. Panel (E) 
shows the boxplots of participants’ average accuracy as a function of 
the degree of hearing impairment. Panels (F, G) show scatterplots 
illustrating the relationship between the participants' observed aver-
age detection scores and the two subscales of the Gold-MSI (musical 
training and musical perception). The individual dots represent the 
score for each participant averaged over all items
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Choice of the target instrument

In experiment 2, we observed a similar pattern of interaction 
effects between the target instrument category and the pres-
ence of the target in the mix as in experiment 1. Consistent 
with our previous findings, lead vocals demonstrated excep-
tional accuracy (again, despite the exclusion of several items 
in this condition due to perfect detection rates). When the 
target was present in the mix, lead vocals showed a median 
detection rate of 92.3% (CI = [84.9%; 96.4%]), and when the 
target was absent, the rate was 88.3% (CI = [79.6%; 93.9%]). 
In contrast, the bass was the most challenging instrument 
to detect, with the largest degree of variability: the median 
was 58.1% (CI = [50.0%; 69.3%]) when the target was in the 
mix and 80.4% (CI = [70.3%; 88.5%]) when it was not. The 
guitar and piano demonstrated relatively low difficulty levels 
for items where the target was present, with median detec-
tion rates of 77.2% (CI = [67.1%; 86.2%]) for the guitar and 
69.6% (CI = [59.5%; 79.8%]) for the piano. However, their 
difficulty increased moderately when the target was present 
(i.e., Mguitar = 88.2%, CI = [78.6%; 94.2%]; Mpiano = 92.8%, 
CI = [85.7%; 96.6%]).

Number of instruments in the mixture

The results with respect to the number of instruments 
in the mix in experiment 2 were in line with those from 
experiment 1. More complex musical excerpts with six 
instruments in the mixture showed lower detection rates 
compared to simpler mixtures with only three instruments. 
When the target was not present in the mixture, the median 
for simpler mixtures with three instruments was 89.1% 

(CI = [80.4%; 94.5%]), while for more complex mixtures 
with six instruments, it was 68.6% (CI = [57.9%; 79.7%]). 
According to the model, this difference was considered 
considerable and meaningful. A similar trend, albeit less 
pronounced, was observed when the target was present in 
the mixture: The median correct detection rate was 85.5% 
(CI = [78.1%; 91.1%]) for the three-instrument mix and 
80.2% (CI = [71.5%; 87.1%]) for the six-instrument mix.

Individual differences factors

The model indicated a decrease in accuracy with an increase 
in the degree of hearing impairment. On average, individu-
als with NH had a mean accuracy of 84.7% (CI = [82.5%; 
86.9%]). The mean accuracy for individuals with mild HI 
was 80.5% (CI = [76.1%; 84.9%]), while for those with mod-
erate HI it was 80% (CI = [77.1%; 82.9%]). For individuals 
with severe HI, the mean accuracy was 70.2% (CI = [64%; 
76.4%]). The lowest mean accuracy was seen in individu-
als with profound HI, at 54.2% (CI = [44.8%; 63.5%]). The 
correlation between model-based MSA scores and the 
GMS musical training scores remained small (r =  − 0.09, 
p = 0.45), while the correlation with musical perception 
abilities was notably stronger (r = 0.20, p = 0.073).

Discussion

Experiment 1 demonstrated that accuracy was dependent 
on the target instrument, with lead vocals yielding the high-
est and bass the lowest overall performance. Furthermore, 
mixture complexity influenced detection rates, as simpler 
three-instrument mixtures resulted in higher detection rates 

Table 2  Model comparison of all Bayesian (GLM) models of experiment 2

Model summary (fixed effects) shows how the model was passed to the brms package in R [SCORE = binary-coded MSA score; NUM = num-
ber of instruments in the mix; ILD = inter-aural level difference condition; TARGET = choice of the target instrument; PRESENCE = target 
instrument is part of the mixture. ‘:’ indicates an interaction effect; LOOIC = leave-one-out cross-validation information criterion; BF = Bayes 
factor]. *Here we tested against a null model, which includes only random effects but no fixed effects. **Model 2G indicated that the effective 
sample size (ESS) is too low, indicating that the MCMC algorithm used to estimate the posterior distributions of the model parameters may not 
have fully converged. A low ESS value can lead to biased or imprecise estimates. ***Given the design of the task, the ILD parameter cannot be 
interpreted without an interaction effect with the presence of the target in the mix (PRESENCE)

Model Fixed effects Random effects Pareto k check LOOIC BF

2A SCORE ~ NUM Random intercept for excerpt and participant  < 0.7 9763.5 1.67e +  06*

2B SCORE ~ TARGET Same as 2A  < 0.7 9761.3 1.84e +  06*

2C SCORE ~ ILD:PRESENCE*** Same as 2A  < 0.7 9739.6 1.21e +  05*

2D SCORE ~ ILD:PRESENCE + TARGET Same as 2A  < 0.7 9738.8 4.03e +  08*

2E SCORE ~ ILD:PRESENCE + TARGET + NUM Same as 2A  < 0.7 9739.2 5.03e +  11*

2F SCORE ~ ILD:PRESENCE + NUM:PRESENC
E + TARGET:PRESENCE

Same as 2A  < 0.7 9734.5 1.54e +  17*

2G** SCORE ~ ILD:PRESENCE + NUM:PRESENC
E + TARGET:PRESENCE

Random slope and random intercept for 
excerpt and participant

 < 0.7 9619 (Excluded)**
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compared to more complex six-instrument mixtures. The 
results also suggested that individuals who reported bet-
ter musical perceptual abilities tended to perform better on 
the MSA test, while the role of musical training remained 
inconclusive. Additionally, listeners with more severe hear-
ing impairments exhibited lower MSA scores. Experiment 
2 corroborated these findings.

We hypothesised that increased stereo width, as induced 
by ILDs, would facilitate target sound localisation and seg-
regation within the mixture, leading to improved accuracy 
irrespective of the presence of the target. However, this was 
not the case when the target was absent from the mixture. 
One possible explanation is that ILD cues alone are not suf-
ficiently strong to improve accuracy based on the stereo per-
cept. This is unlikely, though, since we observed improved 
accuracy when the target was present in the mixture, particu-
larly in stereo conditions C (180°) and D (180° + R) com-
pared to monaural condition A. Interestingly, condition D 
displayed even higher accuracy, despite the target position 
changing between the presentation of the target alone and 
the mixture. This outcome was unexpected, and we initially 
assumed that changing the target position would cause con-
fusion, leading to a decrease in detection rate in comparison 
to condition C. There are two possible explanations for this 
behaviour. First, participants were not informed about the 
cue, and the selection of conditions was fully randomised. 
Accordingly, participants might not have learned to rely 
on the positional cue due to the fully randomised and dis-
closed study design and thus never became confused by the 
change in position within condition D. However, this expla-
nation cannot account for the improvement effect observed 
between conditions C and D. A second explanation might 
be the unexpectedness of the positional change of the target, 
which might have led to an acoustical novelty effect which 
shifted the cognitive locus of attention towards the unex-
pected stimuli (i.e., the target instrument at the unexpected 
position). Research has repeatedly shown that infrequent 
auditory changes in a series of otherwise repeated sounds 
trigger an automatic response to the novel or deviant stimu-
lus (e.g., Parmentier, 2014), which supports this assumption. 
Further research is necessary to elucidate the underlying 
mechanisms responsible for these performance differences. 
Overall, the results indicate that increasing stereo width 
leads to comparably small improvements in accuracy (see 
BF for model 2C), but only for trials where the target is 
present in the mix.

Integrated discussion: Calibration phase

Experiments 1 and 2 were designed to find suitable 
parameters to manipulate the test items’ difficulty to pre-
cisely probe MSA abilities of both NH and HI listeners, 

irrespective of age, musical sophistication, and musical 
training. We hypothesised that (1) the target-to-mix level 
ratio, (2) the choice of target instrument, (3) the number 
of instruments in the mixture, and (4) sound localisation 
cues would have a substantial influence on auditory scene 
analysis abilities in the context of music. We demonstrated 
that all four parameters exert an influence on scene analy-
sis performance. Notably, despite the diversity in partici-
pants' musical perceptual abilities, prior musical training, 
and degree of hearing impairment, test scores still showed 
a reasonable degree of variability within groups, and we 
observed no strong ceiling or floor effects. The results of 
the two calibration experiments established conclusive 
evidence that all four parameters are suitable for manipu-
lating test item difficulty.

Although the results identified four important param-
eters influencing the MSA test to a certain degree, we 
opted to include only the first three parameters in our test 
implementation. Our findings indicated only a modest 
effect of stereo width, i.e., ILDs, and only for those items 
that contained the target. By excluding the ILD parameter, 
we aimed to enhance the adaptability of our approach for 
online experimental setups utilising mono audio and to 
circumvent potential complications for participants with 
asymmetric hearing impairments. Moreover, as the percep-
tion of stereo width alone could contribute to making test 
items less difficult, and the other parameters were even 
more efficient for generating less difficult items, we chose 
to employ a more parsimonious model comprising only the 
three primary factors.

Based on the findings from experiment 1 and experi-
ment 2, we can infer that individual differences in abili-
ties play a notable role in the performance of the MSA 
task. The predictive accuracy of the final model, includ-
ing both fixed and random effects, was consistently higher 
than the model with fixed effects alone. In experiments 1 
and 2, the inclusion of random effects led to an increase 
in predictive accuracy of seven percentage points. This 
suggests that accounting for individual differences is 
crucial for understanding and predicting MSA perfor-
mance. These results have significant implications for 
the development of adaptive MSA testing based on item 
response theory (IRT). By incorporating individual dif-
ferences into the model, adaptive testing procedures can 
more efficiently estimate the underlying ability of par-
ticipants and tailor the test items to their specific needs. 
This enables more precise and efficient measurement of 
MSA performance, while also reducing the likelihood of 
floor and ceiling effects that may be present in a one-
size-fits-all approach. Furthermore, the model's strong 
predictive performance indicates that the selected factors 
adequately represent the underlying cognitive processes in  
an ASA task.
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It is also important to acknowledge a few limitations of 
experiments 1 and 2. The assessment of participants’ degree 
of hearing impairment relied on self-report, and thus lacked 
accuracy. Another limitation is the online setting for test-
ing: conducting listening tests remotely poses inherent 
challenges, such as potential variations in headphone qual-
ity and uncontrollable ambient noise, which can affect the 
reliability and accuracy of the assessments. Notably, the 
headphone screening test was not administered to partici-
pants with hearing impairments, leaving the presentation 
conditions uncontrolled. For instance, both the types of 
playback devices used and compliance with instructions 
to remove hearing aids remain unknown, thereby further 
complicating the evaluation of playback conditions. Overall, 
the challenges associated with conducting online listening 
tests highlight the importance of carefully considering the 
limitations and potential problems of these approaches when 
evaluating individuals with hearing impairments. In the vali-
dation experiment 3, we sought to address these limitations.

Experiment 3: Test validation

The primary aim of experiment 3 was to validate an adaptive 
version of the MSA test under controlled laboratory condi-
tions. The use of IRT models offers a flexible approach for 
creating an adaptive test. These models predict the probabil-
ity of a correct response based on specific item parameters 
that capture different ways in which items might vary, such 
as item difficulty, item discrimination, and parameters for 
guessing and inattention. In this study, the B-GLMM used 
in experiment 1 can be considered an explanatory IRT model 
(Wilson & Boeck, 2004), as it describes the relationship 
between a person's latent trait level (i.e., the ability to iden-
tify musical instruments in a mixture) and their probability 
of responding correctly to test items. By incorporating item 
characteristics (e.g. target instrument, number of instru-
ments in the mix, target-to-mixture level ratio, presence of 
the target in the mix) and person-specific random effects, the 
B-GLMM offers a flexible and robust approach to modelling 
response data. This makes it suitable for IRT applications 
in adaptive testing scenarios to assess the participants' abil-
ity to identify musical instruments within complex auditory 
scenes. Our IRT model then allows us to establish validity 
estimates of the adaptive MSA by examining its correlation 
with other measures of related constructs, such as speech-
in-noise perception, melody discrimination, and mistuning 
perception. In addition to establishing validity, we sought 
to assess the test–retest reliability of the MSA test. One way 
to assess test–retest reliability within the IRT framework is 
to estimate the reliability both by using the standard error 
of measurements (SEM) derived from the model, and by 
comparing scores empirically from multiple adaptive MSA 

measurements within a single participant. We measured par-
ticipants’ MSA ability twice on the same day to investigate 
test–retest reliability in controlled laboratory conditions, and 
also compared these measurements with a third set of MSA 
measurements, obtained through online testing on a different 
day in the participant's home environment.

To identify potentially important factors that might 
explain individual differences between test-takers, we also 
assessed working memory, musical sophistication, and 
individuals’ hearing thresholds as indicators of the degree 
of hearing impairment. This approach enables us to exam-
ine the test–retest reliability of the MSA and to pinpoint 
potential factors contributing to variations in participants' 
abilities across different musical perceptual domains. Sub-
sequent analyses will scrutinise correlations among these 
diverse tests to elucidate the latent factors influencing musi-
cal perception.

Methods

Test battery

Adaptive Musical Scene Analysis Test (MSA) Based on the 
established B-GLMM of the first calibration experiment 
(model F), an adaptive version of the MSA was devel-
oped. Parameter estimates for the final model are given 
in Table A1. The final IRT model constitutes a classical 
four-parameter logistic model in which the discrimination 
parameter and the guessing and inattention parameter are 
constrained to be equal across all items. The item difficulty 
was estimated using the B-GLMM (model F), which applied 
the random-intercept mixed-effects structure for participant 
and excerpt, and by considering the fixed effects for (1) the 
choice of the target instrument, (2) the number of instru-
ments in the mixture, and (3) the level ratio between the 
target and the mixture—each included in the model with an 
interaction with (4) the presence of the target in the mix-
ture. From these results, an estimate of the level of difficulty 
for each of the 40 combinations of parameters was derived 
(see Fig. 2D). The B-GLMM fixed effects were converted 
to the metric of the desired item response model. By also 
incorporating the random-effect structure of the excerpts, 
we are also able to obtain a unique item difficulty estimate 
for each item. To set up the MSA task, we utilised the psy-
chTestR (v2.23.0), an R package that provides the underly-
ing testing mechanisms to create individual test packages 
that can be further employed in web-browser-based behav-
ioural experiments. The adaptive version of the test was 
constructed using the psychTestRCAT (v1.6.0) package, 
which uses weighted-likelihood ability estimations of par-
ticipant ability that range from approximately − 3 to + 3. The 
discrimination parameter was set to the standard deviation 
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of the participant intercept (that is, the estimated median 
of the person random-effect structure). The adaptive item 
selection procedure of the MSA is constructed according 
to Urry's rule (as cited in Magis & Gilles, 2012). There, 
moderately difficult items are presented first to estimate par-
ticipants' ability level using IRT (de Ayala, 2009). The first 
items eligible for selection have a difficulty level close to 
the item bank's mean difficulty, falling within a range of one 
standard deviation. Subsequently, more difficult items are 
presented to participants with higher ability and easier items 
to participants with lower ability. After each response, the 
participant's ability estimates are recalculated, and the next 
item selected is one that is closely aligned with their updated 
ability level. The same item is never presented twice. In this 
experiment, the test–retest reliability was established from 
the results of the adaptive test with a length of 30 items. For 
this experiment the MSA version 2.4 was used.

Oldenburger Satztest (OLSA; Kollmeier et al., 2015; Wagener 
et al., 1999) The OLSA is an adaptive speech-in-noise per-
ception test. The participants' task is to verbally repeat five-
word sentences, spoken by a male speaker, embedded in 
speech-shaped white noise. The sentences were randomly 
generated from a predefined word class structure (name-
verb-numeral-adjective-object), with each word class drawn 
from a pool of 10 possible word alternatives—resulting in 
sentences that were unpredictable for the listeners. While 
the masker level remained constant, the speech level was 
adaptively adjusted to determine the individual 50% speech-
reception thresholds (SRT). To increase reliability, the com-
posite scores of two test lists of 20 sentences each were used. 
The OLSA is essential for our experiment as it provides 
insight into the participant's speech perception abilities in 
a challenging listening environment, reflecting their ASA 
skills in the speech domain—measured by a well-established 
adaptive test. A relevant relationship between OLSA and 
MSA performance would support the notion that the two 
tasks tap into similar auditory scene analysis abilities.

Frequency discrimination task (FDT) In this test, partici-
pants are presented with a series of three tones, one of 
which differs in frequency, and asked to identify the odd 
one out. Feedback on the correct response is provided on 
every trial. Using an adaptive 2-down-1-up procedure, the 
test score is calculated from two test sets of 40 items each, 
using the geometric mean of the last six reversal points 
within each set. In the context of the MSA task, the ability 
to discriminate frequencies allows participants to identify 
and segregate auditory streams based on their frequency 
content and thus helps to perceive and distinguish indi-
vidual instruments within a complex musical scene. It 
is expected, therefore, that there would be a relationship 
between the FDT and MSA scores.

Melodic discrimination test (MDT; Harrison et al., 2017) For 
each question of this adaptive melodic working memory 
test, participants hear three versions of the same unfamiliar 
melody. Each successive version is transposed to a semitone 
higher in pitch, and in one of these versions, a note has been 
altered. The task is to detect the ‘odd one out', while ignor-
ing the transposition in pitch. By utilising weighted-likeli-
hood ability estimations, the MDT uses a similar adaptive 
item selection procedure as the MSA. A default number of 
20 items was used in this experiment. The MDT is impor-
tant, as it evaluates a participant's working memory and their 
ability to discriminate auditory information, which relates to 
stages 2 and 3 of the MSA cognitive model. A strong corre-
lation between MDT and MSA performance would indicate 
that working memory plays a role in the MSA task.

Mistuning perception test (MPT; Larrouy‑Maestri et  al., 
2019) This adaptive test assesses the ability to perceive mis-
tuning in pieces of music. The task is to decide whether a 
vocalist is in tune or out of tune with the background music. 
The main output from the MPT is an ability score, corre-
sponding to the ability estimate for the participant similar to 
the procedure mentioned for the MDT and MSA. A default 
number of 30 items was used in this experiment. As the 
MPT assesses a participant's ability to identify pitch devia-
tions, it can inform their ability to perceive and segregate 
auditory streams (similar to the FDT), highlighting partici-
pants' sensitivity to tuning discrepancies. A relevant rela-
tionship between MPT and MSA performance would sug-
gest that sensitivity to mistuning—that is, the sensitivity to 
frequency differences in the context of music—contributes 
to the MSA task.

Timbre perception test (TPT, Lee & Müllensiefen, 2020) This 
test examines timbre perception abilities. Participants use a 
slider to best reproduce presented stimuli that vary along 
three important dimensions of timbre: temporal envelope, 
spectral flux, and spectral centroid. For each dimension, a 
total of six items was presented. The aggregated final esti-
mate represents the average score of all three blocks, ranging 
from 1 to 100 (higher scores indicate better performance). 
The TPT relates directly to the participants' ability to per-
ceive and segregate auditory streams based on timbre, a 
key aspect of the MSA task. A strong correlation between 
TPT and MSA performance would provide evidence for the 
importance of timbre perception in the MSA task.

Computerised Adaptive Beat Alignment Test (CA‑BAT; Har‑
rison & Müllensiefen, 2018) The CA-BAT is an adaptive 
test of beat perception ability. This 2-AFC test assesses the 
ability to recognise the beat in a piece of music. Partici-
pants are presented with excerpts where they hear a piece 
of music together with a click track. The task is to decide 
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whether the click track is on or off the beat in the music. The 
main output from the CA-BAT is an ability score, computed 
from the underlying item response model and corresponding 
to the ability estimate for the participant (similarly to the 
MDT). The full 25-item test with psychometric parameters 
and adaptive procedure identical to those of the original 
study was used. By making sense of the temporal structure 
of musical pieces, beat perception can provide the audi-
tory system with prior knowledge about upcoming musical 
events, thereby guiding stream segregation. In this sense, the 
ability to perceive the beat helps listeners to organise audi-
tory streams, making it easier to understand and follow the 
musical structure. A substantial relationship between CA-
BAT and MSA performance would support the role of beat 
perception in the MSA task.

Backwards digit span memory test (BDS; e.g.Talamini et al., 
2017; Weiss et al., 2016) In this classical working memory 
test, participants remember sequences of digits. A test per-
son is visually presented with digits one after the other and 
is then asked to recall the digits in the reverse order (e.g., 
for the sequence 1 2 3 4, the correct answer is 4 3 2 1). In 
total, two sequences with four digits (i.e., 2 × 4), 2 × 5 dig-
its, 4 × 6 digits, and 4 × 7 digits were used. The final score 
represents the proportion of correctly recalled sequences. 
A strong correlation between BDS and MSA performance 
would further emphasise the importance of working memory 
in the MSA task.

Goldsmiths Musical Sophistication Index (GMS; Müllensiefen 
et al., 2014) Instead of employing only the musical training 
and perception scale as in the calibration phase, the complete 
index (in German language) was used during the validation 
experiment. The final composite score ranging from 1 to 7, 
with 7 being the highest possible score, was generated for 
each subscale. A robust association between MSA perfor-
mance and GMS scores would highlight the critical role of 
listeners' musical sophistication in ASA, whereas a relation-
ship to the subscales that assess musical training and musical 
perceptual abilities would establish evidence in favour of the 
predictive validity of the test.

Pure‑tone average audiometry (PTA) For assessing the indi-
viduals' degree of hearing impairment, pure-tone audiomet-
ric thresholds were measured with an Interacoustics AD528 
portable audiometer. The audiometer was used to measure 
thresholds at 0.125, 0.25, 0.5, 1, 2, 4, and 8 kHz using the 
standard clinical ascending–descending procedure in steps 
of 5 dB. Considering that elevated hearing thresholds in fre-
quencies above 4 kHz have been shown to be meaningful 
in domains important for complex ASA listening scenarios 
(e.g., amplitude modulation detection thresholds and sound 
localisation; see, e.g., Moore, 2020; Narne et al., 2023), the 

PTA score was calculated as an average over all measured 
frequencies. When the PTA of the better ear exceeded 20 dB 
HL, participants were classified as HI (Humes, 2019). A 
relevant relationship between PTA and MSA performance 
would imply that hearing sensitivity plays a role in musical 
scene analysis.

Procedure

Ethical approval was provided by the ethics committee at the 
University of Oldenburg. All participants provided written 
informed consent. The test was administered in two separate 
parts. The first part was conducted in a controlled labora-
tory setting, where participants were seated in a soundproof 
booth. The calibrated equipment consisted of a computer, 
an RME Babyface soundcard, and Sennheiser HD650 head-
phones. The long-term sound level was set to 75 dB SPL 
(A), measured with a Norsonic Nor140 sound-level metre 
using music-shaped noise as the excitation signal.

The first part of the test battery proceeded in the follow-
ing order:

Block 1:

a. Pure-tone audiometry.
b. Speech-in-noise (OLSA).
c. Frequency discrimination task.

Block 2:

a. Demographics questionnaire.
b. Huggins headphone screening.
c. Mandatory pause of at least five minutes.
d. Training phase of the MSA.
e. First set of the adaptive MSA with 30 items.

Block 3:

a. Melodic discrimination test.
b. Mistuning perception task.
c. Beat perception task.
d. Second set of the adaptive MSA with 30 items.

Between each of the assessment blocks, participants 
were given brief breaks that included verbal interactions 
and instructions from the experimenter. In addition, partici-
pants were encouraged to take as many breaks as necessary 
between tests to ensure that they were able to complete the 
tasks to the best of their ability. The order of the tests was 
carefully designed to maximise the effectiveness of the test-
ing, taking into account aspects like test difficulty, potential 
learning effects, and cognitive fatigue. Each task was admin-
istered according to established protocols.
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The second part of the test battery was performed online 
by the same group of participants, at least 24 h after the first 
part. After adjusting their volume to a loud but comfortable 
level, participants completed the following tests:

a. Full Gold-MSI self-report questionnaire.
b. Third set of the adaptive MSA with 30 items.
c. Backwards digit span test.
d. Timbre perception test.

This online component of the test battery allowed us to 
assess participants' MSA abilities in an online setting. The 
laboratory part of the study took approximately 80–120 min, 
whereas the online part took between 25 and 40  min. 
Because of missing data, some of the following analysis was 
conducted based on a subgroup of participants, which will 
be specified accordingly.

Participants

The experiment included a total of 74 participants (32 male 
and 42 female). The participants were divided into four 
groups: 30 older adults with NH (M = 63.2; SD = 7.2), 19 
older adults with HI (M = 70.5; SD = 7.2), 24 younger adults 
with NH (M = 25.4; SD = 4.2), and one young adult with HI 
(age = 26). A graphical illustration of individuals' pure-tone 
audiometric thresholds can be found in Figure A1. Partici-
pants were recruited via a call for participation in the local 
newspaper in Oldenburg, Germany, and were compensated 
for their time (€10 per hour).

Results

Test–retest reliability

The two-part, two-day administration design of the study 
allowed us to assess the consistency of MSA performance 
over time and compare it in different playback environ-
ments. The test–retest reliability of the adaptive MSA was 
assessed using the intraclass correlation coefficient (ICC; 
see Koo & Li, 2016), using a two-way mixed-effects model 
with absolute agreement. For single measurements, which 
represent the reliability when the adaptive MSA was admin-
istered once, a moderate ICC(A,1) of 0.633 was observed 
(95% CI [0.46; 0.757], F(71,54.9) = 4.78, p < 0.001; Pear-
son’s r(70) = 0.67, p < 0.001). In contrast, the ICC for the 
mean of multiple measurements (that is, the average MSA 
score when the test was administered twice), improved to a 
substantial level with an ICC(A,2) of 0.775 (95% CI [0.625; 
0.863], F(71,51.2) = 4.78, p < 0.001). Accordingly, the ICC 
indicates moderate to good consistency across the two sets 
of 30 items when administered under controlled conditions 
on the same day (see Fig. 5A). The results further suggest 

that the MSA shows moderately accurate and stable reliabil-
ity values, even when comparing the combined MSA score 
of the controlled laboratory and the uncontrolled online 
environment (ICC(A,1) = 0.60, CI = [0.42; 0.73], p < 0.001; 
Pearson’s r(66) = 0.65, p < 0.001). As the length of the test 
increased, the model indicated a consistent decrease in the 
mean estimated standard error of measurement (SEM) for 
the MSA ability. This trend converged in a final SEM of 0.29 
for the full test of 30 items, as illustrated in Fig. 5B. Aver-
aged across all participants for whom complete data were 
available (n = 65), the median scores for the first, second, 
and third MSA item sets were 0.21 (95% CI = [0.17; 0.26]), 
0.28 (95% CI = [0.22; 0.33]), and 0.33 (95% CI = [0.24; 
0.38]), respectively. A repeated-measures ANOVA was con-
ducted to assess the impact of training on test scores across 
three MSA test sets. The results suggest a small improve-
ment in test scores due to training effects (F(2, 128) = 3.26, 
p = 0.042, η2 = 0.014).

Music‑related and psychoacoustic tests

In the presented experiment, we found moderate correla-
tions between the MSA test and timbre (r = 0.37), mistun-
ing (r = 0.52), and beat perception (r = 0.46) scores (see 
Table 3). Notably, the strongest correlation was identified 
between the MSA and melody discrimination (r = 0.52). 
In addition, a moderate correlation was found between the 
MSA and speech-in-noise measures (i.e., SRT of the OLSA, 
r(63) =  − 0.39, p < 0.001) and after removing two severe out-
liers (that were minus three standard deviations from the 
median), the frequency discrimination task revealed a mod-
erate association with the adaptive MSA (r(61) =  − 0.43, 
p < 0.001).

Individual differences factors

Similar to the calibration experiments, we found a nega-
tive relationship between the degree of hearing impair-
ment (measured by the individuals’ better ear elevated 
hearing thresholds) and MSA scores (r =  − 0.37). We also 
found a negative correlation between age and MSA scores 
(r =  − 0.40), however, both effects were confounded, as indi-
cated by the correlation between age and hearing impairment 
(r(63) = 0.66, p < 0.001). Interestingly, MSA scores showed 
the highest correlations with age and pure-tone audiometric 
scores compared to all other employed music-related per-
ceptual tests in the battery (see Figure A2 for a complete 
correlation matrix). This relationship gives a first indication 
of a potential use of the MSA as a relevant tool for diagnos-
ing and profiling hearing impairment in a musical context. 
Nevertheless, the strongest relationship with PTA scores 
was observed with the OLSA speech-reception thresholds 
(r = 0.59; here, a positive correlation implies that a higher 
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degree of hearing impairment leads to worse performance 
in the OLSA task). Participants' performance on the MSA 
tests demonstrated a notable correlation with BDS (r = 0.39), 
suggesting a moderate association with general working 
memory capabilities. Our findings further indicate a positive 
correlation between musical training and musical percep-
tion abilities with ASA abilities. Specifically, the correlation 
between the MSA test and musical training score was 0.46, 
and 0.37 for musical perception. The strongest correlations 
with the general musical sophistication score were found 
with mistuning perception scores (r = 0.65, p < 0.001), mel-
ody discrimination abilities (r = 0.53, p < 0.001), followed 
closely by the MSA (r = 0.48).

Discussion

The aim of experiment 3 was to assess the psychometric 
properties of the adaptive version of the MSA test. Two 
reliability measures were calculated: the standard error of 
measurement (SEM) based on the ability estimate of the 
IRT model and the intraclass test–retest reliability. Both 
measures help to establish a comprehensive picture of reli-
ability, as the SEM does not require participants to take the 
test twice, whereas the test–retest reliability does not rely 
on any model assumptions. Ideally, the optimal test length 
would be determined by the point at which both test–retest 
reliability and the SEM estimates plateau. However, in our 
study, this was not achieved with a test length of 30 items. 
The final test–retest reliability was acceptable and compara-
ble to other previous measures of scene analysis ability (e.g., 
Kirchberger & Russo, 2015; Siedenburg et al., 2020). To 
further improve the test–retest reliability estimate, it is likely 

that increasing the test length would be necessary, although 
this remains to be seen in further empirical research.

To establish validity estimates, it is important to compare 
the MSA to other established tests that measure similar con-
structs. Unfortunately, there are no published tests specifi-
cally designed to assess ASA abilities with realistic musical 
excerpts. As a result, we must rely on comparisons with 
hypothetically associated psychoacoustic and music-related 
tests. The presented experiment found moderate correla-
tions between the MSA test and various other music-related 
tests, such as timbre, mistuning, and beat perception, with 
the strongest correlation found with melody discrimination. 
The relationship between the MSA and these tests is likely 
due to shared underlying cognitive processes and sensory 
representations. For example, within the mistuning percep-
tion task, listeners need to have the ability to separate the 
vocal line from the accompaniment through auditory stream 
segregation, and then to assess the extent to which its pitch 
content conforms to the prototypical pitch distributions of 
the relevant musical style (Larrouy-Maestri et al., 2019). 
Just as in mistuning perception, the MSA task requires the 
separation of streams in the mixture. This similarity is also 
reflected in the comparable strengths of the relationship of 
the participants’ frequency discrimination scores to the MSA 
and those with MPT scores (see Figure A2). The moderate 
correlation between the MSA task and the frequency dis-
crimination task also highlights that the MSA task is reliant 
on rather fundamental acoustical cues like pitch. Nonethe-
less, it also requires the ability to integrate multiple auditory 
cues and is affected by higher-level cognitive processes such 
as attention and memory. Accordingly, MSA and CABAT 
(beat perception) share the requirement to process and 

Fig. 5  Test–retest reliability of the first and second set of the MSA as 
a function of test length is shown on the left and the standard error 
of measurement (SEM) as a function of test length on the right. The 

test–retest score (on the left) was assessed empirically and is based 
on the Pearson's product-moment correlation of all participants. The 
SEM (on the right) was derived from the model ability estimate
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analyse temporal aspects of musical sound, specifically the 
rhythms and patterns within a piece.

Another important result is the substantial association 
between the MSA and the MDT, which assess the ability 
to discriminate between melodies. Melody discrimination 
abilities are often interpreted as reflecting more general cog-
nitive traits and involve processes that are similar to those 
needed in the process of auditory scene analysis: in both 
tasks, musical streams have to be perceptually encoded, 
stored in memory (including melodic and timbral memory), 
then compared to each other, followed by a decision-making 
process. Timbre perception, on the other hand, is a multi-
dimensional attribute which characterises the ability to dis-
criminate between musical sounds, even when sounds are 
equal in loudness, tempo, and pitch. Accordingly, timbre 
plays a key role in the recognition of sound sources. Both 
the TPT and the MSA require the ability to identify and dif-
ferentiate musical sounds based on their unique attributes.

In essence, the observed moderate relationships between the 
MSA test and specific music-related perceptual tasks—namely 
timbre identification, beat perception, melody discrimination, 
and mistuning perception—suggest that the MSA test measures 
similar but not the same cognitive and acoustic processing abili-
ties. This provides compelling evidence for the task's conver-
gent validity. Besides that, the moderate correlation between the 
MSA task and a speech-in-noise measure further supports its 
construct validity, as both concepts measure the ability to pro-
cess and parse complex auditory information (speech vs music), 
separate relevant sounds from competing sounds (white noise 
vs a mixture of instruments), and identify and interpret dif-
ferent elements within an acoustic scene. To further establish 
the validity of the MSA task, future research could focus on 
demonstrating its predictive validity. For instance, research-
ers could compare the scores of highly trained musicians who 
are assumed to possess excellent auditory scene analysis skills 
(such as conductors) with those of musically untrained listeners. 
This would provide additional support for the MSA task as a 
valid measure of auditory scene analysis in music.

General discussion

The objective of the current study was to establish a new 
test for ASA abilities in the context of music. Previous 
efforts to develop tests to assess musical perceptual abilities 
(Kirchberger & Russo, 2015; Siedenburg et al., 2020) were 
limited by relying on artificial stimuli and/or being unable 
to account for individuals with a broad range of perceptual 
abilities and diverse auditory profiles (e.g., hearing abili-
ties, musical training, age, and cognitive abilities). In light 
of these limitations, our study aimed to develop an efficient 
and accessible test for ASA abilities in music. To accomplish 
this goal, we conducted three experiments.Ta
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In the first two experiments, we found that the target 
instrument, number of instruments in the mixture, target-to-
mix level ratio, and presence of localisation cues (perception 
of stereo) had a relevant impact on an individual's ability to 
analyse and understand musical scenes. These results indi-
cate that the specific characteristics of stimuli used in ASA 
tasks can greatly influence an individual's ability to analyse 
and understand musical scenes. To standardise the MSA 
test, we conducted a calibration (experiment 1 and experi-
ment 2) with a sample of participants with varying degrees 
of hearing impairment and different musical backgrounds. 
In experiment 3, we built an IRT model based on the first 
three parameters of the already established B-GLMM. This 
allowed us to develop a reliable assessment tool for evaluat-
ing individuals' musical auditory scene analysis abilities. 
Our findings showed consistent MSA results when admin-
istering the test to the same individuals under different 
presentation conditions or to different individuals under 
the same conditions. We observed a moderate correlation 
between MSA and various aspects of musical perception, 
such as melody discrimination, timbre perception, mistuning 
perception, and beat perception. These findings emphasise 
the validity of the assessment and highlight the importance 
of considering ASA in understanding the interplay of the 
different facets of musical perception.

We also wanted to explore factors that might explain 
individual differences among test-takers, including musical 
background, working memory capacity, age, and degree of 
hearing impairment. Numerous studies have demonstrated 
that musical training or musical sophistication not only 
enhances basic perceptual abilities, such as pitch, timbre, 
and rhythm detection (Kannyo & DeLong, 2011), but also 
contributes to higher-order perceptual skills. These include 
musical imagery (Gelding et al., 2021), mistuning per-
ception (Larrouy-Maestri et al., 2019), auditory tracking 
(Madsen et al., 2019), and auditory streaming segregation 
(Zendel & Alain, 2009). The results from experiment 3 
align with this literature by showing a moderate relation-
ship with musical scene analysis abilities. On the con-
trary, however, Bürgel et al. (2021) found no systematic 
difference between musicians and non-musicians using a 
similar instrument detection paradigm, which they attrib-
uted to the limited representation of musicians in their 
sample. Here, we recruited participants with a wide range 
of musical ability levels. We nonetheless observed only 
small correlations of musical training levels with MSA 
abilities in experiments 1 and 2, but moderate correlations 
in experiment 3, which remains intriguing. A potential 
explanation for these incompatible findings is the way in 
which the musical training score of the Gold-MSI is opera-
tionalised: the musical training score is more likely assess-
ing a ‘lifetime’ training score, with the reported musical 
training potentially dating back many decades (e.g., ‘I have 

had formal training in music theory for __ years’). This 
could mean that someone who has intensively trained in 
music for the past 10 years may receive the same score as 
someone who played music extensively for 10 years, but 
has not played for the last 30 years—reducing the effect of 
prior musical training on musical perception performance 
due to decay. Recent musical training, in contrast, might 
have a stronger relationship with auditory scene analy-
sis abilities than 'lifetime' musical training. Micheyl et al. 
(2006), for instance, showed that several hours of active 
training in a pitch discrimination task led non-musicians 
to achieve similar accuracy as musicians. This suggests 
that recent musical training might have a comparatively 
greater impact on ASA abilities. Accordingly, experiments 
1 and 2 might have included ‘lifetime’ musicians, who had 
not played considerably in the recent past, while a higher 
proportion of actively performing musicians participated 
in the validation experiment. Certainly, this discrepancy 
must be addressed in future research.

Furthermore, our findings revealed a notable negative 
correlation between age and MSA scores and a negative 
association with the degree of hearing impairment. However, 
similar to Kirchberger and Russo’s (2015) study, the effect 
of the degree of hearing impairment was confounded by the 
factor of age. This makes it difficult to determine whether the 
observed correlation between the degree of hearing impair-
ment and MSA performance is due to the hearing impair-
ment itself or to factors associated with ageing. Goossens 
et al. (2017) used a matched-pair design to disentangle the 
effects of age and hearing impairment on speech percep-
tion. Participants were matched on age and then divided into 
groups based on the degree of hearing impairment, which 
allowed for a direct comparison of speech perception in 
individuals with similar age levels but different levels of 
hearing impairment. Goossens et al. (2017) also excluded 
participants with potential cognitive impairments. The 
results indicated that even when audiometric thresholds are 
within normal limits and individuals show no indication of 
even mild cognitive impairment, masked speech perception 
declines by middle age and further decreases with increasing 
age. However, since the prevalence of hearing-impaired par-
ticipants was particularly low among the young age group, 
we were not able to achieve a fully matched-pair design. 
This is an area for future research. Overall, our findings con-
verge with the notion that even fundamental aspects of music 
perception such as ASA appear to be affected by working 
memory, age, and the degree of hearing impairment (cf. 
Micheyl et al., 2013; Susini et al., 2023).

A notable limitation of the current study is its cultural 
specificity. The MSA test and its underlying theoretical 
frameworks are largely rooted in Western-centric music 
perception research. The chosen stimuli (base tracks and 
genre), target instruments, and the sample of participants 
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mainly cater to Western audiences. This inherent cultural 
bias raises questions about the test's cross-cultural applica-
bility and limits the generalisability of our findings. While 
it may be tempting to aim for a universally applicable MSA 
test, because of the complexity and diversity of musical 
experiences and traditions across cultures, it is more realistic 
and valid to develop culture-specific versions. For instance, 
a culture-specific version for Indian music could be devel-
oped by sourcing a multi-track database of Indian musical 
compositions and calibrating the test with Indian listeners. 
Although these culture-specific tests would feature differ-
ent stimuli and item banks, they would remain conceptually 
comparable at the level of the latent variable—MSA ability. 
Such endeavours would make significant contributions to the 
field by broadening the scope of music perception research 
to be more inclusive and representative of global musical 
experiences (e.g., Jacoby et al., 2020).

Apart from cultural aspects, the test's ecological validity 
also merits acknowledgment. While the MSA test employs 
realistic musical stimuli, it should be noted that the listening 
conditions are nonetheless constrained by the experimental 
context. Specifically, the stimuli are presented over head-
phones in a controlled setting (and in a monaural configura-
tion). This may not fully capture the complexities of auditory 
scene analysis as experienced in more naturalistic settings, 
such as live concerts, where various acoustic and attentional 
factors come into play. Therefore, the term 'ecologically valid' 
is used here with the understanding that the test conditions 
are a simplification of real-world musical experiences.

In summary, the newly developed adaptive MSA test can 
serve as a valuable contribution to music perception research 
by efficiently measuring ASA abilities in a realistic musical 
context for individuals with a broad range of dispositions. 
The MSA test is sensitive to the effects of the degree of 
hearing impairment (i.e., individuals with elevated hear-
ing thresholds) and musical background (musical sophis-
tication and training) but is not limited by it. Future exten-
sions of the current item bank could incorporate excerpts 
of classical music or excerpts from other musical genres 
and cultures. The MSA test is an easy-to-implement, user-
friendly, enjoyable, and efficient tool for evaluating ASA 
performance in the context of music. With a training and test 
time of less than eight minutes, it is quick to administer and 
allows for flexibility with adjustable test length (alongside 
known measurement accuracies) to meet the specific needs 
of the study or application. Additionally, it is open-source 
and freely available. Detailed information on the operational 
R package, including an online demo, can be found in our 
GitHub repository (https:// github. com/ rhake 14/ MSA). By 
studying ASA in the context of music, researchers can gain 
insights that can inform the development of new technolo-
gies and techniques for improving music perception in indi-
viduals with hearing impairment.
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