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Abstract 1 
 2 
The current paper offers a model of time-varying music engagement, defined as changes in 3 
curiosity, attention and positive valence, as music unfolds over time. First, we present 4 
research (including new data) showing that listeners tend to allocate attention to music in a 5 
manner that is guided by both features of the music and listeners’ individual differences. Next, 6 
we review relevant predictive processing literature before using this body of work to inform 7 
our model. In brief, we propose that music engagement, over the course of an extended 8 
listening episode, may constitute several cycles of curiosity, attention and positive valence 9 
that are interspersed with moments of mind-wandering. Further, we suggest that refocussing 10 
on music after an episode of mind-wandering can be due to triggers in the music or, 11 
conversely, mental action that occurs when the listener realizes they are mind-wandering. 12 
Finally, we argue that factors that modulate both overall levels of engagement and how it 13 
changes over time include music complexity, listener background and the listening context. 14 
Our paper highlights how music can be used to provide insights into the temporal dynamics 15 
of attention and into how curiosity might emerge in everyday contexts.  16 
  17 
Keywords: Music engagement, Curiosity, Attention, Valence, Predictive processing   18 
  19 
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Over the course of a music listening experience, an individual may find their focus switching 1 
between the music and other thoughts or actions. However, a theoretical model of the 2 
psychological processes and factors determining the level and dynamics of engagement with 3 
music over extended periods of time remains absent. This gap limits opportunities to leverage 4 
on music listening as a rich, complex and ubiquitous activity: one that can provide insights 5 
into the temporal dynamics of attention, and illuminate how states like curiosity and mind-6 
wandering emerge in everyday contexts.  7 

In the last decades, the predictive processing (PP) framework has been widely adopted 8 
in research on music listening [1,2]. According to the PP framework, prediction errors arise 9 
from mismatches between incoming sensory input and an organism’s internal model. These 10 
prediction errors are then used to both update the model – so that it becomes more accurate 11 
– and to resample the world, so as to optimally guide future predictions. A growing body of 12 
work has provided physiological evidence for these predictive mechanisms, in general [3–6], 13 
and in the context of music listening [7–10] and has clarified their relationship with other 14 
psychological phenomena such as curiosity, attention, and valence. However, despite its 15 
relevance, the PP literature on curiosity, attention and valence has not yet been substantially 16 
used to account for naturalistic music listening experiences. 17 

Here we show how this PP literature can help inform a model of the music listening 18 
experience on a longer timescale than has previously been attempted (but see [11]). First, we 19 
review current operationalisations of music engagement, before then showing how 20 
experimental studies and corpus analyses point to the role of music acoustic and structural 21 
features in driving it. After presenting empirical data (published and new) on the role and 22 
nature of curiosity, attention and positive valence during music listening, we provide a brief 23 
overview of PP accounts of the three psychological constructs. Finally, we present our 24 
integrative model for exploring time-varying music engagement and discuss some 25 
implications and directions for future research. 26 
 27 
1.  Operationalizing time-varying music engagement  28 
 29 

The Oxford learners’ dictionary describes “engagement” as being involved with 30 
[someone or] something in order to understand them/it. In psychology, engagement has 31 
variously been described as the connection between person and activity [12], as reflecting a 32 
person’s active involvement in a task [13] and as a sort of motivated state that involves 33 
cognitive, behavioural and affective elements [13,14]. 34 

In the music psychology literature, “engagement” is used to imply at least two 35 
meanings. On the one hand, music engagement is taken to mean participation in a variety of 36 
music-related activities from musical practice and performance to attending concerts [15,16]. 37 
On the other hand, time-varying music engagement, which is associated with discrete 38 
listening episodes, has been described as “how engaging listeners find a piece of music 39 
throughout the continuous listening process” [17].  40 

With respect to this latter understanding of the term, music engagement has also 41 
been defined as being “actively immersed in the experience of listening to music, to the 42 
exclusion of extra-musical stimuli” [18,19] while another operationalization that has found 43 
significant resonance [14,17,20,21] describes it as being “compelled, drawn in, connected to 44 
what is happening in the music, interested in what will happen next.” [22]. Finally, in yet other 45 
conceptualizations, music engagement, along with other forms of engagement (e.g., 46 
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engagement with narratives) has been defined as “emotionally laden attention” [20,23,24] 1 
and as a brain state associated with “increased affect, attention, and memory recall” [25].  2 

Worth noting is that, across several accounts, time-varying music engagement is 3 
described as multidimensional, multifaceted and strongly dependent on several factors 4 
including the individual, the musical style, and culturally-determined referential frameworks 5 
[18,20,26,27]. However, perhaps the most striking commonality across current 6 
operationalisations is the idea that time-varying music engagement (music engagement, 7 
henceforth) involves not just heightened attention but also heightened affect; the latter 8 
particularly in the form of curiosity and interest. 9 

 10 
2. Empirical Literature 11 
 12 
2.1 Behavioural and neuroscientific studies on music engagement 13 
 14 

Studies on music engagement suggest that dynamics and melody are prominent 15 
aspects of the listener’s conscious experience of music [28–30], and that novelty and change, 16 
in general (e.g., in volume, tempo, instrumentation, or entry of vocals), are particularly 17 
effective in (re)orienting listeners’ attention to music when they are carrying out concurrent 18 
tasks [31,32]. The importance of novelty and change in engaging listeners is supported by 19 
findings that the degree to which the entry of instruments is staggered influences how long 20 
listeners engage with musical excerpts [33]. Similarly, the seeming importance of melody and 21 
dynamics in music engagement is corroborated by studies that require participants to 22 
continuously rate their experience of heard music (e.g., [34–36]). 23 

Since much music is often structured to afford changes in expectations over time [37–24 
39], it is relevant to highlight studies that demonstrate an influence of information theoretic 25 
principles on music engagement. For instance, some degree of complexity has been shown to 26 
increase the amount of time listeners engage with a musical stimulus [40] with recent work 27 
suggesting that such engagement-enhancing effects of complexity are linked to higher-order 28 
feelings of interest and enjoyment [33]. Further, speaking to a potentially important 29 
relationship between music engagement and positive affect, continuous ratings of musical 30 
engagement have been shown to significantly predict the reported valence of a piece [17]. 31 
According to the authors, musical engagement “likely mediates the relationship between 32 
acoustic parameters in music and listeners’ affective responses” [17]. 33 

While enlightening, a concern of existing behavioural research on music engagement 34 
is that requiring participants to provide continuous reports of their levels of engagement may 35 
change the listening experience itself. Here, a rising interest in increasing the ecological 36 
validity of neuroscientific research, by using more complex and realistic stimuli, holds promise 37 
for research into music engagement. In a growing body of work, engagement is held to be 38 
reflected in the degree of inter-subject correlation (ISC; for a review of ISC see [41]) seen in 39 
neural signals while participants engage with a continuous naturalistic stimulus 40 
([23,24,42,43]). Indeed ISC – the degree to which continuous responses synchronize across 41 
subjects – has been estimated and interpreted in the context of a variety of stimuli including 42 
movies [24,44,45], auditory narratives [23,46] and, most relevantly here, music 43 
[20,25,42,43,47].  44 

In the context of music listening, it has been pointed out that neural synchronization 45 
tends to be high during salient moments that are associated with unexpected events [42]. 46 
Indeed, it would seem that a key driver of ISC is contrastive change particularly with respect 47 
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to acoustic features [20,42,43,48]: In one study highlighting the role of contrastive change, 1 
peripheral-physiology data collected in a live concert setting showed highest synchrony levels 2 
at phrase boundaries [49]. 3 

However, complementary to such findings (that emphasise low-level triggers of ISC) 4 
are others highlighting the wide range of factors that seem to influence it. For instance, it has 5 
been shown that minimalist pieces featuring a high degree of repetition result in lower ISC 6 
values [20], and that ISC tends to decrease over repeated exposures to the same music 7 
[24,25,43]. Interestingly, Madsen and colleagues [43] found, however, that ISC was 8 
modulated by an interaction between repeated exposure and familiarity whereby, while ISC 9 
decreased when familiar music was repeated, ISC was sustained, at least for musically-trained 10 
participants, when the music repeated was unfamiliar.  11 

Such results suggest that ISC tracks more than just acoustic features, and are in line 12 
with the idea that expert listeners are more equipped to learn the regularities in auditory 13 
stimuli than non-expert listeners are [50]. They also raise the possibility that ISC may be 14 
tracking a psychological process somewhat akin to attention. Here, given that 15 
operationalisations of music engagement directly associate it with attention, it is relevant to 16 
highlight that studies have linked ISC increases with increases in top-down attentional states 17 
[43,51]. Similarly, with operationalisations of music engagement associating it with emotion, 18 
it is noteworthy that moments of high tension and suspense tend to elicit high ISC [24,52], 19 
with one study reported increasing ISC particularly in the build-up to “climactic highpoints'' 20 
[42]. 21 

As the above literature would seem to suggest that ISC is a useful index of time-varying 22 
music engagement, it is important to emphasise its limitations. Indeed, in being defined by 23 
synchrony across participants, ISC can only provide a measure of engagement that is “shared” 24 
across participants.  In other words, while ISC reveals where all or most listeners might be 25 
engaging with ongoing musical materials, this index cannot (in its basic form) capture where 26 
listeners show differences in engagement1.   27 

Nevertheless, taken together, the empirical literature that evaluates subjective 28 
reports, and ISC of signals, suggests that certain music features may be able to drive (shared) 29 
engagement while other features may tend to reduce it. Further, it shows that while 30 
contrastive change appears to be a key trigger of ISC, ISC is nevertheless more than just 31 
passive neural tracking of abrupt changes in acoustic features. Here, however, not least given 32 
the limitations of the above approaches, an important question is whether music 33 
compositional practices can be said to corroborate such empirical findings. Fortunately, with 34 
the many draws on attention in today’s world – which make it increasingly difficult to capture 35 
and maintain a person's engagement for extended periods of time [53] - such questions are 36 
increasingly being asked in the wider research community. 37 
 38 
2.2 Corpus analysis studies 39 
 40 

The term Attention economy emerged in the 1970s [53] to describe the idea that 41 
attention is a limited resource that must be distributed between different information 42 

 
1 Here we speculate on two ways in which this limitation can be mitigated. Firstly, studies could compute ISC from several 
listening episodes of a given individual, or secondly, ISC could be computed from small subsamples of listeners that share 
relevant traits or experiences (as carried out to some extent by Madsen and colleagues [43]). However, it is important to 
note that the former approach would suffer from the effect of repeated listenings, while the latter would likely suffer from 
considerable noise, given the challenge in specifying how any particular participant may be expected to respond to music. 
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sources. Since then, the idea of an economy of attention has been propagated extensively 1 
[54–56], including in the context of music listening [57] . 2 

Explicitly operationalising attention economy principles as those favoring focused 3 
mental engagement with a specific information generator, Gauvin [57] asked whether they 4 
can be used to account for the evolution of music compositional practices in recent decades. 5 
Interestingly, by analysing approximately 300 popular songs between 1986 and 2015, this 6 
author was able to show changes in practice that are consistent with a number of such 7 
principles. Specifically, they were able to show that, over the decades, not only have 8 
instrumental introductions shortened from approximately 23 to five seconds but relatedly, 9 
first instantiations of vocals and the hook (highly attention-grabbing parts of music) in music 10 
also seem to enter increasingly earlier. 11 

Yet other studies suggest that musicians and producers may have been adapting their 12 
practices to make music more attention-grabbing. For example, estimating perceived 13 
loudness for half a million popular recordings between 1955 and 2010, Serrà and colleagues 14 
[58] showed, in line with evidence that loudness is a key driver of engagement [30], that this 15 
aspect of music has tended to increase over time. Further, in addition to demonstrations that 16 
the majority of popular songs feature surprising harmonic events [59], there is evidence that 17 
they have become increasingly faster since the 1990s ([57], but see [60]). 18 

Taken together, current operationalisations suggest that interest, curiosity and 19 
attention are key to what it means to be engaged with a musical stimulus, while experimental 20 
data and corpus analysis studies are revealing key features that may drive engagement with 21 
music. In the next section, we show how recent studies exploring curiosity and attention in 22 
the context of music listening provide support for a number of key ideas proposed in our 23 
model; namely that music tends to capture (and sustain) curiosity (and attention) as a 24 
function of musical features, style and individual listeners’ characteristics. 25 
 26 
2.3 Behavioural studies on curiosity during music listening 27 
 28 
 Since a listener’s engagement with a piece of music often wanes substantially within 29 
the music’s first few seconds [61], it follows that events that induce curiosity, and (re-) 30 
command attention towards music are needed to keep listeners engaging over extended 31 
periods of time. However, despite the relatively widespread idea that curiosity and attention 32 
may be important components of music engagement, there has been little direct empirical 33 
research on the topic.  34 

Indeed, in perhaps the first empirical study to examine curiosity in the context of 35 
music listening, Omigie and Ricci [62] investigated the extent to which listeners’ perception 36 
of change in music triggered their curiosity as to how the music would unfold. Specifically, 37 
participants provided continuous ratings of their subjective experience of curiosity, change 38 
and arousal, in response to unfamiliar musical excerpts. Using granger causality, a statistical 39 
technique that helps determine whether one time-series is useful in forecasting another, the 40 
authors found that for all musical pieces, the perceptual experience of change seemed to 41 
precede and statistically “cause” feelings of curiosity.  42 
  Complementing this evidence of a role of change in driving engagement, a further 43 
study from the same authors asked whether music’s information theoretic properties can be 44 
seen to influence how curiosity is experienced during listening [63]. Specifically, listeners 45 
indicated, when cued, how curious they were as to how melodies presented to them would 46 
continue. Crucially, thanks to use of a statistical model of melodic expectancy [64] to estimate 47 
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the information content (IC; unexpectedness) and entropy (uncertainty) of individual melodic 1 
notes, Omigie & Ricci [63] were able to demonstrate a positive association between curiosity 2 
and note IC in low entropy contexts, that was less evident in high entropy contexts. Indeed, 3 
in those high entropy contexts, low IC was seen to sometimes be associated with greater 4 
curiosity. 5 

Critically, such findings are in line with the PP framework which emphasises that 6 
curiosity is experienced in situations where epistemic learning seems to be afforded (Section 7 
3.2). The findings of an interaction between IC and entropy in accounting for curiosity [63] 8 
are also compelling given reports of a similar interaction between IC and entropy for musical 9 
pleasure [65,66]. However, the paper from Omigie & Ricci [63] can be considered particularly 10 
helpful in showing how individual differences may influence the unfolding of both curiosity 11 
and appreciation during music listening. Specifically, not only was it able to show that expert 12 
listeners’ curiosity ratings tended to be more strongly influenced by musical structure, it also 13 
revealed that listeners with differing curiosity profiles differed in their relative enjoyment of 14 
high and low IC musical events; this in line with findings about how trait curiosity influences 15 
appreciation of unfamiliar music [67]. 16 
 17 
2.4 Using atonal music to explore the factors influencing attentional engagement 18 

 19 
Having presented evidence that feelings of curiosity during music listening seem to 20 

emerge in ways that are in line with general principles, we use the current section to present 21 
new data on some of the factors influencing attentional engagement. In contrast to previous 22 
work (in general and reviewed here) that has tended to use (Western) music characterised by 23 
tonal and metrical hierarchies (tonal music), the current study uses atonal music, a style of 24 
Western art music that was prominent in the beginning of the 21st century and which is often 25 
characterised by an absence of such regularities.  26 

Atonal music, in being very complex and unfamiliar to all but a small group of listeners, 27 
affords the opportunity to examine how factors like style complexity and expertise levels 28 
seem to influence engagement. Thus, in a large-scale study, we collected brain and 29 
behavioural data from 20 non-musicians (NM), 19 musicians specialized in classic-romantic 30 
repertoire (CM) and 19 musicians specialized in Western art music from the 20th/21st century 31 
(CCM; i.e. contemporary classical music, which includes atonal music). Prior to the study, all 32 
participants provided written consent and the study was approved by the local ethics 33 
committee of the University Hospital Frankfurt (reference number 415/17). Over the course 34 
of the study, participants were presented with 20 tonal (low uncertainty) and 20 atonal (high 35 
uncertainty) piano music excerpts lasting 45 seconds on average and after each excerpt 36 
indicated on a 6-point Likert scale (‘Strongly agree’ to ‘Strongly disagree’) how well they were 37 
able to follow each of the musical excerpts (specifically the level of their agreement with the 38 
statement “I could follow the music well”: Figure 1A). With our analysis, we interrogated the 39 
extent to which listeners’ ability to follow the music (i.e., deploy top-down attention on the 40 
heard music) was influenced by the style of music and listeners’ expertise (Figure 1B and 41 
below).  42 

We invite the reader to find more detail on methods and results in supplementary 43 
materials. However, in brief, following an initial linear mixed model that showed main effects 44 
of musical style (F (1, 38.01) = 170.98, p < 0.001), a main effect of expertise (F (2, 55.01) = 45 
13.19, p < 0.001) and an interaction between the two (F ( 2, 2217.06) = 25.57, p < 0.001), we 46 
carried out three follow-up models that compared two expertise groups at a time. These 47 
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models showed that all listeners found it more difficult to deploy top-down attention to 1 
atonal than to tonal music and that NM were generally poorer than both expert groups for 2 
both styles of music.  3 

Interestingly, results also demonstrated that while the two expert groups did not 4 
differ in overall ability (B = 0.36,    SE = 0.25,   df = 38.40,   t = 1.43, p = 0.16), the CCM group 5 
nevertheless differed from both NM and CM, with respect to ability to deploy attention to 6 
atonal as compared to tonal music (B = 1.04,   SE = 0.08,   df = 85.17, t = 13.26, p < 0.01). 7 
Specifically, compared to the two groups with no expertise in atonal music, the difference 8 
between ability to deploy attention to atonal and tonal music was significantly smaller in the 9 
CCM group.  Comparing the CCM to CM (who did not differ in general ability to deploy 10 
attention to both musical styles), CCM demonstrated a numerical tendency to be, on the one 11 
hand, better than CM at following the atonal music but, on the other hand, worse than CM 12 
at following the tonal music.  13 

Our data are interesting in highlighting the difficulty of engaging with atonal music 14 
even for those that have specific expertise in it. Indeed, our findings add support to our 15 
proposal that this kind of music be adopted in research in order to help understand the 16 
musical aesthetic experience in all its variety [68]. More pertinently, however, by suggesting 17 
that expertise in a complex music style may lead to both a greater ability to engage with 18 
complex music, and a reduced ability, or desire, to engage with less-complex musical styles, 19 
our data show how different factors can interact to guide levels of music engagement. 20 

Taken together, our review of old and new data demonstrates how listeners show 21 
curiosity and allocate attention to music in a manner that is guided by both features of the 22 
music and listeners’ individual differences. However, it is clear that the absence of a 23 
theoretical framework that is able to guide research on music engagement has limited both 24 
the extent to which existing findings can be confidently interpreted, and the extent to which 25 
insights can be used more broadly. In the following section, we review how curiosity, 26 
attention and valence is accounted for within the PP framework, allowing us to later use these 27 
insights to inform our model of musical engagement. 28 

 29 
 30 
 31 

    INSERT FIGURE 1 ABOUT HERE. 32 
 33 

 34 
3. Curiosity, attention and valence in the PP framework 35 
 36 
3.1 Predictive coding and active inference  37 

The PP framework can be seen as an application of the free energy principle [69,70] 38 
which posits that living creatures must minimise free energy. Within this principle, free energy 39 
corresponds to a quantification of the divergence between observed and expected data, 40 
given an agent’s generative model. Critically, the PP framework comprises both predictive 41 
coding – the idea that when sensory input is inconsistent with an agent’s generative model, 42 
prediction errors propagate in order to change said generative model – and active inference– 43 
the idea that the organism will sample the environment (take action) in a way that maximises 44 
evidence for its model. 45 

In active inference, in general, an agent uses its generative model to infer the most 46 
likely causes of observable outcomes; where a generative model is simply a probabilistic 47 
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specification of how outcomes follow on from states (causes). In the special case of deep or 1 
hierarchical active inference, however, state transitions take on a nested temporal structure, 2 
whereby higher levels evolve at a slower time scale than that of the level below. One benefit 3 
of such deep models is that agents - in the process of inferring causes of outcomes -  are able 4 
to build evidence over different time scales. 5 

Deep generative models have been used to account for complex psychological 6 
processes like working memory and reading [71,72]. In the context of reading, an agent with 7 
a deep model can keep in mind those words or letters that are likely to be sampled in the 8 
future; allowing it to skip words and still comprehend the sentence. Recently, it has been 9 
suggested that having a deep generative model allows agents to access and control aspects 10 
of the self [73]. Indeed, it is against this backdrop that deep active inference is increasingly 11 
being used to account for attentional control, meta-awareness and affective states. 12 

In the following review of the PP literature, we show how curiosity as an experience 13 
emerges from an exposure to novel combinations of hidden states and outcomes. We then 14 
show how attention, meta-awareness and mental action are made possible by agents having 15 
higher levels in their (deep) generative models that make lower levels visible and therefore 16 
controllable. Finally, we show how, according to the PP framework, positive valence can be 17 
explained by the rate of prediction error reduction. In the section that follows our PP review, 18 
we outline how and why all three processes are intrinsic to the phenomenon that is music 19 
engagement. 20 

 21 
3.2. Accounting for curiosity  22 

Extending earlier work on perception, the PP framework is increasingly being used to 23 
provide formal accounts of epistemic emotions like curiosity and insight [71,74,75]. Critically, 24 
by showing how curiosity can be accommodated within the same imperative (namely free 25 
energy minimisation) as other relevant phenomena (such as attention and emotion), such 26 
work provides a promising starting point for developing a PP account of music engagement.   27 

PP accounts of curiosity rest on active inference, which in turn emphasise that an 28 
agent’s actions influence its sensations. Indeed, active inference holds that since the 29 
observations that agents make depend on their actions, their generative models must build 30 
expectations about outcomes that would follow different sequences of actions. Within this 31 
active inference framework, in which actions are considered in terms of expected sensory 32 
consequences, curiosity has been associated with “active sampling of the environment to 33 
minimize uncertainty about hypotheses - or explanations - for states of the world” [76].  34 

To explain their account of curiosity, authors have found it useful to outline how the 35 
resolution of different types of uncertainty is associated with different types of behaviour 36 
[76]. In contrast to perceptual inference, which they propose resolves uncertainty about the 37 
causes of sensory outcomes under a given sequence of actions (i.e., a given policy), curiosity-38 
related behaviours, they argue, resolve uncertainty through the choice of certain policies. 39 
Specifically, curious agents will choose policies that, by exposing them to novel combinations 40 
of hidden states and outcomes, allow them to discover the way these outcomes are 41 
generated. In other words, according to the PP framework curiosity relates to agents pursuing 42 
those policies that, in affording novelty and epistemic learning, improve generative models in 43 
the long run. However, given that psychologists tend to think of curiosity as a state first and 44 
foremost (even though such states may indeed be associated with behaviours), it is important 45 
to consider how such claims translate to the level of the experience. Here, it is therefore 46 
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useful to refer to characterisations of curiosity as the experience of expected uncertainty 1 
reduction that is made possible through one's actions [77]. 2 

Staying on such a phenomenological level, it is clear to see how curiosity (a state of 3 
expecting uncertainty to be reduced) will generally lead to increased or continued allocation 4 
of cognitive resources to a stimulus (or certain features of a stimulus) that affords epistemic 5 
learning. Narrowing down to the context of a music listening episode, curiosity would 6 
constitute feeling compelled to attend to the music, (or specific streams within the music), 7 
that seem to afford the opportunity to better understand what is being heard. Here, it is 8 
useful to exemplify how adopting a PP framework aids the development of a model of music 9 
engagement: indeed, while some earlier accounts have tended to emphasise the importance 10 
of novelty (or high information content) in inducing curiosity, the PP account is able to 11 
account for the fact that even low information content events (or familiar materials) can 12 
trigger curiosity [63]. That introduction of repetition into contemporary art music increases 13 
interest and enjoyability has previously been demonstrated [78]. In emphasising how agents 14 
are driven by learning, the PP framework makes clear why repetition or low information 15 
content in a particularly complex (high entropy) musical sequence can induce curiosity and 16 
interest: namely, thanks to the promise of learning that these events afford, in the context of 17 
a sequence that seemed unlearnable until then.  18 

In any case, the proposal that we become curious about music at those moments that 19 
seem to afford an opportunity to learn coheres well with another simple proposition: that 20 
“curiosity allocates attention, in a way that does not itself consume attention” [75,79] or in 21 
other words that curiosity exists to help agents efficiently ‘decide’ where and when to attend. 22 
Further, such a proposal aligns well to increasingly popular accounts that emphasize a role of 23 
expected learning progress in driving curiosity [80,81]. 24 

 25 
3.3 Accounting for attention, meta-awareness and mental action 26 

Although research questions, efforts and outputs on the topic continue to grow, 27 
attention constitutes one of the earliest psychological processes accounted for in terms of 28 
the PP framework. According to the PP framework, if perception is inference about causes of 29 
sensory input, then attention is inference about the uncertainty – or in other words precision 30 
– of those causes [70,82]. Precision-weighting means using estimates of data’s reliability to 31 
determine how much influence said data should have on the inferential process. In the 32 
current literature, the notion of precision-weighting is widely used when accounting for 33 
attentional processes.  34 

Specifically, attention has been formalised as precision of (or confidence in) beliefs 35 
about how observations are related to the states of the world that generated them 36 
[72,83,84]. Against this background, attentional control has been described as the 37 
deployment of precision [85,86], whereby to attend means to increase the extent to which 38 
an agent believes their observations accurately map onto actual states of the world. 39 
Technically speaking, attending to a certain stimulus (deploying precision) increases the 40 
relative weight on inferences made on the basis of those particular observations. Intuitively 41 
speaking, when we pay attention to auditory stimuli, we are enabling what we hear to more 42 
greatly influence our predictions, as well as permitting greater confidence in our 43 
interpretation of the heard sounds.  44 

Recently, the PP framework has begun to accommodate the fact that organisms need 45 
to become aware of moments when they are no longer attending. The ability to explicitly 46 
observe the ongoing contents of a conscious episode is increasingly accounted for in terms of 47 
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“opaqueness”. A state is said to be opaque when its underlying processes can be attended to 1 
using introspective attention [87]. Based on this idea [73], attentional states have been 2 
described as second-order states that allow first-order perceptual states to become opaque. 3 
In turn, meta-awareness has been described as a third-order state that allows (second-order) 4 
attentional states to become opaque [88].  5 

Specifically, in their formalisation of sustained selective attention, Sandved-Smith and 6 
colleagues [88] operationalised meta-awareness as the higher level in an agent’s predictive 7 
model that modulates the precision (and accordingly opaqueness) of second-order 8 
attentional states; thus allowing agents to distinguish when they are attending to a 9 
continuous sensory stimulus, from when they are in fact distracted or mind-wandering. In 10 
turn, they accounted for the mental action of re-attending to a stimulus in terms of the active 11 
inference imperative for organisms to choose actions that bring them closer to their 12 
generative model’s preferred / expected state. In brief, active inference stipulates that 13 
policies are more probable if they minimise free energy. In the context of a sustained 14 
attention task, the generative model’s preferred / expected state, associated with minimal 15 
free energy, is the state of attending. In other words, while noticing one is attending would 16 
not cause any surprise, noticing one is mind-wandering would result in surprise that would 17 
need to be minimised. 18 

Taken together then, PP framework offers a useful account of how cycles of 19 
attentional engagement, mind-wandering and mental action emerge. Once again, it is 20 
relevant to consider how such insights from the PP framework may benefit the development 21 
of a model of music engagement. Here, we argue that the PP framework allows various 22 
processes involved in engagement to be accounted for with the same terms. Indeed, music 23 
psychologists implicitly recognise that (as is the case for all sustained attention tasks), 24 
attentive music listening must sometimes give way to mind-wandering (e.g., [89]). With the 25 
PP literature able to formalise two different ways by which attention may be redeployed after 26 
such mind-wandering episodes (namely, thanks to stimulus-driven curiosity or thanks to the 27 
stimulus-independent brain processes that are meta-awareness and mental action), it offers 28 
an appealingly unified perspective from which to consider a sustained attention activity like 29 
music listening. 30 

 31 
 32 

3.4 Accounting for positive valence 33 
Valence can be broadly defined as the positive and negative character of emotion. 34 

Since – alongside curiosity and heightened attention – the majority of engaging music 35 
listening episodes entail positively valenced experiences [90], we end our review of relevant 36 
PP literature with a consideration of PP accounts of valence. 37 

Interestingly, while early PP accounts tended to posit emotion states as active 38 
inference based on the causes of interoceptive signals [91], current work tends to explain 39 
emotion in terms of active inference based on perception of sensory stimuli. Specifically, 40 
valence is increasingly accounted for in terms of the rate of free energy or prediction errors 41 
over time [81,92–94]. Joffily & Coricelli [94] proposed that a positively valenced state is 42 
elicited in the transition from a state of high to low surprise, and as such their account is 43 
similar to those arguing that positive affect reflects a shift from a high free-energy and thus 44 
less valued state to a low free-energy and thus more valued state (e.g., [95]).  45 

Most recently, Hesp and colleagues [96] have extended previous work on valence 46 
through the use of deep active inference. In their account, moments of experiencing positive 47 
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valence occur when an agent is reducing error faster than expected (i.e., during error 1 
reduction acceleration) while experiences of negative valence occur when it is reducing error 2 
slower than expected (i.e., during error reduction deceleration). Interestingly, this 3 
proposition that valence is inferred from model fitness [96], is in line with findings that 4 
positive valence begets behaviours that show greater reliance on prior expectations [97,98]. 5 
 Taken together, PP accounts resonate nicely with the idea that if curiosity is a sense 6 
of where progress in learning can be made, positive valence is what is experienced when the 7 
actual predictive progress is made [77]. In the following section we use such core notions to 8 
inform the main claims of our model. 9 
      10 
4. A model of time-varying music engagement 11 
 12 
Whether used as background stimulation [61] or as the sole intended focus of attention, 13 
engagement with music tends to wax and wane over time. Here, based on our consideration 14 
of empirical, theoretical and computational work, we propose a model of time-varying music 15 
engagement that we hope will increase the effectiveness and value of future research on the 16 
topic. 17 
 18 
    INSERT FIGURE 2 ABOUT HERE. 19 
 20 
1. As an overarching claim, we propose that, over the course of an extended listening 21 

episode, music engagement may constitute several cycles of curiosity, attention and 22 
positive valence. Within this, we suggest: 23 

a. that the induction of moments of curiosity, the beginning of (music-driven) cycles, 24 
may align with the absolute beginning or new sections of the music (e.g., the 25 
chorus), with sources of change and novelty in the music (e.g., entrance of 26 
instruments, the voice) or with moments of repetition or low information content 27 
in highly uncertain contexts: all leading the listener to seek to understand how 28 
such elements in the music could have emerged and will evolve. In PP terms, a 29 
curious agent (listener) pursues policies (listens) such that, in affording novelty and 30 
epistemic learning (in allowing one’s self to be exposed to new or unpredicted 31 
material), it improves its generative models (enables better predictions) in the 32 
long run. 33 

b. that heightened selective attention will always follow the induction of music-34 
driven curiosity; this, in turn, allowing swifter updating of the listeners’ generative 35 
model of the music. In other words, an agent (listener), having experienced 36 
curiosity in response to music, will attend (increase its confidence in how 37 
observations are related to states) so as to optimise the rate at which its model of 38 
the music improves. 39 

c. that positively valenced affect will tend to always come after the onset of 40 
attention, even if it also overlaps with it. This is thanks to an updated, more 41 
accurate, generative model allowing accelerated prediction error reduction. 42 

2. In another key contribution, we emphasize that cycles of curiosity, attention and positive 43 
valence during music listening are interspersed with moments of mind-wandering. 44 
Further, we suggest that: 45 

a. moments of mind-wandering may be at least partially explained by redundancies 46 
in the music such as continuous repetition in low complexity music.  47 
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b. while mind-wandering is antithetical to attentional engagement, it may 1 
sometimes overlap at least slightly with the experience of positive valence. 2 
Indeed, since positive valence is associated with (better-than-expected) 3 
accelerated prediction error reduction, any moments at which error reduction 4 
capacity reaches floor levels may be expected to overlap with moments of mind-5 
wandering (or in other words disengagement).  6 

3. Importantly, we suggest that two types of situations may lead to a refocusing on music 7 
after an episode of mind-wandering: 8 

a. situations where features in the music trigger curiosity (see 1a) and,    9 
b. situations where meta-awareness allows the listener to realize they are no longer 10 

attending. In PP terms, moments of mind-wandering become visible thanks to the 11 
third-order level in a deep generative model (i.e. meta-awareness) that allows the 12 
lower/second level (attention levels) to become opaque. Here, it is important to 13 
explicitly note that in such situations, where meta-awareness serves as a ‘trigger’ 14 
to attention, the cycle of engagement does not begin with a curiosity component, 15 
but rather with an abrupt increase in attention. 16 

4. Last but not least, we argue that a number of extrinsic factors will modulate both overall 17 
levels of engagement and how it changes over time. We suggest that: 18 

a. in terms of complexity, music particularly low in complexity will lead to reduced 19 
engagement given there is little to trigger experiences of curiosity (and, 20 
consequently, attention). It will also determine the nature of ‘music triggers’ of 21 
engagement, whereby in highly complex, unpredictable music, lower rather than 22 
higher information content, may afford moments of heightened engagement 23 
[63,65,68,99]. 24 

b. in terms of individual differences, expertise, for instance, will increase the extent 25 
to which curiosity is influenced by musical structure as well as increase overall 26 
levels of attentional engagement ([63] and current data); this thanks to expert 27 
listeners’ more sophisticated generative models allowing them to better recognise 28 
opportunities for epistemic learning. 29 

c. the listening situation and context will influence the degree to which a listener will 30 
choose to actively listen (engage) as opposed to allow music to remain in the 31 
background; an idea previously captured by the notion of the aesthetic attitude 32 
[100,101]. 33 

 34 
5. Future directions and implication 35 
 36 

Having presented a model of music engagement that is inspired by the PP framework, 37 
it seems important to revisit the question: “Why do we need PP to explain music 38 
engagement?” Here, we argue that the PP framework is one of the only frameworks to bring 39 
curiosity, attention and valence together in a convincing way. As such, it provides a 40 
particularly parsimonious way of accounting for music engagement: a phenomenon that 41 
implicates these processes. Furthermore, by clarifying the relationship between these key 42 
psychological phenomena that seem intrinsic to music engagement, PP allows the opening 43 
up of new testable hypotheses, which – we argue – was largely missing from the music 44 
engagement literature. To the related question, “How might PP practically help in the study 45 
of musical engagement?”, we suggest that future studies seek to directly test the various 46 
claims and assumptions of our model. Indeed, inspired by what we have presented, music 47 
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science researchers with a background in programming and mathematics could seek to build 1 
markov decision models, run simulations and fit their obtained models to new or existing data 2 
on how music engagement unfolds [102]. Alternatively, experimental researchers could use 3 
our model to design and implement new hypothesis-driven research that is much-needed to 4 
advance understanding of music engagement. 5 

For instance, our model puts forward the claim that increases in attentional 6 
engagement with music will always be preceded by either experiences of curiosity or 7 
conscious recognition (meta-awareness) that one was mind-wandering. We suggest some 8 
version of a self-caught experience sampling methodology could be used to examine whether 9 
this is indeed the case. Another assumption of our model, that is heavily inspired by the PP 10 
framework, is that both low and high information content events can trigger curiosity 11 
depending on the predictability or entropy of the music at that moment. Accordingly, an 12 
interesting question that our model raises is whether such effects can be seen with an implicit 13 
approach like ISC. To date, measurement of shared music engagement, using ISC, has 14 
produced data that is in line with our PP-inspired model: Indeed, it follows from our model 15 
that there would be low ISC (engagement) during minimalist/simple/familiar pieces since 16 
(due to their low complexity features) people are likely mind-wandering rather than attending 17 
[20]. Similarly, it follows from our model, that given their more developed generative models, 18 
expert listeners tend to show sustained (as opposed to decreasing) levels of ISC to repetitions 19 
of unfamiliar music [43]. We highlighted earlier in this paper that the ISC approach is limited 20 
in only indicating ‘shared engagement’ across listeners. However, this fact does not preclude 21 
the usefulness of future studies probing the possibility that repetition drives peaks in ISC in 22 
the context of unfamiliar or complex music. 23 

Staying with the idea of repetition, a related direction for future work would be 24 
extending the model to explicitly formalise how music engagement changes as a function of 25 
repeated listenings. It is widely recognised that, in addition to music being highly repetitive 26 
across cultures, listeners also tend to seek out repetition in the form of re-listening to favorite 27 
songs [103]. We propose that such re-listenings provide listeners the opportunity to explore 28 
the still yet-to-be-learned aspects of the music while also providing enjoyment thanks to the 29 
high processing fluency that accompanies strong veridical expectations. Researchers have 30 
long pondered over listeners’ seemingly contradictory drive to experience both novelty and 31 
familiarity in music. The PP framework could help formalise what is likely simply a musical 32 
manifestation of a more general occurrence; a phenomenon referred to in the literature as 33 
the exploitation versus exploration dilemma [74,104].  34 

With regard to methodologies, we suggest that, given the limitations of those we have 35 
reviewed (e.g., behavioural report and ISC), future studies on music engagement would 36 
benefit from adopting additional ways of measuring music engagement. One highly 37 
ecologically valid approach that could be taken is to combine virtual reality with eye-tracking 38 
technology (e.g., as in [105]) to explore how, for example, listeners shift their attention 39 
between virtual displays of a target music’s source, on the one hand, and distracting visual 40 
stimuli, on the other. Similarly, given that mind-wandering has been described as the 41 
antithesis of both curiosity [106] and attention, the probe caught experience sampling 42 
methodology could be used to examine how rates of reported mind-wandering relate to 43 
dynamic changes in curiosity and attention as suggested by our model.  44 

Probe caught experience sampling methodologies could also be used to test the 45 
assumption that positive valence occurs at a very specific time in relation to curiosity and 46 
attention. Here, we point out that while our model relates positive valence to accelerated 47 
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prediction error reduction and suggests it is most likely preceded by curiosity (and attention) 1 
and followed by mind-wandering, another type of positive experience of music may be 2 
expected to occur much earlier in the cycle than positive valence. Chills are pleasurable, often 3 
high arousal, sensations that are more closely tied to reward than emotion. Chills have tended 4 
to be associated with prediction violations per se [107] (see also literature on syncopation 5 
where prediction violation is related to pleasure [108–110]) and chills may therefore be 6 
expected to occur around those moments in which curiosity is triggered. Such an account is 7 
consistent with the idea that feelings of curiosity can be experienced as pleasurable [111]. It 8 
also highlights the likelihood that chills and positive valence may differ in the extent to which 9 
they reach conscious awareness (where chills, in being driven by prediction violation, may be 10 
more conscious than positively valenced feelings). Here, we note that the current model as it 11 
stands does not specify the dynamics of feelings of reward over time. However, should future 12 
empirical work support the above speculations, it would be useful for a revised version of the 13 
model to be extended in this way.  14 

Other less urgent but still pertinent directions for future work include formalising 15 
those periods of music engagement that occur on the level of meaning making or that involve 16 
other non-visual sensory domains in the form of, for example, visual imagery [21,112]. Here, 17 
we argue that insights from the PP framework (e.g., see [113]) may continue to prove 18 
beneficial. Further, since the concept of engagement has risen in use in the context of 19 
aesthetics and media, and since predictive mechanisms are held to be crucial in many of these 20 
domains (e.g., [114]), our model could be adapted for use in a host of other non-music 21 
contexts. 22 

Finally, we stress that besides providing testable hypotheses as to how music 23 
engagement unfolds, a major implication of our work is its potential to promote our general 24 
understanding of key psychological processes. Indeed, while there has been a steady 25 
evolution in thinking about how curiosity arises [115], an exciting development is the growing 26 
work on how it leads to enhanced attentional engagement [79,116], and memory (e.g., [23]). 27 
Similarly, new work is interrogating the idea that the arts promote knowledge and 28 
understanding [117,118], and that art appreciation involves prediction, learning and insight 29 
[90,114,119]. We suggest our model provides a principled basis for exploring such ideas 30 
further. 31 
 32 
Authors’ Contributions 33 
DO provided the original conception and design of the article, participated in analysis and 34 
interpretation of data, and drafted and revised the MS critically. IM substantially contributed 35 
to the article's content and design, led data acquisition, analysis and interpretation, and co-36 
drafted and revised the article critically. 37 
 38 
Funding 39 
There is no funding to declare 40 

 41 
Acknowledgments 42 
We thank Professor Elvira Brattico for supporting experimental design and data conception. 43 

 44 
Competing interests 45 
The authors have no competing interests to declare. 46 
 47 



16 

References 1 
 2 
1. Vuust P, Heggli OA, Friston KJ, Kringelbach ML. 2022 Music in the brain. Nat Rev 3 

Neurosci. 23, 287–305. (doi:10.1038/s41583-022-00578-5) 4 
2. Koelsch S, Vuust P, Friston KJ. 2019 Predictive Processes and the Peculiar Case of 5 

Music. Trends Cogn Sci 23, 63–77. (doi:10.1016/J.TICS.2018.10.006) 6 
3. Dürschmid S, Reichert C, Hinrichs H, Heinze HJ, Kirsch HE, Knight RT, Deouell LY. 7 

2019 Direct Evidence for Prediction Signals in Frontal Cortex Independent of 8 
Prediction Error. Cerebral Cortex 29, 4530–4538. (doi:10.1093/cercor/bhy331) 9 

4. Heilbron M, Chait M. 2018 Great Expectations: Is there Evidence for Predictive 10 
Coding in Auditory Cortex? Neuroscience 389, 54–73. 11 
(doi:10.1016/j.neuroscience.2017.07.061) 12 

5. Wacongne C, Labyt E, Van Wassenhove V, Bekinschtein T, Naccache L, Dehaene S. 13 
2011 Evidence for a hierarchy of predictions and prediction errors in human cortex. 14 
Proc Natl Acad Sci U S A 108, 20754–20759. (doi:10.1073/pnas.1117807108) 15 

6. Garrido MI, Kilner JM, Kiebel SJ, Friston KJ. 2007 Evoked brain responses are 16 
generated by feedback loops. PNAS 104, 20961–20966. 17 

7. Omigie D, Pearce MT, Lehongre K, Hasboun D, Navarro V, Adam C, Samson S. 2019 18 
Intracranial Recordings and Computational Modeling of Music Reveal the Time 19 
Course of Prediction Error Signaling in Frontal and Temporal Cortices. J Cogn 20 
Neurosci 31, 855–873. (doi:10.1162/jocn) 21 

8. Quiroga-Martinez DR, Hansen NC, Højlund A, Pearce MT, Brattico E, Vuust P. 2019 22 
Reduced prediction error responses in high-as compared to low-uncertainty musical 23 
contexts. Cortex 120, 181–200. (doi:10.1016/j.cortex.2019.06.010) 24 

9. Bianco R, Ptasczynski LE, Omigie D. 2020 Pupil responses to pitch deviants reflect 25 
predictability of melodic sequences. Brain Cogn 138. 26 

10. Mencke I, Quiroga-Martinez DR, Omigie D, Schwarzacher F, Haumann NT, 27 
Michalareas G, Vuust P, Brattico E. 2021 Prediction under uncertainty: Dissociating 28 
sensory from cognitive expectations in highly uncertain musical contexts. Brain Res 29 
1773, 1–14. (doi:10.1016/j.brainres.2021.147664) 30 

11. Brattico E. 2021 The Empirical Aesthetics of Music. In The Oxford Handbook of 31 
Empirical Aesthetics (eds M Nadal, O Vartanian), pp. 1–38. Oxford University Press. 32 
(doi:10.1093/oxfordhb/9780198824350.013.26) 33 

12. Frydenberg E, Ainley M, Russell V. 2005 Schooling Issue Digest: Student Motivation 34 
and Engagement.  35 

13. Reeve J, Jang H, Carrell D, Jeon S, Barch J. 2004 Enhancing Students’ Engagement by 36 
Increasing Teachers’ Autonomy Support 1. Motiv Emot. 28. 37 

14. Broughton MC, Schubert E, Harvey DG, Stevens CJ. 2019 Continuous self-report 38 
engagement responses to the live performance of an atonal, post-serialist solo marimba 39 
work. Psychol Music 47, 109–131. (doi:10.1177/0305735617736378) 40 

15. Gustavson DE, Coleman PL, Iversen JR, Maes HH, Gordon RL, Lense MD. 2021 41 
Mental health and music engagement: review, framework, and guidelines for future 42 
studies. Transl Psychiatry. 11. (doi:10.1038/s41398-021-01483-8) 43 

16. Chin T, Rickard NS. 2014 Beyond positive and negative trait affect: Flourishing 44 
through music engagement. Psychol Well Being 4. (doi:10.1186/s13612-014-0025-4) 45 

17. Olsen KN, Dean RT, Stevens CJ. 2014 A continuous measure of musical engagement 46 
contributes to prediction of perceived arousal and valence. Psychomusicology: Music, 47 
Mind, and Brain 24, 147–156. (doi:10.1037/pmu0000044) 48 



17 

18. Taylor JR, Dean RT. 2021 Influence of a continuous affect ratings task on listening 1 
time for unfamiliar art music. J New Music Res 50, 242–258. 2 
(doi:10.1080/09298215.2020.1867588) 3 

19. Leslie G. 2013 Measuring musical engagement [Unpublished doctoral dissertation] . 4 
University of California , San Diego. 5 

20. Dauer T, Nguyen DT, Gang N, Dmochowski JP, Berger J, Kaneshiro B. 2021 Inter-6 
Subject Correlation during New Music Listening : A Study of Electrophysiological and 7 
Behavioral Responses to Steve Reich ’ s Piano Phase. 15. 8 
(doi:10.3389/fnins.2021.702067) 9 

21. Presicce G, Bailes F. 2019 Engagement and visual imagery in music listening: An 10 
exploratory study. Psychomusicology: Music, Mind, and Brain 29, 136–155. 11 
(doi:10.1037/pmu0000243) 12 

22. Schubert E, Vincs K, Stevens C. 2013 Identifying regions of good agreement among 13 
responders in engagement with a piece of live dance. Empirical Studies of the Arts 31, 14 
1–20. (doi:10.2190/EM.31.1.a) 15 

23. Song H, Finn ES, Rosenberg MD. 2021 Neural signatures of attentional engagement 16 
during narratives and its consequences for event memory. Proc Natl Acad Sci U S A 17 
118. (doi:10.1073/pnas.2021905118) 18 

24. Dmochowski JP, Sajda P, Dias J, Parra LC. 2012 Correlated components of ongoing 19 
EEG point to emotionally laden attention - a possible marker of engagement? Front 20 
Hum Neurosci (doi:10.3389/fnhum.2012.00112) 21 

25. Kaneshiro B, Nguyen DT, Norcia AM, Dmochowski JP, Berger J. 2020 Natural music 22 
evokes correlated EEG responses reflecting temporal structure and beat. Neuroimage 23 
214, 116559. (doi:10.1016/j.neuroimage.2020.116559) 24 

26. Schubert E, Vincs K, Stevens C. 2013 Identifying regions of good agreement among 25 
responders in engagement with a piece of live dance. Empirical Studies of the Arts 31, 26 
1–20. (doi:10.2190/EM.31.1.a) 27 

27. Mencke I, Seibert C, Brattico E, Wald-Fuhrmann M. 2022 Comparing the aesthetic 28 
experience of classic–romantic and contemporary classical music: An interview study. 29 
Psychol Music (doi:10.1177/03057356221091312) 30 

28. Madsen CK, Geringer JM. 1990 Differential Patterns of Music Listening : Focus of 31 
Attention of Musicians versus Nonmusicians. Bulletin of the Council for Research in 32 
Music Education 105, 45–57. 33 

29. Geringer JM, Madsen CK. 1995 Focus of Attention to Elements : Listening Patterns of 34 
Musicians and Nonmusicians. Bulletin of the Council for Research in Music Education 35 
, 80–87. 36 

30. Madsen CK. 1997 Focus of attention and aesthetic response. Journal of Research in 37 
Music Education 45, 80–89. (doi:10.2307/3345467) 38 

31. Madsen CK. 1987 Background music: Competition for focus of attention. In 39 
Applications for research in music behavior (eds CK Madsen, CA Prickett), pp. 315–40 
325. Tuscaloosa: University of Alabama.  41 

32. Madsen CK, Wolfe DE. 1979 The effect of interrupted music and incompatible 42 
responses on bodily movement and music. J Music Ther 1979. 43 

33. Janata P, Peterson J, Ngan C, Keum B, Whiteside H, Ran S. 2018 Psychological and 44 
musical factors underlying engagement with unfamiliar music. Music Percept 36, 175–45 
200. (doi:10.1525/MP.2018.36.2.175) 46 

34. Dean RT, Bailes F. 2010 Time Series Analysis as a Method to Examine Acoustical 47 
Influences on Real-time Perception of Music. Empirical Musicology Review 5, 152–48 
175. (doi:10.18061/1811/48550) 49 



18 

35. Bailes F, Dean RT. 2012 Comparative time series analysis of perceptual responses to 1 
electroacoustic music. Music Percept 29, 359–375. (doi:10.1525/mp.2012.29.4.359) 2 

36. Dean RT, Bailes F, Schubert E. 2011 Acoustic intensity causes perceived changes in 3 
arousal levels in music: An experimental investigation. PLoS One 6, 1–8. 4 
(doi:10.1371/journal.pone.0018591) 5 

37. Lerdahl F, Jackendoff R. 1983 A generative theory of tonal music. MIT Press.  6 
38. Meyer LB. 1956 Emotion and meaning in music. University of Chicago Press.  7 
39. Huron D. 2006 Sweet anticipation: music and the psychology of expectation. MIT 8 

Press.  9 
40. Crozier JB. 1974 Verbal and exploratory responses to sound sequences varying in 10 

uncertainty level. In Studies in the new experimental aesthetics: Steps toward an 11 
objective psychology of aesthetic appreciation (ed DE Berlyne), pp. 27–90. New York: 12 
Wiley.  13 

41. Nastase SA, Gazzola V, Hasson U, Keysers C. 2019 Measuring shared responses 14 
across subjects using intersubject correlation. Soc Cogn Affect Neurosci 14, 669–687. 15 
(doi:10.1093/scan/nsz037) 16 

42. Kaneshiro B, Nguyen DT, Norcia AM, Dmochowski JP, Berger J. 2021 Inter-Subject 17 
EEG Correlation Reflects Time-Varying Engagement with Natural Music. bioRrxiv 18 
(doi:10.1101/2021.04.14.439913) 19 

43. Madsen J, Margulis EH, Simchy-Gross R, Parra LC. 2019 Music synchronizes 20 
brainwaves across listeners with strong effects of repetition, familiarity and training. 21 
Sci Rep 9, 1–8. (doi:10.1038/s41598-019-40254-w) 22 

44. Lankinen K, Saari J, Hari R, Koskinen M. 2014 Intersubject consistency of cortical 23 
MEG signals during movie viewing. Neuroimage 92, 217–224. 24 
(doi:10.1016/j.neuroimage.2014.02.004) 25 

45. Hasson U, Malach R, Heeger DJ. 2010 Reliability of cortical activity during natural 26 
stimulation. Trends Cogn Sci 14, 40–48. (doi:10.1016/j.tics.2009.10.011) 27 

46. Simony E, Honey CJ, Chen J, Lositsky O, Yeshurun Y, Wiesel A, Hasson U. 2016 28 
Dynamic reconfiguration of the default mode network during narrative 29 
comprehension. Nat Commun 7. (doi:10.1038/ncomms12141) 30 

47. Abrams DA, Ryali S, Chen T, Chordia P, Khouzam A, Levitin DJ, Menon V. 2013 31 
Inter-subject synchronization of brain responses during natural music listening. 32 
European Journal of Neuroscience 37, 1458–1469. (doi:10.1111/ejn.12173) 33 

48. Farbood MM, Heeger DJ, Marcus G, Hasson U, Lerner Y. 2015 The neural processing 34 
of hierarchical structure in music and speech at different timescales. Front Neurosci 9, 35 
1–13. (doi:10.3389/fnins.2015.00157) 36 

49. Czepiel A, Fink LK, Fink LT, Wald-Fuhrmann M, Tröndle M, Merrill J. 2021 37 
Synchrony in the periphery: inter-subject correlation of physiological responses during 38 
live music concerts. Sci Rep 11, 1–16. (doi:10.1038/s41598-021-00492-3) 39 

50. Mandikal Vasuki PR, Sharma M, Demuth K, Arciuli J. 2016 Musicians’ edge: A 40 
comparison of auditory processing, cognitive abilities and statistical learning. Hear 41 
Res 342, 112–123. (doi:10.1016/j.heares.2016.10.008) 42 

51. Ki JJ, Kelly SP, Parra LC. 2016 Attention strongly modulates reliability of neural 43 
responses to naturalistic narrative stimuli. Journal of Neuroscience 36, 3092–3101. 44 
(doi:10.1523/JNEUROSCI.2942-15.2016) 45 

52. Hasson U, Nir Y, Levy I, Fuhrmann G, Malach R. 2004 Natural Visions. Science 46 
(1979) 303, 1634–1640. (doi:10.7208/chicago/9780226454245.001.0001) 47 

53. Simon HA. 1971 Designing organizations for an information-rich world. . In 48 
Computers, communication, and the public interest (ed M Greenberger), pp. 37–72. 49 
Baltimore, MD: Johns Hopkins University Press.  50 



19 

54. Davenport TH, Beck JC. 2001 The Attention Economy: Understanding the New 1 
Currency of Business. Harvard Business Review Press.  2 

55. Franck G. 1998 The Economy of Attention. Munich: Carl Hanser Verlag.  3 
56. Agrawal M, Mattar MG, Cohen JD, Daw ND. 2022 The temporal dynamics of 4 

opportunity costs: A normative account of cognitive fatigue and boredom. Psychol Rev 5 
129, 564–585. (doi:10.1037/rev0000309) 6 

57. Gauvin HL. 2018 Drawing listener attention in popular music: Testing five musical 7 
features arising from the theory of attention economy. Musicae Scientiae 22, 291–304. 8 
(doi:10.1177/1029864917698010) 9 

58. Serrà J, Corral Á, Boguñá M, Haro M, Arcos JL. 2012 Measuring the evolution of 10 
contemporary western popular music. Sci Rep 2. (doi:10.1038/srep00521) 11 

59. Miles SA, Rosen DS, Barry S, Grunberg D, Grzywacz N. 2021 What to Expect When 12 
the Unexpected Becomes Expected: Harmonic Surprise and Preference Over Time in 13 
Popular Music. Front Hum Neurosci 15. (doi:10.3389/fnhum.2021.578644) 14 

60. Glenn Schellenberg E, von Scheve C. 2012 Emotional cues in american popular 15 
music: Five decades of the Top 40. Psychol Aesthet Creat Arts 6, 196–203. 16 
(doi:10.1037/a0028024) 17 

61. Madsen CK, Geringer JM. 2000 A Focus of Attention Model for Meaningful 18 
Listening. Bulletin of the Council for Research in Music Education , 103–108. 19 

62. Omigie D, Ricci J. 2022 Curiosity Emerging From the Perception of Change in Music. 20 
Empirical Studies of the Arts 40, 296–316. (doi:10.1177/02762374211059460) 21 

63. Omigie D, Ricci J. 2022 Accounting for expressions of curiosity and enjoyment during 22 
music listening. Psychol Aesthet Creat Arts Advance on. (doi:10.1037/aca0000461) 23 

64. Pearce MT. 2005 The construction and evaluation of statistical models of melodic 24 
structure in music perception and composition. (Unpublished Doctoral thesis, City 25 
University London)  26 

65. Cheung VKM, Harrison PMC, Meyer L, Pearce MT, Haynes J-D, Koelsch S. 2019 27 
Uncertainty and Surprise Jointly Predict Musical Pleasure and Amygdala, 28 
Hippocampus, and Auditory Cortex Activity. Current biology 29, 4084-4092.e4. 29 
(doi:10.1016/j.cub.2019.09.067) 30 

66. Gold BP, Pearce MT, Mas-Herrero E, Dagher A, Zatorre RJ, Zatorre RJ. 2019 31 
Predictability and uncertainty in the pleasure of music: A reward for learning? Journal 32 
of Neuroscience 39, 9397–9409. (doi:10.1523/JNEUROSCI.0428-19.2019) 33 

67. Galvan J, Omigie D. 2022 Individual differences in the expression and experienceof 34 
curiosity are reflected in patterns of music preferences and appreciation. 35 
Psychomusicology: Music, Mind, and Brain  36 

68. Mencke I, Omigie D, Wald-Fuhrmann M, Brattico E. 2019 Atonal Music: Can 37 
Uncertainty Lead to Pleasure? Front Neurosci 12, 1–18. 38 
(doi:10.3389/FNINS.2018.00979) 39 

69. Clark A. 2015 Radical predictive processing. Southern Journal of Philosophy 53, 3–40 
27. (doi:10.1111/sjp.12120) 41 

70. Friston KJ. 2005 A theory of cortical responses. Philos Trans R Soc Lond B Biol Sci 42 
360, 815–36. (doi:10.1098/rstb.2005.1622) 43 

71. Friston KJ, Rosch R, Parr T, Price C, Bowman H. 2017 Deep temporal models and 44 
active inference. Neurosci Biobehav Rev 77, 388–402. 45 
(doi:10.1016/J.NEUBIOREV.2017.04.009) 46 

72. Parr T, Friston KJ. 2017 Working memory, attention, and salience in active inference. 47 
Sci Rep 7. (doi:10.1038/s41598-017-15249-0) 48 



20 

73. Limanowski J, Friston K. 2018 ‘Seeing the Dark’: Grounding phenomenal 1 
transparency and opacity in precision estimation for active inference. Front Psychol 9. 2 
(doi:10.3389/fpsyg.2018.00643) 3 

74. Friston KJ, Rigoli F, Ognibene D, Mathys C, Fitzgerald T, Pezzulo G. 2015 Active 4 
inference and epistemic value. Cogn Neurosci 6, 187–214. 5 
(doi:10.1080/17588928.2015.1020053) 6 

75. Schwartenbeck P, Passecker J, Hauser TU, Fitzgerald TH, Kronbichler M, Friston KJ. 7 
2019 Computational mechanisms of curiosity and goal-directed exploration. 8 
(doi:10.7554/eLife.41703.001) 9 

76. Friston KJ, Frith CD, Pezzulo G, Hobson AJ, Ondobaka S. 2017 Active Inference, 10 
Curiosity and Insight. Neural Comput 2733, 2709–2733. (doi:10.1162/NECO) 11 

77. Van De Cruys S, Bervoets J, Moors A, Nadal M, Skov M. 2022 Preferences need 12 
inferences: Learning, valuation, and curiosity in aesthetic experience.  13 

78. Margulis E. 2013 Aesthetic responses to repetition in unfamiliar music. Empirical 14 
Studies of the Arts 31, 45–57. (doi:10.2190/EM.31.1.c) 15 

79. Wojtowicz Z, Loewenstein G. 2020 Curiosity and the economics of attention. Curr 16 
Opin Behav Sci 35, 135–140. (doi:10.1016/j.cobeha.2020.09.002) 17 

80. Schmidhuber J. 2008 Driven by Compression Progress: A Simple Principle Explains 18 
Essential Aspects of Subjective Beauty, Novelty, Surprise, Interestingness, Attention, 19 
Curiosity, Creativity, Art, Science, Music, Jokes.  20 

81. Van de Cruys S. 2017 Affective Value in the Predictive Mind. In Philosophy and 21 
Predictive Processing (eds T Metzinger, W Wiese), pp. 1–21. Frankfurt am Main: 22 
MIND Group. (doi:10.15502/9783958573253) 23 

82. Friston KJ. 2009 The free-energy principle: a rough guide to the brain? Trends Cogn 24 
Sci 13, 293–301. (doi:10.1016/j.tics.2009.04.005) 25 

83. Parr T, Friston KJ. 2017 Uncertainty, epistemics and active Inference. J R Soc 26 
Interface 14. (doi:10.1098/rsif.2017.0376) 27 

84. Parr T, Rees G, Friston KJ. 2018 Computational Neuropsychology and Bayesian 28 
Inference. Front Hum Neurosci 12, 61. (doi:10.3389/fnhum.2018.00061) 29 

85. Kanai R, Komura Y, Shipp S, Friston KJ. 2015 Cerebral hierarchies: Predictive 30 
processing, precision and the pulvinar. Philosophical Transactions of the Royal 31 
Society B: Biological Sciences 370. (doi:10.1098/rstb.2014.0169) 32 

86. Feldman H, Friston KJ. 2010 Attention, uncertainty, and free-energy. Front Hum 33 
Neurosci 4, 1–23. (doi:10.3389/fnhum.2010.00215) 34 

87. Metzinger T. 2003 Phenomenal transparency and cognitive self-reference. 35 
Phenomenol Cogn Sci 2, 353–393. 36 

88. Sandved-Smith L, Hesp C, Mattout J, Friston K, Lutz A, Ramstead MJD. 2021 37 
Towards a computational phenomenology of mental action: Modelling meta-38 
awareness and attentional control with deep parametric active inference. Neurosci 39 
Conscious 2021. (doi:10.1093/nc/niab018) 40 

89. Deil J, Markert N, Normand P, Kammen P, Küssner MB, Taruffi L. 2022 Mind-41 
wandering during contemporary live music: An exploratory study. Musicae Scientiae 42 
(doi:10.1177/10298649221103210) 43 

90. Gebauer L, Kringelbach ML, Vuust P. 2012 Ever-changing cycles of musical pleasure: 44 
The role of dopamine and anticipation. Psychomusicology: Music, Mind, and Brain 22, 45 
152–167. (doi:110.1037/a0031126) 46 

91. Seth AK. 2013 Interoceptive inference, emotion, and the embodied self. Trends Cogn 47 
Sci. 17, 565–573. (doi:10.1016/j.tics.2013.09.007) 48 

92. Van de Cruys S, Chamberlain R, Wagemans J. 2017 Tuning in to art: A predictive 49 
processing account of negativeemotion in art (commentary to Menninghaus et al. 50 



21 

BBS). Behavioral and Brain Sciences 36, 181–204. 1 
(doi:10.1017/S0140525X12000477) 2 

93. Kiverstein J, Miller M, Rietveld E. 2019 The feeling of grip: novelty, error dynamics, 3 
and the predictive brain. Synthese 196, 2847–2869. (doi:10.1007/s11229-017-1583-9) 4 

94. Joffily M, Coricelli G. 2013 Emotional Valence and the Free-Energy Principle. PLoS 5 
Comput Biol 9. (doi:10.1371/journal.pcbi.1003094) 6 

95. Batson CD, Shaw LL, Oleson KC. 1992 Differentiating affect, mood, and emotion: 7 
Toward functionally based conceptual distinctions. In Emotion (ed MS Clark), pp. 8 
294–326. Sage Publications, Inc.  9 

96. Hesp C, Smith R, Parr T, Allen M, Friston KJ, Ramstead MJD. 2021 Deeply felt 10 
affect: The emergence of valence in deep active inference. Neural Comput. 33, 398–11 
446. (doi:10.1162/neco_a_01341) 12 

97. Park J, Banaji MR. 2000 Mood and heuristics: The influence of happy and sad states 13 
on sensitivity and bias in stereotyping. J Pers Soc Psychol 78, 1005–1023. 14 
(doi:10.1037/0022-3514.78.6.1005) 15 

98. Bodenhausen G V., Sheppard LA, Kramer GP. 1994 Negative affect and social 16 
judgment: The differential impact of anger and sadness. Eur J Soc Psychol 24, 45–62. 17 
(doi:10.1002/ejsp.2420240104) 18 

99. Mencke I, Omigie D, Quiroga-Martinez DR, Brattico E. 2022 Atonal Music as a 19 
Model for Investigating Exploratory Behavior. Front Neurosci 16. 20 
(doi:10.3389/fnins.2022.793163) 21 

100. Levinson J. 2005 Philosophical Aesthetics: An Overview. In The Oxford Handbook of 22 
Aesthetics, pp. 1–23. (doi:10.1093/oxfordhb/9780199279456.003.0001) 23 

101. Brattico E, Bogert B, Jacobsen T. 2013 Toward a neural chronometry for the aesthetic 24 
experience of music. Front Psychol 4, 1–21. (doi:10.3389/fpsyg.2013.00206) 25 

102. Smith R, Friston KJ, Whyte CJ. 2022 A step-by-step tutorial on active inference and 26 
its application to empirical data. J Math Psychol 107. (doi:10.1016/j.jmp.2021.102632) 27 

103. Margulis EH. 2014 On Repeat - How Music Plays the Mind. Oxford University Press, 28 
USA.  29 

104. Omigie D. 2015 Dopamine and epistemic curiosity in music listening. Cogn Neurosci 30 
(doi:10.1080/17588928.2015.1051013) 31 

105. Shavit-Cohen K, Zion Golumbic E. 2019 The Dynamics of Attention Shifts Among 32 
Concurrent Speech in a Naturalistic Multi-speaker Virtual Environment. Front Hum 33 
Neurosci 13, 1–12. (doi:10.3389/fnhum.2019.00386) 34 

106. Metcalfe J, Schwartz BL, Eich TS. 2020 Epistemic curiosity and the region of 35 
proximal learning. Curr Opin Behav Sci 35, 40–47. 36 
(doi:10.1016/j.cobeha.2020.06.007) 37 

107. de Fleurian R, Pearce MT. 2021 Chills in Music: A Systematic Review. Psychol Bull 38 
147, 890–920. (doi:10.1037/bul0000341) 39 

108. Witek MAG, Clarke EF, Wallentin M, Kringelbach ML, Vuust P. 2014 Syncopation, 40 
body-movement and pleasure in groove music. PLoS One 9. 41 
(doi:10.1371/journal.pone.0094446) 42 

109. Keller P, Schubert E. 2011 Cognitive and affective judgements of syncopated musical 43 
themes. Adv Cogn Psychol 7, 142–156. (doi:10.2478/v10053-008-0094-0) 44 

110. Schaefer RS, Overy K, Nelson P. 2013 Affect and non-uniform characteristics of 45 
predictive processing in musical behaviour. Behavioral and Brain Sciences. 36, 226–46 
227. (doi:10.1017/S0140525X12002373) 47 

111. Murayama K, FitzGibbon L, Sakaki M. 2019 Process Account of Curiosity and 48 
Interest: A Reward-Learning Perspective. Educ Psychol Rev. 31, 875–895. 49 
(doi:10.1007/s10648-019-09499-9) 50 



22 

112. McAuley JD, Wong PCM, Mamidipaka A, Phillips N, Margulis EH. 2021 Do you hear 1 
what I hear? Perceived narrative constitutes a semantic dimension for music. 2 
Cognition 212, 104712. (doi:https://doi.org/10.1016/j.cognition.2021.104712) 3 

113. Neacsu V, Mirza MB, Adams RA, Friston KJ. 2022 Structure learning enhances 4 
concept formation in synthetic Active Inference agents. PLoS One 17. 5 
(doi:10.1371/journal.pone.0277199) 6 

114. Omigie D. 2015 Music and literature: are there shared empathy and predictive 7 
mechanisms underlying their affective impact? Front Psychol 6, 1250. 8 
(doi:10.3389/fpsyg.2015.01250) 9 

115. Kidd C, Hayden BY. 2015 The Psychology and Neuroscience of Curiosity. Neuron 88, 10 
449–460. (doi:10.1016/j.neuron.2015.09.010) 11 

116. Sun Z, Firestone C. 2021 Curious Objects: How Visual Complexity Guides Attention 12 
and Engagement. Cogn Sci 45. (doi:10.1111/cogs.12933) 13 

117. Frascaroli J. 2022 Art and Learning A Predictive Processing Proposal.  14 
118. Christensen AP, Cardillo ER, Chatterjee A. 2023 Can Art Promote Understanding? A 15 

Review of the Psychology and Neuroscience of Aesthetic Cognitivism. Psychol 16 
Aesthet Creat Arts (doi:10.1037/aca0000541) 17 

119. Muth C, Raab MH, Carbon CC. 2015 The stream of experience when watching artistic 18 
movies. Dynamic aesthetic effects revealed by the Continuous Evaluation Procedure 19 
(CEP). Front Psychol 6. (doi:10.3389/fpsyg.2015.00365) 20 

  21 
 22 
  23 



23 

Figure Captions 1 
 2 
Figure 1: Showing A) Overview of sample, task and experimental conditions. B) Amount of 3 
deployed attention as a function of expertise and musical style. List of pieces, data and code 4 
can be found in supplementary materials. 5 

 6 
Figure 2: Model of time-varying music engagement. Music engagement constitutes several 7 
cycles of (curiosity), attention and positive valence, interspersed with moments of mind 8 
wandering (here, 5 cycles are shown). Refocusing on the music after an episode of mind-9 
wandering is due to musical triggers or mental action, while modulatory factors include 10 
complexity, individual differences and listening context. 11 
 12 
 13 


