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ABSTRACT 

 

The ability to generate creative ideas and novel solutions is a defining feature of human 

cognition. However, the cognitive and neural mechanisms that underlie creative cognition 

are poorly understood. While recent research has highlighted the roles of distinct 

associative and controlled processes in creative cognition, supported by the default mode 

and executive control networks, respectively, it remains unclear how exactly creative 

ideas are produced by the interactions of these processes and networks, or how creative 

cognition relates to more fundamental processes like executive functions and working 

memory (WM). The present thesis aims to examine the neurocognitive basis of creative 

thinking using a combination of behavioral and fMRI experiments. The need for greater 

computational modeling in neurocognitive creativity research (NCR) is also discussed.  

The first study examines how the default mode and executive control networks contribute 

to creative cognition over time. Results are broadly suggestive of distinct generative and 

evaluative phases in creative thought. A second study explores relationships between 

multiple forms of creative thinking and multiple forms of inhibition, finding that divergent 

thinking is related to cognitive inhibition. In a third study, relationships between creative 

cognition and control over WM are examined, using measures of executive functions. 

While no relationships were found between divergent thinking and executive functions, a 

positive relationship was found between WM updating and convergent thinking and 

verbal fluency. In a review chapter, the case for greater computational modeling in NCR is 

made. Previous models of creative cognition, and how these might be improved upon, are 

discussed, with some examples of the model development process. In a final study, 

relationships are explored between personality measures and evaluations of the novelty, 

usefulness, and creativity of ideas. A closing chapter summarizes all findings and discusses 

avenues for future research.  



3 
 

ACKNOWLEDGMENTS 

 

I would firstly like thank my supervisors, Joydeep Bhattacharya and Alan Pickering, for 

their unfailingly prompt, friendly, and helpful advice on innumerable matters. I am very 

grateful for all your support with this research, from the choice of research questions, the 

design of the studies, the analysis of the data, and the writing up and publication of the 

findings.  

I am thankful also for the thoughtful input of academics outside of Goldsmiths, including 

Roger Beaty, Qunlin Chen, Caroline Di Bernardi Luft, and Geraint Wiggins. 

I am also very grateful for the help, support, and community provided by my fellow 

Goldsmiths PhD students in the Ben Pimlott Building, including Francesca Torno Jimenez, 

Soma Chaudhuri, George Evangelou, Margherita Tecilla, Teresa Facchetti, Oliver Durcan, 

and Giuseppe Lai. You helped create a truly lovely office environment and have given me 

many happy memories. I wish you all the best with your future careers. 

Finally, I am deeply thankful for the support of my parents, who helped me so much 

during this PhD, and my close friends, in particular Dan, Pat, Charlie, Jacob, and StevieRay 

for providing much needed stress relief and guidance.  

  



4 
 

LIST OF FIGURES 
Figure 1: Trial procedure study 1 ...................................................................................................... 28 

Figure 2: Analysis process study 1 ..................................................................................................... 30 

Figure 3: Classification accuracy study 1 ........................................................................................... 34 

Figure 4: Strength of correlation between AUT creativity and classification accuracy in the DMN 

and ECN, study 1 ............................................................................................................................... 38 

Figure 5: Experimental procedure study 2 ........................................................................................ 62 

Figure 6: Confirmatory factor analysis model estimating DT1, formed of the lower order Draw, 

AUT1, and AUT2 factors, study 2 ...................................................................................................... 70 

Figure 7: Confirmatory factor analysis model estimating DT2, formed of the lower order Draw and 

AUT1 factors, study 2 ........................................................................................................................ 71 

Figure 8: Scatterplots of the relationship between RIF and DT1 (A) and RIF and DT2 (B), study 2 .. 74 

Figure 9: Experimental procedure study 3 ........................................................................................ 97 

Figure 10: Diagram of an example dual-process computational model of creative cognition ....... 132 

Figure 11: Experimental procedure study 4 .................................................................................... 148 

Figure 12: Boxplots showing novelty and usefulness coefficient estimates, for AUT ratings (a), and 

Projects ratings (b), study 4............................................................................................................. 152 

Figure 13 : Scatterplots of relationships between openness and novelty coefficients (AUT) and 

between openness and usefulness coefficients (Projects), study 4 ............................................... 154 

Figure 14: Simple slopes plot of the interaction between novelty and usefulness as predictors of 

creativity among AUT ratings, study 4 ............................................................................................ 159 

Figure 15: Simple slopes plot of the interaction between openness and novelty, among AUT ratings 

(a), and between openness and usefulness, among Project ratings (b), study 4 ........................... 161 

 

 

 

 

 

 

 

 



5 
 

LIST OF TABLES 
Table 1: Descriptive statistics study 1 ............................................................................................... 33 

Table 2: Results of t-tests contrasting classification accuracy between networks in each time 

phase, study 1 ................................................................................................................................... 35 

Table 3: Pearson correlations between behavioral measures and classification accuracy, across all 

time phases and networks, study 1. ................................................................................................. 37 

Table 4: Descriptive statistics study 2 ............................................................................................... 64 

Table 5: Correlations between major variables of interest, study 2. ................................................ 66 

Table 6: Descriptive statistics for creativity ratings, study 2 ............................................................. 68 

Table 7: Correlations between AUT creativity ratings, study 2 ......................................................... 68 

Table 8: Correlations between drawing creativity ratings, study 2 .................................................. 68 

Table 9: Correlations between latent factors and other variables of interest, study 2 .................... 72 

Table 10: Summary of hierarchical regression predicting divergent thinking 1, study 2 ................. 73 

Table 11: Summary of hierarchical regression predicting divergent thinking 2, study 2 ................. 74 

Table 12: Summary of hierarchical regression predicting convergent thinking, study 2.................. 75 

Table 13: Summary of hierarchical regression predicting self-reported creative achievement, study 

2 ......................................................................................................................................................... 76 

Table 14: Openness as a moderator of the relationship between divergent thinking and RIF, study 

2 ......................................................................................................................................................... 77 

Table 15: Risk-taking as a moderator of the relationship between convergent thinking and 

response inhibition, study 2 .............................................................................................................. 77 

Table 16: Openness as a moderator of the relationship between self-report creativity and response 

inhibition, study 2.............................................................................................................................. 78 

Table 17: Descriptive statistics for all variables, study 3................................................................. 100 

Table 18: Correlations among creative and associative measures, study 3 ................................... 101 

Table 19: Correlations among executive functions and questionnaires, study 3 ........................... 103 

Table 20: Correlations among executive functions, questionnaires, and creative and associative 

measures, study 3 ........................................................................................................................... 104 

Table 21: Summary of cognitive mechanisms that might feature in a computational model of 

verbal creativity ............................................................................................................................... 130 

Table 22: Means, standard deviations, and correlation coefficients for personality measures and 

participant-level idea ratings, study 4 ............................................................................................. 151 



6 
 

Table 23: Results of t-tests comparing novelty and usefulness coefficients within and between task 

types, study 4 .................................................................................................................................. 153 

Table 24: Correlations between novelty and usefulness coefficient estimates and personality 

scores, study 4 ................................................................................................................................. 153 

Table 25 : Linear Mixed-Effects Model (LMEM) of Creativity Ratings for AUT ideas and Projects 

together, with Predictor Estimates for Novelty, Usefulness, and Context and Interactions, study 4

 ......................................................................................................................................................... 156 

Table 26 : Linear Mixed-Effects Model (LMEM) of Creativity Ratings for AUT Ideas, with Predictor 

Estimates for Novelty, Usefulness, and Personality Factors and Interactions, study 4 .................. 158 

Table 27: Linear Mixed-Effects Model (LMEM) of Creativity Ratings for Projects, with Predictor 

Estimates for Novelty, Usefulness, and Personality Factors and Interactions, study 4 .................. 160 

 

  



7 
 

DISCLAIMER: some of the content of this thesis, in particular some of the contents of 

Chapters 2, 3 and 5, has been published. 

  



8 
 

CHAPTER 1: OUTSTANDING QUESTIONS FOR NEUROCOGNITIVE 

CREATIVITY RESEARCH 
 

1.1 Thesis overview 

The ability to think creatively is one of humanity’s most defining features, enabling us to make 

remarkable progress in diverse scientific and artistic domains, as well as to solve simpler problems 

we encounter every day. While creativity is traditionally considered an elusive target for scientific 

investigation (Hennessey & Amabile, 2010; Iger, 2019), recent decades have witnessed 

tremendous growth in neurocognitive creativity research (NCR) – research that aims to uncover 

the neural and cognitive basis of creative thought. While definitions of creativity vary (e.g., Acar, 

Burnett, & Cabra, 2017; Simonton, 2018), most NCR defines creative cognition as the production 

of novel and useful ideas (Diedrich, Benedek, Jauk, & Neubauer, 2015; Runco & Jaeger, 2012; 

Stein, 1953). Common methods of assessing creativity in a laboratory setting include measures of 

divergent thinking (the ability to produce multiple creative ideas in response to a single problem), 

and convergent thinking (the ability to select a single best idea). One of the most common 

measures of divergent thinking is the Alternative Uses Task (AUT), which requires participants to 

think of numerous unusual uses for everyday objects (e.g., using a brick to grind up food). A 

common measure of convergent thinking, meanwhile, is the Remote Associates Test (RAT), in 

which participants are shown three unrelated words and must generate a response word that 

relates to all three. 

NCR researchers aim to understand creativity as the outcome of more established cognitive 

processes such as memory and attention (Benedek & Fink, 2019; Wiggins & Bhattacharya, 2014). 

From this research, a complex picture is emerging in which creative cognition relies on a diverse 

range of cognitive and psychological factors, including memory (Benedek et al., 2014b; Fugate, 

Zentall, & Gentry, 2013; Kenett et al., 2018a; Madore, Addis, & Schacter, 2016; Storm, Angello, & 

Bjork, 2011), attention (Frith et al., 2021b; Zabelina, 2018), personality (Beaty et al., 2018a; 

Kaufman et al., 2016; Oleynick et al., 2017), executive control (Beaty, Silvia, Nusbaum, Jauk, & 

Benedek, 2014; Benedek, Jauk, Sommer, Arendasy, & Neubauer, 2014c; Krumm, Arán Filippetti, & 

Gutierrez, 2018), and reward processing (Beversdorf, 2019; Lin & Vartanian, 2018). Meanwhile, 
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neuroimaging studies have revealed that creative cognition in numerous domains involves 

cooperation between large-scale brain networks, including the default mode (DMN) and executive 

control (ECN) networks (Beaty, Benedek, Silvia, & Schacter, 2016a; Beaty, Cortes, Zeitlen, 

Weinberger, & Green, 2021; Ellamil, Dobson, Beeman, & Christoff, 2012; Mayseless, Eran, & 

Shamay-Tsoory, 2015).  

Despite this progress, however, the field remains far from a precise understanding of how creative 

cognition arises from neurocognitive processes. It remains unclear what processes underlie the 

interactions of the DMN and ECN, and how exactly these networks contribute to creative 

cognition. It has been suggested that the DMN is responsible for the generation of ideas, while the 

ECN oversees the evaluation of ideas (see Beaty et al., 2016a, 2018b; Kleinmintz, Ivancovsky, & 

Shamay-Tsoory, 2019; Mayseless et al., 2015), but this is mostly speculative. Meanwhile, it is 

unknown how exactly executive functions, such as inhibition, switching, and working memory 

(WM) updating contribute to creative cognition, and whether their contributions vary depending 

on the nature of the creative task. To fully understand the mechanisms of creative cognition, 

further research is needed to unpack how these functions (and other cognitive factors) operate 

and interact differently in different creative contexts. 

In addition to more fine-tuned empirical research, NCR would benefit greatly from the wider 

adoption of computational modeling. While the verbal theories that currently guide NCR are 

becoming increasingly mechanistic (e.g., Khalil & Moustafa, 2022; Simonton, 2022; Zhang, Sjoerds, 

& Hommel, 2020) these theories remain more vague and harder to falsify than formal 

computational models. By contrast, computational modeling can bring considerable clarity and 

accessibility to theories of creative cognition, and make it easier to develop and compare new 

hypotheses. 

Finally, little research has examined the evaluation of creative ideas, and how this evaluation is 

affected by factors such as personality and risk-taking. For example, is the novelty of an idea more 

important to its creativity, or is the usefulness? Evaluation is a key part of the creative process 

(Basadur, 1995; Goldschmidt, 2016; Kleinmintz et al., 2019; Runco & Smith, 1992), and how people 

vary in their evaluations of creative ideas is likely to affect how they generate their own ideas. 
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However, few studies have assessed how individuals evaluate creative ideas or the factors that 

influence evaluation. 

The present thesis aims to address these outstanding questions regarding the mechanisms of 

creative cognition, in seven chapters. After a more detailed discussion of the current state of NCR 

and the issues explored by the thesis in the current chapter, Chapter 2 describes a study 

examining how the DMN and ECN vary in their contributions to creative cognition over time. The 

study provides tentative evidence for the existence of distinct generative and evaluative phases in 

creative thought. Chapter 3 then focuses on the relationship between creative cognition and 

inhibitory control, where both are measured as multi-faceted constructs. The study finds that one 

particular kind of inhibition – retrieval induced forgetting – may be most related to prominent 

measures of divergent thinking. Chapter 4 describes a related study examining the roles of 

switching, inhibition, WM updating and WM capacity in creative cognition, with a focus on 

automated measures of creative and associative thinking. This study finds little relationship 

between executive functions and creative cognition, except for a small link between updating and 

performance in convergent thinking and verbal fluency tasks.  

Chapter 5 provides a more detailed discussion of the benefits that computational modeling can 

bring to verbal theories of creativity, arguing that a new generation of dynamic computational 

models, that both instantiate a specific cognitive theory of creativity and can model performance 

on common lab-based tasks, could take NCR much closer to a precise understanding of the 

mechanisms that produce creative ideas. Chapter 6 presents a final empirical study examining the 

evaluation of creative ideas, specifically how individuals consider the novelty and usefulness of 

ideas when assessing their creativity, and whether these considerations vary depending on the 

context the idea was generated in. The findings of these various empirical studies are then 

summarized in Chapter 7, which also provides some directions for future research. 

 

1.2 The current state of NCR 

NCR's objective is to uncover the neural and cognitive processes that underlie creative thinking 

(Benedek & Fink, 2019). To this end, researchers have explored how numerous cognitive and 

psychological factors relate to creative performance. Here, some of these findings are briefly 
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discussed. For example, attention studies suggest that real-world creative achievement may be 

linked to a form of "leaky" attention (Zabelina, 2018), while creative performance in laboratory 

settings appears to be associated with selective attention (Vartanian, 2009) or flexible attention 

(Zabelina, O’Leary, Pornpattananangkul, Nusslock, & Beeman, 2015; Zabelina, Saporta, & Beeman, 

2016). 

Moreover, research on the connection between creative thinking and intelligence has found a 

significant overlap between the two in lab-based settings (Frith et al., 2021a; Karwowski et al., 

2016; Karwowski, Czerwonka, & Kaufman, 2020), and suggests they may depend on shared neural 

regions (Benedek, Jung, & Vartanian, 2018; Frith et al., 2021a). Studies have also explored the 

relationship between creativity and executive functions, finding that aspects of creative 

performance are related to cognitive functions such as switching (Krumm et al., 2018; Nusbaum & 

Silvia, 2011; Pan & Yu, 2018; Zabelina & Ganis, 2018), updating (Benedek et al., 2014c; Stolte, 

García, Van Luit, Oranje, & Kroesbergen, 2020; Zabelina, Friedman, & Andrews-Hanna, 2019), and 

inhibition (Camarda et al., 2018a; Kaur, Weiss, Zhou, Fischer, & Hildebrandt, 2021; Zabelina et al., 

2019). 

Regarding the relationship between creative thinking and memory, some studies suggest that 

creative cognition benefits from strong WM abilities (Benedek et al., 2014c; de Dreu, Nijstad, Baas, 

Wolsink, & Roskes, 2012; Stolte et al., 2020), while other research presents mixed findings (de 

Vink, Willemsen, Lazonder, & Kroesbergen, 2021; Krumm et al., 2018), suggesting that the role of 

WM in creative thinking may depend on the specific task (Krumm et al., 2018). Indeed, studies 

have employed network science methods to reveal that more creative individuals may possess 

more flexible and interconnected semantic memory structures (He et al., 2020; Kenett, Anaki, & 

Faust, 2014; Kenett et al., 2018a; Ovando-Tellez et al., 2022). 

Research has also explored less direct connections between creativity and neurocognitive 

processes, investigating how creativity relates to personality traits like risk-taking (Dewett, 2007; 

Harada, 2020; Shen, Hommel, Yuan, Chang, & Zhang, 2018) and openness to experience (Batey & 

Furnham, 2006; Kaufman et al., 2016; Oleynick et al., 2017). Neurodevelopmental conditions, 

including ADHD (Fugate et al., 2013; Hoogman, Stolte, Baas, & Kroesbergen, 2020) and 
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schizophrenia (Sampedro et al., 2020a, 2020b), have also been examined for their impact on 

creative thinking. 

Furthermore, research has explored how creative performance is related to motivation (Benedek, 

Bruckdorfer, & Jauk, 2020; Xue et al., 2020) and the functioning of the dopaminergic (Lin & 

Vartanian, 2018; Zhang et al., 2020) and noradrenergic systems (Beversdorf, 2019; Boot, Baas, van 

Gaal, Cools, & De Dreu, 2017; Flaherty, 2005). When it comes to the neural correlates of creativity, 

fMRI studies consistently show that creative thinking involves enhanced cooperation between the 

DMN, ECN, and salience network (Beaty et al., 2016a; Green, Cohen, Raab, Yedibalian, & Gray, 

2015; Mayseless et al., 2015). Additionally, EEG research has indicated that higher creative 

performance is associated with greater cortical alpha synchronization (Agnoli, Zanon, Mastria, 

Avenanti, & Corazza, 2020; Camarda et al., 2018b; Fink et al., 2018; Rominger et al., 2019; Stevens 

& Zabelina, 2020). Meanwhile, research using transcranial brain stimulation has found that 

increasing alpha power over the prefrontal cortex can enhance the creative quality of ideas 

(Lustenberger, Boyle, Foulser, Mellin, & Fröhlich, 2015), while stimulation over temporal sites 

supports the inhibition of non-creative ideas (Luft, Zioga, Thompson, Banissy, & Bhattacharya, 

2018). 

Guiding this diverse wealth of research are a number of theoretical frameworks. Among the most 

popular are dual-process accounts, which describe creative cognition as a complex interplay 

between automatic, spontaneous processes and deliberate, executive control processes (Benedek 

& Jauk, 2018; Mok, 2014; Sowden, Pringle, & Gabora, 2015; Volle, 2018). These frameworks draw 

on wider dual-process theories within cognitive science that distinguish between fast, automatic 

Type 1 processes, and slow, deliberate Type 2 processes (Evans & Stanovich, 2013; Sowden et al., 

2015). Alternative accounts describe creativity as involving generative and evaluative processes 

(Ellamil et al., 2012; Kleinmintz et al., 2019), exploration and exploitation (Baror & Bar, 2016; Hart 

et al., 2017; Lin & Vartanian, 2018), and focused and defocused attention (Gabora, 2010; Zabelina 

& Robinson, 2010). 

Focusing on dual-process accounts, these are supported by a range of findings. The role of 

spontaneous processes in creative cognition is supported by evidence that creative performance 

benefits from defocused periods of idea incubation (Sio & Ormerod, 2009), while studies using 
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free-association (Marron et al., 2018) and verbal fluency paradigms (Beaty et al., 2014) suggest 

that creative cognition may relate to associative processes that spontaneously propagate through 

memory (Kenett et al., 2018a; Mednick, 1962; Volle, 2018). Meanwhile, the role of controlled 

processes in creative thought is supported by links between creative performance and intelligence 

(Beaty et al., 2014; Benedek et al., 2014c; Frith et al., 2021a) and executive functions (Benedek, 

Franz, Heene, & Neubauer, 2012; Benedek et al., 2014c; Camarda et al., 2018a). Further support 

for the dual-process perspective comes from neuroimaging studies, which have shown that 

creative cognition involves cooperation between the DMN and ECN (Beaty et al., 2016a, 2018b, 

2021; Christensen, Benedek, Silvia, & Beaty, 2021; Mayseless et al., 2015). The two networks are 

typically anti-correlated (Anticevic et al., 2012), but appear to cooperate in creative tasks ranging 

from musical improvisation (Pinho, de Manzano, Fransson, Eriksson, & Ullén, 2014), visual artistic 

design (Ellamil et al., 2012), poetry (Liu et al., 2015), and verbal divergent thinking (Beaty, 

Benedek, Barry Kaufman, & Silvia, 2015; Mayseless et al., 2015).  

 

1.3 Outstanding issues 

However, numerous outstanding questions remain for NCR researchers regarding the specific 

mechanisms that produce creative ideas. Concerning the DMN and ECN, it is unclear exactly how 

these networks contribute to creative cognition. Given the DMN’s involvement in memory and 

imagination (Andrews-Hanna, Smallwood, & Spreng, 2014; Beaty, Thakral, Madore, Benedek, & 

Schacter, 2018d) researchers have suggested that the network underlies the spontaneous 

activation of ideas, accessed through associative processes (Beaty et al., 2020; Beaty & Lloyd-Cox, 

2020). The ECN, meanwhile, has been suggested to monitor and guide this spontaneous activity 

through top-down control, for example to execute particular strategies in a creative task (Benedek 

& Jauk, 2018; Frith et al., 2021a). Indeed, it is possible that ECN regions can suppress DMN activity 

to inhibit distracting and poor-quality ideas, allowing access to better ones (Beaty, Christensen, 

Benedek, Silvia, & Schacter, 2017a; Christensen et al., 2021). This characterization has led 

researchers to suggest that idea generation is primarily performed by the DMN, while the 

evaluation and refinement of ideas is mainly performed by the ECN (Beaty et al., 2016a; Ellamil et 

al., 2012; Jung, Mead, Carrasco, & Flores, 2013; Kleinmintz et al., 2019).  
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However, this suggestion is mostly speculative. It is unclear whether different stages of creative 

cognition (e.g., generation and evaluation) can be distinguished, or whether they might involve 

different proportions of associative and controlled processes, corresponding to different 

contributions from the DMN and ECN (Kleinmintz et al., 2019). Examining how these networks 

contribute to creative thinking over the course of a single creative trial (i.e., the generation and 

output of a single creative idea), could reveal much about the dynamics of the processes 

performed by these networks, and potentially the existence of distinct generative and evaluative 

phases in creative cognition. 

The notion that the ECN can moderate the activity of the DMN through top-down inhibitory 

control fits well with the dual-process account of creative cognition. To attain creative ideas, dual-

process accounts argue that unoriginal and obvious ideas must be inhibited and suppressed, while 

particular pathways through memory are strategically selected to increase the novelty of activated 

concepts (Barr, 2018; Benedek, Beaty, Schacter, & Kenett, 2023; Silvia, Beaty, & Nusbaum, 2013; 

Volle, 2018). However, as noted, creative ability is not always correlated with inhibitory control 

(Chrysikou, 2019). Evidence from studies examining jazz improvisation (Limb & Braun, 2008), real-

world creative performance (Carson, Peterson, & Higgins, 2003), and in some cases divergent 

thinking tasks (Dorfman, Martindale, Gassimova, & Vartanian, 2008; Radel, Davranche, Fournier, & 

Dietrich, 2015), suggest a negative link between creative cognition and inhibition. Indeed, it has 

been argued that expert-level creative performance might relate to a suspension of cognitive 

control (Dietrich, 2004), to allow associative processes to operate more freely and flexibly. 

Moreover, incubation, a key stage of the creative process described by Wallas (1926), and 

commonly reported by highly creative individuals (Boden, 1990; Kounios & Beeman, 2014) 

involves a temporary reduction in inhibitory control. This can allow individuals to mind-wander, 

and overcome self-imposed constraints regarding the nature of a problem, potentially leading to 

novel insights (Benedek & Jauk, 2018; Ritter & Dijksterhuis, 2014). 

However, numerous studies have reported positive relationships between inhibitory control and 

creative performance, particularly in laboratory-based settings (Benedek et al., 2012, 2014c; 

Camarda et al., 2018a). Indeed, performance on divergent thinking tasks has been linked to 

intelligence (of which executive functions such as inhibition are a major predictor; Ardila, 2018; 
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Arffa, 2007) by several studies (Beaty et al., 2014; Benedek et al., 2014c; Frith et al., 2021a; 

Karwowski et al., 2016). These somewhat contradictory findings have led researchers to suggest 

that the importance of inhibitory control for creative cognition likely depends on the specific task 

context (Benedek & Jauk, 2018; Chrysikou, 2018; Sowden et al., 2015; Volle, 2018). For example, 

open-ended or loosely-defined tasks might benefit from reduced inhibitory control, while well-

defined tasks with time constraints might benefit from greater inhibitory control.  

In addition however, it is possible that the relationship between inhibitory control and creativity 

depends on the nature of the inhibition measure. Inhibition comes in numerous forms (Diamond, 

2013; Engelhardt, Nigg, Carr, & Ferreira, 2008), which may have distinct neural bases (Cipolotti et 

al., 2016), including latent inhibition (Carson et al., 2003; Granger, Moran, Buckley, & Haselgrove, 

2016), cognitive inhibition (Engelhardt et al., 2008; Koppel & Storm, 2014), and response inhibition 

(Benedek et al., 2014c; Friedman et al., 2016). Our understanding of the relationship between 

creative cognition and inhibitory control would be greatly enhanced by examining both as 

multifaceted constructs, in a study comparing several measures of creative performance and 

several measures of inhibitory control. 

Questions concerning the role of inhibition in creative cognition highlight the likely importance of 

WM to creative performance. The need to prevent distracting, unoriginal ideas from activating 

implies a finite WM store, access to which must be carefully managed to attain optimally creative 

ideas. Currently, research has found mixed findings on the relationship between WM capacity and 

creative cognition, with some studies finding support for a connection (Benedek et al., 2014c; de 

Dreu et al., 2012; Orzechowski, Gruszka, & Michalik, 2022; Stolte et al., 2020), and others 

suggesting little relationship (de Vink et al., 2021; Gerver, Griffin, Dennis, & Beaty, 2023; Krumm et 

al., 2018). However, control over access to WM might still be an important factor in creative 

performance, and may allow individuals to switch flexibly between focusing on the details of a 

handful of concepts and expanding attention to allow new information to enter awareness. 

Indeed, researchers have suggested that creative performance involves adjusting attention 

between narrower and broader states (Dorfman et al., 2008; Gabora, 2010; Zabelina, 2018; 

Zabelina & Robinson, 2010) and switching between exploratory and exploitative search strategies 

(Mekern, Sjoerds, & Hommel, 2019b; Nijstad, De Dreu, Rietzschel, & Baas, 2010), and generative 
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and evaluative modes of thought (Ellamil et al., 2012; Kleinmintz et al., 2019). Such processes 

might be enacted by adjusting input to WM. For example, broad, generative, and exploratory 

attentional states may involve wider input to WM, where tangential ideas can activate 

spontaneously. By contrast, narrow, exploitative, and evaluative attentional states might involve 

limiting WM input to only closely related ideas.  

In addition to measures of inhibitory control, control over WM is commonly assessed with 

measures of executive shifting and updating (Friedman et al., 2016; Miyake et al., 2000). Measures 

of updating tend to overlap with those designed to assess WM capacity, such as complex span 

tasks, which involve remembering a growing list of items while performing a simultaneous 

executive task (Schmiedek, Hildebrandt, Lövdén, Wilhelm, & Lindenberger, 2009; Schmiedek, 

Lövdén, & Lindenberger, 2014; Smeekens & Kane, 2016; Wilhelm, Hildebrandt, & Oberauer, 2013). 

Meanwhile, measures of shifting tend to focus on the ability to reassign cognitive resources to 

distinct tasks (Liu & Yeung, 2020; Miyake et al., 2000; Serrien & O’Regan, 2019). If control over 

WM is important for creative thinking, to switch between generative and evaluative modes or 

between conceptual spaces, one might expect those with greater inhibition, shifting, and updating 

abilities to have greater creative performance, or at least to visit a greater number of conceptual 

categories in creative tasks (flexibility; see also Zhang et al., 2020). However, while a handful of 

studies have found a positive relationship between executive functions and creative performance 

(Benedek et al., 2014c; Krumm et al., 2018; Pan & Yu, 2018; Zabelina & Ganis, 2018), others report 

mixed findings (de Vink et al., 2021; Gerver et al., 2023; Menashe et al., 2020; Palmiero, Fusi, 

Crepaldi, Borsa, & Rusconi, 2022), and few studies have examined the relationship between 

executive functions and the ability to switch between categories of idea in creative tasks. 

Theoretically, control over WM could underlie factors such as the speed at which semantic 

memory is traversed (Beaty & Kenett, 2023; Kenett et al., 2018a; Volle, 2018), the number of 

conceptual categories visited, or the overall creativity of responses during creative tasks. However, 

it is currently unknown whether these factors relate to executive functions, whether the same 

processes underlie switching in both executive and creative contexts, or whether executive 

functions can also impact the associative processes that are important in creative cognition. A 

study examining a range of creative and associative tasks, together with measures of executive 
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functions in a broad battery, could go some way toward shedding light on the cognitive 

mechanisms that produce creative ideas. 

Indeed, as a high-level construct, creative cognition is likely impacted by a very large number of 

psychological and cognitive factors. Developing specific mechanistic hypotheses concerning the 

interactions of these factors, and how they produce creative ideas, is very difficult with verbal 

theories alone (Guest & Martin, 2021). This is just one issue with the current state of NCR that can 

be alleviated through the wider use of computational modeling. For example, if researchers 

supposed that those higher in the personality trait openness to experience produce more creative 

ideas by engaging in broader attentional states (Gabora, 2010, 2018), rather than seeking purely 

correlational support for this hypothesis, it could be embodied in a computational model. 

Openness might be defined as a set of parameters governing the propensity to use broad 

conceptual representations. The hypothesis could then be tested by adjusting the parameters 

reflecting openness and observing whether the changes in simulated creative outcomes are in line 

with those observed among human participants with varying openness scores. 

Beyond making theories more testable, computational modeling can aid the development of more 

precise and communicable theories (Blohm, Kording, & Schrater, 2020; Borsboom, van der Maas, 

Dalege, Kievit, & Haig, 2021; Fried, 2020). Since models require theories to be explicitly formalized 

in terms of equations and algorithms, every aspect of the theory must be precisely defined (Farrell 

& Lewandowsky, 2015; Maia, Huys, & Frank, 2017). This detail can reveal weak points and false 

assumptions in theories, highlighting avenues for future research (Blohm et al., 2020). By contrast, 

purely verbal theories possess a degree of vagueness and ambiguity that makes them harder to 

falsify and can allow different researchers to have very different interpretations of a theory. 

Recent years have witnessed a rise in the number of computational models that can simulate 

performance on common lab-based tasks (e.g., Lopez-Persem et al., 2022; Olteţeanu & Falomir, 

2016; Schatz, Jones, & Laird, 2018), but considerably more can be done to better integrate 

computational modeling with NCR and improve the usefulness of models to empirical researchers. 

Finally, amid the wealth of research into the generation of creative ideas, it is also important to 

consider how individuals evaluate creative ideas. For example, if a creative idea is one that is both 

novel and useful, it's likely that raters weigh both qualities when assessing its creativity. Which 
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quality is more important to an individual could say much about how they generate their own 

ideas, and might relate to their curiosity, personality, and approach to risk. However, surprisingly 

little research has examined how novelty and usefulness contribute to evaluations of creativity, 

and the factors that can influence these contributions. For example, some evidence suggests that 

the creativity of an idea depends far more on its novelty than its usefulness (Caroff & Besançon, 

2008; Diedrich et al., 2015; Han, Forbes, & Schaefer, 2021; Runco & Charles, 1993), but other 

research suggests that the impact of novelty and usefulness might depend on the context in which 

the idea was generated (Acar et al., 2017; Long, 2014; Runco, Illies, & Eisenman, 2005).  

Additionally, while research has explored how the evaluation of creativity overall relates to 

individual differences in expertise (Long, 2014), emotion (Lee, Chang, & Choi, 2017; Mastria, 

Agnoli, & Corazza, 2019), and uncertainty (Mueller, Melwani, & Goncalo, 2012), little is known 

about their influence on perceptions of novelty and usefulness. Personality traits such as openness 

to experience may play a key role here, by affecting individuals' receptiveness to new and 

unconventional ideas, potentially biasing them towards valuing novelty over usefulness. Currently, 

however, the extent to which factors like the context of the creative task and the personality of 

the rater affect the considerations of novelty and usefulness remains unclear. Providing answers 

to these questions with an empirical study would greatly help to increase our understanding of 

how creativity is evaluated and defined. 

These outstanding questions for NCR are the focus of this thesis. 
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CHAPTER 2: DECODING GENERATION AND EVALUATION: HOW THE 

DEFAULT AND EXECUTIVE NETWORKS CONTRIBUTE TO CREATIVE 

COGNITION OVER TIME 
 

2.1 Introduction 

As discussed in Chapter 1, research suggests that creative cognition depends on both associative 

and controlled processes (Benedek & Jauk, 2018; Chrysikou, 2018; Barr, 2018; Volle, 2018), which 

may correspond to the brain’s default mode (DMN) and executive control (ECN) networks. Indeed, 

these networks appear to cooperate in many creative tasks (Beaty et al., 2016a, 2021; Ellamil et 

al., 2012; Mayseless et al., 2015). However, outstanding questions concern how exactly these 

different networks contribute to creative cognition, and how their contribution varies over time 

and over different stages of the creative process, such as idea generation and evaluation. 

Specifically, it remains unclear whether the DMN underlies generation while the ECN underlies 

evaluation (Beaty et al., 2016a, 2018b; Kleinmintz et al., 2019; Mayseless et al., 2015); whether 

generation and evaluation occur in cyclic phases (Kleinmintz et al., 2019) or simultaneously 

(Goldschmidt, 2016); and whether one network is more related to creative performance than the 

other. 

This chapter aims to address these questions by applying multivariate pattern analysis (MVPA) to 

fMRI data to examine how the DMN and ECN vary in their contributions to creativity over 

successive phases of creative cognition. MVPA can assess how relevant the activity in a brain 

region or network is to a particular task, making it an ideal tool for examining the temporal 

dynamics of creative cognition. Here, machine-learning classifiers were trained to distinguish 

between two task conditions (the AUT and a similar, non-creative control task) with greater 

classification accuracy indicating a greater difference in brain activity between tasks, and 

indirectly, a greater amount of creative activity. MVPA was applied separately to two networks 

(the DMN and ECN) and three time phases within trials (early, mid, and late), to assess how 

creative activity fluctuates over time within these networks. Correlations were also computed 

between classification accuracy and human-rated creativity, to assess the relevance of creative 

activity in each network and time phase to creative quality specifically. By examining if the DMN 
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and ECN make distinct contributions to creative cognition over time, this study aimed to test 

theories of creative cognition that posit separate stages of idea generation and evaluation (e.g., 

Basadur, 1995; Ellamil et al., 2012; Kleinmintz et al., 2019). 

 

2.1.1 The neurocognitive basis of creativity 

NCR has found considerable evidence that creative cognition relies partly on associative processes, 

which operate spontaneously to reinterpret problems and connect distantly-related concepts 

(Beaty et al., 2014; Kenett et al., 2018a; Volle, 2018), and partly on controlled processes, which 

can guide thought in strategic directions, and inhibit distracting and unoriginal ideas (Beaty et al., 

2017a; Camarda et al., 2018a; Lloyd-Cox, Christensen, Silvia, & Beaty, 2021). While the relative 

contribution of these processes to creative cognition may depend on the specific task context 

(Benedek & Jauk, 2018; Chrysikou, 2018; Sowden et al., 2015; Volle, 2018), it remains unclear what 

precise cognitive operations are enacted by associative and controlled processes, and by what 

mechanisms they produce creative ideas. Moreover, although generation and evaluation are often 

described as separate stages of creative cognition (e.g., Basadur, 1995; Ellamil et al., 2012; Finke, 

Ward, & Smith, 1992; Kleinmintz et al., 2019), it is unknown whether the processes underlying 

generation and evaluation truly separate out into distinct stages (e.g., Kleinmintz et al., 2019), or 

instead operate simultaneously (e.g., Goldschmidt, 2016). Indeed, it is unclear whether generation 

and evaluation map directly to associative and controlled processes, or whether they are higher 

level operations that each involve some combination of associative and controlled processes.  

Neuroimaging studies also highlight the roles of distinct associative and controlled processes in 

creative cognition. Research has found increasing evidence that creative cognition involves 

cooperation between the DMN and ECN, networks that are strongly implicated in associative and 

controlled cognition, respectively (Beaty, Kenett, et al., 2018; Chen et al., 2018; Christensen et al., 

2021; Ellamil et al., 2012; Mayseless et al., 2015; Yeh et al., 2019; see Beaty, Seli, & Schacter, 2018, 

for a review). The ECN is formed of lateral prefrontal and anterior inferior parietal regions, and 

typically activates during focused, goal-oriented cognition, such as WM and switching tasks 

(Niendam et al., 2012; Seeley et al., 2007). The DMN is formed of cortical midline, medial 

temporal, and posterior inferior parietal regions, and it is thought to underpin the spontaneous 
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activation of memories, and internally-directed thought about the past and future (Andrews-

Hanna et al., 2014; Beaty et al., 2018d).  

The two networks are typically anti-correlated, i.e., when one network activates, the other tends 

to deactivate (cf., Beaty et al., 2021a), and they may compete for resources in many contexts 

(Anticevic et al., 2012). Interestingly, however, increased connectivity between default mode and 

executive control regions has been found in a large range of creative tasks, including verbal 

divergent thinking (Beaty et al., 2015; Green et al., 2015; Mayseless et al., 2015), musical 

improvisation (Pinho et al., 2014), poetry (Liu et al., 2015), and visual artistic design (Ellamil et al., 

2012). Indeed, research has found that participants who give more distant semantic responses 

exhibit greater connectivity between DMN and ECN regions (Green et al., 2015), while those with 

more efficient connections across these two networks show greater divergent thinking 

performance (Beaty et al., 2015). Recently, researchers have even predicted the creative 

performance of participants based on the strength of connectivity between ECN, DMN, and 

salience network regions (Beaty et al., 2018b). 

Efforts have been made to interpret this pattern of activity in cognitive terms, based on the 

processes that are typically associated with these regions. Given the DMN’s involvement in 

memory and imagination (Andrews-Hanna et al., 2014; Beaty et al., 2018d) it is possible that the 

network underlies the spontaneous activation of diverse ideas, accessed through associative 

processes (Beaty et al., 2020; Beaty & Lloyd-Cox, 2020). The ECN, meanwhile, may act to monitor 

and guide this spontaneous activity through top-down control, for example to execute particular 

strategies in a creative task (Benedek & Jauk, 2018; Frith et al., 2021a). Indeed, given that the 

networks also interact during mind-wandering (Christoff, Gordon, Smallwood, Smith, & Schooler, 

2009; Fox & Beaty, 2018), and the construction of future plans (Gerlach, Spreng, Madore, & 

Schacter, 2014; Spreng, Stevens, Chamberlain, Gilmore, & Schacter, 2010), they may cooperate 

whenever there is a need for self-generated yet goal-directed thought, as in creative cognition 

(Beaty et al., 2016a). The networks have also been discussed in the context of generative and 

evaluative stages in creative cognition, with researchers suggesting that idea generation is 

primarily performed by the DMN, while the evaluation and refinement of ideas is mainly 
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performed by the ECN (Beaty et al., 2016a; Ellamil et al., 2012; Jung et al., 2013; Kleinmintz et al., 

2019).  

In terms of more specific cognitive mechanisms by which these regions support creative cognition, 

little is known. One possibility with reasonable empirical support is that ECN regions can suppress 

DMN activity to inhibit distracting and poor-quality ideas, allowing access to better ones. Indeed, 

greater DMN-ECN connectivity has been found when there is a need to overcome fixating, 

unoriginal ideas, in both verbal (Beaty et al., 2017a) and visual paradigms (Christensen et al., 

2021). Evidence of other mechanisms is sparse, but research is beginning to indicate that sub-

networks within the ECN and DMN may play different functional roles in creative cognition. For 

example, different regions within the DMN may support different aspects of memory (i.e., 

semantic vs episodic), and correspondingly, different aspects of creative cognition (Beaty et al., 

2020). Meanwhile, sub-networks of the ECN seem to have different relationships with the DMN 

(Beaty et al., 2021a; Dixon et al., 2018), and may underly different creative tasks (Peña et al., 

2019). Despite this progress, questions remain, particularly concerning how these networks 

contribute to creative cognition over time. For example, it is unclear whether different stages of 

creative cognition (e.g., generation and evaluation) involve different proportions of associative 

and controlled processes, corresponding to different contributions from the DMN and ECN 

(Kleinmintz et al., 2019; Sowden et al., 2015).  

 

2.1.2 The time course of creative cognition 

Our understanding of creative cognition would benefit from a closer examination of how cognitive 

processes, and the neural regions that underly them, operate and interact over time during 

creative tasks. Previous research into the temporal dynamics of creative cognition has, for 

example, revealed the “serial order effect”, whereby ideas increase in creative quality over time 

(Johns, Morse, & Morse, 2001; Phillips & Torrance, 1977; Runco, 1986; Ward, 1969). While a 

traditional explanation for this effect (e.g., Mednick, 1962) would attribute it to activation 

spreading passively from the cue concept to increasingly original concepts, more recent research 

suggests it may be due to deliberate control processes operating to inhibit previously considered 
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ideas and strategically access more novel ones (Bai, Leseman, Moerbeek, Kroesbergen, & Mulder, 

2021; Beaty & Silvia, 2012; Wang, Hao, Ku, Grabner, & Fink, 2017).  

Studies using electroencephalogy (EEG) and brain stimulation methods are also helping to advance 

our understanding of how creative processes operate over time. Considerable evidence suggests 

that creative cognition relates to cortical alpha synchronization (Benedek, Bergner, Könen, Fink, & 

Neubauer, 2011; Fink & Benedek, 2014; Stevens & Zabelina, 2020). Indeed, research has found 

that greater alpha power is related to greater creative performance (Agnoli et al., 2020; Camarda 

et al., 2018b; Fink et al., 2018; Rominger et al., 2019; Stevens & Zabelina, 2020), while increasing 

alpha power over frontal cortex through stimulation appears to increase the creative quality of 

ideas (Lustenberger et al., 2015). 

Focusing on the production of a single creative idea, Schwab, Benedek, Papousek, Weis, and Fink 

(2014) gave participants 10 seconds to generate a creative response in the AUT, while recording 

EEG. During analysis, the authors divided this generation period into three equal segments, finding 

a clear pattern of activity over time: alpha power increased at the beginning of generation, 

decreased during the middle, and increased again at the end. This U-shape pattern of alpha power 

during idea generation was also reported by Rominger et al. (2019), who found that the pattern 

was stronger among participants with more original ideas. What the pattern of activity means in 

terms of cognitive processes is unclear, but the authors of both studies suggest it may indicate 

associative, memory-related processes operating at the beginning of idea generation (e.g., to 

retrieve ideas), and controlled, evaluative processes operating at the end (e.g., to suppress 

common ideas and generate more original ones). 

In contrast to EEG studies, very few fMRI studies have explored the time course of creative 

cognition. One exception is a study by Beaty, Benedek, Kaufman, and Silvia (2015), which 

examined neural activation during the AUT compared to a control task focused on object 

characteristics. The authors found that divergent thinking involved a broad network of regions 

from the DMN, ECN, and salience networks, and that the global efficiency of this network was 

related to greater creative performance. Importantly however, they also found that the 

connectivity between these regions varied over time. Extracting a series of 2-second time windows 

from the 12-second AUT idea generation period, and analyzing these separately, the authors 
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found increased coupling between DMN and salience network regions at the start of creative 

trials, and between DMN and ECN regions later on. This pattern of connectivity was interpreted to 

reflect interactions between associative and controlled thought, potentially corresponding to early 

generative and later evaluative modes of thought. 

 

2.1.3 The present research 

Research into the neurocognitive basis of creative cognition has highlighted the complementary 

roles of associative and controlled processes, which may depend on distinct neural regions (Beaty 

et al., 2015, 2018c; Benedek & Jauk, 2018; Chrysikou et al., 2020; Zhu et al., 2017). Research also 

suggests that these processes may interact differently in different creative tasks, and at different 

time stages of creative performance (Benedek & Fink, 2019; Chrysikou, 2019; Rominger et al., 

2019; Volle, 2018). However, it remains unknown how exactly associative and controlled 

processes, and their underlying neural regions, activate over time during creative cognition. It is 

also unclear whether these processes contribute differently to the creative quality of ideas, and 

whether alternating stages of generation and evaluation do in fact exist (Kleinmintz et al., 2019; 

Sowden et al., 2015). Indeed, examining stages in creative cognition is far from simple, since, if 

they exist, they are likely to be fluid and without clear distinction, or switched between so rapidly 

that they are practically indistinguishable (Goldschmidt, 2016). Separating generation and 

evaluation can be done experimentally, for example by asking participants to first generate an idea 

and later evaluate it (e.g., Ellamil et al., 2012; cf. Rominger et al., 2018), but this divides the 

creative process into artificial chunks which could each involve generative and evaluative thought.  

An alternative approach is to keep the creative process intact, and to examine how brain networks 

that have been theoretically linked to associative and controlled processes vary in their 

contributions to creative cognition over time. Evidence suggests that generative thought may 

largely depend on the associative activity of the DMN, while evaluative thought may 

predominantly rely on the controlled activity of the ECN (Beaty et al., 2016a; Ellamil et al., 2012; 

Jung et al., 2013; Kleinmintz et al., 2019). As such, examining how these networks contribute to 

creative cognition over successive time phases could provide an indication of the proportion of 

associative and controlled processes active in each phase, potentially revealing distinct generative 
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and evaluative stages. To date, however, very little research has investigated the temporal 

dynamics of functional network contributions to creative cognition. 

Multivariate pattern analysis (MVPA) is a particularly useful tool for this purpose. MVPA is a 

machine learning method that takes neural activity as input, and through training, constructs a 

model that can classify patterns of voxel activation as belonging to different experimental tasks. 

The ability of the model to correctly classify new trials, that it has not been trained on, is known as 

classification accuracy. Greater classification accuracy indicates that there is more information 

available to the classifier during training, and a greater difference in neural activity between 

conditions. As such, classification accuracy serves as an indirect measure of the amount of activity 

in a region that is relevant to one condition, but not to others.  

In the present study, MVPA was used to assess the quantity of creative processing within the DMN 

and ECN, over successive time points during creative cognition. Participants completed both the 

AUT and the object characteristics task (OCT), a control task in which they must recall a 

characteristic of an object rather than generate a creative use for it. Following a similar procedure 

to previous studies (e.g., Beaty et al., 2015; Rominger et al., 2019; Schwab et al., 2014), the idea 

generation periods for both tasks were divided into three equal time windows. For each time 

window, MVPA classifiers were trained on data from both AUT and OCT trials, and tested to match 

unseen trials to the correct task. In theory, greater classification accuracy should reflect a greater 

difference in activity between creative and non-creative trials, and indirectly, a greater amount of 

activity relevant to creativity (i.e., “creative activity”). Variance in classification accuracy over time 

in a given network would then indicate varying amounts of creative activity. This process was 

conducted separately on data from both the DMN and ECN, allowing us to compare the time-

course of creative activity in these regions. As a further analysis, correlations were also computed 

between classification accuracy (in each network and time phase) and behavioral measures of 

creative quality. The strength of this correlation should indicate how relevant the creative activity 

in a particular region and time phase is to the actual quality of the idea being generated. 

These analyses could do much to inform our understanding of how neurocognitive processes 

operate over time during creative cognition. The existence of distinct generative and evaluative 

stages would be supported if the networks show different time patterns of creative activity. 
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Specifically, if at certain times one network exhibits more creative activity (or stronger correlations 

with creative quality) than the other network, this would indicate stages in creative cognition, in 

which some cognitive processes are more dominant than others, and that these stages are long 

enough to be detected over several seconds. By contrast, equivalent amounts of creative activity 

(and relevance to creative quality) in both the DMN and ECN across all three time phases would be 

consistent with several explanations. It could be that distinct stages do not exist, and that 

associative and controlled processes are equally distributed over time with generation and 

evaluation occurring simultaneously. Alternatively, it might be that stages do exist, but are shifted 

between on a smaller timescale than can be detected through fMRI. Finally, it could be that 

generation and evaluation are equally dependent on both the ECN and DMN, with no difference in 

their localization. 

Our predictions followed from the hypothesis that generative and evaluative stages of thought do 

exist in creative cognition, and involve different proportions of associative and controlled 

processing, indicated by different contributions from the DMN and ECN. Specifically, it was 

predicted that early phases of creative trials would involve more generative thought and a higher 

proportion of associative processing, reflected in greater creative activity in the DMN. By contrast, 

it was expected that mid and late phases of creative trials would involve more evaluative thought 

and a higher proportion of controlled processes, reflected in greater creative activity in the ECN. 

This would also be consistent with prior work tracking changes in connectivity between brain 

networks over the course of creative cognition (Beaty et al., 2015). Similarly, it was expected that 

idea quality would be most strongly correlated with the creative activity of the DMN in early time 

phases, and with the creative activity of the ECN in later time phases. 

 

2.2 Methods 

2.2.1 Participants 

Participants (N = 186) were recruited from the University of North Carolina at Greensboro (UNCG) 

and surrounding community (129 females, mean age = 22.74, SD = 6.37). Participants gave 

informed consent prior to data collection, and participated as part of a larger study, completing 

several additional measures that are not discussed here (for other studies using this dataset, see 
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Beaty et al., 2018b; Frith et al., 2021a). Sample size was determined by a prior study (Beaty et al., 

2018b). Participants were compensated up to $100 for their time, and were all right-handed, with 

normal or corrected-to-normal vision, and no reported history of neurological disorder, cognitive 

disability, or medication that affects the central nervous system. Several participants were 

excluded prior to analysis due to factors including excessive head movement during neuroimaging 

(mean framewise displacement > .5mm, n = 4; Power, Barnes, Snyder, Schlaggar, & Petersen, 

2012), issues with software used during neuroimaging (e.g., E-prime crash), and missing behavioral 

data. Following exclusions, the final sample was 168 (116 females, mean age = 22.59, SD = 6.04). 

The study was approved by the UNCG Institutional Review Board. 

 

2.2.2 Materials 

To assess creativity, the AUT was used. To act as a non-creative control task with a similar memory 

component, the OCT was used. This task involves recalling characteristics of objects (e.g., 

“metallic” or “wooden”). The AUT and OCT are highly similar in format, differing only in the nature 

of the response (most creative idea in the AUT and most prototypical characteristic in the OCT). 

Stimuli for both tasks were 46 common object names used in prior research (Beaty et al., 2015; 

Fink et al., 2009).  

In addition to the AUT and OCT, participants completed three measures of fluid intelligence (Gf) 

outside the scanner: the letter sets task (Ekstrom, Dermen, & Harman, 1976), which requires 

selecting a set of letters that does not follow the rule governing other sets (16 items), the number 

series task (Thurstone, 1938), which requires selecting the next number in a sequence (15 items), 

and the series completion task from the Culture Fair Intelligence Test (CFIT; Cattell & Cattell, 

1961), which requires selecting an image that most appropriately completes a series of images (13 

items). These measures were included to assess whether brain activity related to creativity was 

also related to intelligence, and thus reflective of wider cognitive abilities not limited to creative 

performance. Participant scores on these three measures were combined using confirmatory 

factor analysis to produce a single latent factor (see Frith et al., 2021a). 

 



28 
 

2.2.3 Procedure 

Participants completed the AUT and OCT while in the fMRI scanner, in an event-related design. 

Trials for both tasks were inter-mixed and presented in one block of 46 trials. 23 trials were AUT, 

and 23 were OCT. All 46 stimuli were presented, with no repeats, in the same order for all 

participants (i.e., all participants saw “brick” first and “CD” last). However, task condition (AUT or 

OCT) followed a randomized order across trials, with each participant completing a different 

sequence of trial types. As such, the task condition for any given stimulus varied across 

participants (e.g., the stimulus “brick” could occur with equal likelihood as an AUT or OCT trial). 

 Trials proceeded as follows (see Figure 1). Following a fixation cross jittered between 4 and 6 

seconds, participants received an instruction indicating the task condition for the present trial. 

Specifically, “create” (for the AUT) or “object” (for the OCT) was presented for 3 seconds. A 12-

second thinking period then began, with the object name stimulus (e.g., “brick”) presented for the 

entire duration. Participants were instructed to use the thinking period to either generate the 

most creative use they could think of (“create”; creative condition), or the most prototypical 

physical characteristic they could recall (“object”; non-creative condition). The thinking period 

could not be ended early; instead, participants were asked to use the full time to generate the 

most creative/prototypical response they could. This was followed by a 5-second response period, 

signaled with a green question mark (“?”), during which participants had been instructed to speak 

their response out loud. Responses were recorded using an MRI-compatible microphone. 

Participant responses in AUT trials were later rated for creativity by four independent raters, using 

a 1 (not at all creative) to 5 (very creative) scale (Silvia, Martin, & Nusbaum, 2009). Raters provided 

Figure 1 
Trial procedure, from fixation (left) to response (right) 

 

Note. Duration in seconds is presented below each frame. 
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a single rating for each trial, which reflected the novelty, originality, and appropriateness of the 

idea. After the scanning session, participants completed the three fluid intelligence measures as 

part of a post scan behavioral assessment. 

 

2.2.4 fMRI data acquisition and preprocessing 

In-scanner tasks were completed in a single MRI run, and programmed using E-Prime software. 

Stimuli were viewed through a mirror attached to the head coil. Imaging was performed with a 3T 

Siemens Magnetom MRI system (Siemens Medical Systems, Erlangen, Germany) equipped with a 

16-channel head coil. Functional images were acquired with a T2*-weighted single shot gradient-

echo echo-planar imaging (EPI) pulse sequence (repetition time [TR] = 2000ms, echo time = 30 ms, 

flip angle = 78°, 32 axial slices, 3.5 x 3.5 x 4.0 mm, distance factor 0%, field of view = 192 x 192 

mm, interleaved slice ordering) and corrected online for head motion. To allow for anatomic 

normalization, a high resolution T1 scan was acquired first, and the first two functional volumes 

were discarded to allow for T1 equilibration effects. 

Functional volumes were preprocessed using fMRIPrep 1.4.1rc1 (Esteban et al., 2019). For each 

subject, a reference volume and its skull-stripped version were generated and co-registered to the 

T1 reference. Head-motion parameters with respect to the BOLD reference (transformation 

matrices, and six corresponding rotation and translation parameters) were estimated. BOLD runs 

were slice-time corrected, before being resampled onto their original, native space by applying a 

single, composite transform to correct for head-motion and susceptibility distortions. The BOLD 

time-series were then resampled into standard space (Montreal Neurological Institute [MNI] 

template brain), and high-pass filtered using a discrete cosine filter with 128s cut-off. Several 

confounding time-series were then calculated, including framewise displacement (FD), DVARS and 

its temporal derivative. These were combined with motion estimates to form nine confound time-

series per participant. Frames that exceeded a threshold of 0.5 mm FD or 1.5 standardized DVARS 

were annotated as motion outliers. As is common in studies using MVPA, where differences 

between individual voxels can hold important information (Coutanche, Thompson-Schill, & 

Schultz, 2011; Cox & Savoy, 2003; see also Weaverdyck, Lieberman, & Parkinson, 2020), no spatial 

smoothing was conducted. 
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2.2.5 Level 1 analysis 

MVPA was conducted on parameter estimates (i.e., model coefficients) extracted from a general 

linear model (GLM) in line with previous research (e.g., Etzel, Gazzola, & Keysers, 2008; Kim et al., 

2015)(see also Haynes, 2015). First level analyses were conducted using SPM12 

(http://www.fil.ion.ucl.ac.uk/spm/). 

Analysis focused on the 12-second thinking period (see Figure 2). Since there was only one run per 

participant (i.e., trials did not fall into independent groups), and to increase the number of 

exemplars for classifier training, trials were not averaged. To compare brain activity during 

different phases of ideation, thinking periods were split into three parts (early, mid, late), each 

with a duration of 4 seconds, and formed of two volumes. For each participant, a GLM was fitted 

with 138 regressors of interest, corresponding to three time periods x 46 trials. These were in 

addition to nine noise regressors and 46 regressors corresponding to the onsets and durations of 

verbal response periods, to account for artifacts related to vocalization. The GLM thus produced 

three sets of 46 parameter estimate images which were used in subsequent analyses. 

 

 

Figure 2  
Analysis process (left to right) 

 

Note. Thinking periods in each of the 46 trials were split into three equal time periods (early, 
mid, late). For each time period, 46 parameter-estimate images were extracted from the GLM 
(one for each trial). Three different network masks were then applied to each of these three sets 
of images, before they were fed into MVPA classifiers. 
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2.2.6 Networks of interest 

Networks of interest were obtained in MNI standard space using the “7 network liberal mask” 

from Yeo et al. (2011). Masks were extracted for three networks: the DMN, the ECN, and a 

combined network formed of both the DMN and ECN (Both). The combined mask was included to 

assess whether providing both networks together as input for classification would result in 

increased classifier performance, over and above that when only a single network was provided.  

 

2.2.7 Multivariate pattern analysis 

Next, MVPA classification of trials as creative (AUT) or non-creative (OCT) was conducted, for all 

networks of interest. Classifiers were trained on labelled creative and non-creative trials, and then 

tested to classify unlabeled trials. It was assumed that greater classification accuracy would reflect 

a greater difference in brain activity between conditions (i.e., more task-relevant information 

available to the classifier).  

MVPA was conducted in MATLAB using a custom script and the CoSMoMVPA package (Oosterhof, 

Connolly, & Haxby, 2016). Linear Discriminant Analysis (LDA) was used for classification, which was 

conducted separately for each network (DMN, ECN, Both), and each time phase (early, mid, late), 

leading to nine separate multivariate classification analyses per participant. Each analysis followed 

a 23-fold leave-one-out cross-validation procedure, corresponding to the number of trials per 

condition. The data were organized into 23 folds, where each fold contained two samples: one 

from a creative trial, and one from a non-creative trial. During each of the 23 iterations, a classifier 

was trained on 22 folds and tested on the remaining 23rd, with testing and training sets 

alternating until each fold had been tested. Classification accuracy was then defined as the 

percentage of the 46 trials that were classified correctly. This produced nine classification 

accuracies for each participant, one for each network and time phase combination. 

To assess whether classifier performance was greater than expected by chance, permutation 

testing was used, as done previously (Coutanche et al., 2011; Etzel et al., 2008; Golland & Fischl, 

2003). This tests the null hypothesis that there is no relationship between the data class labels 

(AUT or OCT) and the voxel activity patterns, by repeating all nine analyses 1000 times and 
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randomly shuffling the class labels each time. For each relabeled dataset, classification accuracy 

was calculated, and the average across-participant accuracy was computed. This simulates a null 

distribution, against which classifier performance on correctly labelled data can be compared. 

Classifier performance greater than 95% of the random permutations indicates above-chance 

accuracy (given an alpha of p < .05). Since 1000 relabellings were computed, the maximum 

possible significance level was 0.001.  

To examine whether classification accuracy varied significantly over networks and time phases, a 

two-way ANOVA was conducted, followed by a series post-hoc paired-sample t-tests to compare 

classification accuracy within and between networks, across the three time phases. 

 

2.2.8 Correlation Analysis 

As discussed, classification accuracy in this study reflects the difference in brain activity between 

creative and non-creative trials. Since greater accuracy implies that creative cognition is more 

distinguishable from non-creative cognition, it should indicate stronger or more widespread 

creative cognitive processes (i.e., more “creative activity”). Moreover, it is possible that 

participants who display more creative activity tend to generate more creative ideas. It is also 

possible that creative activity in some brain regions and time phases is more related to the 

creative quality of ideas than in others (e.g., early creative activity might be more related to 

creative quality than later creative activity). To examine these possibilities, Pearson correlations 

were computed between participants’ classification accuracies (for all networks and time phases) 

and their rated creativity scores (see Coutanche et al., 2011; Kim et al., 2015).  

 

2.3 Results 

2.3.1 Descriptive statistics 

Regarding AUT creativity ratings, inter-rater reliability was in the excellent range, with an intraclass 

correlation coefficient of .92 (.90-.94). Descriptive statistics for the behavioral measures of fluid 

intelligence (Gf), and rated AUT creativity, together with the nine classification accuracies 

corresponding to the three network x three time phase combinations, are shown in Table 1. 
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Table 1 
Means and standard deviations for Gf and AUT creativity score, 
and classifier performance across the three networks and three 
time phases 

  M SD 

Gf 0.00 0.79 

AUT creativity  1.85 0.30 

Early DMN 0.70 0.10 

Early ECN 0.73 0.11 

Early Both 0.72 0.11 

Mid DMN 0.60 0.10 

Mid ECN 0.61 0.10 

Mid Both 0.61 0.10 
Late DMN 0.64 0.10 

Late ECN 0.65 0.10 

Late Both 0.65 0.10 

Note. Gf = fluid intelligence; AUT = alternate uses task; DMN = 
default mode network; ECN = executive control network; Both = 
DMN+ECN.  
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 2.3.2 Classification accuracy and comparisons 

Figure 3 depicts classification accuracies for each network and time phase. In all nine network and 

time phase combinations, classification accuracy was significantly above chance level, as 

determined by permutation analysis (ps = .001). Specifically, all accuracies were greater than all 

1000 randomly relabeled permutations. Classification accuracy reached the highest point in the 

ECN during the early time phase, suggesting that brain activity in this region and at this time shows 

the greatest difference between creative (AUT) and non-creative (OCT) trials. Across time phases, 

classification accuracy was highest in all networks in early phases, dropped to its lowest point in 

mid phases, and increased moderately in late phases of trials. 

Figure 3 
Bar chart depicting mean classification accuracy across the three networks and three 
time phases 

 

Note. A 50% accuracy would be expected by chance, and so is used as a baseline in 
this chart. DMN = default mode network; ECN = executive control network; Both = 
DMN+ECN. Only significant differences in accuracy between the DMN and ECN masks 
are indicated. ** p < .01. 

** 
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 A two-way ANOVA was conducted to test the significance of differences in accuracy across 

networks and time phases. Significant main effects were found for network (F [1,168] = 7.06, p 

= .008, ηp
2 = 0.01) and time phase (F [2,168] = 90.54, p < .001, ηp

2 = 0.15). The interaction between 

network and time phase was non-significant (p = .201). To further investigate the differences in 

classification accuracies within networks (between time phases) and between networks (for each 

time phase), post-hoc paired-sample t-tests were conducted. For all t-tests, Cohen’s dav is reported 

as a measure of effect size (Lakens, 2013). Results can be seen in Table 2. Considering differences 

in classification accuracy between the DMN and ECN, a significant difference was found only 

during the early time phase (see Figure 3), with accuracy in the ECN (M = 0.73, SD = 0.11) 

significantly greater than in the DMN (M = 0.70, SD = 0.10; t [167] = 2.80, p = .005, dav = 0.31). 

Considering differences in classification accuracy between the three time phases (for each 

network separately), within the DMN, classification accuracies in all time phases were significantly 

Table 2 
Results of t-tests contrasting classification accuracy between networks in 
each time phase, and between time phases in each network 

(A) Across networks (DMN vs ECN) 

DMN vs ECN t p Cohen's Dav 

Early -2.80 .005 0.31 

Mid -0.64 .524 0.07 

Late -1.04 .299 0.11 

(B) Across time (within DMN) 

DMN t p Cohen's Dav 

Early vs Mid 8.22 .000 0.90 

Early vs Late 5.27 .000 0.57 

Mid vs Late -3.03 .003 0.33 

(C) Across time (within ECN) 

ECN t p Cohen's Dav 

Early vs Mid 10.15 .000 1.11 

Early vs Late 6.93 .000 0.76 

Mid vs Late -3.42 .001 0.37 

Note.  DMN = default mode network; ECN = executive control network. 
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different from one another (ps < .005). Likewise, within the ECN, classification accuracies in all 

time phases were significantly different from one another (ps < .001). 

I also conducted t-tests to examine whether classification accuracy using the combined mask was 

greater than using the individual network masks. During early phases, classification accuracy in the 

combined (Both) network (M = 0.72, SD = 0.11) was significantly greater than in the DMN (M = 

0.70, SD = 0.10; t [167] = 2.15, p = .032, dav = 0.23), but did not differ significantly from accuracy in 

the ECN (p = .485). No other significant differences were found (ps > .05), suggesting that 

classification accuracy was not markedly improved simply by providing more information to the 

classifier in the form of both networks together. 

 

2.3.3 Correlations 

To assess how the creative brain activity within each network and time phase related to behavioral 

measures, Pearson correlations were computed between AUT creativity, fluid intelligence (Gf), 

and the six classification accuracies corresponding to the individual networks (i.e., DMN and ECN), 

and three time phases. Table 3 displays the results of these correlations. Fluid intelligence was not 

found to correlate with classification accuracy in any of the six network and time phase 

combinations. By contrast, AUT creativity correlated significantly with classification accuracy in all 

networks and time phases. The strongest correlation was found between AUT creativity and 

classification accuracy in the DMN in early phases of trials (r = .25, p = .001).  
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Table 3 
Pearson correlations between behavioral measures and 
classification accuracy, across all time phases and networks 

 Gf AUT creativity 

AUT creativity 0.24**   - 

Early DMN 0.01 0.25** 

Early ECN 0.00 0.19* 

Mid DMN 0.07 0.17* 

Mid ECN 0.06 0.23** 

Late DMN -0.06 0.16* 

Late ECN -0.07 0.21** 

Note. Gf= fluid intelligence; AUT = alternative uses task; DMN = default 
mode network; ECN = executive control network. * p < .05, ** p < .01. 

 

Looking at correlations between AUT creativity and classification accuracy over time reveals a clear 

difference between the DMN and ECN. While the correlation between AUT creativity and 

classification accuracy in the DMN was highest during early phases of trials, dropping off in mid 

and late phases, the same correlation in the ECN was lowest in early phases, highest at mid 

phases, and dropped again in late phases of trials. Figure 4 displays a graphical comparison of the 

strengths of correlations between AUT creativity and classifier performance in the ECN and DMN, 

in each time phase. 
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These results suggest that the activity with the greatest relevance to creative quality occurs in the 

DMN during early phases of trials. Indeed, while classification accuracies alone indicate that the 

ECN holds the greatest amount of creative activity during early phases (see Figure 3), correlations 

with quality suggest that this activity may be less relevant to idea quality than the creative activity 

of the DMN in early phases. Instead, creative activity in the ECN appears to be most relevant to 

idea quality during mid phases of trials. Taken together, these findings suggest a distinction 

between brain activity that differs between creative and non-creative trials, and brain activity that 

both differs between trials and is related to the actual creative quality of the generated idea. 

Steiger’s Z tests for differences between dependent, overlapping correlations were conducted for 

each time phase separately (Steiger, 1980). No significant differences were found between the 

DMN and ECN, in terms of correlations between classification accuracy and creative quality, for 

Figure 4 
Strength of correlation between AUT creativity and classification accuracy in the DMN and 
ECN, across all time phases 

 

Note. DMN = default mode network; ECN = executive control network. 
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early phases (z = 1.36, p = .177), mid phases (z = -1.07, p = .288), or late phases (z = -0.86, p = .391). 

While differences between correlations are non-significant in each time phase individually, results 

may suggest a modest difference between networks in terms of the time-pattern of how their 

activity relates to creative quality.   

 

2.4 Discussion 

The present study examined how two brain networks, the DMN and ECN, contribute to creative 

cognition over time during the production of a single creative idea. The study aimed to inform 

several outstanding questions regarding the roles of these networks, and the cognitive processes 

they support, in creative cognition. One key aim was to examine whether creative cognition 

involves distinct stages of generation and evaluation, supported by different proportions of DMN 

and ECN activity. Dividing trials into three successive time phases, MVPA was used to classify trials 

as creative or non-creative. Classification accuracy was used to indicate the amount of creative 

activity in each network and time phase. Correlations were also computed between classification 

accuracy and rated creative performance, to assess how relevant the creative activity in each 

network and time phase was to the quality of generated ideas. 

Our hypotheses assumed that generative and evaluative stages involve different combinations of 

associative and controlled processes, and so different proportions of DMN and ECN activity. 

Specifically, it was expected that early phases of creative trials would involve greater creative 

activity in the DMN, reflecting generation, while later phases would involve greater creative 

activity in the ECN, reflecting evaluation. Similarly, it was expected that creative quality would be 

more strongly correlated with DMN creative activity in early time phases, and with ECN creative 

activity in later time phases. The findings suggest a distinction between neural activity that is 

relevant to creative cognition overall (in the sense of differing between creative and non-creative 

trials), and activity that is both relevant to creative cognition and also relevant to creative quality 

specifically. Overall, these findings provide tentative evidence for distinct stages in creative 

cognition, potentially corresponding to generation and evaluation.  

 



40 
 

2.4.1 Neurocognitive mechanisms of creative cognition 

These findings offer new insight into the dynamics of neurocognitive processes during creative 

cognition. As discussed, research suggests that the DMN, which typically activates during tasks 

involving spontaneous cognition and memory retrieval (Andrews-Hanna et al., 2014; Buckner, 

Andrews-Hanna, & Schacter, 2008; Fox & Beaty, 2018), contributes to creativity through 

spontaneous recall and association-making processes (Bashwiner, Wertz, Flores, & Jung, 2016; 

Beaty & Lloyd-Cox, 2020; Marron et al., 2018; Shi et al., 2018). Research also indicates that the 

ECN, which typically activates in executive tasks including WM and inhibitory control paradigms 

(Niendam et al., 2012; Seeley et al., 2007; Shen et al., 2020), may aid creative cognition by guiding 

thought in strategic directions and inhibiting unoriginal ideas (Beaty et al., 2017a; Benedek & Jauk, 

2018; Christensen et al., 2021). Linking these findings to the notion that creativity involves distinct 

and cyclic phases of generation and evaluation (Basadur, 1995; Finke et al., 1992), researchers 

have suggested that associative DMN-based processes may underlie the generation of ideas, while 

controlled ECN-based processes oversee the evaluation of ideas (Beaty et al., 2016a; Jung et al., 

2013; Kleinmintz et al., 2019; Mayseless et al., 2015). Indeed, while it is likely that generative and 

evaluative stages each involve both DMN and ECN activity, for example with the ECN aiding 

generation by inhibiting unoriginal concepts (Beaty et al., 2017a), it seems likely that generation 

relies mostly on the DMN, while evaluation relies mostly on the ECN (Beaty et al., 2016a; Benedek 

& Jauk, 2018; Mayseless et al., 2015).  

However, these ideas are largely speculative. Even if idea generation and evaluation are distinctly 

localized on the DMN and ECN, respectively, it is far from clear that generative and evaluative 

thought occur in cycles (Kleinmintz et al., 2019), as opposed to simultaneously (Goldschmidt, 

2016). Very few studies have examined the temporal dynamics of neural network activity during 

creative cognition. Indeed, previous fMRI studies have examined generative and evaluative stages 

(e.g., Ellamil et al., 2012), but only by asking participants to first generate ideas and later evaluate 

them. By contrast, the present research followed a small number of recent fMRI and EEG studies 

(Beaty et al., 2015; Rominger et al., 2019; Schwab et al., 2014), to keep the creative process intact 

during task performance, only separating it into distinct phases during analysis. The study offers 
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some of the first, tentative neuroimaging findings of distinct generative and evaluative stages in 

creative cognition. 

 

2.4.2 The time-course of brain network contributions to creative cognition 

Overall, very similar time patterns of classification accuracy in the DMN and ECN were found: 

accuracy was highest in early phases, decreased to the lowest point in mid phases, and rose again 

in late phases of trials. This suggests closely-matched proportions of creative activity in both 

networks, consistent with strong coupling between the networks during creative cognition (see 

Beaty et al., 2016a). In isolation, this finding might suggest that generative and evaluative phases 

either do not exist, do not last long enough to be detectable over 4-second time periods, or do not 

depend on different proportions of DMN and ECN activity. Moreover, a significant difference in 

classification accuracy between networks was found only during early phases, in which accuracy 

was significantly higher in the ECN than the DMN. This was contrary to expectations, suggesting 

that early stages of creative cognition involve a greater contribution from controlled processes 

than associative processes. This finding could still be consistent with an initial generative stage, 

but one that is not primarily dependent on the DMN, and requires ECN-based processes to initiate 

creative search, monitor for unoriginal ideas, and drive association-making in the most fruitful 

directions (Kenett et al., 2018b; Madore, Thakral, Beaty, Addis, & Schacter, 2017). 

However, correlations between classification accuracy and rated creative quality paint a more 

nuanced picture of the contributions of these networks to creative cognition over time. Markedly 

different time-patterns of correlations between the two networks were found. Accuracy within 

the DMN was most correlated with creative quality in early phases of trials, becoming less 

correlated in mid and late phases. By contrast, accuracy within the ECN was least correlated with 

creative quality in early phases, becoming most correlated in mid phases, before dropping slightly 

in late phases. While differences between each pair of correlations were found to be non-

significant, the varying patterns of correlations over time could indicate that early periods of 

creative cognition are characterized by more quality-relevant creative activity in the DMN, while 

middle and late periods are characterized by more quality-relevant creative activity in the ECN – a 
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pattern consistent with a generation-evaluation cycle in creative cognition (e.g., Finke et al., 1992; 

Kleinmintz et al., 2019).  

Overall, the findings suggest a distinction between neural activity that is relevant to creative 

cognition in general, and neural activity that is relevant to creative quality specifically. In 

particular, while classification accuracy alone indicates a greater amount of creative activity in the 

ECN than the DMN during early phases, correlations suggest that it is actually the creative activity 

of the DMN that is most relevant to creative quality during this time. One possible explanation for 

this discrepancy could be that classification accuracy can also result from activity that is relevant 

to non-creative (OCT) trials. Specifically, rather than creative trials being distinguishable from non-

creative trials due to more prevalent creative activity, greater classification accuracy could also 

result from creative trials simply not containing activity unique to non-creative trials, such as 

particular kinds of memory recall processes. However, the fact that classification accuracy did not 

significantly correlate with fluid intelligence, in any network or time phase, does provide some 

indication that accuracy reflects creative activity, and not more general cognitive processing. A 

more likely possibility is that activity related to creative cognition is not always related to the 

actual creative quality of the produced idea. For example, the initial creative activity of the ECN 

may include processes that help to initiate creative cognition, or inhibit obvious and uncreative 

ideas, rather than directly shaping original ideas. The early creative activity of the DMN, by 

contrast, might be more directly responsible for the specific idea that is generated, as would be 

consistent with the DMN’s role in spontaneous memory and simulation processes (Andrews-

Hanna et al., 2014; Beaty et al., 2018d; Beaty & Lloyd-Cox, 2020). 

While the greater correlation between creative quality and classification accuracy in the DMN 

during early phases of trials is suggestive of an initial generative period, in mid and late phases the 

pattern of correlations flips, with the activity of the ECN becoming most relevant to creative 

quality. This may be consistent with a later evaluative stage in creative cognition, in which 

controlled processes based in the ECN assess and refine ideas (Beaty et al., 2016a; Jung et al., 

2013; Kleinmintz et al., 2019). With the initial generation of ideas now being completed, DMN 

processes might become less important to creative quality, while the ECN operates to select a 

single best idea and shape it into a final state (Sowden et al., 2015; Zhou et al., 2018). The fact that 
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both networks remain at least somewhat relevant to creative quality in all time phases is 

consistent with the notion that generative and evaluative stages each involve some combination 

of associative and controlled processes, and indeed some combination of DMN and ECN activity 

(Beaty et al., 2016a; Benedek & Jauk, 2018; Mayseless et al., 2015).  

Taking a wider view, classification accuracy in both networks followed a U-shaped pattern over 

time. This was strikingly similar to the pattern of alpha activity found by recent EEG studies 

examining the temporal dynamics of creative cognition (Rominger et al., 2019; Schwab et al., 

2014). As noted, stronger alpha activity is often correlated with greater creative performance 

(Agnoli et al., 2020; Fink et al., 2018). Interpreting classification accuracy as indicating the quantity 

of creative activity, the present results mirror these previous studies by suggesting an initial peak 

in creative activity at the beginning of trials, followed by a slump during the middle of trials and a 

final rise at the end of trials prior to verbalization. Also in line with prior research, a small 

correlation between fluid intelligence and creative performance was found (r = .24), as expected 

from previous findings regarding the relationship between intelligence and creativity (Benedek et 

al., 2014c, 2018; Nusbaum & Silvia, 2011). 

 

2.4.3 Limitations and directions for future research 

To my knowledge, the present study is the first to use MVPA methods to assess the contributions 

of functional brain networks to creative cognition over successive time phases of a creative task. 

MVPA can indicate the quantity of task-relevant activity in a given region, enabling comparison of 

this activity across regions and time phases. These findings highlight the considerable promise 

MVPA holds as a methodological tool for examining the dynamics of neurocognitive processes 

during creative cognition. Future studies could expand on the present research in several 

important ways. 

First, the sample of participants was 70% female. Given differences in functional brain activity 

between males and females, both during resting-state (e.g., Dhamala, Jamison, Sabuncu, & 

Kuceyeski, 2020; Filippi et al., 2013) and creative cognition (Abraham, Thybusch, Pieritz, & 
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Hermann, 2014), future studies should seek to confirm the present findings in a more evenly 

distributed sample of participants.  

Second, the present study took a broad view, focusing on the roles of the entire ECN and DMN in 

creative cognition. However, these networks are comprised of numerous sub-regions. Recent 

research indicates that different regions of the DMN and ECN underlie different aspects of creative 

cognition (Beaty et al., 2020, 2021a; Peña et al., 2019). As such, future studies might examine a 

larger number of more restricted brain regions, to gain a richer understanding of how these 

regions contribute to creative cognition at different stages of the creative process. 

Third, the present research focused on only one creative task: the AUT. However, creative 

cognition is a broad and high-level construct, and can be studied in musical and visual as well as 

verbal domains. DMN-ECN coupling has been found in a large variety of creative tasks (see Beaty 

et al., 2016a), and so future research could explore whether the time-pattern of creative activity 

(and quality-relevant creative activity) found in this study is unique to the AUT or also present in 

creative tasks in different domains. 

Moreover, the poor temporal resolution of fMRI is an additional, and somewhat inevitable, 

limitation of this research. Without more fine-grained temporal resolution, our understanding of 

more detailed aspects of the neurocognitive processing underlying creative cognition will remain 

highly speculative. Future research could explore more time-sensitive neuroimaging methods, for 

example combining MRI and EEG techniques (e.g., Mele et al., 2019). An additional point relating 

to the temporal aspect of this study concerns the decision to divide the thinking period into three 

equal stages. While this followed previous research (Rominger et al., 2019; Schwab et al., 2014), 

subsequent studies might define the time stages in a more evidence-based way, for example by 

considering estimates of the precise point at which an idea is first generated. Indeed, the present 

study found modest but non-significant differences between the correlations of each network’s 

classification accuracy with creative quality. More precisely defined time phases with higher 

temporal resolution might help future studies to better contrast the relevance of activity in 

different networks to creative quality, leading to a clearer understanding of the nuances of 

creative cognition. 
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Lastly, the fact that greater classification accuracy can also reflect activity unique to a control task 

underlines that it cannot, by itself, be used to measure creative activity. Instead, relationships 

between classification accuracy and behavioral measures should also be examined. However, 

MVPA need not be restricted to distinguishing creative and non-creative trials. For example, future 

research could divide creative trials into groups based on the rated quality of the ideas (e.g., poor 

vs good). Rather than classifying trials as creative or non-creative, MVPA classifiers could instead 

be trained to match neural activity to its correct creativity rating (cf. Stevens & Zabelina, 2020). 

Poorer creative ideas would in effect constitute a more appropriate control task, with classification 

accuracy now reflecting differences in activity relevant to better creative performance, rather than 

to creative performance in general. 

 

2.4.4 Conclusion 

Creative cognition is increasingly understood as a product of ordinary cognitive processes 

including memory, attention, and cognitive control (Benedek & Fink, 2019; Chrysikou, 2019; Volle, 

2018; Zabelina, 2018). While NCR remains far from possessing a complete, process-level 

understanding of creativity, further progress toward this goal would benefit greatly from an 

increased focus on how neural activity changes over time during creative cognition. However, a 

clearer understanding of the mechanisms of creative cognition cannot rely on neuroimaging 

studies alone. In addition to more fine-grained examinations of the time dynamics of creative 

cognition, NCR requires a greater focus on how the cognitive processes that produce creative 

ideas vary across tasks and individuals. For example, the role of inhibitory control in creative 

thought likely depends on the specific creative task being examined, and the kind of inhibition in 

question (Benedek & Jauk, 2018; Chrysikou, 2018; Diamond, 2013). This particular example will be 

explored in greater detail in the following chapter. 
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CHAPTER 3: CREATIVITY AND INHIBITION: UNRAVELING A 

PARADOXICAL RELATIONSHIP 
 

3.1 Introduction 

One of the most prominent theoretical accounts of creative cognition is the dual-process account, 

which argues that creative ideas are produced by the interactions of associative, spontaneous 

processes and deliberate, controlled processes (Barr, 2018; Benedek & Jauk, 2018; Sowden et al., 

2015; Volle, 2018). As discussed in Chapter 2, this account is supported by recent neuroimaging 

evidence that the DMN and ECN, networks which are usually anti-correlated and which support 

spontaneous memory-related processes and deliberate control processes, respectively, are co-

activated and functionally connected during a range of creative tasks (Beaty et al., 2015; Ellamil et 

al., 2012; Green et al., 2015; Liu et al., 2015; Mayseless et al., 2015; Pinho et al., 2014). 

At the cognitive level, the role of spontaneous processes in creative thought is evidenced by the 

importance of non-task-focused incubation (Koppel & Storm, 2014; Smith & Blankenship, 1991), 

mind-wandering (Baird et al., 2012; Fox & Beaty, 2018) and insight (Kounios & Beeman, 2014; Tik 

et al., 2018) to creative thought, as well as research linking creative ability to performance on 

verbal fluency and free association tasks (Kenett et al., 2014, 2018a; Marron et al., 2018). The role 

of controlled processes in creative cognition, however, is less clear, with some evidence 

highlighting a positive relationship between creativity and inhibition (Beaty et al., 2014; Benedek 

et al., 2012, 2014c; Camarda et al., 2018a), and some evidence finding a negative relationship or 

no relationship (Carson et al., 2003; Dorfman et al., 2008; Radel et al., 2015). 

This diversity of findings has led many to suggest that the optimal degree of inhibitory control for 

creative performance depends on the specific creative task in question (Barr, 2018; Chrysikou, 

2019; Volle, 2018), and that those who perform best overall might possess flexible inhibitory 

control (Zabelina et al., 2016; Zabelina & Robinson, 2010). However, a thorough analysis of which 

creative contexts benefit from which degree of inhibitory control has not yet been conducted. 

Creative tasks used by NCR range from simple verbal tasks like the AUT and RAT, to more complex 

poetry and story-writing tasks (e.g., Green et al., 2015; Liu et al., 2015) and tasks in other domains 

such as musical improvisation and drawing (Limb & Braun, 2008; Rominger et al., 2018). 



47 
 

Meanwhile, evidence suggests that in-lab creative performance has a different relationship with 

inhibitory control than lifetime creative achievement (e.g., Zabelina & Ganis, 2018). How 

performance on different kinds of creative task and measures of creative lifetime achievement 

relate to inhibitory control should be examined in a single study. 

Furthermore, little research has examined differences between kinds of inhibitory control. For 

example, most NCR studies examining inhibitory control tend to use measures of response 

inhibition (the suppression of prepotent responses), whereas performance on divergent thinking 

tasks (e.g., the RAT or AUT) is likely to require cognitive inhibition (the suppression of distracting 

ideas; Cipolotti et al., 2016; Diamond, 2013; Engelhardt et al., 2008). The present chapter 

examines the relationship between inhibitory control and creative cognition using multiple 

measures of both constructs. 

 

3.1.1 The role of disinhibition in creativity 

Evidence from a variety of sources suggests that creative cognition, in at least some contexts, 

benefits from reduced inhibitory control. For example, it is commonly reported by creative experts 

that their best ideas emerge during an extended period of non-task-focused rumination (i.e., an 

incubation period; Ritter & Dijksterhuis, 2014), during which unconscious processing can operate 

freely and unhindered by inhibitory control, potentially leading to creative insights (“Aha!” 

moments; Tik et al., 2018; Kounios & Beeman, 2014). Moreover, creative performance has often 

been associated with mind-wandering (Baird et al., 2012; Christoff, Irving, Fox, Spreng, & Andrews-

Hanna, 2016; Fox & Beaty, 2018), a mental state characterized by spontaneous, task-unrelated 

thoughts and imagination.  

A period of mind-wandering when working on a problem might help to reduce fixation, where 

unhelpful or limiting assumptions about the problem can hamper efforts to find a solution 

(Camarda et al., 2018b; Chrysikou & Weisberg, 2005). Indeed, it has been found that inserting a 

period of rest into the middle of a creative task can reduce fixation effects, leading to more 

creative ideas (Koppel & Storm, 2014; Smith & Blankenship, 1991;see also Sio & Ormerod, 2009). 

In addition, working on an unrelated task for a short period of time has also been found to have 
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beneficial effects for creative performance (Gilhooly, Georgiou, & Devery, 2013; Lu, Akinola, & 

Mason, 2017), possibly due to a “refreshing” of WM. Indeed, the lack of task-focused attention 

and inhibitory control during periods of incubation and mind-wandering might help new ideas to 

enter WM, many of which might be tangential or irrelevant to a problem, but some of which might 

lead to enlightening insights through unexpected connections (Benedek & Jauk, 2018). Indeed, 

studies have linked creative ability to performance on free-association (Marron et al., 2018) and 

verbal fluency paradigms (Beaty et al., 2014), suggesting that creative cognition relates to 

associative processes that spontaneously propagate through memory (Volle, 2018), and which 

may operate best without the constraints of task-related inhibitory control. 

Further support for the role of uninhibited and free-flowing associative processes in creative 

cognition comes from connections between sleep and creativity. For example, REM sleep has been 

found to improve association-making activity, more than quiet rest or non-REM sleep, through 

reorganisational activity uninhibited by the hippocampus (Cai, Mednick, Harrison, Kanady, & 

Mednick, 2009). It has also been suggested that iterative cycles of REM and non-REM sleep can 

enable the formation of novel associations and the extraction of abstract rules, restructuring 

knowledge in a way that enhances creative cognition (Lewis, Knoblich, & Poe, 2018). Moreover, 

the role of the DMN in creative performance also highlights the importance of associative 

processes to creativity. As noted, the network is strongly associated with spontaneous thought 

and mind-wandering (Andrews-Hanna, Reidler, Huang, & Buckner, 2010; Andrews-Hanna et al., 

2014; Buckner et al., 2008). In addition to its co-activation with and connectivity to the ECN during 

creative thought (Beaty et al., 2016a), the gray matter volume of the DMN has been linked to 

performance on divergent thinking tasks (Kühn et al., 2014). 

Research has also probed more direct links between disinhibition and creativity. For example, it 

has been found that exhausting inhibitory control through a prolonged response inhibition task 

improves subsequent creative performance in terms of the number of ideas being generated (i.e., 

fluency score; Radel et al., 2015). Research has also found that those who perform better on the 

AUT tend to perform worse on measures of response inhibition (Dorfman et al., 2008). Finally, 

greater real-world creative achievement has been associated with increased distractibility 
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(Zabelina et al., 2016), and reduced latent inhibition (the ability to ignore stimuli previously 

experienced as irrelevant; Carson et al., 2003). 

 

3.1.2 The role of inhibition in creative cognition 

Despite the apparent importance of periods of reduced inhibitory control to creative cognition, 

research has also found that creative performance in certain contexts is linked to greater 

inhibitory control abilities. For example, intelligence, a construct that is strongly linked to 

executive functions including inhibitory control (Ardila, 2018; Arffa, 2007), is often linked to 

performance in laboratory-based divergent thinking tasks such as the AUT (Beaty et al., 2014; 

Benedek et al., 2014c; Frith et al., 2021a; Karwowski et al., 2016; Lee & Therriault, 2013). 

Moreover, a study by Benedek et al. (2012) found that greater performance on a measure of 

cognitive inhibition was linked to greater performance on a range of creative tasks, in particular 

promoting the number and diversity of generated ideas. Further research has linked creative 

performance (in terms of the creative quality of ideas) to response inhibition (Benedek et al., 

2014c; Edl, Benedek, Papousek, Weiss, & Fink, 2014). Researchers have also found that reducing 

inhibitory control during creative performance via a simultaneous response-inhibition task can 

decrease the number of generated ideas as well as their novelty (Camarda et al., 2018a).  

Moreover, one of the most reliable findings in divergent thinking studies is the serial order effect, 

in which ideas for the same problem get more creative over time (Bai et al., 2021; Wang et al., 

2017). This phenomenon has been attributed to deliberate inhibitory control acting to suppress 

unoriginal and obvious ideas, gradually allowing access to more novel ideas (Beaty et al., 2014; 

Beaty & Silvia, 2012). Indeed, studies using “think aloud” paradigms to examine divergent thinking 

task performance indicate that participants use a variety of strategies to attain creative ideas, 

many of which are executively demanding and may rely on inhibitory control (Gilhooly, Fioratou, 

Anthony, & Wynn, 2007). Evidence from studies using the RAT also suggest that initial responses 

relate to only one of the three objects shown, and may need to be inhibited to allow access to 

correct solutions (Smith, Huber, & Vul, 2013). 
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In addition to these cognitive studies, neuroimaging studies also support the role of inhibition in 

lab-based assessments of creativity. For example, studies have found that the connectivity 

between the DMN and ECN during creative cognition is enhanced when there is a greater need for 

inhibition (Beaty et al., 2017a; Christensen et al., 2021), suggesting that the interactions of these 

networks across creative tasks may be due, at least in part, to the need for ECN-based processes 

to inhibit and constrain the spontaneous, generative processes of the DMN. These findings have 

led researchers to suggest that inhibitory control is needed during creative cognition to suppress 

distracting and unoriginal thoughts (Beaty et al., 2017a; Camarda et al., 2018a; Volle, 2018), and 

direct activation towards more novel ideas. For more detailed overviews of the costs and benefits 

of inhibitory control for creative cognition, see recent reviews (Chrysikou, 2018; Benedek & Jauk, 

2018; Volle, 2018). 

 

3.1.3 Towards a clearer understanding of the relationship between creative cognition 

and inhibitory control 

The diversity of findings regarding the relationship between creativity and inhibitory control has 

led researchers to suggest that optimal creative performance might require flexible inhibitory 

control (Zabelina, 2018; Zabelina et al., 2016). The most creative individuals might be those that 

can readily shift between disinhibition, to acquire a broader attentional state and allow diverse 

ideas to activate, and inhibition, to narrow attention to only the most task-relevant ideas (Bristol & 

Viskontas, 2006; Dorfman et al., 2008; Gabora, 2018). Indeed, some research has linked real-world 

creative achievement to leakier attention (a reduced ability to shut out distracting information; 

Zabelina et al., 2015, 2016), while other research has linked in-lab divergent thinking performance 

to the ability to flexibly engage inhibitory control when needed in global-local switching paradigms 

(Zabelina et al., 2016; Zabelina & Ganis, 2018). Researchers have also suggested that creative 

cognition involves shifting between flexible, explorative modes of thought and persistent, 

exploitative modes (Mekern et al., 2019b; Nijstad et al., 2010; Zhang et al., 2020). 

Another likely explanation for the conflicting findings regarding inhibitory control and creativity is 

that the relationship depends on the nature of the creative task (Amer et al., 2016; Benedek & 

Jauk, 2018; Chrysikou, 2018; Sowden et al., 2015; Volle, 2018). For example, some creative 
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endeavors, such as musical improvisation, might involve expert-level motor skills operating in the 

absence of inhibitory control (Bashwiner et al., 2016; Limb & Braun, 2008). Open-ended or loosely-

defined tasks, where it is difficult to say exactly which information is task-related (and likewise, 

which information should be inhibited), might also benefit from reduced inhibitory control, while 

well-defined problems, even those that require creative solutions, may benefit from enhanced 

inhibitory control (Benedek & Jauk, 2018; Chrysikou, 2018). An additional factor is the time 

individuals have to complete a problem. For example, real-world creative problems might last 

several days or weeks, and thus are far more likely to benefit from periods of reduced inhibitory 

control than laboratory-based tasks in which participants only have minutes to generate their 

ideas (Chrysikou, 2018). Periods of incubation and mind-wandering might lead to creative insights 

(Christoff et al., 2016; Fox & Beaty, 2018), but such a lack of task-focus is likely to impair creative 

performance in the very short term (Hao, Wu, Runco, & Pina, 2015a; Smeekens & Kane, 2016). 

A further explanation for the diverse findings regarding creative cognition and inhibitory control, 

and one seldom explored within NCR, is that the relationship depends on the specific measure of 

inhibition that is used. Inhibition comes in a variety of forms, including response inhibition (the 

suppression of prepotent responses), cognitive inhibition (the suppression of distracting concepts), 

and latent inhibition (the suppression of task-irrelevant information) (Cipolotti et al., 2016; 

Diamond, 2013; Friedman & Miyake, 2004; Gartner & Strobel, 2021). Indeed, evidence suggests 

that these different forms of inhibition depend on distinct neural regions and networks (Cipolotti 

et al., 2016; Rodríguez-Nieto et al., 2022). 

The majority of studies examining the relationship between creative cognition and inhibitory 

control use measures of response inhibition (e.g., Benedek et al., 2014c; Camarda et al., 2018a; 

Edl, Benedek, Papousek, Weiss, & Fink, 2014), or the ability to suppress distracting visual 

information (Radel et al., 2015), as opposed to measures of cognitive inhibition, such as the 

“garden path” task (Engelhardt et al., 2008), or the Hayling 2 (Cipolotti et al., 2016). However, 

from the standpoint of laboratory-based divergent thinking tasks, where the inhibition concerned 

acts to suppress distracting or unoriginal semantic information from entering WM, cognitive 

inhibition would seem to be more relevant than response inhibition.  
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One measure of cognitive inhibition is retrieval-induced forgetting (RIF). RIF is the suppression of 

associated, but distracting information, during recall of target information, which can cause 

forgetting of the distracting information (Wimber, Alink, Charest, Kriegeskorte, & Anderson, 2015). 

Research has shown that those who exhibit greater RIF effects are better able to overcome 

fixation in the RAT (Koppel & Storm, 2014; Storm & Angello, 2010), but little research has 

examined relationships between RIF and divergent thinking. One exception is a study by Lin and 

Lien (2013), who found mixed-results regarding the relationship between RIF and both divergent 

and convergent thinking across two studies. In short, further research is needed to examine how 

RIF relates to a range of real-world and lab-based measures of creativity. 

Meanwhile, a handful of studies have linked reduced latent inhibition to greater real-world 

creative achievement (Carson et al., 2003), and lab-based creative performance (Lorca Garrido, 

López-Martínez, & de Vicente-Yagüe Jara, 2021). These results have led researchers to suggest 

that creative individuals may have difficulties shutting out information that isn’t directly related to 

the current task (Carson et al., 2003; Zabelina et al., 2015), which can be detrimental in situations 

where time is a limiting factor, but can also lead to creative insights through unexpected 

associations with non-task-related information. Relative to response inhibition, however, few 

empirical studies have examined relationships between latent inhibition and creative cognition. 

 

3.1.4 The present study 

Examining the relationship between creative cognition and inhibitory control using multiple 

measures of both constructs could shed considerable light on the question of which forms of 

inhibitory control are relevant to which forms of creative cognition. For example, creative 

problems or activities in everyday life may not require as much inhibitory control as those 

encountered in the lab, and may be more likely to benefit from periods of mind-wandering that, 

while not time-efficient, could lead to unexpected associations between remote ideas. As such, it 

is possible that reduced inhibitory control, in particular as measured by latent inhibition, is related 

to greater real-world creative performance (Carson et al., 2003). Meanwhile, greater inhibitory 

control, as measured by response inhibition and cognitive inhibition, may relate to greater in-lab 

creative performance. Indeed, our understanding of the role of inhibitory control in creative 
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cognition would also benefit from examining whether cognitive inhibition or response inhibition is 

more relevant to measures of divergent and convergent thinking. 

The present study examines the relationship between creative cognition and inhibitory control, 

measuring both as multi-faceted constructs. To this end, both verbal and visual measures of 

divergent thinking (the AUT and a figural completion drawing task, respectively) were included, 

together with a common measure of convergent thinking (the RAT). Several self-report measures 

of real-world creative achievement were also included. Concerning inhibitory control, the study 

includes two measures of response inhibition (the Stroop task and the Emotional Stroop), a 

measure of cognitive inhibition (RIF), a measure of latent inhibition, and a self-report measure of 

self-monitoring.  

I also include several measures that may influence how inhibitory control relates to creative 

cognition. Specifically, the personality trait openness to experience provides a measure of how 

open individuals are to new ideas (Kaufman et al., 2016; Oleynick et al., 2017), and has been found 

to relate to reduced latent inhibition (Peterson, Smith, & Carson, 2002). Openness to experience is 

also a reliable predictor of creative performance both in the laboratory and the real world (Beaty 

et al., 2016b, 2018a; Oleynick et al., 2017). The trait is commonly studied in terms of its twin 

aspects of openness and intellect, and research has found that while the former predicts creative 

achievement in the arts, the latter predicts creative achievement in the sciences (Kaufman et al., 

2016). Given this characterization, it is possible that those higher in the sub-trait openness attain 

creative ideas through (or despite) reduced inhibitory control (Carson et al., 2003; Peterson et al., 

2002), while those higher in intellect attain creative ideas through greater inhibitory control.  

Likewise, risk-taking may have an influence on the relationship between inhibitory control and 

creative cognition. Risk-taking is not reliably found to relate to creative ability (e.g., Erbas & Bas, 

2015; Shen et al., 2018; Tyagi, Hanoch, Hall, Runco, & Denham, 2017), and tends to be negatively 

related to inhibitory control (Dohmen, Falk, Huffman, & Sunde, 2018). However, it is possible that 

those who are more willing to take risks attain creative ideas through reduced inhibitory control, 

which might lead to greater novelty-seeking, while those lower in risk-taking follow more 

analytical paths to creative ideas, and show a greater relationship between creative performance 

and inhibitory control. Finally, a measure of intelligence, a reliable correlate of both lab-based 
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divergent thinking (Frith et al., 2021a) and inhibitory control (Ardila, 2018) is included. This is 

primarily to examine whether any relationships found between inhibitory control and creative 

cognition are still present when accounting for intelligence. 

While this study is partly exploratory, the following predictions can be made. It is predicted that 

response inhibition and cognitive inhibition will be related to lab-based measures of divergent and 

convergent thinking, but not to real-world creative achievement. It is also expected that cognitive 

inhibition will be more related to behavioral measures of creativity than response inhibition, given 

the need to suppress distracting ideas rather than prepotent responses in creative thinking tasks. 

By contrast, it is expected that latent inhibition will be related to real-world creative achievement, 

but not to behavioral measures of creative cognition. No specific predictions are made regarding 

self-reported self-monitoring. 

Concerning measures of creative cognition, it is expected that convergent thinking as measured by 

the RAT will be less related to inhibitory control than measures of divergent thinking. This is 

because despite the common characterization of convergent thinking as involving considerable 

deliberate, controlled processes (e.g., Cropley, 2006; Runco, 2014), the RAT itself is largely an 

associative task (Cortes, Weinberger, Daker, & Green, 2019; Kounios & Beeman, 2014; Marko, 

Michalko, & Riečanský, 2018). 

 

3.2 Methods 

3.2.1 Participants 

Participants (N = 151; 77 females; mean age = 33.3 years, SD = 11.9) were recruited from Prolific. 

Participation was contingent on a Prolific approval rating of 90% or above and a minimum of 50 

previously completed studies. Fluency in English was also required. Informed consent was given 

prior to data collection. Ethical approval for the study was given by the Local Ethics Committee of 

the Department of Psychology at Goldsmiths, University of London. 

 

3.2.2 Materials 
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All tasks were coded in Psychopy and PsychoJS (Peirce et al., 2019). Screen color for all tasks was 

gray. 

Creative thinking 

Our measures of creativity included tasks designed to tap verbal and visual divergent thinking and 

verbal convergent thinking, as well as two self-report measures of creative achievement. 

Alternative Uses Task 

To assess verbal divergent thinking, the AUT was used. Participants were given an object word and 

asked to generate as many creative uses for the object as they could in 3 minutes. This was 

repeated for two object words ("box" and "rope"), presented in a random order. Participants first 

saw a fixation cross for 1s, followed by the object word and a white input box, for 3 minutes. A 

countdown timer was displayed on the bottom right of the screen as participants generated and 

typed ideas. The following instructions also remained in small white font at the top of the screen: 

“Type as many creative uses as you can think of for this object. Press ENTER after each idea”.  

Ideas were later rated for creativity by four independent raters, on a 1 (not at all creative) to 5 

(very creative) scale (Silvia et al., 2009). Raters were instructed to consider the originality, novelty, 

and usefulness of each idea and to combine these aspects into a single creativity rating. The 

number of (valid) responses generated in each trial (fluency score) was also recorded. Invalid 

responses were those that could not be interpreted as a use (e.g., nonsense, “I don’t know”, etc.). 

Figural drawing task 

To assess visual divergent thinking, a figural completion drawing task was used. In each trial, 

participants were presented with a starting image of a simple line-drawn shape, and were asked to 

use the shape to produce the most creative drawing they could think of, using the mouse. 

Participants were told “your drawings don’t have to be pretty: they should simply show how 

creative and interesting your ideas are”. Trials began with a fixation cross for 2s, followed by the 

starting image. Participants then had 30s to complete their drawing, and were instructed to use all 

the time available to work on their drawing. After the 30s, participants were asked to type a short 

label describing their drawing. Participants first completed a single practice trial, followed by 10 

real trials. The 11 starting images for these trials were selected from a larger set of 20 used in a 
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previous study (Lloyd-Cox et al., 2021), which were in turn selected from prior studies on visual 

creative thinking (Jankowska & Karwowski, 2015; Lubart, Besançon, & Barbot, 2011; Torrance, 

1966; Wallach & Kogan, 1965). Drawings were subsequently rated for both creativity and drawing 

skill by four independent raters (the same raters as used for the AUT assessment). The skill 

measure was not used in the analysis but was included to encourage raters to consider creativity 

separately to drawing ability. When rating creativity, raters were instructed to ignore artistic 

talent, and to consider how original the ideas in the drawing were compared to other drawings, 

and how creatively the starting image was used in the drawing. 

Remote Associates Test 

As a measure of verbal convergent thinking, the compound RAT (Bowden & Jung-Beeman, 2003) 

was used. In this task participants are shown three unrelated cue words and must think of a fourth 

word that relates to all three cues (e.g., the cues “safety”, “cushion”, “point” are not closely 

related to each other but all closely relate to the solution “pin”). In each trial, the three cues were 

presented in a single line in the middle of the screen, in a random order left to right. Participants 

had 30s to think of and type the answer, before seeing the next trial. Trials ended early after 

participants pressed the “enter” key. Participants first completed two practice trials (in which the 

correct answer was shown as feedback after each trial), before completing 10 real trials. The 12 

RAT problems in these trials were drawn from Bowden and Jung-Beeman (2003). Performance was 

the number of correctly solved problems.  

Self-report creative achievement 

I also collected two self-report measures of creative ability: the Creative Achievement 

Questionnaire (CAQ; Carson, Peterson, & Higgins, 2005), and the Inventory of Creative Activities 

(ICAA-Act; Diedrich et al., 2018). In the CAQ, participants mark the levels of achievement they have 

reached in 10 separate domains including “music”, “creative writing”, and “scientific discovery”. In 

each domain, participants are shown eight items ranging from no achievement (e.g., “I have no 

training or recognized talent in this area”) to achievement at the national level (e.g., “My work has 

been critiqued in national publications”). Participants tick all the levels of achievement they have 

reached. Items in each domain are weighted from 0 to 7, and weighted scores are summed across 

items to produce a domain specific score. For the present purposes, scores were then summed 
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across domains to produce a total creative achievement score. In the ICAA-Act, participants are 

shown six items in each of eight domains (e.g., ‘Literature’, ‘Music’, ‘Cooking’). Each item is an 

activity (e.g., “wrote a short story”), and participants mark how often they have completed the 

activity in the past 10 years on a five point scale ranging from 0 (never) to 4 (more than 10 times). 

Averaging across the six items produces a domain-specific score. The present study summed 

across domains to produce a domain-general creative activity score. 

Inhibitory control 

Our measures of inhibitory control included two measures of response inhibition (the suppression 

of prepotent responses), a measure of cognitive inhibition (the suppression of distracting 

thoughts), a measure of latent inhibition (the non-deliberate suppression of a non-task-relevant 

cue), and a self-report measure of self-monitoring. 

Stroop 

To assess response inhibition, the Stroop task was used, a classic measure of response inhibition 

(Friedman et al., 2016; Zabelina et al., 2019). The task was based on methods used in prior studies 

(Friedman et al., 2016; Parris, 2014). In each trial, participants were shown a color word (“red” or 

“green”) in one of two font colors (red or green). Participants were told to ignore the text itself 

and to instead indicate whether the font was red (‘X’ key; left index finger) or green (‘M’ key; right 

index finger). The prepotent response is to read the text, and so to perform well, participants must 

suppress this response. Participants were asked to respond as quickly as possible. In congruent 

trials, the color of the font matched the text displayed (e.g., the word “green” displayed in green 

font). In incongruent trials, the color of the font was different to the text displayed.  

There were 140 trials in total (70 congruent and 70 incongruent) presented in a random order. 

Trials proceeded as follows: a 0.5s white fixation cross was followed by presentation of the 

colored text, which remained on screen until the participant responded, or until 5s had elapsed. 

Trials in which participants pressed the wrong key or did not respond were classed as incorrect; in 

these cases the word “incorrect” was shown for 1s. The added time cost of incorrect trials thus 

served to discourage random responding. Throughout the task, two reminders of the keys (“X = 

green”, “M = red”) were presented in smaller, white font at the bottom of the screen. Prior to the 
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main task, participants completed 20 practice trials in which feedback was always given (the word 

“correct” or “incorrect” as appropriate). Incongruent trials, which involve more conflict, tend to 

have larger reaction times. As such, the dependent variable for the task was calculated as the 

mean reaction time for correct, incongruent trials minus the mean reaction time for correct, 

congruent trials. A larger value indicates a greater Stroop effect and weaker response inhibition.  

Emotional Stroop 

As an additional, alternative measure of response inhibition, the face-color emotional Stroop task 

was used. This was based on a previous study by Rey et al. (2014), but adapted to more closely 

mirror the classic Stroop described above in terms of number of trials, trial time, and response 

keys. In the task, participants were shown a face expressing either fear or joy. On top of the face, 

the word “JOY” or “FEAR” appeared. Participants were told to ignore the text displayed and pay 

attention to the emotion in the face, pressing the ‘X’ key (left index finger) if the face was fearful, 

and the ‘M’ key (right index finger) if the face was joyful. As in the classic Stroop task, participants 

must suppress the prepotent tendency to read the text. Face stimuli were images of nine males 

and nine females, each showing one joyful expression and one fearful expression (36 images in 

total). Images were taken from the NimStim Face Stimulus Set (Tottenham et al., 2009), and edited 

following Rey et al. (2014). Specifically, images were cropped to show only the face, and converted 

to grayscale using MATLAB. Face images were then presented in the center of the screen, with the 

word presented in red font over the face. Word position was varied randomly in each trial, 

occupying one of five positions but never covering the eyes. 

Participants completed 144 real trials (each image was presented four times, twice with 

incongruent text, and twice with incongruent text), and 14 practice trials. As in the classic Stroop 

task, a white 0.5s fixation cross was followed by presentation of the image and word for up to 5s 

or until the participant responded. A 1s feedback message was displayed for incorrect trials, while 

for practice trials, feedback was given for both incorrect and correct trials. The dependent variable 

was calculated as the mean reaction time of correct, incongruent trials minus the mean reaction 

time of correct, congruent trials. 

Retrieval-induced forgetting 
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To assess cognitive inhibition, a measure of retrieval induced forgetting (RIF) was used. This task 

was based on a study Koppel and Storm (2014), but with half the number of cues to reduce task 

time (24 instead of 48). The RIF task involves three consecutive phases: a study phase, a practice 

phase, and a test phase. In the study phase, participants were shown 24 category-item pairs (e.g., 

“Furniture : Chair”). Participants were told to study the pairs well since they would be tested on 

whether they could remember them. There were eight categories in total and each category 

contained three items. For a complete list of category-item pairs, see the leftmost column in 

appendix C of Anderson, Bjork and Bjork (1994). Pairs were grouped into three sets of eight pairs 

(each set contained one pair from each category). Sets were presented in a random order, and 

pairs were presented in a random order within sets. Each pair was shown for 4 seconds, with a 

0.5s inter-trial interval (ITI). 

In the practice phase, participants were told they would practice thinking of some other items that 

fit these categories. In each trial, they were given a category (e.g., “Drinks”), and a 2-letter stem 

for an item (e.g., “Wh”). They then had 10s to think of a word that completes the stem (e.g., 

“whisky”) and type it. Participants were randomly assigned to one of four conditions, which each 

contained a different set of practice trials. Each set contained four of the eight categories (the 

practiced categories), each with three category – stem pairs (12 pairs in total). Each set was 

repeated three times, for a total of 36 practice trials. 

In the final, test phase, participants were asked to recall the original 24 category-item pairs. For 

each pair, they were shown the category and the first letter of the item (e.g., “Furniture : C”). They 

were given 10 seconds to type the original word and press ‘enter’ when finished. Pairs were 

presented as in the study phase, in three groups of eight pairs. Groups were again presented in a 

random order and pairs were presented in a random order within sets. Due to retrieval induced 

forgetting, items from practiced categories should be more difficult to recall than items from non-

practised categories. As such, each participant’s RIF score was calculated as the number of 

correctly remembered words from non-practiced categories minus the number of correctly 

remembered words from practiced categories, with a higher score reflecting a greater RIF effect.  

Latent inhibition 
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To assess latent inhibition, a task based on Granger et al. (2016) was used. The task consists of an 

initial exposure phase, where a given cue is unrelated to task performance, and a subsequent test 

phase, in which the same cue is related to task performance. In the exposure phase, participants 

were told to watch a sequence of letters, and count how many times the letter M appeared. The 

sequence contained “filler” letters (D, M, T, V), in addition to a pre-exposure stimulus letter (S or 

H; counter-balanced across participants). Filler letters appeared 15 times each, while the stimulus 

letter appeared 20 times. Letters (in white font) were presented for 1s each, with a 0.5s blank 

interval. After the exposure phase, participants were asked to indicate how many times the letter 

M appeared.  

In the test phase, participants were instructed to watch another sequence of letters and try to 

predict when the letter X would appear. Specifically, they were told “if you think you know when 

the letter ‘X’ will appear then you can press the space bar early in the sequence, before the letter 

‘X’ appears on screen. Alternatively, if you are unable to do this please press the spacebar as soon 

as you see the letter ‘X’. There may be more than one rule that predicts the ‘X’”. Participants were 

also told to try to be as accurate as possible but not to worry about making the occasional error. 

Stimuli in the test phase were the same filler letters again (D, M, T, V), together with both S and H, 

and the target letter X. The test phase comprised 178 trials. Letters were presented for 1s each, 

with a 0.5s ITI. Filler letters were presented 32 times each, while X was presented 30 times and 

both S and H were presented 10 times each. Importantly, X appeared 10 times after a random 

filler letter, 10 times after S, and 10 times after H. As such, S and H always predicted the X. 

Depending on the counter-balance condition of the participant, either S or H would serve as the 

pre-exposed (PE) stimulus (i.e., present in the exposure phase), while the other letter would serve 

as the non-pre-exposed (NPE) stimulus.  

If latent inhibition is present, participants should take longer to react to the PE stimulus than the 

NPE stimulus. Calculation of the dependent variable was as follows (see also Granger et al., 2016): 

reaction times (RTs) were recorded from the onset of the PE or NPE stimulus until the offset of the 

target (X). RTs for responses (spacebar presses), could thus range from 0-1500ms for predicting 

the X, and 1500-2500ms for responding to the X. A latent inhibition score was calculated as the 
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median of the PE RT minus the median of the NPE RT, with higher scores reflecting greater latent 

inhibition. 

Self-monitoring scale 

In addition to these behavioral measures of inhibitory control, the self-monitoring scale (SMS; 

Snyder, 1974; Soibel, Fong, Mullin, Jenkins, & Mar, 2012) was included. The scale contains 25 

items (e.g., “I may deceive people by being friendly when I really dislike them”), roughly half of 

which are reverse-scored. Participants indicate whether each statement is true (1) or false (0). 

Scores across items are summed to produce a final SMS score. 

Additional measures 

In addition to measures of creative ability and inhibitory control, measures of personality 

(including the propensity to take risks) and intelligence were also recorded, since these may be 

relevant to the relationship between creative thinking and inhibition.  

Openness/Intellect 

To assess openness to experience, the Openness/Intellect subscale of the Big Five Aspect Scale 

(BFAS; DeYoung, Quilty, & Peterson, 2007) was employed. This subscale comprises 20 items, with 

10 items evaluating openness and 10 intellect. Each item consists of a statement (e.g., "I can 

handle a lot of information"), and participants express their agreement with these statements on a 

1 (strongly disagree) to 5 (strongly agree) rating scale. Scores for openness and intellect were 

analyzed separately. 

Risk-taking 

To evaluate risk-taking propensity, the Domain Specific Risk-taking Scale (DSRS; Blais & Weber, 

2006) was employed. The scale is composed of 30 items, with six items dedicated to each of five 

domains of risk-taking: ethical, financial, health/safety, recreational, and social. Items describe 

activities or behaviors (e.g., "Betting a day’s income at a high-stake poker game"), and participants 

indicate their likelihood of engaging in each activity, on a scale ranging from 1 (extremely unlikely) 

to 7 (extremely likely). The participants' scores across all five domains were aggregated to form a 

single risk-taking score.  



62 
 

Fluid intelligence 

Finally, to assess fluid intelligence, the Cattell pattern completion task (a segment of the Culture 

Fair Intelligence Test; Cattell & Cattell, 1961) was used. Participants were given 3 minutes to solve 

13 problems, presented in order of increasing difficulty. In each problem participants select an 

image that most logically continues a series of images. Performance is the number of correctly 

solved problems. 

 

3.2.3 Procedure 

 The procedure was as follows (see Figure 5). Participants completed the three creative tasks first, 

in one of three counter-balanced orders. They then completed the four inhibitory control tasks in 

one of four counter-balanced orders. Importantly, to reduce fatigue, inhibitory control tasks were 

interleaved with the five questionnaires in the study (SMS, Openness to experience, ICAA, 

DOSPERT, and the CAQ), which always appeared in a fixed order. Finally, participants completed 

the Cattell pattern completion task. 

 

Figure 5  

Experimental procedure (left to right) 

 

Note. Participants first completed creative tasks in one of three counterbalanced orders, before 
completing inhibition tasks in one of four counterbalanced orders. Inhibition tasks were interleaved with 
questionnaires, which appeared in a fixed order. The Cattell task was completed last. 
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3.3 Results 

3.3.1 Data processing and exclusions 

Additional processing was carried out for the Stroop and Emotional Stroop tasks, prior to 

calculation of each participant’s mean reaction times for congruent and incongruent trials in these 

tasks (see also Friedman et al., 2016). First, incorrect trials were excluded (3.21% of all trials for 

Stroop; 4.86% of all trials for Emotional Stroop). Participants’ mean accuracy was 96.88% in the 

Stroop task (SD = 2.83%) and 95.27% in the Emotional Stroop task (SD = 3.91%). Second, trials with 

RTs below 0.2s or further than 3 SDs from the mean for each participant and each condition 

(congruent or incongruent) were removed (2.03% of all trials for Stroop; 1.92% of trials for 

Emotional Stroop). Following these exclusions, task scores for each participant were calculated as 

discussed (mean incongruent RT minus mean congruent RT). 

Data across all variables of interest was then processed for outliers. At the participant level, for 

each variable separately, values greater than 3.5 SDs above or below the mean were identified, 

and replaced with the value 3.5 SDs from the mean (i.e., the data was winsorized). This process 

affected one participant in the latent inhibition task, three in the Stroop task, one in the emotional 

Stroop task, and two in the CAQ. 

Responses to the AUT and drawing task were rated for creativity by four independent raters (the 

same raters for both tasks; Silvia et al., 2009). Inter-rater reliability was in the good range for the 

drawing task, with an intraclass correlation coefficient (ICC) of .89 (.85–.91), in the good range for 

the “Rope” cue of the AUT, with an ICC of .80 (.75 – .85) and in the excellent range for the “Box” 

cue of the AUT, with an ICC of .94 (.92 – .95). 

 

3.3.2 Analyses 

Analyses explored the relationships between different measures of creative thinking and different 

measures of inhibitory control. To this end, correlations were first computed between the main 

variables of interest. In light of these correlations, three latent factors were then extracted to 

reduce the dimensionality of the data by combining related measures. Specifically, I formed a 

divergent thinking factor from the measures of verbal and visual divergent thinking, a response 
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inhibition factor from the Stroop and Emotional Stroop, and a self-report creativity measure from 

the ICAA-Act and the CAQ. Analysis then consisted of computing and comparing regressions for 

each of three resulting creativity measures (divergent thinking, convergent thinking, and self-

report creativity), with measures of inhibitory control and personality as IVs. 

Finally, moderation analyses were conducted to probe whether the relationship between 

inhibitory control and creativity is moderated by personality measures. 

 

3.3.3 Descriptive statistics and zero-order correlations 

Descriptive statistics for all variables of interest are shown in Table 4. Correlations are shown in 

Table 5. Note that in both cases values for AUT and Drawing creativity reflect the mean across 

raters. 

 

 

 

Table 4 
Descriptive statistics for all variables of interest 

  M SD Min Max 

RAT 4.45 2.21 0.00 10.00 

AUT Flu. 10.47 4.13 2.00 22.00 

AUT Crea. 2.71 0.43 1.62 3.70 

Draw Crea. 2.83 0.43 1.56 4.10 

ICAA 8.64 4.25 0.17 23.33 

CAQ 12.35 13.03 0.00 61.97 

SMS 11.36 4.17 2.00 21.00 

LI 0.11 0.35 -1.13 1.11 

RIF 0.7 2.47 -6.00 7.00 

Stroop 0.02 0.05 -0.06 0.20 

Em. Stroop 0.02 0.04 -0.08 0.20 

Openness 36.99 5.45 20.00 50.00 

Intellect 36.19 6.15 21.00 49.00 

Risk-taking 97.77 23.18 53.00 171.00 

Gf 6.81 1.7 3.00 11.00 

Note. RAT = Remote Associates Test; AUT = Alternative Uses Task; Flu. = 
Fluency score; Crea. = Creativity score; Draw = Drawing task; LI = Latent 
Inhibition; RIF = Retrieval Induced Forgetting; Em. Stroop = Emotional Stroop; 
ICAA = Inventory of Creative Achievements and Activities; CAQ = Creative 
Achievement Questionnaire; Gf = Intelligence. 
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Considering zero-order correlations, among task-based measures of creative thinking it was 

notable that RAT score and AUT fluency score were positively correlated (r = .29, p < .001), and 

AUT creativity and Drawing creativity were positively correlated (p = .001), while other 

correlations did not reach significance (ps > .054). It was also notable that the ICAA and CAQ were 

not significantly correlated with any task-based measure of creative thinking (ps > .073), though 

they did positively correlate with each other (r = .49, p < .001). These results are consistent with a 

multi-component model of creativity, in which the creative quality of divergent thinking responses 

are not necessarily related to the associative, insight processes involved in the RAT. 

Among measures of inhibitory control, no significant correlations were found between the 

different forms of inhibition (i.e., latent inhibition, cognitive inhibition, and response inhibition). 

Specifically, LI score was not significantly correlated with either the RIF task or the Stroop or 

Emotional Stroop, while the RIF was also not significantly correlated with either the Stroop or 

Emotional Stroop (ps < .384). It was also notable that no task-based measures of inhibitory control 

were significantly related to SMS score (ps < .542). Stroop score was however correlated with 

Emotional Stroop score (r = .34, p < .001). While moderate in size, this correlation suggests the two 

tasks are likely to target the same form of inhibition (see Schmiedek et al., 2014). Overall, results 

are consistent with the existence of distinct forms of inhibitory control (Cipolotti et al. 2016; 

Diamond 2013; Engelhardt et al., 2008). 
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Considering relationships between creative thinking and inhibitory control, SMS score showed 

small positive correlations with AUT fluency (r = .17, p = .040), and with ICAA (r = .23, p = .004) and 

CAQ (r = .22, p = .007). Interestingly, RIF score was positively correlated with AUT creativity (r 

= .20, p = .015) and drawing creativity (r = .21, p < .010). All other correlations between creative 

thinking and inhibitory control were non-significant (ps < .080). 

Finally, considering relationships between creative thinking, inhibitory control, and measures of 

personality and intelligence, a positive correlation was found between Gf and AUT creativity (r 

= .22, p = .008), in line with past work (e.g., Benedek et al., 2014c; Frith et al., 2021a). A negative 

correlation was also found between Gf and the Stroop measure (r = -.18, p = .026), suggesting that 

those higher in Gf have greater response inhibition (and a smaller Stroop effect). Risk-taking 

showed an unexpected, small, negative correlation with RAT performance (r = -.21, p < .011), while 

openness showed a moderate positive correlation with AUT creativity (r = .35, p < .000), as is 

commonly reported (e.g., Kaufman et al., 2016; Oleynick et al., 2017; Silvia et al., 2008), but 

notably not drawing creativity (r = .14, p = .093).  Finally, openness, intellect and risk-taking in 

Table 5 
Correlations between major variables of interest. AUT and drawing task scores are averaged over raters 

  1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1. RAT  -                           
2. AUT Flu. .29**  -                         
3. AUT Crea. .16 .08  -                       
4. Draw Crea. .09 -.05 .28**  -                     
5. ICAA -.02 -.01 .00 -.07  -                   
6. CAQ .04 .11 .15 .11 .49**  -                 
7. SMS .01 .17* .08 -.07 .23** .22**  -               
8. LI .10 .08 .11 -.02 .13 .05 -.05  -             
9. RIF .03 .04 .20* .21** -.14 -.05 .01 -.02 -            
10. Stroop -.14 .05 .11 -.07 -.03 -.01 -.05 .02 .01  -         
11. Em. Stroop -.12 .14 -.04 -.03 -.12 -.13 .01 .07 .00 .34** -        
12. Openness -.06 .08 .35** .14 .25** .25** .14 .14 .07 .12 .09  -     
13. Intellect -.06 .03 .11 -.02 .20* .26** .34** .09 -.09 -.06 -.01 .16  -   
14. Risk-taking -.21* -.09 .08 -.09 .31** .14 .24** .01 -.03 .04 .00 .05 .19*  - 
15. Gf .13 .01 .22** .16 .04 .01 .13 .05 -.10 -.18* -.14 .05 .15 .07 

Note. RAT = Remote Associates Test; AUT = Alternative Uses Task; Flu. = Fluency score; Crea. = Creativity score; 
Draw = Drawing task; LI = Latent Inhibition; RIF = Retrieval Induced Forgetting; Em. Stroop = Emotional Stroop; ICAA 
= Inventory of Creative Achievements and Activities; CAQ = Creative Achievement Questionnaire; Gf = Intelligence. 
* p < .05, ** p < .01. 
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general showed small to moderate correlations with self-report measures of creativity (i.e., ICAA 

and CAQ) and inhibition (i.e., SMS).  

 

3.3.4 Estimating latent factors 

To reduce the dimensionality of the data and form more reliable estimates of the constructs being 

examined, three latent factors were formed from the data, given the moderate to large 

correlations observed between the component measures in each case. Specifically, a response 

inhibition factor was computed as the mean of the z-scored values for the Stroop and Emotional 

Stroop. This new score was then inverted (multiplied by -1) so that higher scores reflect a lower 

Stroop effect and greater response inhibition. A self-report creativity factor was then formed by 

computing the mean of each participant’s z-scored ICAA and CAQ scores. Finally, a divergent 

thinking factor was computed from the AUT and drawing creativity scores at the level of individual 

raters, using confirmatory factor analysis (CFA). This was done by first estimating lower-order 

measurement models for the drawing task and each cue of the AUT separately, and then 

estimating a higher-order divergent thinking factor from these three lower-order factors. 

Descriptive statistics for creativity ratings, across the four raters, are shown in Table 6, while 

correlations between raters are shown in Table 7 for AUT creativity and Table 8 for drawing 

creativity. 
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Table 7 
Correlations between AUT creativity ratings 

  AUT1_R1 AUT1_R2 AUT1_R3 AUT1_R4 AUT2_R1 AUT2_R2 AUT2_R3 

AUT1_R1 -       
AUT1_R2 .89** -      
AUT1_R3 .81** .81** -     
AUT1_R4 .78** .74** .67** -    
AUT2_R1 .60** .56** .46** .55** -   
AUT2_R2 .58** .56** .47** .49** .80** -  
AUT2_R3 .45** .44** .46** .37** .47** .41** - 
AUT2_R4 .46** .36** .36** .42** .56** .52** .42** 

Note. AUT1 = AUT Box; AUT2 = AUT Rope; R1-R4 = Rater 1 – Rater 4. 

 

 

Table 6 
Descriptive statistics for creativity ratings 
 M SD Min Max 

AUT1_R1 2.53 0.59 1.25 3.80 

AUT1_R2 2.53 0.58 1.00 3.80 

AUT1_R3 2.88 0.61 1.22 4.00 

AUT1_R4 3.08 0.54 1.50 4.27 

AUT2_R1 2.38 0.49 1.38 4.00 

AUT2_R2 2.44 0.54 1.00 4.00 

AUT2_R3 2.79 0.62 1.00 4.60 

AUT2_R4 3.08 0.42 1.80 4.17 

Draw_R1 2.43 0.52 1.40 3.71 

Draw_R2 2.99 0.54 1.50 4.50 

Draw_R3 2.80 0.50 1.63 4.50 

Draw_R4 3.10 0.44 1.57 4.00 

Note. AUT1 = AUT Box; AUT2 = AUT Rope; Draw = 
Drawing task; R1-R4 = Rater 1 – Rater 4. 

Table 8 
Correlations between drawing creativity ratings 

  Draw_R1 Draw_R2 Draw_R3 

Draw_R1 -   
Draw_R2 .61** -  
Draw_R3 .65** .70** - 
Draw_R4 .77** .60** .67** 

Note. Draw = Drawing task; R1-R4 = Rater 1 – Rater 
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The first measurement model estimated a lower-order drawing creativity factor (Draw) formed of 

the four sets of ratings. The model showed good fit; χ2 (2 df) 16.149 (p = .000; CFI = .959; RMSEA 

= .218; 90% CI [.128, .322]; SRMR = .033). The second model estimated a lower-order creativity 

factor for each AUT cue (AUT1 and AUT2; box and rope, respectively). Each was formed of the four 

sets of ratings for the cue. The model showed good fit; χ2 (19 df) 32.909 (p = .025; CFI = .984; 

RMSEA = .070; 90% CI [.025, .109]; SRMR = .042). 

Finally, a divergent thinking factor was estimated from these three lower-order factors. This was 

done with two models. In the first model (DT1), the divergent thinking factor was formed from the 

Draw factor and both AUT factors (see Figure 6). The model showed good fit; χ2 (51 df) 75.900 (p 

= .013; CFI = .980; RMSEA = .057; 90% CI [.027, .082]; SRMR = .047). In the second model (DT2), 

however, the divergent thinking factor was formed from the Draw factor and just AUT1. This was 

done for several reasons. First, in the DT1 model, the Draw factor loads at only .31 on the higher-

order factor, and thus contributes only slightly to the model. Removing one of the AUT factors 

from the model could lead to more equal loadings between the AUT and drawing task. In addition, 

correlations between raters for AUT2 were markedly lower than for AUT1 and Draw (see Figure 7). 

Indeed, the DT1 model showed higher variance among raters for AUT2, in particular raters R3 and 

R4, who had low loadings on AUT2. The DT2 model also showed good fit, and fit statistics were 

slightly better than for DT1; χ2 (18 df) 34.219 (p = .012; CFI = .982; RMSEA = .077; 90% CI 

[.036, .116]; SRMR = .041). The loadings of the Draw and AUT1 factors onto the DT2 factor were 

more equal than for the DT1 model. Correlations and regressions are reported for both DT1 and 

DT2. 
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Figure 6 
Confirmatory factor analysis model estimating DT1, formed of the lower order Draw, AUT1, and 
AUT2 factors 
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Figure 7 

Confirmatory factor analysis model estimating DT2, formed of the lower order Draw and AUT1 
factors 

 

 

AUT fluency was excluded from further analyses since it does not reflect creative quality. 

Correlations between latent factors and other variables of interest are shown in Table 9. 

Correlations for the response inhibition and self-report creativity factors were relatively 

unchanged relative to those for their component variables (Stroop and Emotional Stroop, and 

ICAA and CAQ, respectively). Comparing the DT1 and DT2 factors, differences in relationships are 

small. Most notably, DT2, which has a larger contribution from the drawing task, has a stronger 

correlation with RIF, but a lower correlation with Openness, relative to DT1. 
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3.3.5 Hierarchical regressions 

To more clearly examine how each of the three kinds of creativity assessed in the present study 

(divergent thinking, convergent thinking, and self-report creativity) vary in their relationships with 

inhibitory control, a series of hierarchical regressions were conducted. In each regression model, a 

creativity measure was included as a dependent variable, while predictors were inhibitory control 

measures (SMS, Response Inhibition, and RIF), kept constant across all regressions. LI was 

excluded from regressions since correlations between this measure and creativity measures did 

not approach significance. In addition, openness, intellect, risk-taking and Gf were included as 

control measures in block one in all regressions. Openness and Gf are often found to relate to 

divergent thinking (e.g., Frith et al., 2021a; Oleynick et al., 2017), while in the present study, 

intellect was significantly correlated with self-report creative achievement and risk-taking was 

significantly correlated with convergent thinking (RAT). Including these measures as control 

variables should reveal the contribution of inhibitory control measures to creative thinking over 

and above these additional variables. 

Table 9 
Correlations between latent factors and other variables of interest 

  1 2 3 4 5 6 7 8 9 10 11 

1. RAT  -                     
2. DT1 .13  -                   
3. DT2 .11 .74**  -                 
4. SelfRepC .01 .06 .05  -               
5. SMS .01 .05 -.04 .26**  -             
6. LI .10 .11 .03 .10 -.05  -           
7. RIF .03 .21** .26** -.11 .01 -.02  -         
8. RespInhib. .16 -.01 .04 .10 .02 -.06 -.01  -       
9. Open. -.06 .32** .25** .29** .14 .14 .07 -.13  -     
10. Intel. -.06 .11 .03 .26** .34** .09 -.09 .04 .16  -   
11. Risk. -.21* .06 -.02 .26** .24** .01 -.03 -.02 .05 .19*  - 
12. Gf .13 .22** .21* .03 .13 .05 -.10 .20* .05 .15 .07 

Note. RAT = Remote Associates Test; DT = Divergent thinking; SelfRepC = Self-reported creativity; 
SMS = Self-Monitoring Scale; LI = Latent Inhibition; RIF = Retrieval Induced Forgetting; RespInhib. = 
Response inhibition; Open. = Openness; Intel. = Intelligence; Risk. = Risk Taking; Gf = Fluid 
Intelligence. * p < .05, ** p < .01. 
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A hierarchical regression model was constructed to examine the variance in DT1 explained by 

inhibitory control, over and above that accounted for by control variables (see Table 10). The total 

model explained 19% of the variance in DT1 (R2 = .19, F(7, 143) = 4.79, p < .001). Control variables 

accounted for 14% of the variance in DT1. Inhibitory control then accounted for an additional 5% 

of the variance, which was a significant contribution (p = .041). RIF was the only significant 

predictor of DT1, and importantly remained significant after controlling for openness and fluid 

intelligence.  

A second hierarchical regression model was constructed to examine the variance in DT2 explained 

by inhibitory control, over and above that accounted for by control variables (see Table 11). The 

total model explained 18% of the variance in DT2 (R2 = .18, F(7, 143) = 4.40, p < .001). Control 

variables accounted for 10% of the variance in DT2. Inhibitory control then accounted for an 

additional 8% of the variance, which was a significant contribution (p = .005). Again, RIF remained 

a significant predictor of DT2 after controlling for openness and fluid intelligence (see Figure 8 for 

scatterplots of the relationships between RIF and DT1 and DT2). The stronger coefficient for RIF 

when predicting DT2 as compared to DT1 is likely due to the fact that DT2 loads more strongly 

onto the drawing task than the AUT, and the drawing task had a stronger correlation with RIF (see 

Table 9). 

Table 10 
Summary of hierarchical regression predicting divergent thinking 1 

Dependent Predictor R2 ΔR2 β t p 

DT1 Block 1 .14 .14    
 Openness   .28 3.67 < .001 
 Intellect   .06 0.75 .457 
 Risk-taking   .04 0.46 .644 
 Gf   .22 2.82 .005 
 Block 2 .19 .05   .041 
 SMS   -.05 -0.57 .567 
 RespInhib.   -.01 -0.15 .880 
 RIF   .22 2.88 .005 

Note. DT = Divergent thinking; Gf = Fluid intelligence; SMS = Self-Monitoring Scale; RespInhib. = 
Response inhibition; RIF = Retrieval induced forgetting 
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A further hierarchical regression model was constructed to examine the variance in convergent 

thinking (RAT performance) explained by inhibitory control (see Table 12). The total model 

explained 9% of the variance in convergent thinking (R2 = .09, F(7, 143) = 1.93, p = .069). Control 

variables accounted for 7% of the variance in convergent thinking. Inhibitory control then 

accounted for an additional 2% of the variance, which was not a significant contribution (p = .403). 

Table 11 
Summary of hierarchical regression predicting divergent thinking 2 

Dependent Predictor R2 ΔR2 β t p 

DT2 Block 1 .10 .10    
 Openness   .23 2.95 .004 
 Intellect   .03 0.34 .738 
 Risk-taking   -.02 -0.30 .763 
 Gf   .23 2.88 .005 
 Block 2 .18 .08   .005 
 SMS   -.10 -1.26 .210 
 RespInhib.   .03 0.34 .736 
 RIF   .26 3.44 < .001 

Note. DT = Divergent thinking; Gf = Fluid intelligence; SMS = Self-Monitoring Scale; RespInhib. = 
Response inhibition; RIF = Retrieval induced forgetting 

Figure 8 
Scatterplots of the relationship between RIF and DT1 (A) and RIF and DT2 (B) 

A B 

 

Note. ** p < .01 

r = .21** r = .26** 
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No individual cognitive control measures contributed significantly to the model after including 

control variables, though response inhibition was the strongest predictor. 

A final hierarchical regression model was constructed to examine the variance in self-reported 

creative achievement explained by inhibitory control (see Table 13). The total model explained 

22% of the variance in self-reported creative achievement (R2 = .22, F(7, 143) = 5.90, p = < .001). 

Control variables accounted for 18% of the variance. Inhibitory control measures then accounted 

for an additional 5% of the variance, which was a significant contribution (p = .036). However, no 

individual inhibitory control predictor contributed significantly to the model, though SMS and 

response inhibition approached significance. 

Overall, these results suggest that divergent thinking is related to inhibitory control, specifically 

cognitive inhibition (RIF), while convergent thinking and self-reported creative achievement are 

not related to inhibitory control. 

Table 12 
Summary of hierarchical regression predicting convergent thinking 

Dependent Predictor R2 ΔR2 β t p 

CT Block 1 .07 .07    
 Openness   -.05 -0.57 .567 
 Intellect   -.05 -0.56 .574 
 Risk-taking   -.21 -2.58 .011 
 Gf   .12 1.49 .138 
 Block 2 .09 .02   .403 
 SMS   .06 0.71 .481 
 RespInhib.   .12 1.49 .140 
 RIF   .03 0.40 .688 

Note. CT = Convergent thinking; Gf = Fluid intelligence; SMS = Self-Monitoring Scale; RespInhib. = 
Response inhibition; RIF = Retrieval induced forgetting 
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3.3.6 Moderation analyses 

A further set of regressions were conducted to examine whether openness, intellect, or risk-taking 

were significant moderators of the relationship between inhibitory control and creative cognition. 

For each measure of creative cognition, moderation analyses focused on the most significant 

inhibitory control predictor and the most significant personality predictor.  

In the case of DT1 and DT2, I examined whether the relationship between divergent thinking and 

RIF was moderated by openness, since this was also a significant predictor of divergent thinking 

(see Table 14). For DT1, the total model explained 14% of the variance in divergent thinking 

(R2 = .14, F(3, 147) = 8.17, p = < .001), while for DT2, the total model explained 13% of the variance 

in divergent thinking (R2 = .13, F(3, 147) = 7.64, p = < .001). An interaction between openness and 

RIF was not found to be a significant predictor of either DT1 or DT2 (ps > .082). In addition, for 

both models, including an interaction between openness and RIF caused the coefficient for RIF to 

become non-significant.  

Table 13 
Summary of hierarchical regression predicting self-reported creative achievement 

Dependent Predictor R2 ΔR2 β t p 

SelfRepC Block 1 .18 .18    
 Openness   .27 3.54 < .001 
 Intellect   .13 1.64 .103 
 Risk-taking   .19 2.53 .013 
 Gf   -.08 -1.00 .317 
 Block 2 .22 .05   .036 
 SMS   .14 1.73 .086 
 RespInhib.   .14 1.88 .062 
 RIF   -.12 -1.59 .115 

Note. SelfRepC = self-reported creative achievement; Gf = Fluid intelligence; SMS = Self-Monitoring 
Scale; RespInhib. = Response inhibition; RIF = Retrieval induced forgetting. 
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Openness remained a significant positive predictor of divergent thinking in both models. Likewise, 

I examined whether the relationship between convergent thinking and response inhibition was 

moderated by risk-taking (see Table 15). The total model explained 8% of the variance in 

convergent thinking (R2 = .08, F(3, 147) = 4.03, p = < .009). An interaction between risk-taking and 

response inhibition was not found to be a significant predictor of convergent thinking (p = .198). 

Response inhibition remained a non-significant predictor of convergent thinking, while risk-taking 

remained a significant negative predictor. 

Finally, I examined whether the relationship between self-report creative achievement and 

response inhibition was moderated by openness (see Table 16). The total model explained 10% of 

the variance in self-report creative achievement (R2 = .10, F(3, 147) = 5.59, p = < .001). An 

interaction between openness and response inhibition was not found to be a significant predictor 

Table 14 
Openness as a moderator of the relationship between divergent thinking and RIF 

Dependent Predictor R2 β t p 

DT1  .14    
 Openness  .30 3.29 < .001 
 RIF  .18 -0.81 .421 
 Openness * RIF  .10 1.13 .259 
DT2  .13    
 Openness  .22 2.14 .034 
 RIF  .23 -1.34 .183 
 Openness * RIF  .15 1.75 .082 

Note. DT = Divergent thinking; RIF = Retrieval induced forgetting.  

Table 15 
Risk-taking as a moderator of the relationship between convergent thinking and 
response inhibition 

Dependent Predictor R2 β t p 

CT  .08    
 Risk-taking  -.21 -2.65 .009 
 RespInhib.  .11 -0.90 .369 
 Risk-taking  

* RespInhib. 
 .12 1.29 .198 

Note. CT = Convergent thinking; RespInhib. = Response Inhibition. 
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of self-report creative achievement (p = .991). Response inhibition remained a non-significant 

predictor of self-report creative achievement, while openness remained a significant positive 

predictor. 

 

In summary, no personality variables were found to be significant moderators of the relationship 

between inhibitory control and creative cognition, for any of the three forms of creative cognition 

examined in the present study. 

 

3.4 Discussion 

The present study examined the relationship between creative cognition and inhibitory control, 

measuring both as multi-faceted constructs. Creative cognition was examined with verbal and 

visual measures of divergent thinking (the AUT and a figural completion drawing task, 

respectively), a measure of verbal convergent thinking (the RAT), and self-report measures of real-

world creative achievement (the CAQ and ICAA-Act). Inhibitory control was examined with two 

measures of response inhibition (the Stroop and Emotional Stroop), a measure of latent inhibition, 

a measure of cognitive inhibition (RIF), and a self-report measure of self-monitoring (SMS). 

 

3.4.1 Overview of findings 

In line with predictions, cognitive inhibition was more related to behavioral measures of creative 

cognition than response inhibition. Specifically, RIF was significantly and positively correlated with 

Table 16 
Openness as a moderator of the relationship between self-report creativity and response 
inhibition 

Dependent Predictor R2 β t p 

SelfRepC  .10    
 Openness  .31 3.89 < .001 
 RespInhib  .14 0.25 .802 
 Openness  

* RespInhib 
 .00 -0.01 .991 

Note. CT = Convergent thinking; RespInhib = Response Inhibition.  
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both verbal and visual divergent thinking measures, and was a significant predictor of divergent 

thinking as a latent factor. Indeed, RIF remained a significant predictor of divergent thinking even 

after accounting for openness and intelligence, reliable predictors of divergent thinking 

performance (Frith et al., 2021a; Oleynick et al., 2017). However, RIF was not found to be 

significantly related to convergent thinking or real-world creative achievement. By contrast, 

response inhibition was not found to be a significant correlate, or significant predictor, of any 

behavioral or self-report measures of creative cognition. These results indicate that cognitive 

inhibition may be a more relevant form of inhibitory control than response inhibition for creative 

cognition, and in particular, lab-based creative performance. This is in line with the notion that 

creative cognition involves the suppression of distracting or unoriginal semantic information, 

rather than the suppression of prepotent responses.  

The finding that neither response nor cognitive inhibition were related to real-world creative 

achievement was also in line with predictions. It is possible that real-world creative endeavors or 

problems, that commonly extend over several days or even weeks, rely less on inhibitory control. 

In such contexts, time is less of a constraint, and so the need for efficient, fast cognition aided by 

inhibitory control is reduced (Benedek & Jauk, 2018; Chrysikou, 2018). Indeed, these contexts may 

even benefit from periods of mind-wandering and reduced inhibitory control to allow new 

associations to form between remote conceptual categories (Christoff et al., 2016; Fox & Beaty, 

2018). 

Contrary to predictions, and to previous research (Carson et al., 2003), latent inhibition was not 

found to be correlated with real-world creative achievement. In addition, latent inhibition was not 

found to be related to openness, as has also been found previously (Peterson et al., 2002). This 

finding may be due to the specific measure of latent inhibition used in this study. While previous 

studies have used a measure of latent inhibition involving auditory syllables and white noise, and 

visually presented yellow disks (Carson et al., 2003; Peterson et al., 2002), the present measure 

was based on a task developed by Granger and colleagues (2016), who were attempting to avoid 

contamination from effects such as learned irrelevance and conditioned inhibition (see also Evans, 

Gray, & Snowden, 2007). It could be that the difference in task is responsible for the lack of 
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relationships found between latent inhibition, openness, and real-world creative achievement in 

this study.  

Indeed, latent inhibition was also not found to be related to any other forms of inhibition. 

Moreover, none of the forms of inhibitory control examined in the present study were related to 

one another. This is in line with evidence suggesting that inhibitory control comes in distinct forms 

(Diamond, 2013; Friedman & Miyake, 2004; Gartner & Strobel, 2021), dependent on distinct 

neural regions (Cipolotti et al., 2016; Rodríguez-Nieto et al., 2022). 

Turning to the present measures of creative cognition, it was notable that the measures of verbal 

and visual divergent thinking were moderately correlated. This suggests the existence of a domain-

general divergent thinking construct that enables participants to generate creative ideas across 

domains (Beaty et al., 2016a; Chen et al., 2023; Christensen et al., 2021). Conversely, the fact that 

divergent thinking measures were not correlated with convergent thinking, as assessed by the 

RAT, suggests that the associative processes relevant to RAT performance do not contribute 

substantially to performance in divergent thinking tasks (Cortes et al., 2019), and vice-versa. These 

results support a model of creativity formed of multiple distinct sub-types (Colzato, Ritter, & 

Steenbergen, 2018; Cortes et al., 2019; Kuypers et al., 2016; Ma & Hommel, 2020; Shen et al., 

2018). Moreover, the fact that behavioral measures of convergent and divergent thinking were 

not found to be positively related to real-world creative achievement was concerning, but not 

surprising given low latent correlations between behavioral measures of creative performance and 

self-reported creative achievement and engagement in creative activities (Jauk, Benedek, & 

Neubauer, 2014; Kaufman & Beghetto, 2009).  

It was also surprising that a significant relationship was not found between divergent thinking and 

response inhibition, as found previously (Benedek et al., 2014c; Edl et al., 2014). One possibility is 

that the online nature of the present study, and the relatively large mean age of participants (33) 

had an effect on how the Stroop and Emotional Stroop were completed, and indeed on the 

relationship observed between divergent thinking and response inhibition. In addition, some of 

the research linking creative cognition to inhibitory control uses paradigms where fixation (i.e., 

unhelpful ideas regarding a problem) is deliberately induced in participants by the experimenter 

(e.g., Beaty et al., 2017a; Christensen et al., 2021; Koppel & Storm, 2014). This fixation then needs 
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to be suppressed for participants to be able to access creative ideas and perform well on the task. 

It is possible that the relationship between inhibitory control and creative cognition in the absence 

of artificially-induced fixation is weaker than this research would suggest. 

I did not find convergent thinking to be related to any measure of inhibitory control. While this is 

surprising given characterizations of convergent thinking as an analytic, evaluative process (e.g., 

Cropley, 2006; Lee & Therriault, 2013; Runco, 2014), it is in keeping with the notion that the RAT 

itself mostly relies on associative processes, without a substantial executive component (Marko et 

al., 2018). Indeed, the RAT is often used as a measure of insight (e.g., Kounios & Beeman, 2014; Tik 

et al., 2018), and was originally developed to assess associative processes (Mednick, 1962). As 

such, while satisfying the original definition of convergent thinking as problem solving with a single 

correct solution (Guilford, 1959), it may not be the best measure of convergent thinking as defined 

in more recent years.  

Concerning the measures of personality, the positive relationships observed between openness 

and both behavioral divergent thinking and self-report creative achievement were expected and in 

line with prior research (Beaty et al., 2018; Kaufman et al., 2016; Oleynick et al. 2017). It was 

notable however that those higher in openness and risk-taking did not appear to have reduced 

inhibitory control abilities, as previous work has found (Dohmen et al., 2018; Peterson et al., 2002; 

Zabelina & Ganis, 2018). As such, it would seem that those higher in openness are not more open 

to new ideas simply because they cannot inhibit irrelevant information. Likewise, it is possible that 

those who prefer to take more risks may do so out of deliberate choice and not because they are 

unable to inhibit reckless behavior (Dohmen et al., 2018). It was also notable that those higher in 

self-monitoring (SMS), and intellect did not have higher scores of inhibitory control (though 

intellect and self-monitoring were positively related to one another), which may simply be an 

indication that behavioral measures do not always relate to self-report measures of the same 

construct (Dang, King, & Inzlicht, 2020). 

The finding that risk-taking was negatively related to convergent thinking was surprising, but has 

been found elsewhere, for example by Shen and colleagues (2018). The authors of that study 

suggest a link between risk-avoidance, psychological safety, and convergent thinking, though it 

isn’t immediately clear how risk-avoidance would benefit the associative processing involved in 
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the RAT. Finally, no personality measures were found to significantly moderate the relationship 

between inhibitory control and creative cognition. Taken as a whole, these findings suggest that 

while those higher in openness tend to have more creative ideas, they do not have reduced 

inhibitory control, and do not attain creative ideas or engage in creative activities due to a reduced 

ability to shut out distracting or non-task-relevant thoughts (e.g., Carson et al. 2003; Peterson et 

al., 2002). Likewise, those higher in intellect, while also engaging in more creative activities, may 

not have greater inhibitory control abilities, or may not use these abilities to perform better in 

creative tasks. Indeed, it is possible that individuals higher in these traits perform better in creative 

tasks and pursuits due to a greater ability to flexibly engage and disengage inhibitory control as 

and when needed (Gabora, 2018; Sowden et al., 2015; Zabelina & Robinson, 2010). 

In summary, these findings suggest that creative cognition, in some instances, is related to greater 

inhibitory control. In particular, evidence was found that performance on lab-based measures of 

divergent thinking benefits from cognitive inhibition, the ability to suppress distracting concepts.  

 

3.4.2 Limitations and future directions 

As noted, this study is a departure from previous research in that it was an online study, and had a 

larger age range than is typical for creativity research studies, which tend to focus on 

undergraduate students (e.g., Beaty et al., 2014; Benedek et al., 2014c; Zabelina et al., 2016). 

Because of these factors, a future study could examine the same measures included here in an in-

person experiment with a younger sample, to make results more comparable to those of previous 

studies in this field.  

Moreover, while multiple measures of certain constructs were used in this study (e.g., divergent 

thinking, response inhibition, self-report creative achievement), for many constructs only a single 

measure was used. For example, as discussed, the RAT may not be the most appropriate measure 

of convergent thinking, and future research should use a range of creative problem solving tasks 

designed to tap convergent thinking (e.g., Lin & Lien, 2013). A study using multiple measures of all 

constructs of interest, and in particular convergent thinking, cognitive inhibition, and latent 



83 
 

inhibition, could take the field much closer to a clearer understanding of the relationships 

between creative cognition and inhibitory control, using structural equation modelling. 
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CHAPTER 4: MECHANISMS OF CREATIVE COGNITION: THE 

IMPORTANCE OF CONTROL OVER WORKING MEMORY 
 

4.1 Introduction 

As discussed in Chapter 3, inhibitory control is an important contributor to creative cognition in at 

least some contexts, allowing individuals to suppress distracting and unoriginal ideas and increase 

their chances of forming creative associations. The notion that effective creative cognition 

requires inhibiting certain ideas from activating underscores the importance of WM, and suggests 

that access to WM must be carefully managed for optimal creative idea generation. Research into 

the link between creative cognition and WM capacity (WMC) sometimes reports a positive 

relationship (e.g., Benedek et al., 2014c; de Dreu et al., 2012; Hao, Yuan, Cheng, Wang, & Runco, 

2015b; Lunke & Meier, 2016) and sometimes no relationship (e.g., Menashe et al., 2020; 

Smeekens & Kane, 2016). Indeed, a recent meta-analysis has concluded that while WMC is 

important for convergent thinking, it may not play a large role in divergent thinking (Gerver et al., 

2023).  

Nevertheless, control over WM may still be highly important for effective creative cognition. For 

example, managing the content of, and breadth of input to WM might enable participants to 

switch between states of broad, exploratory attention and narrow, exploitative attention 

(Dorfman et al., 2008; Herz, Baror, & Bar, 2020; Zabelina & Robinson, 2010; Zhang et al., 2020), or 

between narrow and broad conceptual representations (Gabora, 2010, 2018), as required by the 

current creative task or stage within a task. Indeed, control over WM might also underlie switching 

between idea generation and evaluation during creative cognition (Basadur, 1995; Ellamil et al., 

2012; Kleinmintz et al., 2019), with each stage requiring very different approaches to managing 

WM. The generation of ideas might require a broader input to WM, where ideas can enter from a 

wider range of conceptual categories and WM content is refreshed frequently to allow more ideas 

to be considered. Meanwhile, the evaluation of ideas might require limiting input to a far 

narrower set of concepts that remain in WM for longer. Indeed, idea generation might involve a 

larger number of concepts activating in WM more shallowly, while idea evaluation involves a 
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smaller number of concepts activating more deeply, so that individuals can better assess the 

details of a candidate creative idea (see also Gabora, 2018). 

Control over WM is likely to involve all three of the executive functions of inhibition, shifting, and 

updating (Miyake et al., 2000). Inhibitory control is required to suppress distracting ideas from 

entering WM, and thus to keep processing resources free to operate on more creative ideas 

(Beaty et al., 2014, 2017; Benedek et al., 2014c). Shifting, meanwhile, may allow individuals to 

move from one set of ideas in WM to another, letting the right kinds of new information in to 

pursue fruitful ideas and associations (Gabora, 2018; Zabelina, 2010; Zhang et al., 2020). This could 

allow multiple categories of idea to be explored, and increase the chances of a creative association 

being formed. Likewise, WM updating should enable individuals to more efficiently refresh the 

contents of WM, suppressing older information and allowing new ideas to be explored (de Dreu et 

al., 2012; Gerver et al., 2023). 

Understanding how WM is managed to promote optimal creative cognition would take us much 

closer to a mechanistic model of the processes that produce creative ideas. How exactly do 

cognitive processes interact to produce creative ideas, and do their interactions change in 

different contexts? For example, evidence suggests that spontaneous associative processes that 

spread activation through semantic memory are also important in creative cognition (Beaty & 

Kenett, 2023; Benedek & Jauk, 2018; Volle, 2018). It is possible that executive processes manage 

the activity of these associative processes primarily by managing the content and input of WM, 

thus influencing factors such as the speed and breadth by which semantic memory is explored 

(Beaty, Zeitlen, Baker, & Kenett, 2021b; Kenett et al., 2018a; Lopez-Persem et al., 2022; Volle, 

2018). However, current research on the relationship between creative cognition, WMC, and the 

executive functions of inhibition, updating, and switching is inconclusive. This chapter focuses on 

an exploratory study, using a large battery of tasks to try to shed light on how executive functions 

and WM contribute to creative cognition, and in particular how they influence measures of 

creative cognition including the number, diversity, and creativity of ideas. 
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4.1.1 The role of executive functions in creativity 

As discussed in Chapter 3, inhibitory control is likely to play a key role in certain forms of creative 

cognition, such as in-lab behavioral measures, with cognitive inhibition in particular benefiting the 

creativity of divergent thinking responses. The suppression of distracting thoughts might help to 

free up WM resources, allowing individuals to focus on the most creative ideas and explore the 

most promising associations. 

How exactly executive switching benefits creative cognition is not immediately clear. Researchers 

often discuss switching in the context of creative performance, for example suggesting that more 

creative individuals may switch more frequently between different conceptual spaces (Nijstad et 

al., 2010; Zhang et al., 2020), narrow- and broad-focus states (Gabora, 2010; Zabelina & Robinson, 

2010), and generative and evaluative modes of thought (Ellamil et al., 2012; Finke et al., 1992; 

Ward, Smith, & Vaid, 1997). In addition, various studies have examined switching in creative 

cognition, for example finding that switching between categories of idea mediates the relationship 

between intelligence and creativity (Nusbaum & Silvia, 2011), that the number of category 

switches a person makes may relate to a trait-level bias towards flexibility or persistence (Mekern 

et al., 2019b), and that forcing participants to switch between different creative tasks can improve 

their creative performance (Lu et al., 2017).  

However, it remains unclear how these various forms of creative switching might relate to classical 

executive switching (or shifting; Diamond, 2013). Only a handful of studies have examined 

relationships between creative cognition and shifting, which is typically measured as the ability to 

switch between different executive tasks (e.g., Benedek et al., 2014c; Krumm et al., 2018; Pan & 

Yu, 2018; Zabelina et al., 2019). For example, in a study where both executive shifting and creative 

cognition were measured with three different behavioral measures, the authors found a positive 

relationship between the two at the latent level (Pan & Yu, 2018). Moreover, executive shifting 

was found to be more relevant to factors such as the number of ideas generated and the number 

of categories explored than the creative quality of ideas. However, another study by Krumm and 

colleagues (2018) found that shifting was positively related to creative quality in both verbal and 

visual divergent thinking tasks, and this relationship remained after accounting for intelligence. By 

contrast, other research has found no relationship between shifting and creativity at the latent 
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level (Benedek et al., 2014c). Indeed, a study by Zabelina et al., (2019), found no relationship 

between executive shifting and either the number or quality of generated ideas in a divergent 

thinking task.  

While it might be expected that individuals with stronger executive shifting abilities would attain 

higher flexibility scores (by exploring a broader range of conceptual categories) in creative tasks, 

few studies have examined shifting and flexibility, and it is unclear whether the processes involved 

in executive shifting are also involved in creative switching. For example, in executive shifting 

paradigms switches are typically cued by the experimenter, whereas in creative tasks switches 

tend to be initiated freely by the participant. However, it is possible that those who are better able 

to cope when forced to switch executive tasks tend to also make more self-motivated switches in 

creative contexts.  

Considering relationships between WM updating and creative cognition, results are also 

inconclusive. Updating refers to the ability to maintain and update relevant information in WM, 

and as typically measured (e.g., through N-back tasks), updating is so closely related to measures 

of WMC (e.g., complex span tasks) that many researchers argue they are identical constructs 

(Schmiedek, Hildebrandt, Lövdén, Wilhelm, & Lindenberger, 2009; Schmiedek et al., 2014; 

Wilhelm, Hildebrandt, & Oberauer, 2013). A study by De Dreu and colleagues (2012) found that 

increasing WM load in participants lead to reduced RAT performance, and that those with greater 

WMC produce more creative musical improvisations and both more ideas (higher fluency score) 

and more creative ideas (higher creativity quality, or simply higher creativity score) in a verbal 

divergent thinking task. However, more recent research has found mixed results, with some 

studies finding that updating relates to creative quality (Benedek et al., 2014c; Stolte et al., 2020), 

and others finding that it relates only to fluency, and not to creative quality itself (Hao et al., 

2015b; Zabelina et al., 2019). A further study by Krumm and colleagues (2018) found positive 

relationships between updating and creative quality, but these relationships did not remain 

significant after accounting for intelligence. 

Indeed, other research has found that updating is unrelated to verbal or visual divergent thinking, 

but is related to verbal convergent thinking as measured by the RAT (de Vink et al., 2021; see also 

Gerver et al., 2023). By contrast, Lunke and Meier (2016) found that WM updating was related to 
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verbal divergent thinking, but not convergent thinking or self-report creative achievement. Finally, 

other studies have found no link between WM updating and divergent thinking as measured by 

metaphor generation (Menashe et al., 2020) or the AUT (Smeekens & Kane, 2016). As such, there 

do not seem to be reliable findings regarding the connection between WM updating and creative 

cognition. A recent review has argued that updating most likely benefits flexibility and fluency, but 

may not benefit creativity itself (Palmiero et al., 2022). Indeed, a recent meta-analysis of 43 

studies examining creativity and WM reports that WM may benefit convergent thinking, but does 

not appear to benefit creative quality in divergent thinking tasks (Gerver et al., 2023). 

To summarize, while inhibitory control likely aids creative cognition by suppressing distracting and 

unoriginal ideas, there are no solid conclusions regarding how shifting and updating benefit 

creative cognition. It is possible, however, that shifting is related to more frequent switches in 

creative tasks (higher flexibility), while updating promotes idea fluency in creative tasks. Further 

research is needed to unpack how exactly executive functions impact creative cognition, and 

whether they contribute to creative factors such as the number of ideas generated, the number of 

conceptual categories explored, and the ability to switch between broad and narrow attention 

states (Gabora, 2010; Zabelina & Robinson, 2010; Zhang et al., 2020) or generative and evaluative 

modes of thought (Ellamil et al., 2012; Kleinmintz et al., 2019). 

 

4.1.2 The present study 

In the present, exploratory study, a large battery of tasks was employed to better understand how 

executive functions benefit creative cognition, and how they interact with more spontaneous, 

associative processes during creative thought. Specifically, the study is most interested in how 

control over WM can affect factors such as the breadth by which semantic memory is traversed 

(as might be measured by the semantic distance between consecutive responses), and the number 

of semantic categories explored. The study also aims to understand how WM control can impact 

the number of ideas that are generated (fluency), and overall creative performance. 

Building on the study discussed in Chapter 3, a measure of cognitive inhibition (RIF) is included, 

together with a measure of executive switching, a measure of WM updating, and a measure of 



89 
 

WMC (though the latter two measures may target the same underlying processes (Schmiedek et 

al., 2014). Verbal measures of divergent and convergent thinking are also employed, with 

measures of verbal fluency and chain association to target associative processes. Finally, various 

self-report measures relevant to creative cognition and control over WM are included, including 

real-world creative achievement, and scales assessing attention control, ADHD, and the ability to 

switch between associative and analytical modes of thought. 

In addition to examining fluency and creative quality in divergent thinking tasks, I also make use of 

automated measures of semantic distance including SemDis (Beaty & Johnson, 2021) and the 

Bidirectional Encoder Representations from Transformers model (BERT; Devlin, Change, Lee, & 

Toutanova, 2019), to assess the size of associative leaps between responses in divergent thinking 

and associative tasks. This enables us to examine factors such as the speed and breadth by which 

individuals traverse semantic memory, which should provide a more detailed understanding of the 

ways in which executive functions and control over WM might contribute to creative cognition. 

 

4.2 Methods 

4.2.1 Participants 

Participants (N = 200; 102 females; mean age = 28.0, SD = 4.8) were recruited from Prolific. 

Participation was contingent on a Prolific approval rating of 90% or above and a minimum of 50 

previously completed studies. Fluency in English was also required. Informed consent was given 

prior to data collection. Ethical approval for the study was given by the Local Ethics Committee of 

the Department of Psychology at Goldsmiths, University of London. 

 

4.2.2 Materials 

With the exception of the ICAA (which was hosted on Qualtrics), all tasks were coded in Psychopy 

and PsychoJS (Peirce et al., 2019). Screen color for all tasks was gray. 

Creative / associative thought 



90 
 

Our measures of creative thinking included two typical verbal measures of creative performance 

(one a measure of creative idea generation, and one a measure of associative problem solving), 

and a self-report measure of creative achievement. These were in addition to two measures of 

associative thought likely to involve semantic clustering and switching processes (a chain 

association task and a verbal fluency task). 

Alternative Uses Task 

The AUT was used as a measure of verbal creative idea generation. The task was identical to that 

described in Chapter 3, with the following exceptions. There were four cues (Box, Rope, Shoe, 

Brick), and participants had 2 minutes per object to generate as many creative uses as they could. 

Ideas were later rated for creativity by three independent raters on a 1 (not at all creative) to 5 

(very creative) scale (Silvia, et al., 2009), and processed using automated measures of semantic 

distance to create scores for creative switching and overall semantic breadth (see Data Processing 

section below). 

Remote Associates Test 

The compound RAT (Bowden & Jung-Beeman, 2003) was used as a measure of associative 

problem-solving. This task was identical to that used in Chapter 3. 

Inventory of creative activities and achievements 

The ICAA was used as a self-report measure of creative achievement and engagement in creative 

activities. See the previous study for details on the content and scoring of the activities subscale of 

the ICAA (ICAA-Act). For the Achievement subscale of the ICAA (ICAA- Ach), participants mark the 

levels of achievement they have reached in eight domains including “music”, “literature”, and 

“science and engineering”. In each domain participants are shown 11 items ranging from “I have 

never been engaged in this domain” to “I have already sold some of my work in this domain”. 

Participants tick all the levels of achievement they have reached. Items in each domain are 

weighted from 0 to 10, and weighted scores are summed across items to produce a domain-

specific score. For the present purposes, scores were then summed across domains to produce a 

domain-general creative achievement score. 

Chain association 
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The Forward Flow task (a chain free association task) was used as a measure of associative 

processing (Gray et al., 2019). Participants were shown a single cue word and asked to type the 

first word that came to mind in response to the cue and press ‘enter’. They were then shown the 

word they had just typed, and had to again think of the first word that came to mind. This 

continued until they had entered 19 words. This process was repeated for three different cue 

words: “table”, “bear”, and “candle” (as used by Gray et al., 2019;see also Beaty et al., 2021b). 

Participants were instructed to type only single words and to avoid proper nouns.  Responses were 

later processed for Forward Flow score following Beaty et al., (2021b) and the SemDis platform 

(see Data Processing section, below). In addition to the calculation of forward flow score, 

responses were also processed through automated means to assess the semantic breadth of 

responses. 

Verbal fluency  

As an additional measure of associative memory processes, three verbal fluency tasks were used. 

Participants were given 60s per task to generate and type as many words as they could that fell 

into the following categories: “words beginning with M”, “words with five letters”, and “first 

names”. These tasks were selected from a prior study (Silvia et al., 2013), and chosen so that the 

categories involved would not overlap with those used in the RIF and Keep Track tasks. In each 

task, participants were shown the target category, together with a white text entry box, and the 

following brief reminder of the instructions, at the top of the screen: “Type as many words as you 

can that are in the category shown. Press ENTER after each word”. A countdown timer was also 

displayed at the bottom right of the screen. Each task was scored for the number of valid 

responses (e.g., excluding repetitions and incorrect responses). Responses to the categories 

“words beginning with M” and “words with five letters” were further processed to calculate the 

semantic breadth of responses. 

Executive measures 

The measures of executive function included a measure of executive switching, a measure of WM 

updating, a measure of cognitive inhibition, and a measure of WMC. In addition, self-report 

questionnaires were included to assess attentional control, ADHD, and mode-shifting.  
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Inhibition 

As a measure of cognitive inhibition, the RIF task from Chapter 3 was used. This measure of 

inhibitory control was found in Chapter 3 to be the most relevant to creative cognition. No 

changes were made to this task. 

Shifting 

To assess executive shifting, the odd/even-high/low task (Liu & Yeung, 2020; Pan & Yu, 2018) was 

used, which involves switching between two distinct tasks involving the same kind of stimulus (a 

single number between 1 and 9, excluding 5). Participants were told “You will be shown a series of 

numbers. Sometimes you will need to think whether the number is odd or even, and sometimes 

you will need to think whether the number is less than or greater than 5”. Task type was cued via 

the shape the number appeared inside. If the number appeared within a square, participants had 

to indicate whether it was odd ('F' key; left index finger) or even ('J' key; right index finger). If the 

number appeared within a diamond, participants had to indicate whether it was less than ('F' key) 

or greater than 5 ('J' key). Participants were told to respond as quickly and accurately as possible. 

Trials proceeded as follows: a 0.5s blank screen was followed by a central white fixation cross for 

0.5s. This was followed by the presentation of the number in the center of the screen within a 

square or a diamond. The diamond was simply the square rotated by 45 degrees. Participants then 

had up to 4s to make their response before the trial ended. In practice trials (but not real trials) a 

brief feedback message (“incorrect”) was displayed after incorrect trials, for 1.5s.  

Participants first completed short sets of practice trials (8 trials each) for each task individually 

(odd/even followed by high/low). They then completed a short practice (12 trials) where both 

tasks appeared together in a random order. Reminders of the instructions were given before each 

practice. Finally, participants completed 129 trials of both tasks together, where 64 trials were 

“switch” trials (i.e., they followed a trial from a different task), and 64 were “stay” trials (i.e., they 

followed a trial from the same task). The order of trials was the same across participants, and 

defined pseudo-randomly while meeting the following conditions: an equal number of trials from 

both tasks, and an equal number of switch and stay trials, in an unpredictable, non-repetitive 
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sequence. Analysis ignored the first trial and focused on the difference in RT between correct 

switch trials and correct stay trials (see Data Processing section). 

Updating 

To assess WM updating, the Keep Track task was used (Friedman et al., 2016; Zabelina et al., 

2019). This task requires participants to keep track of the last members of four categories in a 

stream of words. Trials proceeded as follows: following a white fixation cross (1s), a list of four 

category words was displayed left to right along the bottom of the screen (5s). These category 

words then remained on screen while a sequency of 12 category-member words were displayed 

for 1s each with a 0.25s interval. The order of appearance of the words (in terms of which category 

they belong to) was unpredictable (e.g., all the words of one category might appear in the first half 

of the sequence). At the end of the sequence, a 1s blank screen was followed by the recall phase: 

each category was shown one at a time together with a white text input box. Participants were 

required to type the last word shown in the category and press ‘enter’. The next category was 

then shown. 

Participants first completed a single practice trial with just three categories (furniture, names, 

tools). They then saw a reminder of the instructions, before completing eight real trials with four 

categories each, selected from a total of six possible categories (instruments, countries, 

vegetables, clothing, sports, animals). In real trials, the sequence of 12 words thus contained three 

words per category, selected from 12 possible category members. The dependent measure was 

the proportion of words recalled across all trials (out of a possible 32 words). 

Working memory capacity 

As a measure of WMC, the reading span task (RST; Daneman & Carpenter, 1980; Farmer, Fine, 

Misyak, & Christiansen, 2017; Hicks, Foster, & Engle, 2016; Van Den Noort, Bosch, Haverkort, & 

Hugdahl, 2008) was used. This complex span task was thought to be more likely to target 

processes relevant to verbal creative thinking than non-verbal alternatives (e.g., Smeekens & 

Kane, 2016; Unsworth, Redick, Heitz, Broadway, & Engle, 2009; Wagner, Shaffer, Ivanson, & Jones, 

2021). Participants were shown a series of sentences, some of which were semantically valid (e.g., 

“Spring is her favorite time of year because flowers begin to bloom”) and some of which were 
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semantically invalid (e.g., “The judge gave the boy community sweat for stealing the candy bar”). 

Participants had to judge the semantic acceptability of the sentence and indicate whether it made 

sense (‘J’ key; right index finger) or not (‘F’ key, left index finger), while attempting to remember 

the final word of the sentence.  

The task proceeded as follows. Participants first received instructions relating to the semantic 

judgement task, and completed a brief practice sequence containing three sentences. They were 

then instructed that they had to simultaneously try to remember the final word of each sentence, 

while keeping their accuracy on the semantic judgement task above 85%. Participants then 

completed a second practice containing two sequences of three sentences. At the end of each 

sequence, they were asked to recall the final word of each sentence in the sequence and type 

them in order of appearance. During this second practice, participants’ mean RT for the semantic 

judgement task was computed. This mean plus 2.5 SDs was used as the time limit for the semantic 

judgement task, for that participant. Finally, participants saw a reminder of the instructions before 

completing the real trials. These consisted of 36 sentences organized into sequences of 3, 4, 5, or 6 

sentences (2 sequences of each possible length). The order of sequences and sentences was 

randomized. If a participant’s RT in a trial exceeded the time limit for that participant, the trial 

ended and was counted as incorrect. This served to encourage participants to respond quickly and 

made cheating (e.g., writing down sentence-final words) more difficult. 

In each trial, sentences were presented in white font in the center of the screen, together with a 

reminder of the keys (“F = False, J = True”). Once participants made their response, a 0.2s blank 

screen was followed by the next sentence. After a sequence of sentences, a white text-entry box 

appeared with the instruction to “Enter all the final words from the previous [X] sentences, in the 

order they appeared. Type them all in one box, with a SPACE between each word, and press 

ENTER when finished." X was replaced with the number of sentences in the preceding sequence. 

After pressing ‘enter’, participants were shown their current judgement accuracy and the correct 

sentence-final words from the preceding sequence, as feedback. Participants then pressed ‘enter’ 

again when ready to begin the next sequence. 

Sentences were taken from a larger set used by Hicks et al. (2016). However, while Hicks and 

colleagues (2016) required participants to remember single letters presented between sentences, 



95 
 

given the online nature of the present study participants were asked to remember sentence-final 

words (e.g., Farmer et al., 2017; Daneman & Carpenter, 1980) as a precaution against cheating. To 

that end, sentences were chosen to such that their final words did not differ greatly in length (see 

also Van de Noort et al., 2008). Specifically, all final words were a single syllable and a similar 

number of letters (M = 3.92, SD = 0.65), while the number of letters (M = 66.11, SD = 4.56) and 

words (M = 13.08, SD = 1.00) in each sentence were also controlled. 

The dependent variable in the task was the number of words remembered in the correct order of 

appearance (Unsworth et al., 2009; Van den Noort et al., 2008). 

Attention Control Scale 

As a self-report measure of attentional control, the Attention Control Scale (ATTC; Derryberry & 

Reed, 2002) was used. The scale consists of 20 items (e.g., “My concentration is good even if there 

is music in the room around me”) that probe participants’ ability to regulate their attention. 

Participants mark how often each item statement is true for them, on a four-point Likert scale 

from 1 (almost never), to 4 (always). 11 items are reverse-scored. The ATTC yields one total scale 

and two subscales (attention shifting and attention focusing). Scores are calculated as the sum 

across the respective items. The present study examined only the total ATTC scale. 

ADHD self-report scale 

As an additional self-report measure of attentional control, the ADHD self-report scale (ASRS; 

Kessler et al., 2005) was used. This 18-item scale probes symptoms related to ADHD, and has a 

high diagnostic accuracy (Brevik, Lundervold, Haavik, & Posserud, 2020). Participants mark how 

often various symptoms are true for them (e.g., “How often do you have difficulty unwinding and 

relaxing when you have time to yourself?”), on a five-point Likert scale from 0 (never) to 4 (very 

often). The ASRS contains one total scale and two subscales (inattention and hyperactivity-

impulsivity). Scores are calculated as the sum of the respective items. In the present study only the 

total ADHD scale was examined. 

Mode-shifting index 

As a final self-report measure of attentional control, in this case related to switching ability, the 

Mode-Shifting Index (MSI; Pringle & Sowden, 2017) was used. The 11-item scale probes the ability 
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to shift between associative and analytic modes of thought, which has been suggested to be highly 

relevant to creative thinking (Bristol & Viskontas, 2006; Sowden et al., 2015; Zabelina & Robinson, 

2010). Participants mark how true each statement (e.g., “I am good at both figuring things out 

logically and going with my instincts when deciding on a course of action”) is for them, on a five-

point Likert scale ranging from 1 (completely false) to 5 (completely true). The MSI contains items 

probing two facets of mode-shifting: mode-shifting awareness and mode-shifting competence, 

which are examined separately in the present study. 

Additional Measures 

In addition to the above measures, I include the Cattell pattern completion task (Cattell & Cattell, 

1961) as a measure of fluid intelligence, and the Openness/Intellect subscale of the BFAS 

(DeYoung et al., 2007) to assess openness and intellect. These measures were unchanged from the 

study described in Chapter 3. 

 

4.2.3 Procedure 

The experimental procedure was as follows (see Figure 9). First, the ICAA was completed in 

Qualtrics. Participants were then directed to Pavlovia (https://pavlovia.org/), where the main 

experiment was hosted.  

Participants first completed the experimental tasks related to creative thinking and associative 

thought (i.e., the AUT, RAT, FF, and VF tasks). These were completed in one of four counter-

balanced orders. Next, participants completed the four measures of executive function (RIF, 

odd/even-high/low, Keep Track, and RST), again in one of four counter-balanced orders. To reduce 

fatigue, executive tasks were interleaved with the five questionnaires in the study (ATTC, ADHD, 

Openness/Intellect, MSI), which always appeared in a fixed order. Finally, participants completed 

the Cattell pattern completion task and the typing speed task. 
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4.3 Results 

4.3.1 Participant exclusions 

Eight participants were excluded entirely due to poor engagement (very low scores across multiple 

tasks). In addition, some participants’ data for individual tasks was excluded. Specifically, two 

participants were excluded from the typing speed task, and four participants from the FF task, due 

to misunderstanding the task instructions. Finally, 16 participants were excluded from the executive 

switching task due to a total error rate greater than 30%. 

 

4.3.2 Data Processing  

Additional processing was carried out for several tasks. For the executive switching task, incorrect 

trials and those following an error were excluded from analysis (11.42% of the data). Mean 

participant accuracy in the task was 91.72% (SD = 4.72%). In addition, RTs that differed by more 

than 2 SDs from the individual mean for each participant and condition (switch vs stay) were 

removed (an additional 4.43% of the data). Task score for each participant was then calculated as 

mean switch RT minus mean stay RT. 

Figure 9 
Experimental Procedure (left to right) 

 

Note. Participants completed the ICAA, before completing creative/associative tasks in one of four orders. 
They then completed executive tasks in one of four orders. Executive tasks were interleaved with 
questionnaires. Except for the ICAA, all tasks were coded in Psychopy (Pierce et a., 2019) and hosted on 
Pavlovia (https://pavlovia.org/). 
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Data from the verbal, generative tasks in the study (AUT, FF, VF) were also subjected to additional 

processing to calculate automated measures of semantic distance. Several measures were 

calculated depending on the specific task in question. Importantly, two separate methods were 

used to calculate semantic distance. The first, which was used for the FF and VF (where responses 

are single words) used a latent factor extracted from five separate semantic models, using the 

SemDis platform (Beaty & Johnson, 2021), and the multiplicative model option. The second, used 

for AUT responses, was the semantic distance calculated using the BERT model (Devlin et al., 

2019). BERT makes use of context-dependent word embeddings, and so should provide better 

estimates of semantic distance in the case of longer responses, such as AUT responses. In both 

cases, responses were first cleaned by removing punctuation and stop words, using the SemDis 

platform’s “Remove filler and clean” method. 

For the FF task, two automated measures of semantic distance were calculated. First, the forward 

flow measure itself was calculated (Beaty et al., 2021b; Gray et al., 2019). Here, for each response, 

the average semantic distance between the response and its preceding responses is calculated. 

Next, this value is then averaged across all responses in a trial (typically 19 words minus any invalid 

responses) to produce the forward flow score for that trial. Notably, forward flow score was 

calculated using SemDis, and did not make use of LSA as done in the original study by Gray and 

colleagues (2019). In addition to the standard forward flow score, SemDis was used to calculate 

semantic breadth, as the average semantic distance between pairs of consecutive responses (i.e., 

between each response and its immediately preceding response). This was found by summing the 

semantic distance between all pairs and dividing by the number of pairs, and provides a measure 

of the typical size of the associative jumps made by a participant in a given task.  

For the VF tasks, only semantic breadth was calculated, again using SemDis, and only for two 

prompts: “words beginning with M”, and “words with 5 letters”.  

For the AUT, all measures of semantic distance used the BERT model, and not SemDis. Semantic 

breadth was calculated together with two additional measures. First, similar to semantic breadth, 

the semantic distance between all pairs of consecutive responses was calculated, for each 

participant and for each cue. Then, for each cue separately, but across all participants, a threshold 

value was found that distinguished the lowest 20% of semantic distances. ‘Stay’ responses were 
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then defined as responses with a semantic distance to their preceding response that was lower 

than this threshold (while ‘switch’ responses fell above this threshold; see Fernández-Fontecha & 

Ryan, 2023, for a similar method of defining switch and stay responses). From this data, each 

participants’ average number of switches (across cues) was computed as an automated measure 

of the number of category switches (autoSwi). Finally, an automated creativity score (autoCrea) 

was calculated by computing the average semantic distance between each response and the cue 

word, for each participant across all responses to all cues. This was included primarily as a more 

direct means of assessing the relationship between human-rated creativity and automated 

measures of creative performance. 

As noted, responses in the AUT were rated for creativity by three independent human raters, 

recruited via Prolific. Inter-rater reliability was in the excellent range, with an ICC of .93 (.90 – .94). 

 

4.3.3 Analyses 

Analyses explored the relationships between measures of creative thinking and measures of 

executive functions, with Pearson correlations.  

 

4.3.4 Descriptive statistics  

Descriptive statistics for all variables of interest are shown in Table 17. Note that the sample size is 

slightly lower for the FF and Shifting variables, due to participant exclusions for these tasks. 
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4.3.5 Correlations 

I report correlations between variables in three sets: correlations among creative and associative 

measures, correlations among executive functions, intelligence, and questionnaires, and 

correlations between these two sets. 

Table 17 
Descriptive statistics for all variables 

 N M SD Min Max 

AUT Fluency 192 7.82 3.53 2.00 22.50 

AUT Creativity 192 2.56 0.38 1.72 3.55 

AUT autoCrea 192 0.70 0.05 0.47 0.80 

AUT autoSwi 192 0.68 0.09 0.30 0.90 

AUT SemBre 192 0.74 0.05 0.57 0.83 

RAT 192 4.68 2.09 0.00 9.00 

VF 192 16.50 4.06 5.67 25.00 

VF SemBre 192 0.00 0.03 -0.18 0.06 

FF 188 -0.02 0.02 -0.08 0.04 

FF SemBre 188 -0.14 0.04 -0.23 0.01 

ICAA Act. 192 7.57 4.29 0.00 21.33 

ICAA Ach. 192 44.98 38.41 0.00 188.00 

Inhibition 192 0.96 2.11 -4.00 6.00 

Shifting 176 0.18 0.14 -0.14 0.57 

Updating 192 19.79 5.30 3.00 32.00 

WMC 192 24.59 8.49 7.00 36.00 

Openness 192 37.29 5.98 19.00 49.00 

Intellect 192 35.31 6.83 16.00 50.00 

MSIc 192 15.63 2.37 5.00 20.00 

MSIa 192 25.31 3.74 13.00 35.00 

ATTC 192 50.68 9.18 31.00 73.00 

ADHD 192 50.46 10.94 18.00 86.00 

Gf 192 7.18 1.50 4.00 11.00 

Note. AUT = Alternative Uses Task; Flu. = fluency score; Crea. = human-rated 
creativity score; SemBre = semantic breadth; autoSwi = automated switching score; 
autoCrea. = automated creativity score; RAT = Remote Associates Test; VF = verbal 
fluency; FF = Forward Flow; ICAA = Inventory of Creative Achievements and 
Activities; Act. = Activities subscale; Ach. = Achievements subscale. WMC = working 
memory capacity; MSIc = Mode Shifting Index, competence; MSIa = Mode Shifting 
Index, awareness; ATTC = Attention Control Scale; ADHD = ADHD self-report scale; 
Gf = fluid intelligence. 
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Correlations among creative and associative measures 

Correlations among creative and associative measures are shown in Table 18. AUT fluency was 

negatively related to AUT human-rated creativity (r = -.22, p = .003), and automated measures of 

creativity (r = -.23, p = .002) and semantic breadth (r = -.22, p = .002). These results suggest that 

those who generate more ideas tend to generate fewer creative ideas (or rather, that more 

creative ideas take longer to form). AUT fluency was also positively related to verbal fluency (r 

= .30, p < .001), suggesting that the generation of creative uses and category members share 

similar processes, at least in terms of the number of responses generated. Human-rated AUT 

creativity was positively related to the automated measure of AUT creativity (r = .53, p < .001), 

suggesting that semantic distance as measured using the BERT model is an effective proxy for 

human-rated creativity (Beaty DSI). 

Interestingly, the number of switches a person made in the AUT was not significantly related to 

any other creative or associative measure (ps > .054). However, AUT semantic breadth, or the 

average distance between consecutive responses was positively related to human-rated creativity 

Table 18 
Correlations among creative and associative measures 
 1 2 3 4 5 6 7 8 9 10 11 

1. AUT Fluency -           

2. AUT Crea. -.22** -          

3. AUT autoCrea. -.23** .53** -         

4. AUT autoSwi .13 -.07 -.14 -        

5. AUT SemBre -.22** .43** .71** -.02 -       

6. RAT .17* .25** .19** .01 .25** -      

7. VF .30** .09 .22** .00 .21** .32** -     

8. VF SemBre .03 .02 .04 -.14 .06 .19** -.01 -    

9. FF .02 .10 .13 -.05 .01 .00 .04 .16* -   

10. FF SemBre -.02 .13 .14 -.07 -.08 -.09 -.19* .22** .65** -  

11. ICAA Act. .16* .14 .01 -.05 .04 .06 .00 -.02 .11 .07 - 

12. ICAA Ach. .13 .14 .05 -.02 .07 .03 .07 -.04 .05 .01 .67** 

Note. AUT = Alternative Uses Task; Crea. = human-rated creativity score; autoCrea. = automated creativity score; 
autoSwi = automated switching score; SemBre = semantic breadth; RAT = Remote Associates Test; VF = verbal 
fluency; FF = Forward Flow; ICAA = Inventory of Creative Achievements and Activities; Act. = Activities subscale; Ach. 
= Achievements subscale. * p < .05, ** p < .01. 
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(r = .43, p < .001). Indeed, the measure of switching used is derived from the semantic breadth 

measure, and is simply the number of times a participant made an associative jump, between 

pairs of consecutive responses, that was in the top 80% of associative jumps made by all 

participants. It is possible that counting the number of larger jumps in this manner fails to 

approximate human definitions of clustering and switching, while the average associative jump 

size (semantic breadth) provides a better assessment of creative processes. 

RAT performance was positively related to AUT fluency (r = .17, p < .020), human-rated AUT 

creativity (r = .25, p < .001), and automated measures of creativity (r = .19, p = .009) and semantic 

breadth (r = .25, p < .001). Contrary to the study discussed in Chapter 3, a positive relationship 

between verbal divergent and verbal convergent thinking was thus found. These results also 

suggest that the present automated measures of creative switching and creative quality do indeed 

tap into creative cognition. RAT performance was also positively related to verbal fluency score (r 

= .32, p < .001), which in turn was positively related to automated measures of creativity (r = .22, p 

= .002) and semantic breadth (r = .21, p = .004), though not human-rated creativity (r = .09, p 

= .205). These relationships might indicate that the automated measures of creativity, which are 

based on the distance between each response and the cue (for creativity), and between each 

response and the previous response (for semantic breadth), assess mainly associative processes of 

the kind involved in the RAT and VF, while human-rated creativity taps into an additional element 

not involved in VF. 

Our other associative measures (FF and semantic breadth in the FF and VF tasks) were not 

significantly correlated with many other measures, though they were positively related to each 

other (ps < .026). ICAA score for both the activities and achievement subscales were not 

significantly related to almost any behavioral measures of creativity or association-making, though 

ICAA activities was slightly positively related to AUT fluency (r = .16, p = .033). 

Correlations among executive functions and questionnaires 

Correlations among executive functions and questionnaire measures are shown in Table 19. 

Relations among executive functions were low: only WM updating and WMC were significantly 

correlated (r = .39, p < .001), which was unsurprising given prior research arguing that they assess 

the same construct (Schmiedek et al., 2014). 
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Notably, there were also few significant correlations between executive functions and 

questionnaires, though WMC was found to be positively related to openness (r = .17, p = .018), 

and both mode-switching competence (r = .20, p = .005) and awareness (r = .17, p = .019). 

Moreover, both updating (r = .20, p = .006), and WMC (r = .20, p = .006), were positively related to 

intelligence, which was not significantly related to inhibition or shifting. 

Considering questionnaires, mode-shifting competence and awareness were positively related to 

each other (r = .34, p < .001), and to openness (r = .30, p < .001; r = .32, p < .001, respectively). 

Only mode-shifting competence was significantly related to intellect (r = .36, p < .001), however. 

It was also notable that intellect and mode-shifting competence were positively related to 

attention control (r = .41, p < .001; r = .26, p < .001, respectively), and negatively related to the 

ADHD scale (r = -.25, p < .001; r = -.16, p < .031, respectively), while mode-shifting awareness was 

negatively (but not significantly) related to attention control (r = -.10, p = .152), and positively 

related to ADHD (r = .26, p < .001). These results suggest that those who are more aware of mode-

shifting actually believe themselves to be poorer at controlling their attention. As would be 

expected, attention control was negatively related to ADHD (r = -.62, p < .001). 

Table 19 
Correlations among executive functions and questionnaires 
 1 2 3 4 5 6 7 8 9 10 

1. Inhibition -          

2. Shifting .03 -         

3. Updating -.10 -.05 -        

4. WMC -.10 -.11 .39** -       

5. Open .06 -.03 .13 .17* -      

6. Intel .06 -.01 .01 .06 .36** -     

7. MSIc .02 -.02 .05 .20** .30** .36** -    

8. MSIa .08 .00 .09 .17* .32** .04 .34** -   

9. ATTC -.04 -.09 -.06 .06 .06 .41** .26** -.10 -  

10. ADHD .13 .06 .00 -.01 .13 -.25** -.16* .26** -.62** - 

11. Gf .01 .04 .20** .20** -.01 .04 -.03 -.04 -.05 -.03 

Note. WMC = working memory capacity; MSIc = Mode Shifting Index, competence; MSIa = Mode Shifting 
Index, awareness; ATTC = Attention Control Scale; ADHD = ADHD self-report scale; Gf = fluid intelligence. 
* p < .05, ** p < .01. 
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Correlations between creative and associative measures and executive functions and 

questionnaires 

 Correlations between measures of creativity and associative processing, and measures of 

executive functions and questionnaires, are shown in Table 20. Very few significant relationships 

were found between measures of AUT performance and executive functions, though a weak 

positive relationship was observed between shifting and the automated measure of creativity (r 

= .16, p = .033). Critically, the finding from Chapter 3, where RIF was found to be positively related 

to divergent thinking performance, was not replicated. 

Aside from the AUT, WM updating was found to correlate positively with RAT (r = .21, p = .003) 

and VF performance (r = .31, p < .001), while WMC was positively relate to VF (r = .19, p = .009) 

and showed a non-significant positive trend with the RAT (r = .12, p = .112). Together, these results 

suggest that updating and WMC may support associative processes that underlie the retrieval of 

Table 20 
Correlations among executive functions and creative and associative measures 
 Inhib. Shift. Updat. WMC Open. Intel. MSIc MSIa ATTC ADHD Gf 

AUT Fluency .07 .06 .13 .06 .10 .02 -.13 .00 -.06 .23** .09 

AUT Crea. .01 -.02 .12 .10 .24** .11 .10 .13 -.08 .09 .06 

AUT autoCrea .10 .16* .10 .00 .09 .11 .05 .04 -.07 .03 .13 

AUT autoSwi .11 -.09 -.02 -.01 -.05 -.05 .06 .10 .10 .02 .04 

AUT SemBre .13 .11 .04 -.01 .11 .11 .01 .07 -.04 .06 .15* 

RAT -.04 .07 .21** .12 .21** .09 -.05 .17* -.15* .19** .20** 

VF .10 .02 .31** .19** .08 .04 .03 .18* -.16* .13 .32** 

VF SemBre .12 .10 -.04 -.09 .00 .00 -.08 -.11 -.05 .08 .03 

FF .07 .11 -.05 -.11 .10 .06 .01 -.04 -.12 .11 -.05 

FF SemBre .11 .07 -.16* -.21** .07 .00 -.01 -.04 -.12 .10 -.21** 

ICAA Act. .00 .02 .06 .20** .26** .18* .20** .20** .06 .19** .10 

ICAA Ach. .05 -.18* .01 .07 .27** .16* .14 .22** -.03 .12 .10 

Note. AUT = Alternative Uses Task; Crea. = human-rated creativity score; autoCrea. = automated creativity score; 
autoSwi = automated switching score; SemBre = semantic breadth; RAT = Remote Associates Test; VF = verbal 
fluency; FF = Forward Flow; ICAA = Inventory of Creative Achievements and Activities; Act. = Activities subscale; 
Ach. = Achievements subscale. Inhib. = Inhibition; Shift. = Shifting; Updat. = Updating; WMC = working memory 
capacity; Open. = Openness; Intel. = Intellect; MSIc = Mode Shifting Index, competence; MSIa = Mode Shifting 
Index, awareness; ATTC = Attention Control Scale; ADHD = ADHD self-report scale; Gf = fluid intelligence. * p < .05, 
** p < .01. 
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RAT solutions and category members (de Vink et al., 2021; Gerver et al., 2023). Meanwhile, both 

updating (r = -.16, p = .031) and WMC (r = -.21, p = .003) were negatively related to FF semantic 

breadth, possibly indicating that greater WM updating is related to persistence within a semantic 

category rather than the exploration of new categories (de Dreu et al., 2012). 

Moving beyond executive functions, openness was positively related to RAT performance (r = .21, 

p = .003) and human-rated AUT creativity (r = .24, p = .001), a common finding (Oleynick et al., 

2017). However, openness was not significantly related to the automated measure of AUT 

creativity (r = .09, p = .215), suggesting a limit to the use of this automated measure to assess 

creative abilities. It is possible that this measure does not reflect certain key processes in creative 

thinking, which underlie the commonly-found relationship between openness and AUT 

performance. 

Both openness and intellect were positively related to real-world creative achievement as 

assessed by the ICAA (both activities and achievements; ps < .026). Measures of AUT performance 

also showed little relationship with executive questionnaires and intelligence, except for positive 

correlations between AUT fluency and ADHD (r = .23, p = .001), and between AUT semantic 

breadth and intelligence (r = .15, p = .034). It was notable that no relationship was found between 

human-rated AUT creativity and intelligence, which is commonly found (Frith et al., 2021a) and 

indeed was found in the study in Chapter 3.  

Both RAT and VF performance were positively related to mode-switching awareness (r = .17, p 

= .021; r = .18, p = .013, respectively), intelligence (r = .20, p = .006; r = .32, p < .001, respectively), 

and ADHD (r = .19, p = .008; r = .13, p < .001, respectively), while being negatively related to 

attention control (r = -.15, p = .034; r = -.16, p = .024, respectively). Together, these results suggest 

that the associative processes involved in the RAT and VF relate to intelligence and mode-

switching, but not to attention control as assessed by the ATTC. This may reflect the fact that the 

attention control scale primarily targets the ability to shut out distracting thoughts and shift 

between tasks. Those with greater RAT and VF performance may believe they have trouble 

shutting out distracting thoughts (i.e., reduced inhibitory control) while possessing a greater ability 

to update WM and retrieve associative information. 



106 
 

 

4.4 Discussion 

The present study was conducted to examine whether control over WM is relevant to creative 

cognition. Researchers have suggested that creative cognition involves switching between broad, 

exploratory states and narrow, exploitative states (Zabelina & Robinson, 2010; Zhang et al., 2020), 

between narrow and broad conceptual representations (Gabora, 2018), and between generation 

and evaluation (Ellamil et al., 2012, Kleinmintz et al., 2019), which may all be processes that 

depend on control over WM. Indeed, control over WM in creative cognition could allow distracting 

ideas to be suppressed, conceptual categories to be switched between, and WM content to be 

refreshed easily to allow new and original ideas to activate.  

Factors such as how often participants switch between narrow and broad states, or between 

generation and evaluation, are difficult to assess directly. However, control over WM could 

influence factors such as the breadth by which semantic memory is traversed (as might be 

measured by the semantic distance between consecutive responses), as well as the number of 

conceptual categories explored in creative tasks. WM control could also impact the number of 

ideas that are reported overall (i.e., fluency), as well as measures of overall creative performance 

including RAT score and human-rated creativity in the AUT. Currently, however, research into the 

relationship between creative cognition and executive functions has produced very mixed findings 

(Benedek et al., 2014c; de Dreu et al., 2012; Hao et al., 2015b; Krumm et al., 2018; Pan & Yu, 2018; 

Stolte et al., 2020; Zabelina et al., 2019). There is little consensus in the literature regarding how 

exactly executive functions including inhibition, shifting, and updating contribute to creative 

cognition. 

In this exploratory study, measures of each of the three executive functions of inhibition, shifting, 

and updating were included, together with a measure of WMC. Measures of convergent and 

divergent creative cognition (the RAT and AUT, respectively) were also included, together with 

measures of associative processes including the FF task and VF tasks. Finally, the study included 

measures of real-world creative achievement and engagement in creative activities (ICAA), a 

measure of intelligence, and self-report measures of openness, intellect, mode-shifting, attention 

control, and ADHD. To assess elements of creative cognition including the number of categories 
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explored and the semantic breadth of responses, several recent methods of calculating semantic 

distance were used, including SemDis (for VF and FF responses; Beaty & Johnson, 2021) and the 

BERT model (for AUT responses; Devlin et al., 2019). 

 

4.4.1 Review of findings  

I found significant correlations among different creative and associative measures, suggesting the 

measures used were valid and that online participants engaged well with the tasks. Specifically, it 

was found that AUT fluency was negatively related to measures of AUT creative quality (suggesting 

that more creative ideas take longer to form) and positively related to RAT performance and VF 

score (suggesting that shared associative processes enable AUT fluency, and VF and RAT 

performance). Indeed, significant correlations were also found between RAT performance and 

semantic breadth in the AUT and VF tasks. Correlations between RAT performance and human-

rated and automated measures of creativity in the AUT were also significant, again underlining a 

possible overlap between divergent and convergent thinking. Finally, a strong correlation was 

found between human-rated and automated measures of creativity in the AUT, suggesting that 

the BERT model is an effective method of estimating creative performance in this task (see 

Johnson et al., 2022). 

Correlations among executive measures were surprisingly low. Indeed, only updating and WMC 

were significantly correlated with each other. Moreover, only updating and WMC were related to 

intelligence, and only WMC was related to questionnaires assessing WM-relevant factors such as 

mode-shifting. 

Crucially, correlations between creative and associative measures and executive functions were 

also low. Indeed, significant correlations were only found for updating and WMC with the RAT and 

VF, suggesting that updating is important for the associative processes that operate in these tasks 

(Gerver et al., 2023; Palmiero et al., 2022). Critically, the finding from Chapter 3, where cognitive 

inhibition as measured by the RIF contributed significantly to divergent thinking performance, was 

not replicated. This was despite using exactly the same measure of RIF, and a very similar version 

of the AUT (only the cues themselves were different). Weak negative correlations were found 
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between one measure of semantic breadth, in the FF task, and updating and WMC, which may 

provide some tentative evidence that those with greater WMC persist longer in single categories 

and do not shift as often (de Dreu et al., 2012). 

Aside from executive functions, no significant correlations were found between AUT performance 

and self-report measures, besides from small correlations between ADHD and AUT fluency (as 

found previously in some studies; Boot, Nevicka, & Baas, 2020; Stolte et al., 2022), and between 

AUT creativity and openness (Oleynick et al., 2017). RAT and VF performance was positively 

related to intelligence and mode-shifting awareness while being slightly negatively related to self-

reported attention control, which may suggest that these tasks benefit from updating ability and 

intelligence while being negatively impacted by inhibition (as assessed by the attention control 

scale). 

 

4.4.2 Limitations and future directions 

While the present research was exploratory, it was expected that more relationships would be 

found between executive functions and different aspects of creative cognition. The study was 

unable to produce more concrete findings regarding the relationships between control over WM 

and creative cognition than previous research (Gerver et al., 2023; Palmiero et al., 2022). Creative 

cognition presumably must involve some form of control over WM to enable the generation of 

creative ideas, the suppression of uncreative ideas, the retrieval of semantic information from 

memory, the formation of new associations, and switching between semantic categories or 

between generative and evaluative states. However, it is possible that the measures of executive 

function used in the present study do not assess the same WM control processes that underlie 

performance in creative tasks.  

One issue for the present study is that data were collected online, which may have impacted 

participant engagement. While participants with very low performance were excluded from the 

switching task – and in eight cases, from the entire study – participant engagement with measures 

of executive function may have been considerably lower than in laboratory-based studies. This in 

turn may have affected the relationships observed between executive functions and creative 
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cognition. Indeed, it has been found that engagement with demanding tasks can be lower for 

online studies than in-person studies, though this can be mitigated by providing performance-

based rewards (Bianco, Mills, de Kerangal, Rosen, & Chait, 2021).  

Further research, conducted in person, and including several measures of each construct (e.g., 

inhibition, updating, visual and verbal divergent thinking, etc.), could shed further light on the 

relationships between executive functions and creative cognition. More fine-tuned measures of 

creative cognition, that can probe factors such as switches between generation and evaluation, 

the time dynamics of idea retrieval, or the structure of an individual’s semantic memory (Kenett, 

2019; Kenett et al., 2018a), may be better placed to examine the processes underlying creative 

cognition. Such research could then examine the relations between creative cognition and control 

over WM using more sophisticated techniques than pure correlations, such as structural equation 

modeling (e.g., Benedek et al., 2014c; Frith et al., 2021a). Moreover, executive processes may not 

contribute evenly to creative cognition in all participants. For example, some participants might 

favor creative strategies that lean more on free associative processes, while others favor analytic 

strategies (Barr, 2018; Zhang et al., 2020). Taking into account individual differences in the 

relationships between executive functions and creative cognition may be possible using 

hierarchical mixed effects models (e.g., Acar, Runco, & Park, 2019). 

Computational modelling could also provide a more effective means of examining how executive 

functions and associative processes interact to produce creative ideas, and how they might 

interact differently in different contexts. For example, a model of verbal creative cognition could 

be created with specific components that reflect WM, and control over WM through inhibition, 

WM updating, and shifting, as well as associative processes such as the rate at which activation 

spreads through memory. Parameters governing the behaviors of these processes could then be 

adjusted to fit empirical measures of executive functions and creative performance, potentially for 

each participant individually. This would enable researchers to test different causal pathways 

between cognitive processes, such as inhibitory control, and creative outcomes. This possibility, 

and the importance of greater computational modeling in general for NCR, will be explored in 

more detail in the next chapter. 
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CHAPTER 5: THE IMPORTANCE OF COMPUTATIONAL MODELING 

FOR NEUROCOGNITIVE CREATIVITY RESEARCH 
 

5.1 Introduction 

Creativity has traditionally been considered an important yet somewhat mysterious ability, and 

even after considerable research into the cognitive and neural basis of creative cognition there 

exists considerable variation in how creativity is conceived, operationalized, and assessed across 

fields (Hennessey & Amabile, 2010; Plucker, 2022; Plucker, Beghetto, & Dow, 2004; Puryear & 

Lamb, 2020).  

As discussed in previous chapters, NCR covers a diverse range of research areas, and has begun to 

uncover how creative cognition relates to numerous cognitive and psychological factors including 

attention (Liu & Peng, 2020; Zabelina, 2018), memory (Benedek, Beaty, Schacter, & Kenett, 2023; 

Kenett et al., 2018; Madore, Addis, & Schacter, 2016; Storm, Angello, & Bjork, 2011), executive 

control (Benedek et al., 2014c; Camarda et al., 2018a; Chrysikou, 2019), and reward processing 

(Beversdorf, 2019; Boot et al., 2017; Lin & Vartanian, 2018). NCR has also made considerable 

progress in identifying the neural correlates of creative cognition, for example finding that greater 

creative performance relates to enhanced EEG alpha waves (Agnoli et al., 2020; Fink et al., 2018; 

Rominger et al., 2019; Stevens & Zabelina, 2020), and greater fMRI connectivity between large-

scale brain networks (Beaty, Cortes, Zeitlen, Weinberger, & Green, 2021; Chen, Beaty, & Qiu, 

2020; Mayseless, Eran, & Shamay-Tsoory, 2015; Sunavsky & Poppenk, 2020; see also Chapter 2).  

However, it remains unclear how exactly these neural and psychological correlates lead to the 

production of creative ideas. Despite the remarkable progress of NCR, our theoretical 

understanding of creative cognition is still in its infancy. Over recent decades, the cognitive 

theories that guide NCR have evolved from more abstract accounts, such as the distinction 

between convergent and divergent thinking (Guilford, 1959, 1967), to more specific accounts that 

describe how creative ideas can emerge from, for example, spontaneous and controlled processes 

(Benedek et al., 2023; Benedek & Jauk, 2018; Volle, 2018) and flexible and persistent meta-control 

states (Nijstad et al., 2010; Zhang et al., 2020). In addition, significant efforts have been made to 

formalize and standardize the ontology used by NCR researchers (Gabora, 2018; Kenett et al., 
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2020; Simonton, 2013, 2022; Sowden et al., 2015). However, considerable work remains to move 

the field away from loosely defined verbal accounts toward mechanistic theories of creative 

cognition, complete with causal hypotheses regarding the cognitive operations that produce 

creative ideas.  

This chapter argues that the wider adoption of computational modeling can help greatly in 

achieving this aim. Computational modeling involves formalizing a theory into a set of algorithmic 

operations (Farrell & Lewandowsky, 2015; Maia et al., 2017). This process requires the theory to 

be fully described in explicit terms, which can expose assumptions that might otherwise remain 

hidden, and lends considerable clarity, rigor, and reproducibility to the development of theories 

and hypotheses (Farrell & Lewandowsky, 2015; Guest & Martin, 2021). Computational models also 

allow causal hypotheses to be formulated and tested, helping researchers to establish 

relationships between neurocognitive factors and creative behavior (Blohm et al., 2020; Wiggins & 

Bhattacharya, 2014). Indeed, calls for greater modeling within psychology as a whole are growing 

(Blohm et al., 2020; Guest & Martin, 2021; Smaldino, 2020), yet modeling is rarely used in NCR. 

Meanwhile, though computational creativity is itself a growing field (e.g., Carnovalini & Rodà, 

2020; Gatti, Stock, & Strapparava, 2021; Mekern, Hommel, & Sjoerds, 2019a) with its own annual 

conference (the International Conference on Computational Creativity), it has developed in 

relative isolation from NCR, with little cross-pollination between the two fields. Increased 

collaboration could lead to both a clearer understanding of human creativity and more human-like 

artificial creative systems (Chateau-Laurent & Alexandre, 2021; Dipaola, Gabora, & McCaig, 2018; 

Gobet & Sala, 2019). Critically, however, very few computational models exist that both embody a 

theoretical account from NCR and can perform (and thus, be validated on) common lab-based 

creativity tasks. 

First, I provide an overview of recent cognitive theories of creativity. I then consider some 

limitations of purely verbal theories and how NCR would benefit from the increased adoption of 

computational modeling. Next, I discuss recent computational models of creativity, exploring 

several models that aim to account for performance in common lab-based creative tasks. Finally, I 

outline a pathway toward greater computational modeling within NCR, considering ways in which 
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existing models might be improved (including a greater focus on modeling multiple creative tasks) 

and examining an example of model development. 

 

 

5.2 The theories that guide NCR 

Guiding NCR are a range of theoretical accounts, providing a conceptual scaffold for researchers to 

interpret data and develop further hypotheses. These accounts range from being relatively 

abstract to quite specific in terms of the cognitive processes they describe. For example, an older 

but highly influential account is Wallas’ (1926) four-stage model, which describes the creative 

process as involving distinct stages of preparation, incubation, inspiration, and verification. This 

account is broadly suggestive of the processes that might produce creative ideas and can be seen 

as a precursor to more recent and specific theories.  

Another older account (and one that still retains tremendous popularity among NCR researchers) 

is the distinction between convergent and divergent thinking. These terms were first coined by 

Guilford (1950, 1959) as two of the (initially) five major intellectual abilities in his Structure of the 

Intellect model (Guilford, 1967). Guilford defined both kinds of thinking in terms of the number of 

solutions they produce, with divergent thinking defined as “thinking in different directions” to 

produce a “variety of responses”, and convergent thinking defined as producing “one right 

answer” (Guilford, 1959). While both modes of thought were described as ways to generate new 

information from old information, Guilford linked divergent thinking to creativity and convergent 

thinking to the ability to solve intelligence tests (but see more recent evidence linking divergent 

thinking to intelligence; Frith et al., 2021a; Karwowski et al., 2016). It is worth noting that the 

Structure of Intellect model was later criticized due to issues with the factor analytic evidence 

used to support it, and the model has little support today (Jensen, 1998; Mackintosh, 1998; 

Undheim & Horn, 1977). 

In the years since Guilford, the divergent and convergent thinking constructs have gradually 

evolved and been reinterpreted, with researchers now arguing that both play important roles in 

creative cognition (Basadur, 1995; Brophy, 2001; Caughron, Peterson, & Mumford, 2011; Cropley, 
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2006; Jung et al., 2013; Runco, 2012, 2014b). Indeed, many researchers have shifted away from 

defining divergent and convergent thinking in terms of the number of solutions they produce, 

toward defining divergent thinking as a generative process that produces novel ideas, and 

convergent thinking as an evaluative process that selects and refines ideas (Basadur, 1995; 

Brophy, 2001; Cropley, 2006; Lee & Therriault, 2013). These generation-evaluation definitions of 

divergent and convergent thinking can be seen in numerous recent NCR articles (e.g., de Vink et 

al., 2021; Eskine, Anderson, Sullivan, & Golob, 2020; Gabora, 2018; Jung et al., 2013; Kleinmintz et 

al., 2019; Lee & Therriault, 2013), although Guilford’s original definitions (many solutions vs. a 

single solution) also remain popular (e.g., Gilhooly, Fioratou, Anthony, & Wynn, 2007; Lu, Akinola, 

& Mason, 2017; Radel et al., 2015; Runco, 2010; Shamay-Tsoory, Adler, Aharon-Peretz, Perry, & 

Mayseless, 2011; Volle, 2018). This reinterpretation of divergent and convergent thinking has its 

roots in another common framework for conceptualizing creativity, which suggests that creative 

ideas arise from iterative cycles of generation and evaluation (Basadur, 1995; Ellamil et al., 2012; 

Finke et al., 1992; Jung et al., 2013; Kleinmintz et al., 2019). A prominent theory of this kind is the 

blind variation and selective retention (BVSR) model, first suggested by Campbell (1960) and later 

expanded upon by Simonton (2013, 2022). BVSR argues that creative cognition involves cycles of 

relatively undirected (or partially sighted; Simonton, 2013) processes to produce multiple ideas, 

and directed processes that select the best idea to develop further. 

Among the most popular frameworks for understanding creative cognition that have emerged in 

recent decades are dual-process accounts. These argues that creative cognition emerges from the 

interactions of spontaneous, associative processes and controlled, analytic processes (Allen & 

Thomas, 2011; Barr, 2018; Benedek et al., 2023; Benedek & Jauk, 2018; Sowden et al., 2015; Tubb 

& Dixon, 2014; Volle, 2018). The account is based on wider dual-process theories of cognition (e.g., 

Evans, 2008; Evans & Stanovich, 2013; Kahneman, 2011), which describe two broad categories of 

processes which might be termed Type 1 and Type 2 (Evans & Stanovich, 2013). Type 1 processes 

are typically described as associative, fast, unconscious, and implicit, while Type 2 processes are 

described as controlled, slow, conscious, explicit, and dependent on WM (Evans, 2008; Evans & 

Stanovich, 2013; Tubb & Dixon, 2014). NCR researchers have discussed the overlaps between dual-

process associative and controlled processes, divergent and convergent thinking, and generation 

and evaluation (Benedek & Jauk, 2018; Goldschmidt, 2016; Sowden et al., 2015), with some 
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highlighting differences between the accounts (e.g., Sowden et al., 2015; Tubb & Dixon, 2014), and 

others concluding that they are broadly synonymous (e.g., Benedek & Jauk, 2018; Goldschmidt, 

2016). Indeed, many NCR articles now define divergent and convergent thinking in terms of 

associative and controlled processes (e.g., Augello et al., 2016; Cortes et al., 2019; Drago & 

Heilman, 2012), producing a third interpretation of Guilford’s original constructs. 

The accounts discussed so far are, for the most part, relatively imprecise, leaving considerable 

room for interpretation. For example, describing creative cognition as involving divergent and 

convergent thinking, or cycles of generation and evaluation, does not greatly constrain the space 

of possible cognitive mechanisms that might underlie creativity. However, as the findings of NCR 

have grown, more specific theories of creative cognition have emerged. One example is the BVSR 

theory (Simonton, 2013, 2022), which defines its variational and selective processes in formal 

mathematical terms. Another is the contextual focus theory (Gabora, 2010, 2018) which builds on 

suggestions that creative cognition involves switching between narrow and broad attentional 

states (Bristol & Viskontas, 2006; Dorfman et al., 2008; Gabora, 2010; Herz, Baror, & Bar, 2020; 

Zabelina & Robinson, 2010) to define divergent thinking as the broadening of conceptual 

representations to include more abstract and associative information, and convergent thinking as 

the narrowing of representations to only the most relevant information (Gabora, 2010, 2018).  

Researchers have also suggested more specific cognitive mechanisms corresponding to the 

associative and controlled processes described by the dual-process account of creative cognition 

(Benedek et al., 2023; Barr, 2018; Benedek & Jauk, 2018; Volle, 2018). Drawing on evidence linking 

creative cognition to performance on free-association and verbal fluency paradigms, researchers 

have suggested that associative creative processes may include the automatic spreading of 

activation through semantic memory (Kenett et al., 2018a; Volle, 2018). Meanwhile, evidence 

linking creative cognition to intelligence and executive functions has led to suggestions that 

controlled creative processes may include strategic search processes (Avitia & Kaufman, 2014; 

Benedek & Neubauer, 2013; Forthmann, Bürkner, Szardenings, Benedek, & Holling, 2019a; Lebuda 

& Benedek, 2023; Silvia, Beaty, & Nusbaum, 2013), and the inhibition of distracting or unoriginal 

thoughts (Beaty et al., 2017a; Camarda et al., 2018a; Volle, 2018).   
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Another more specific account distinguishes between two opposing strategies for producing 

creative ideas: flexibility and persistence. The former involves switching between conceptual 

spaces to attain more diverse ideas and may depend on striatal dopamine pathways, while the 

latter involves the persistent exploration of one conceptual space and may depend on prefrontal 

dopamine pathways (Mekern et al., 2019b; Nijstad et al., 2010; Zhang et al., 2020). The account 

has strong similarities to the distinction between exploration and exploitation in creative cognition 

(Hart et al., 2017; Lin & Vartanian, 2018), and is primarily supported by measures of clustering 

(i.e., the generation of similar ideas) and switching (i.e., the generation of ideas from different 

conceptual categories) in divergent thinking and cognitive search tasks (Mekern et al., 2019b).  

 

5.3 How NCR can benefit from the wider adoption of computational modeling 

NCR has made considerable progress in uncovering a broad range of cognitive, psychological, and 

neural correlates of creative cognition, guided by theories ranging from older, broader accounts to 

more recent and specific accounts. However, a precise, mechanistic understanding of creative 

cognition remains elusive. The increased adoption of computational modeling can help greatly 

towards this goal. While verbal theories are a useful and necessary part of science, they are more 

ambiguous and open to interpretation than formal computational models, which require all 

elements of a theory to be explicitly defined (Farrell & Lewandowsky, 2015; Fried, 2020; Guest & 

Martin, 2021; Smaldino, 2020). Defining theories in explicit and formal terms makes them more 

falsifiable and easier to compare in terms of their predictions and assumptions. NCR should 

continue to move towards more specific cognitive theories supported by computational models.  

For clarity, by “computational model”, I refer to dynamic computational models that aim to 

embody a particular cognitive theory of creativity by representing how creative ideas arise from 

cognitive processes. As such, I am not referring to statistical models of human fMRI (e.g., Beaty et 

al., 2018b; Sunavsky & Poppenk, 2020), EEG (e.g., Rosen et al., 2020; Stevens & Zabelina, 2020) or 

behavioral data (Beaty & Johnson, 2021; Harada, 2020; He et al., 2020; Zioga, Harrison, Pearce, 

Bhattacharya, & Di Bernardi Luft, 2020). Equally, I do not include machine learning models that 

generate novel or interesting products but in ways that do not seek to emulate human cognition, 

such as Google DeepDream (Suzuki, Roseboom, Schwartzman, & Seth, 2017), and GPT3 (Floridi & 
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Chiriatti, 2020). Here I examine in more detail the issues that can affect purely verbal accounts, 

including more recent and specific accounts, and how computational modeling can provide 

greater clarity, rigor, and reproducibility to the development of cognitive theories (Farrell & 

Lewandowsky, 2015; Guest & Martin, 2021).  

 

5.3.1 The limitations of verbal theories 

At the less specific end of the spectrum of theoretical accounts of creative cognition is the 

distinction between convergent and divergent thinking. As noted, researchers have defined these 

constructs in several distinct ways since they first appeared. The first definition separates the two 

constructs based on the number of ideas or solutions they produce (Guilford, 1959) (i.e., one 

solution in convergent thinking, but multiple solutions in divergent thinking). A later definition 

focused on divergent thinking as idea generation and convergent thinking as idea evaluation 

(Basadur, 1995; Brophy, 2001; Cropley, 2006; Lee & Therriault, 2013). Finally, a third definition 

draws on dual process theories of cognition to define divergent thinking as an unconscious, 

associative process and convergent thinking as a conscious, analytic process (Augello et al., 2016; 

Cortes et al., 2019; Drago & Heilman, 2012; Gabora, 2010). 

The existence of multiple definitions of divergent and convergent thinking suggests that they are 

likely to be conceptualized very differently across NCR researchers. Indeed, previous researchers 

have commented on the apparent contradictions that can emerge due to these varying definitions 

(e.g., Cortes et al., 2019; Dietrich, 2019; Gabora, 2018; Lee & Therriault, 2013). Moreover, none of 

these definitions are particularly precise. This can make it difficult to develop specific process-level 

hypotheses regarding these constructs, such as how divergent and convergent thinking might be 

differentially impacted by WM capacity. The definitional ambiguity of these constructs also makes 

it difficult to model them computationally, as to do so one would first have to translate one of 

their broad definitions into a specific set of processes (e.g., Gabora, 2018; Zhang et al., 2020). 

Whichever processes are chosen could differ greatly from those chosen by another researcher, so 

any conclusions drawn about these processes need not necessarily apply to the broader 

constructs. In essence, the reinterpretable nature of divergent and convergent thinking makes 
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them difficult to study or falsify since any specific hypothesis can be easily dissociated from the 

construct.  

Research into divergent and convergent thinking is also affected by inconsistencies between the 

definitions of these constructs and the tasks used to assess them. For example, convergent 

thinking is commonly assessed with the Remote Associates Test (RAT; e.g., de Vink et al., 2021; 

Nielsen, Pickett, & Simonton, 2008; Shang, Little, Webb, Eidels, & Yang, 2021; Zhang et al., 2020), 

in which participants are shown three unrelated words and must generate a response word that 

relates to all three. While RAT problems have one correct solution (consistent with the original 

conception of convergent thinking), they require generating numerous candidate solutions in an 

associative manner (Cortes et al., 2019), contrary to later definitions of convergent thinking as an 

analytic, evaluative process (Cropley, 2006; Runco, 2014). Indeed, the RAT was originally 

developed as a measure of associative processes (Mednick, 1962) and continues to be used as a 

measure of unconscious insight (e.g., Kounios & Beeman, 2014; Tik et al., 2018; see also Barr, 

2018; Benedek & Jauk, 2018). 

Meanwhile, divergent thinking is typically assessed with the Alternative Uses Task (AUT; Guilford, 

1959, 1967), which requires participants to think of unusual uses for a given object. Since the AUT 

involves producing multiple ideas, and undoubtedly involves generative and associative thinking, it 

might appear to satisfy all three definitions of divergent thinking. However, the AUT is also widely 

considered to engage evaluative and analytic processes to ensure that the ideas generated are 

task-relevant and original (Beaty et al., 2014; Cortes et al., 2019; Gilhooly et al., 2007; Nusbaum & 

Silvia, 2011; Volle, 2018), processes commonly associated with convergent thinking (Cropley, 

2006; Sowden et al., 2015). Indeed, both the AUT and RAT are now thought to involve a mixture of 

associative and controlled processes (Cortes et al., 2019). Given the difficulties in assessing 

divergent and convergent thinking, their varying definitions, and the fact that they must be 

translated into more specific accounts when researchers attempt to model or hypothesize about 

their underlying processes, NCR might seek to replace these constructs with more precise 

subtypes of creativity defined in terms of more established cognitive processes, such as memory, 

attention, and cognitive control (Barbot, Hass, & Reiter-Palmon, 2019; Benedek & Fink, 2019; 

Farrell & Lewandowsky, 2015; Kaufman et al., 2016; Plucker, 2022; Wiggins & Bhattacharya, 2014). 
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As noted, more recent theoretical accounts of creative cognition go much further in suggesting 

specific mechanisms that might produce creative ideas. Besides BVSR (Simonton, 2022), another 

recent extension of the generation-evaluation account describes several possible neural and 

cognitive mechanisms that may underlie both kinds of process (Kleinmintz et al., 2019). 

Meanwhile, an extension of dual-process accounts has suggested how creative ideas might arise 

from specific associative and controlled processes operating on a semantic network (Volle, 2018). 

In addition, several recent review articles have provided in-depth descriptions of the roles of 

distinct associative (Beaty & Kenett, 2023), memory (Benedek et al., 2023), and metacognitive 

processes (Lebuda & Benedek, 2023) in creative cognition. Researchers have also proposed 

neurocognitive mechanisms that might underlie new conceptions of convergent and divergent 

thinking, relating them to focused and defocused mental representations (Gabora, 2010, 2018) 

and flexible and persistent meta-control states (Hommel & Wiers, 2017; Nijstad et al., 2010; Zhang 

et al., 2020). The latter account may soon form the basis of a computational model. Finally, a 

recent review of the neural underpinnings of divergent thinking, abstraction, and improvisation 

has argued that all three can arise from dopaminergic novelty-seeking processes, in a framework 

that may soon be implemented computationally (Khalil & Moustafa, 2022). 

For the most part, however, these are still verbal accounts, and thus they retain a degree of 

ambiguity that can make them difficult to falsify and leaves them open to reinterpretation. 

Another key issue for verbal theories is that they can be difficult to compare in terms of their 

predictions or internal consistency. Despite recent efforts (Kenett et al., 2020), there is no 

commonly accepted ontology for conceptualizing creativity (Kenett et al., 2020; Puryear & Lamb, 

2020; Saggar, Volle, Uddin, Chrysikou, & Green, 2021). Researchers tend to employ different 

accounts to guide their research (Abraham, 2013; Hennessey & Amabile, 2010; Wiggins & 

Bhattacharya, 2014), and it is not always clear to what extent these accounts are synonymous or 

overlapping. For example, it is unclear whether associative and controlled processes are synonyms 

for constructs like generation and evaluation and implicit and explicit thought, or in fact underlie 

them. Another example is the overlap between theories of flexibility vs. persistence (Nijstad et al., 

2010; Zhang et al., 2020) and exploration vs. exploitation (Hart et al., 2017; Lin & Vartanian, 2018), 

which both distinguish between the tendency to shift between conceptual spaces and the 

tendency to exploit a single conceptual space. Similarities also exist between accounts linking 
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different forms of creativity to different forms of attention (Gabora, 2010, 2018; Zabelina et al., 

2016; Zabelina & Robinson, 2010). However, without formal models, it is difficult to say whether 

these theories are broadly equivalent or describe fundamentally different kinds of operation. 

 

5.3.2 The benefits of modeling 

The benefits that computational modeling can bring to psychology and neuroscience have been 

discussed at length in several excellent recent articles (Blohm et al., 2020; Borsboom et al., 2021; 

Fried, 2020; Guest & Martin, 2021; Maia et al., 2017). A computational model is the explicit 

formalization of a theory in equations and algorithms (Farrell & Lewandowsky, 2015; Maia et al., 

2017), and therefore requires that every aspect of a theory be precisely defined. More precise 

theories, that describe more specific cognitive processes or operations, are more easily 

communicated and testable since they make clearer predictions about what should be observed 

under certain conditions. By contrast, imprecise or ambiguous theories provide no clear mapping 

to empirical research questions and can be redefined continually, potentially leading different 

researchers to have very different interpretations of the theory. While NCR is already working 

toward more rigorous and specific theories (Benedek & Fink, 2019; Gabora, 2018; Volle, 2018; 

Zhang et al., 2020), the process of translating a theory into a computational model is an excellent 

way to make it more precise. For example, building a model based on the dual process account 

would force researchers to be extremely specific about what associative and controlled processes 

are, how they produce creative ideas, and how they might vary in different creative contexts.  

The detail required by computational modeling can also reveal weak points, dubious assumptions, 

or outstanding questions in theories (Blohm et al., 2020), which can then direct empirical work. 

For example, modeling creative cognition as involving cycles of generation and evaluation would 

involve deciding how frequently the model should switch between the two modes. Researchers 

might also consider whether movement along a continuum between generation and evaluation 

(or even simultaneous generation and evaluation) is preferable to a binary switch. These decisions 

might inform, and be informed by, empirical research (e.g., Goldschmidt, 2016; Kleinmintz et al., 

2019).  
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In addition, modeling provides a way to demonstrate and test hypotheses for how variation in a 

neurocognitive factor leads to variation in behavioral outcomes. Indeed, creative cognition is a 

particularly high-level construct, and there are likely to be a large number of factors that can 

impact creative outcomes, including a person’s attention, memory, cognitive control, and 

personality (Beaty et al., 2014; Benedek & Fink, 2019; Oleynick et al., 2017). With modeling, these 

factors can be represented as sets of operations within a computational system, enabling 

researchers to examine the causal pathways by which they can impact creative performance. For 

example, researchers might hypothesize that individuals higher in the personality trait openness to 

experience produce more creative ideas by engaging in broader attentional states (Gabora, 2010, 

2018). This hypothesis might then be embodied in a computational model by defining “openness” 

as a set of parameters governing the propensity to use broad instead of narrow conceptual 

representations. The hypothesis can then be tested by adjusting the parameters reflecting 

openness and observing whether the changes in simulated creative outcomes are in line with 

those observed among human participants with varying openness scores. 

Moreover, modeling several contrasting theories can provide researchers with a more concrete 

basis for comparing their empirical predictions, internal consistency, and theoretical complexity 

(with less complex models being favorable; Farrell & Lewandowsky, 2015), allowing researchers to 

combine similar theories and select or reject opposing theories. As noted, there appear to be 

strong similarities between several accounts of creative cognition, such as those that describe 

generative and evaluative states (Jung et al., 2013; Kleinmintz et al., 2019), and those that describe 

associative and controlled processes (Benedek & Jauk, 2018; Volle, 2018), but it is hard to say 

whether these accounts are equivalent. Translating each account into a computational model 

could reveal opposing predictions about the role of a particular factor in creative cognition, or 

might instead indicate that the two accounts are referring to the same underlying mechanisms. 

Ultimately, modeling results in more fleshed-out, transparent, and comparable theories (Guest & 

Martin, 2021). For a more specific example of how computational modeling can bring clarity to 

verbal theories, consider a creative search task in which participants must think of unusual 

members of a category (e.g., “uses for a brick”, or simply “fruits”). Researchers might debate the 

processes that govern performance on this task, such as spontaneous association-making, 
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attention, and cognitive control. To provide a concrete foundation for this debate, the task could 

be modeled as an iterative search through an n-dimensional space, with dimensions representing 

properties that vary across concepts (e.g., the size or exoticness of fruits). Concepts (i.e., fruits or 

possible task solutions) could be distributed across this space, with the strength of associations 

between concepts defined by the Euclidean distance between them (smaller distance = stronger 

association). Common items (e.g., apple, pear) could be clustered around the center, with more 

unusual items nearer the periphery of the space. Cognitive processes could then be modeled as 

operations on this space, such as spontaneous processes spreading activation from the center 

outward and controlled processes strategically pushing activation along one dimension (e.g., 

thinking of exotic locations to access more unusual fruits; Benedek & Neubauer, 2013). 

Once a basic model of a task is implemented, it can serve as a starting point for further models 

embodying different theories. In the current example, researchers who emphasize associative 

processes in creative search might adjust certain parameters of the model to reflect this. Others 

might simulate WM by limiting the number of concepts able to activate at once, or simulate 

processing speed, attention, or mind-wandering by adding other features. Examining and 

comparing how these different models fit empirical human data could then help to improve our 

understanding of the processes underlying creative search (Wilson & Collins, 2019). Of course, 

evaluating model performance against human data requires reliable and valid measures of the 

underlying construct, and even then, alternative models may be equally supported by empirical 

data. As such, models of creative performance might also be compared in terms of their internal 

consistency and complexity, while researchers continue to develop more fine-tuned assessments 

of creativity (e.g., Barbot, 2018; Hart et al., 2017, 2022). 

 

5.4 Existing computational models of creativity 

Having discussed the theoretical accounts that guide NCR and how these might benefit from the 

increased adoption of computational modeling, I now consider some recent computational models 

of creativity, and the steps that might be taken to improve these and better integrate them with 

NCR. Computational models of human creative cognition come in two main forms: broader models 

and cognitive architectures that focus on creativity as a general feature of cognition (e.g., Hélie & 
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Sun, 2010; Wiggins, 2020), and narrower models that aim to simulate human performance in 

specific lab-based creative tasks (e.g., Olteţeanu & Falomir, 2016; Schatz et al., 2018).  

Examples of broader models include recent attempts to model conceptual blending - the creative 

association of ideas or features from two distinct conceptual spaces (Falomir & Plaza, 2020; 

Schorlemmer & Plaza, 2021), and the simulation of both individual and cultural creativity using 

autocatalytic networks (Gabora, Beckage, & Steel, 2022; Gabora & Steel, 2020). Other examples 

include the Copycat (Hofstadter & Mitchell, 1994) and Metacat systems (Marshall, 2006), which 

focus on simulating analogical thought. Meanwhile, the CLARION cognitive architecture draws on 

Type 1 and Type 2 processes (Evans & Stanovich, 2013) to model creative thinking as the outcome 

of both associative, implicit processes and rule-based, explicit processes (Hélie & Sun, 2010). 

Researchers have also adapted the ACT-R cognitive architecture to simulate aspects of creativity 

including conceptual blending (Guhe, Smaill, & Peace, 2010). Finally, the IDyOT model, inspired by 

theories of predictive intelligence (Clark, 2013; Friston, 2010) and global workspace theory (Baars, 

1988), focuses on cognition as the hierarchical prediction of perceptual input, with creativity 

emerging from the system “free-wheeling” in the absence of an external stimulus (Wiggins, 2020). 

Although informative, the generality of these broad-focus models means that they are not best 

placed to model the cognitive theories of NCR, which typically focus on how humans perform 

specific lab-based creative tasks. For example, Copycat and Metacat operate on a limited set of 

abstract symbolic concepts, far removed from a human-like associative memory. Meanwhile, 

CLARION has only modeled elements of cognition relevant to incubation and insight, and must be 

set up and trained in a specific way for each task. Finally, IDyOT focuses on the perception and 

generation of sequential information such as music. Critically, these models lack the specific 

input/output components needed to simulate standard laboratory-based measures of creativity. 

By contrast, narrow-focus models aim to simulate the cognitive processes that operate in specific 

creative tasks (e.g., Kajić, Gosmann, Stewart, Wennekers, & Eliasmith, 2017; Olteţeanu & Falomir, 

2016; Schatz et al., 2018). NCR would arguably benefit most from increased modeling of this kind, 

since NCR and the theories that guide it focus mainly on lab-based creativity, and the performance 

of such narrow-focus models could be readily compared to large amounts of human data. While 

such models lack the flexibility needed to account for performance across multiple tasks, they 
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have demonstrated how relatively simple operations on associative memory structures can lead to 

human-like creative performance on tasks such as the AUT and RAT.  

To consider the structure of these narrow-focus models in more depth, one example comes from 

Kajić et al. (2017), who developed a spiking neural network model of the RAT. The model utilized a 

distributed memory architecture where each simulated neuron could be part of several concept 

representations. Words were represented as vectors encoded in neural activity, with word 

associations defined using the Free Association Norms dataset (Nelson, McEvoy, & Schreiber, 

2004). When retrieving solutions, RAT cues were activated in sequence, with only one cue able to 

activate associations at any one time. Competing associations inhibited each other, and activation 

gradually decayed over time until a solution was reached. The model produced behavior 

comparable to human participants in terms of the number of RAT problems it could solve, the 

number of responses it generated, and the similarities between its responses. By examining the 

model parameters most relevant to performance, the researchers concluded that two main 

cognitive processes underlie RAT performance: one that generates potential responses and one 

that filters responses. 

In contrast to the neural-level model of Kajić et al. (2017), Olteţeanu and Falomir (2015) developed 

a cognitive-level model of RAT performance in which concepts were represented as sets of 

associations to other concepts. The model’s memory was constructed from a database of unique 

2-word phrases (i.e., 2-grams), with the strengths of associations between words (i.e., associative 

strength) defined by the frequency of their co-occurrence in 2-grams. When solving RAT problems, 

all three cues and their associated concepts were activated in memory simultaneously (again in 

contrast with the sequential activation employed by Kajić and colleagues, 2017). Solutions were 

then selected from the most strongly activated associated concepts. While the authors did not 

directly compare the model to humans in terms of the number of RAT problems it could solve, 

model performance suggested that the difficulty of RAT items relates to both the strength of 

associations between cues and solutions, and the number of associations each cue word has 

(known as “fan”). Since these properties impact how activation spreads automatically between 

ideas in memory, these findings emphasize the role of automatic associative processes in the RAT. 
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Building on this work, Schatz, Jones, and Laird (2018) developed a model of the RAT using the Soar 

cognitive architecture. The authors tested two versions of the model. A baseline model simply 

searched memory for words that linked to all three cue words. By contrast, a second “free recall 

model” used spreading activation, which propagated through memory from the three cue words 

according to both associative strength and fan. The authors also tested two knowledge bases for 

the model: one formed of 2-grams (following Olteţeanu & Falomir, 2015) and one based on a 

larger corpus not limited to 2-grams and including several kinds of word association. The authors 

found that the “free-recall” model and the more sophisticated knowledge base produced the most 

human-like performance in terms of the number of RAT problems solved, highlighting the 

important roles of memory structure and associative processes in modeling RAT performance. 

Models of the AUT are rare, but one attempt comes from Olteţeanu and Falomir (2016). The 

model used a knowledge base of 70 objects, each composed of a set of features (manually added 

by the authors), in a hierarchical memory. These features enabled the simulation of several 

cognitive strategies that people are known to employ when thinking of unusual uses for objects in 

the AUT (Gilhooly et al., 2007), including object replacement (matching the cue object to the 

typical uses of another object with similar features) and object decomposition (breaking the object 

into components and generating uses for these). The model did not aim to model memory 

retrieval processes such as spreading activation, but served as a proof-of-concept that matching 

features of cue objects (and components of objects) to features of other objects can produce 

solutions to AUT problems. 

Another recent model of creative idea generation, this time focusing on free association, comes 

from Lopez-Persem et al. (2022). The model included separate modules for exploration, valuation, 

and selection. The exploration module simulated activation spreading through a semantic network 

using random walks biased by associative strength (defined using a database of word 

associations). The valuation module then calculated the value of activated ideas based on their 

novelty and appropriateness (estimated as linear and quadratic functions of the associative 

strength between each idea and the cue word). Finally, the selection module selected a word from 

among activated ideas according to their value. The authors then adjusted parameters of the 

model, and compared the resulting changes in performance to the performance of human 
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participants. They found that certain model parameters were more relevant to the performance of 

individual modules than others, indicating the processes that may underlie these different 

components of creative cognition. For example, the exploration module performed well (i.e., 

matched human performance well) using just associative strength, and was not improved by 

considering the value of ideas, which only played a role in the subsequent valuation stage. The 

performance of the exploration module was also unaffected by whether human participants were 

asked to produce the first response that came to mind or an original but still associated response. 

These findings indicate that the initial activation of ideas during exploration does not depend on 

how valuable ideas are, and does not vary depending on the specific task being performed. By 

contrast, the selection module performed better when considering appropriateness more among 

first responses, and value more among original responses. 

In each of these studies, the authors found evidence that particular computational model 

structures and parameters can mimic human performance on creative tasks, in some cases finding 

that certain structures and parameters perform better than others. In this way, models can 

provide considerable insight into the cognitive operations that underlie performance in creative 

tasks. However, despite the progress of these models, and the benefits that models of this kind 

could bring to NCR, computational modeling of creativity is currently conducted largely separately 

from empirical research. The researchers who build models rarely overlap with those involved in 

empirical work, and models are rarely mentioned by NCR. One method to increase integration 

between the two fields would be to improve the value of models to empirical researchers. For 

example, with some exceptions (e.g., Lopez-Persem et al., 2022; see also Augello, 2016), the 

models discussed have not explicitly aimed to embody a particular cognitive theory from NCR in a 

way that would enable researchers to examine the theory’s predictions or to test new hypotheses. 

Indeed, several clear steps could be taken to improve future models of creativity, to increase their 

ability to simulate human cognition and maximize their explanatory value to NCR. 

 

5.5 Future steps for computational models of creative cognition 

I have argued that NCR would benefit greatly from the increased adoption of computational 

modeling. To this end, the neurocognitive theories that guide NCR should, where possible, be 
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formally defined in computational models that can simulate performance in typical lab-based 

tasks. Hypotheses can then be developed with the aid of computational models, with models 

adjusted on the basis of empirical data. This approach would bring considerable clarity to our 

understanding of creative cognition, allowing researchers to rigorously compare different theories 

and make inferences about underlying processes. Such integration between NCR and 

computational modeling would, in turn, aid the development of artificial creative systems 

(Chateau-Laurent & Alexandre, 2021; Wiggins & Bhattacharya, 2014) since a more algorithmic 

understanding of human creative cognition could inform models of autonomous creativity 

(Dipaola et al., 2018; Veale & Pérez y Pérez, 2020).  

In addition to a heavier focus on modeling theories from NCR, future models of specific creative 

tasks should aim to meet several additional criteria (see also Mekern et al., 2019a). As already 

noted, it is highly important that computational models can simulate performance on common 

creative tasks, to allow model output to be compared to human data. This provides a means to 

evaluate the structure of the model, and the cognitive theories and hypotheses that the model 

intends to represent. Different models of the same task can also be compared in terms of how 

well they fit human data (Guest & Martin, 2021; Wilson & Collins, 2019). I have suggested that 

smaller, narrow-focus models may be best placed to simulate creative performance on lab-based 

tasks, though the option also exists to adapt larger cognitive architectures, such as Soar and ACT-

R, for this purpose (e.g., Schatz et al., 2018).  

Indeed, future models should ideally aim to simulate performance on multiple creative tasks. This 

is needed to explain how the same cognitive processes can produce creative ideas in different 

contexts. The first step here would likely be to simulate performance across different verbal tasks, 

since tasks in different modalities, such as musical composition and drawing paradigms, would 

require modality-specific components (e.g., memory with visual and auditory representations). 

Since there is considerable diversity even amongst verbal tasks, which include free-association, 

metaphor tasks, insight problem-solving in the RAT, and strategic search in the AUT, modeling 

performance in just some of these tasks would be a good starting point. 

Models might also seek to adopt more complex and human-like memory structures. While several 

studies have modeled human semantic memory as a static network (see, e.g., Kenett et al., 2018a; 
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Rotaru, Vigliocco, & Frank, 2018), with nodes representing concepts, and edges representing 

associations, in reality, human memory is far more complex and dynamic. Building more 

complexity into a model's memory (or “knowledge base”) provides it with more information about 

concepts and their relationships, enabling more nuanced cognitive processes to be simulated. For 

example, a simple network in which concepts are represented in a single layer and linked by only a 

single kind of association does not allow the simulation of search processes that might restrict 

activation to only one type of concept (e.g., objects), or to concepts that possess a particular 

property (e.g., roundness) rather than simply being associated with that property. 

The benefits of more sophisticated memory structures have already been seen in a model of the 

RAT, in which a larger memory network with multiple kinds of association produced more human-

like behavior than a smaller and simpler network (Schatz et al., 2018). Other examples of more 

complex memory structures include distributed and hierarchical memory. In distributed memory, 

concepts are represented as patterns of activity across multiple nodes, where each node can form 

part of multiple concept representations. This provides a more natural and biologically plausible 

basis for spreading activation, which now moves between concepts that share nodes (Kajić et al., 

2017). In hierarchical memory (e.g., Olteţeanu & Falomir, 2016; Wiggins, 2020), concepts in each 

layer are represented as sets of concepts in lower layers, which serve as features or properties of 

higher-level concepts. In both cases, richer conceptual representations provide a basis for more 

complex and flexible processes to operate on memory.  

Other critical goals for future models include the simulation of individual differences and context 

effects (see also Mekern et al., 2019a). While simulating creative performance allows models to be 

evaluated in relation to other models, the capacity to model individual differences in a given 

psychological or cognitive factor (e.g., WM capacity or response inhibition) goes a step further, 

enabling researchers to develop and test causal hypotheses for how variation in the factor leads to 

variation in creative performance. To do this, the factor must first be embodied in the model as a 

set of parameters. These parameters can then be modified, leading to changes in simulated 

creative outcomes. If these changes align with individual differences observed among human 

participants (who also vary in the designated factor), then the modeled causal pathway is 

supported. Indeed, different versions of a model can be designed to reflect contrasting hypotheses 
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regarding how a factor affects creative outcomes. This gives researchers a powerful tool to 

compare two or more causal hypotheses by examining which model set-up best fits human data. 

Finally, modeling context effects allows the conceptual representations stored in a model to be 

adjusted in response to the current context or sensory input. Concepts in human memory are not 

equally active at all times, but rather become more activated in certain environments or after 

certain stimuli. Simulating context effects would thus lead to more realistic models, and might 

involve allowing activated concepts (such as cue words in the AUT and RAT) to modify the 

associations, weights, or features that define inactive concepts, thus changing their 

representations. 

 

5.6 Towards greater integration between NCR and computational modeling 

Progress toward a more precise, mechanistic understanding of creative cognition cannot be made 

by modeling alone, but will require the cooperation of theorists, modelers, and experimenters 

(Dongen et al., 2022; Hitchcock, Fried, & Frank, 2022; Wiggins & Bhattacharya, 2014). How might 

greater integration between NCR and computational modeling look? I would argue that any 

research group that proposes a theory of creative cognition should aim to produce a 

computational model to demonstrate their thinking explicitly. Such models would make theories 

more rigorous and complete, and could highlight questions for future research. Following the 

recommendations of Barton et al. (2022), these models should be easily reproducible, with 

publicly available code that is accessible to those with minimal modeling experience, allowing 

them to be adapted by other researchers who wish to develop their own hypotheses. As noted, it 

is also important that future models can simulate performance on common creative tasks, to allow 

models to be readily compared to both human data and the performance of other models. While I 

have focused on models of the AUT and RAT, NCR makes use of a large number of other tasks, 

including metaphor tasks (Beaty, Silvia, & Benedek, 2017b; Benedek et al., 2014a), drawing tasks 

(Ellamil et al., 2012; Rominger et al., 2018), musical improvisation (Pinho et al., 2014; Rosen et al., 

2020), and story writing (Fink, Reim, Benedek, & Grabner, 2020; Prabhakaran, Green, & Gray, 

2014). NCR should ideally aim to model all of these tasks computationally to improve our 
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understanding of the cognitive processes that enable creative performance in these different 

contexts.  

 

5.6.1 Designing a model 

To show more clearly how theories can be represented in formal models and how modeling can 

inform empirical research and theoretical debate, I now outline how a more complex model might 

be built, based on dual-process accounts (Figure 10). A simple starting point would be a semantic 

network, where nodes are words and edges are associative links, which could be constructed from 

human free-association data (e.g., Kenett et al., 2018a; Schatz et al., 2018) or distributional 

semantics methods (e.g., Rotaru et al., 2018). The next step is to examine the literature for 

theoretical processes that might be represented as operations on this network. For example, the 

spontaneous and deliberate processes described by dual process theories might conceivably be 

modeled as collections of several computational elements and mechanisms (Table 21).  

Spontaneous processes are often described as propagating through memory, reinterpreting 

information, and activating distant concepts (Benedek & Jauk, 2018; Volle, 2018), and so could be 

modeled via the structure of memory itself, the automatic spreading of activation through 

memory, and the spontaneous activation of tangential (i.e., non-task-relevant) ideas. Deliberate 

processes, meanwhile, are described as inhibiting unoriginal or distracting ideas (Beaty et al., 

2017a; Camarda et al., 2018a; Chrysikou, 2019) and directing thought to fulfill strategies 

(Forthmann et al., 2019b; Gilhooly et al., 2007; Nusbaum & Silvia, 2011). As such, modeling 

deliberate processes might involve specifying mechanisms that can prevent certain ideas from 

activating and inhibit certain associative pathways to guide thought in particular directions (Volle, 

2018).  
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To be modeled effectively, these processes seem to require additional features. For example, 

guiding thought to fulfill strategies suggests the existence of multiple kinds of associative pathway, 

which could be modeled either with a hierarchical or distributed memory, or by defining the part-

of-speech of words (e.g., verbs, nouns) and using these to define different kinds of association. In 

the context of the AUT, this latter option could allow the simulation of the strategy of object 

replacement (where the cue object performs the typical use of another object; Gilhooly et al., 

2007) by directing activation first along noun-adjective-noun associative pathways (to find an 

object with similar properties; e.g., brick -> heavy -> hammer) and then noun-verb pathways (to 

find uses; e.g., hammer -> pound a nail). More importantly, the notion that ideas can be 

distracting, and require inhibition to allow more relevant or original ideas to activate, implies that 

Table 21 
Summary of cognitive mechanisms that might feature in a computational model of verbal creativity 

Broader cognitive 
construct 

Specific feature or 
mechanism 

Example from the literature 

Spontaneous 
Associative Processes 

Memory structure Semantic memory structure relates to creative 
ability (Kenett et al., 2018a). 

Automatic spreading of 
activation between 
concepts 

Free association and verbal fluency relate to 
creative performance (Beaty et al., 2014; Marron 
et al., 2018).  

Spontaneous activation of 
tangential or task-unrelated 
ideas 

In the absence of cognitive control, distraction and 
mind-wandering can occur (Fox & Beaty, 2018; 
Zabelina, 2018). 

Deliberate Control 
Processes 

Inhibition of unoriginal and 
distracting ideas 

Less original and distracting ideas require 
suppression (Camarda et al., 2018a; Lloyd-Cox et 
al., 2021). Inhibition relates to creative ability 
(Benedek et al., 2012, 2014c; Kaur et al., 2021). 

Strategic search processes Strategic search occurs in the AUT (Gilhooly et al., 
2007; Silvia et al., 2013). Search can vary between 
more flexible and persistent strategies (Lin & 
Vartanian, 2018; Nijstad et al., 2010). 

Control over WM input Creativity relates to the breadth of attentional 
focus (Gabora, 2010; Zabelina, 2018), and WM 
updating and shifting (Benedek et al., 2014c; 
Krumm et al., 2018; Zabelina & Ganis, 2018). 

Working Memory 

A finite set of currently 
active concepts 

WM capacity impacts creative thought (Fugate et 
al., 2013; Lee & Therriault, 2013). Context effects 
play a role in creative thought (Gabora, 2018). 
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active concepts occupy a finite WM, access to which must be managed by cognitive control. 

Indeed, WM is not often discussed in significant depth by dual-process accounts of creative 

thought, yet in the context of modeling appears central to the need for controlled mechanisms.  

As discussed in detail in Chapter 4, researchers within NCR have suggested that creative 

performance involves adjusting attention between narrower and broader states (Dorfman et al., 

2008; Gabora, 2010; Zabelina, 2018; Zabelina & Robinson, 2010) and shifting between exploratory 

and exploitative search strategies (Mekern et al., 2019b; Nijstad et al., 2010). Such processes 

might be simulated by adjusting input to WM. For example, broad or exploratory attentional 

states might be simulated as a wider input to WM, where activation flows more freely, and 

tangential ideas can activate spontaneously. By contrast, narrow or exploitative attentional states 

might involve limiting WM input to only closely related ideas (see Figure 10). Embodying different 

attention-based theories of creativity in models of this general sort would allow them to be more 

rigorously compared. Alternatively, if a single model could simulate the behavioral outcomes 

discussed by different theoretical accounts, that would strongly suggest that the theories are 

consistent and could be combined into one. Indeed, it is hypothetically possible that all creativity-

relevant control processes, including inhibition, adjustment of attentional breadth, and switching 

between generative and evaluative modes, are based on adjusting WM input, a possibility that 

could be investigated empirically.   
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In principle, such a model could meet many of the requirements for future models noted earlier. 

Active concepts in WM could form the current context, modifying conceptual representations in 

memory by changing their associative weights. Individual differences could be simulated by 

varying parameters governing specific features or operations in the model (e.g., WM capacity or 

the strength of inhibition). Finally, performance on multiple creative tasks might be achieved using 

spreading activation to complete RAT problems (e.g., Schatz et al., 2018) and the activation of 

specific associative pathways to perform strategic idea generation in the AUT. Moreover, such a 

 

Figure 10 

Diagram of an example dual-process 

computational model of creative cognition.  

Note. Semantic memory is represented as 

a network of concept nodes (yellow = 

active; blue = inactive). Creative 

performance depends on a combination of 

spontaneous processes (SP) and controlled 

processes (CP). Active concepts in working 

memory (WM) form the current context 

and can bias the representation of other 

concepts. Dashed lines indicate the 

breadth of WM input. 

 

(a) In broad focus attentional states, 

associative processes, including spreading 

activation (1), and spontaneous activation 

of tangential concepts (2), combine with 

strategic controlled processes that can 

force activation in specific directions (3), to 

produce a broader input to WM. 

 

(b) In narrow focus attentional states, 

cognitive control can suppress distracting 

concepts (4) and inhibit specific associative 

pathways (5) to constrain WM input to the 

most relevant ideas.  

Different creative tasks may require 

different attentional states and different 

combinations of processes.  
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model could be developed in concert with empirical studies such as the ones described in 

Chapters 3 and 4, for example with model parameters being trained on measures of associative 

and executive processes, and model output tested on how closely it simulates creative outcomes. 

Different model structures could also be tested to examine different causal hypotheses regarding, 

for example, how control over WM impacts creative performance. 

 

5.6.2 Implementing a model 

Once the structure of a model has been outlined, implementing it computationally requires 

several additional steps. The first step is to construct the memory base of the model, which in the 

current example is the semantic network. Regardless of whether this is based on human free 

association data or distributional semantics methods, researchers would have to make several 

decisions, such as how many words to include, whether to exclude prepositions, articles, and 

quantifiers, whether to combine singular and plural forms of words, whether to exclude 

associations below a certain strength threshold, and so on. Researchers also have the option to 

create multiple semantic networks and tailor each one to an individual participant (Benedek et al., 

2017; He et al., 2020). 

Once a memory base is constructed, the next step is to choose which processes to model and how 

to simulate them. For example, associative processes could be modeled as spreading activation 

alone, or as both spreading activation and the spontaneous activation of tangential concepts. Each 

approach requires specifying parameters that determine, for example, how quickly or distantly 

activation should spread through memory, or how often tangential ideas should activate. Similar 

decisions need to be made to simulate components such as WM or cognitive control processes 

(e.g., how strongly inhibition can suppress distracting ideas). These parameters can be selected 

based on existing hypotheses or left open and later adjusted to fit participant data, as described 

below. 

In addition, researchers need to decide how to manage model input and output. For example, in 

the verbal model described above, one option is to simulate input by activating cue words strongly 

in memory (e.g., Kajic et al., 2017; Schatz et al., 2018). Activation may then propagate outwards 



134 
 

from these cue words to other concepts. The process of selecting concepts as responses for 

output also requires careful consideration. In tasks like the RAT, this might involve selecting the 

most strongly activated concept (e.g., Olteţeanu & Falomir, 2015). However, tasks like the AUT 

may require more sophisticated evaluation and selection processes, potentially based on a 

specified trade-off between proximity to the cue word (which improves the usefulness of the 

response) and distance from the cue word (which improves the novelty). 

Finally, researchers need to consider how the model will update over time to simulate cognition. 

One approach is to update the model in discrete time steps. At each time step, activation might 

spread to new concepts, while the activation of previous concepts gradually decays. Further, each 

update might involve control processes switching to inhibit different concepts or pushing 

activation in a different direction. Once all these factors and decision points have been 

implemented in the code, the model is ready to simulate task performance. As discussed, 

spreading activation alone might be sufficient to model performance on tasks such as chain 

association and the RAT (e.g., Lopez-Persem et al., 2022; Schatz et al., 2017). However, simulating 

performance on the AUT might require a slightly different model setup depending on the 

particular strategy used, such as object replacement or object decomposition (Gilhooly et al., 

2007). 

Once the initial model is developed computationally, researchers can refine it and its parameters 

to fit human data better. One option is to build a model with a specific structure (i.e., with certain 

components linked by causal pathways) based on theories and hypotheses, and then fit the 

parameters governing model behavior to human data. For example, the distance traveled by 

spreading activation processes could be set based on a certain weighting of participants’ verbal 

fluency or chain association data. Researchers could train the parameters of the model using data 

from one group of participants and then test its ability to predict the creative outcomes of another 

group. Different hypotheses can then be tested by building different versions of the model with 

varying causal structures, for example by modifying the process by which inhibition operates (as 

opposed to how strongly it operates). After testing and training, different model versions can be 

compared in terms of how well their performance predicts human data. Another option is to 

specify both the structure of the model and its parameters based on preexisting theories. Different 
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hypotheses, for example regarding how much impact inhibition should have on creative outcomes, 

can then be tested by defining several sets of parameters and assessing their fit to human data 

(Lopez-Persem et al., 2022). 

This brief sketch of model development clarifies how theories of creative cognition can be 

translated into formal models. It also demonstrates the potential of modeling to identify new 

research avenues and the importance of cognitive factors, such as WM, that may have been 

overlooked in verbal accounts. Importantly, this example highlights that modeling inevitably 

requires making many reasonable assumptions to “fill the gaps” left by verbal accounts. Verbal 

theories rarely describe all the details necessary to implement a computational model, leaving the 

modeler to decide factors such as how exactly to structure semantic memory or simulate 

inhibition processes. For each of these decisions, alternatives are possible, and so ideally multiple 

models should be constructed by different research groups and their performances compared 

(Poile & Safayeni, 2016; Wilson & Collins, 2019). It is crucial to note that the design and 

implementation of the model discussed here may differ substantially from models focused on the 

neural level or based on alternative theories of creative cognition, such as flexibility vs. persistence 

(Mekern et al., 2019b; Zhang et al., 2020). This also highlights the importance of building and 

comparing multiple models of each creative task. 

 

5.7 Concluding remarks 

NCR has greatly increased our understanding of creative cognition and its relations to 

psychological phenomena, including memory, attention, and cognitive control (Beaty et al., 2021a; 

Benedek & Fink, 2019; Chrysikou, 2019; Kenett et al., 2018a; Kleinmintz et al., 2019; Volle, 2018). 

However, the field remains far from a mechanistic understanding of creativity complete with 

causal hypotheses for how cognitive processes produce creative ideas and how such processes 

interact differently in different tasks and individuals. The increased adoption of computational 

modeling can significantly advance the field and bring it closer to this goal. The verbal theories 

that guide NCR (and psychology in general) are intrinsically more open to interpretation, more 

difficult to falsify, and less transparent than formal models (Farrell & Lewandowsky, 2015; Fried, 

2020; Guest & Martin, 2021; Smaldino, 2020). By contrast, embodying these theories in 
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computational models can help make them more complete, accessible, and comparable. Modeling 

forces researchers to exchange abstract constructs for concrete definitions of cognitive processes 

as operations in a computational system (Benedek & Fink, 2019; Wiggins & Bhattacharya, 2014). 

Moreover, computational modeling can allow the complex pathways that produce creative ideas 

to be predicted effectively.  

For its part, though several computational models of creativity exist, they have been developed in 

relative isolation from empirical research, and surprisingly few are well-suited to modeling the 

cognitive theories of NCR in a way that can be easily compared to human performance. Since a 

clearer understanding of human creativity could lead to more creative artificial systems, further 

integration and collaboration between computational modeling and NCR stands to benefit both 

fields greatly (Chateau-Laurent & Alexandre, 2021; Dipaola et al., 2018; Veale & Pérez y Pérez, 

2020; Wiggins & Bhattacharya, 2014). Indeed, among all areas of cognitive neuroscience, NCR may 

benefit especially well from computational modeling. After all, creativity is a complex and 

heterogeneous construct, and its underlying processes undoubtedly vary greatly depending on the 

specific task, domain, and other contextual and interpersonal factors. Ultimately, science seeks to 

establish cause and effect relationships, and to truly advance, NCR needs clear hypotheses about 

how the same cognitive processes operate in different contexts, explicitly demonstrated in 

computational models.  

Chapters 3 and 4 described two studies examining how creative cognition relates to inhibitory 

control, and more generally to executive functions and control over WM. These studies were 

correlational in nature, and thus can only assess shared variance between creative cognition and 

more basic executive processes. However, computational modeling could provide researchers with 

a far more sophisticated tool for examining these relationships. For example, researchers could 

construct a model where control over WM plays a critical role in the production of creative ideas; 

a model embodying several causal hypotheses regarding how executive functions contribute to 

creative cognition in different contexts. By training parameters of the model using collected data 

on executive functions, and testing how the model performs on creative tasks compared to other 

models and to human participants, researchers can provide support for one set of hypotheses 

over another. If a certain causal pathway seems promising given simulations, empirical research 
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with experimental interventions could be conducted, for example to confirm whether increasing 

inhibitory control affects specific aspects of creative performance but not others. 

Greater use of computational modeling could thus help to increase the testability of theories and 

the development of causal hypotheses, in turn highlighting promising avenues for future research. 

Indeed, the use of computational modeling need not be limited to examining the roles of 

executive processes in creative cognition. Factors such as an individual’s personality and 

preference for novelty as opposed to usefulness in creative ideas may also be important 

determinants of their creative process. These factors could also, with some careful interpretation, 

be represented in computational models of creative cognition.  

Indeed, while considerable research in NCR has focused on the generation of creative ideas, 

relatively little has explored the evaluation of creative ideas. The factors that affect idea 

evaluation, a critical element of the creative process, will be explored in more detail in the 

following chapter. 
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CHAPTER 6: EVALUATING CREATIVITY: HOW IDEA CONTEXT AND 

RATER PERSONALITY AFFECT CONSIDERATIONS OF NOVELTY AND 

USEFULNESS 
 

6.1 Introduction 

This chapter turns to an often neglected component of the creative process: evaluation. In 

particular, I consider how and why individuals might vary in how they consider novelty and 

usefulness when evaluating a creative idea, and whether their considerations of these factors 

depend on the specific task the idea was generated in.  

The most commonly accepted definition of creativity is the “standard definition” (Runco & Jaeger, 

2012), which states that to be creative, an idea must be both novel and useful. Though the precise 

terminology can vary (e.g., novelty may be referred to as originality or uniqueness, while 

usefulness may be referred to as appropriateness, relevance, or effectiveness), the twin criteria of 

novelty and usefulness have formed principal components of numerous definitions of creativity 

dating back at least 70 years (Amabile, 1982; Plucker et al., 2004; Stein, 1953). The definition is not 

without conceptual issues (see Corazza, 2016; Martin & Wilson, 2017), and some have suggested 

additional requirements including surprise (Boden, 2007; Simonton, 2018), discovery (Martin & 

Wilson, 2017), and aesthetics and authenticity (Kharkhurin, 2014). However, especially within 

cognitive psychology and neuroscience, the standard definition continues to provide a theoretical 

foundation for vast amounts of creativity research, and to serve as a guide when raters evaluate 

the creativity of ideas, products, or responses. 

If a creative idea is (at minimum) both novel and useful, it seems likely that when evaluating the 

creativity of an idea, raters would make their final judgement based on a certain weighting of its 

perceived novelty and usefulness. However, surprisingly little research has investigated how these 

components contribute to evaluations of creativity, and the factors that can modify these 

contributions. While some research suggests that novelty is far more important to creativity than 

usefulness (Caroff & Besançon, 2008; Diedrich et al., 2015; Han et al., 2021; Runco & Charles, 

1993), other findings indicate that the contributions of novelty and usefulness may depend on the 
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context in which the idea was generated and the nature of the problem it is intended to solve 

(Acar et al., 2017; Long, 2014; Runco et al., 2005). 

Meanwhile, although researchers have examined how individual differences, including expertise 

(Long, 2014), emotion (Lee et al., 2017; Mastria et al., 2019), and uncertainty (Mueller, Melwani, & 

Goncalo, 2012), can influence evaluations of overall creativity, little is known about how these 

differences might affect considerations of novelty and usefulness. Personality, particularly the Big-

Five trait openness/intellect, is likely to be an important factor here, since it determines how 

receptive individuals are to new and unusual ideas (Kaufman et al., 2016; Oleynick et al., 2017), 

potentially driving them to consider novelty more than usefulness when they evaluate creativity. 

However, it remains unknown how factors such as the nature of the creative task and the 

personality of the rater can affect how novelty and usefulness contribute to evaluations of 

creativity. Providing answers to these questions is of central importance to our understanding of 

how creativity is evaluated, defined, and perceived, and may inform the development of 

subjective creativity assessments that can account for variance across raters (Barbot et al., 2019; 

Myszkowski & Storme, 2019). As a brief but important note, this study is concerned with the 

evaluation of exogenous ideas (i.e., ideas generated by others) as opposed to the evaluation of 

one’s own ideas, which is likely to be a related but distinct evaluative process (Karwowski, 

Czerwonka, & Kaufman, 2020; Rodriguez, Cheban, Shah, & Watts, 2020; Runco & Smith, 1992). 

 

6.1.1 Assessing creativity and its components 

While creativity can be assessed through self-report methods that focus on creative achievements 

and activities (e.g., Carson et al., 2005; Diedrich et al., 2018; Kaufman, 2019), lab-based creativity 

tests typically require participants to produce creative responses or products, such as musical 

improvisations (Pinho et al., 2014), drawings (Rominger et al., 2018), or short stories (Prabhakaran 

et al., 2014), which are then evaluated by a panel of raters. When it comes to evaluating creativity 

as a single, holistic construct, the gold-standard method within psychology is the consensual 

assessment technique (CAT; Amabile, 1982; Baer & McKool, 2014; Kaufman, Lee, Baer, & Lee, 

2007; see also Cseh & Jeffries, 2019), in which several expert judges rate the creativity of each idea 

on a Likert scale. Ratings are then averaged across raters. 
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As mentioned earlier, creativity has two essential components – novelty and usefulness. Novelty 

refers to the unusualness, uniqueness, and originality of an idea and can be assessed either 

through subjective ratings (e.g., Acar et al., 2017; Diedrich et al., 2015; Silvia, 2008) or through 

objective measures such as the statistical infrequency of the idea among the current sample 

(Plucker, Qian, & Wang, 2011; Runco et al., 2005; Wilson, Guilford, & Christensen, 1953). By 

contrast, usefulness refers to the feasibility, appropriateness, and value of an idea, which in the 

majority of tasks can be determined only by subjective assessment (Acar et al., 2017; Diedrich et 

al., 2015; Runco et al., 2005). 

 

6.1.2 How novelty and usefulness contribute to evaluations of creativity: the role of idea 

context 

How do novelty and usefulness contribute to evaluations of creativity, and is one component more 

important than the other? Novelty and usefulness ratings are often negatively correlated (Caroff & 

Besançon, 2008; Diedrich et al., 2015; Runco & Charles, 1993), so an optimally creative idea may 

have to balance a trade-off between novelty and usefulness. To date, however, only a handful of 

studies have examined how novelty and usefulness contribute to evaluations of creativity. The 

majority of this research has found that the perceived creativity of an idea depends more on its 

novelty that on its usefulness, in contexts including AUT ideas (Acar et al., 2017; Diedrich et al., 

2015; Runco & Charles, 1993), advertisements (Caroff & Besançon, 2008; Storme & Lubart, 2012), 

and product designs (Han et al., 2021). For example, Diedrich et al. (2015) asked 18 participants to 

rate the novelty, usefulness, and creativity of around 5000 ideas produced in both the AUT and a 

figural-completion drawing task. They found that creativity ratings were far more strongly related 

to novelty ratings (with β estimates ranging between .75 and .81) than usefulness ratings (β 

estimates between .26 and .32). They also found a significant interaction between novelty and 

usefulness, whereby usefulness was less related to creativity among common (i.e., non-novel) 

ideas and far more related to creativity among novel ideas.  

However, some findings suggest that the contributions of novelty and usefulness to evaluations of 

creativity may depend on the context in which the idea is produced. Runco and colleagues (2005) 

examined ideas for both realistic problems (with potential application to the real-world) and 
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unrealistic problems (unlikely to be encountered in the real world). Ideas for realistic problems 

were rated as more useful than ideas for unrealistic problems, while ideas for unrealistic problems 

were rated as more novel. While relations with creativity were not examined, these findings 

indicate that certain contexts may elicit a different consideration of novelty and usefulness when 

raters evaluate creativity. For example, usefulness may have a minimal impact on evaluations of 

creativity in contexts where it is less relevant (such as with adverts, artworks, and AUT ideas) but 

may draw far more consideration in the context of genuine real-world problems. This possibility is 

further supported by a qualitative study, which found that when raters evaluated the creativity of 

scientific ideas, novelty and usefulness were considered equally important criteria (Long, 2014). 

A further suggestion that the relationships between novelty, usefulness, and creativity might 

depend on the context of the creative idea comes from Acar et al. (2017), who examined how four 

factors, including novelty and usefulness, contributed to judgments of creativity. In their study, 

776 participants completed ratings for both AUT ideas and real-world creative products. The 

authors again found novelty to be more related to creativity than usefulness, but also found 

evidence that the relationship between usefulness and creativity may depend on the context of 

the idea. However, the study focused on variance at the rater level, examining ratings for only 12 

ideas (all of which had high prior ratings of creativity), and the results were inconclusive as to 

which context displayed the greater relationship between usefulness and creativity. To my 

knowledge, no study has provided definitive evidence regarding how the context of ideas can 

affect the contributions of novelty and usefulness to evaluations of creativity. 

 

6.1.3 Individual differences in the evaluation of creativity and its components  

In addition to the context of the idea, individual differences between raters are also likely to 

influence the contributions of novelty and usefulness to evaluations of creativity. Understanding 

differences in the evaluation of creativity is highly important to creativity research for at least two 

reasons. First, creativity research relies heavily on subjective assessments of creativity, and so 

understanding the interpersonal factors that cause variation in these assessments is key to 

developing strong and reliable measures. Indeed, the most common subjective assessment 

method, the CAT, has recently been criticized for not accounting for variation across raters (Barbot 
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et al., 2019; Myszkowski & Storme, 2019). The limitations intrinsic to subjective assessments of 

creativity are well-known, and have stimulated the development of objective assessments 

including distributional semantics methods (Acar et al., 2021; Beaty & Johnson, 2021) and machine 

learning techniques (Cropley & Marrone, 2021; Edwards, Peng, Miller, & Ahmed, 2021). However, 

such methods can often assess only the novelty of ideas, not the usefulness (Beaty & Johnson, 

2021), and the field will likely continue to rely on subjective assessments of creativity for the 

foreseeable future. 

Second, a better understanding of creative evaluation could lead to a better understanding of 

creative generation. The production of creative ideas is often argued to involve iterative cycles of 

generation and evaluation (e.g., Basadur, 1995; Finke, Ward, & Smith, 1992; Lubart, 2001; cf. 

Campbell, 1960; Simonton, 2013), and research suggests that more thorough evaluation during 

the production of ideas can lead to better creative performance (Gibson & Mumford, 2013; 

McIntosh, Mulhearn, & Mumford, 2021; Watts, Steele, Medeiros, & Mumford, 2019). Moreover, 

given the close ties between generation and evaluation, differences in how people evaluate ideas 

may relate to differences in how people generate ideas. For example, individuals who favor 

novelty over usefulness when evaluating the ideas of others may show the same preferences 

when generating their own products or responses (a possibility supported by Caroff & Besançon, 

2008). As such, a clearer understanding of differences in the evaluation of creativity may lead not 

only to more nuanced creative assessment techniques but also to a clearer understanding of 

differences in creative performance. 

A considerable body of work has examined how differences in the evaluation of creative ideas 

relate to factors including culture (Ivancovsky, Shamay-Tsoory, Lee, Morio, & Kurman, 2019; 

McCarthy, Chen, & McNamee, 2018; Simonton, 1999; Sternberg, 2018), intelligence (Karwowski et 

al., 2020; Storme & Lubart, 2012), musical training (Kleinmintz, Goldstein, Mayseless, Abecasis, & 

Shamay-Tsoory, 2014; Kleinmintz et al., 2019), emotion (Mastria et al., 2019), and uncertainty (Lee 

et al., 2017; Mueller et al., 2012). Of particular note, research suggests that positive emotion may 

relate to higher creativity ratings (Mastria et al., 2019), while uncertainty relates to lower 

creativity ratings (Lee et al., 2017; Mueller et al., 2012). It has also been found that prevention 

focus (a tendency to minimize loss) is related to greater accuracy when evaluating usefulness and 
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reduced accuracy when evaluating novelty, compared to promotion focus (a tendency to maximize 

reward; Herman & Reiter-Palmon, 2011). These findings suggest that more negative, uncertain, 

and avoidance-oriented states may lead raters to favor practicality over creativity, shunning novel 

ideas that may be associated with greater risk. By contrast, more positive, certain, and promotion-

oriented states might lead raters to be more receptive to creative and novel ideas. In line with this 

research, it seems likely that an individual’s personality and preference for risk-taking might also 

impact how they evaluate creativity, and indeed how they weigh novelty and usefulness when 

evaluating creativity. 

Research into the link between personality and creativity has a rich history (Batey & Furnham, 

2006; Feist, 1998). In particular, the Big Five trait openness/intellect has been found to relate to 

greater scores on virtually all forms of creativity assessment (Batey & Furnham, 2006; Feist, 1998; 

Kaufman et al., 2016; Oleynick et al., 2017). Openness/intellect is typified by imagination and 

artistic and intellectual curiosity, and may be assessed as a single construct or in terms of its twin 

aspects of openness and intellect (Kaufman et al., 2016; Oleynick et al., 2017). Among possible 

reasons for the link between greater openness/intellect and greater creativity is that those higher 

in the trait tend to seek out novelty and complexity, and are motivated by a recurrent desire to 

enlarge their experience (DeYoung, Peterson, & Higgins, 2005; Kaufman et al., 2016; McCrae & 

Ingraham, 1987; Oleynick et al., 2017).  

Given this characterization, it seems possible that individuals with higher openness/intellect scores 

might be more receptive to creative ideas, and may place more importance on novelty and less on 

usefulness when evaluating creativity. It is also possible that openness and intellect, examined 

separately, are associated with different weightings of novelty and usefulness. For example, 

Kaufman et al. (2016) found that while openness predicts creative achievement in the arts, 

intellect predicts creative achievement in the sciences. As such, one might expect openness to 

relate to a greater consideration of novelty and intellect to relate to a greater consideration of 

usefulness when participants evaluate creativity. However, while some research has investigated 

how openness/intellect relates to the evaluation of creativity overall (Ceh, Edelmann, Hofer, & 

Benedek, 2022; Silvia, 2008), very little is known about how differences in openness/intellect 
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relate to differences in how novelty and usefulness are weighted during the evaluation of 

creativity. 

An individual’s willingness to take risks might also affect how they evaluate creative ideas. By 

definition, creative ideas are different from the norm, and as their novelty increases, they may be 

less likely to be appropriate or useful (as is indicated by the negative relationship often found 

between novelty and usefulness; Caroff & Besançon, 2008; Diedrich et al., 2015; Runco & Charles, 

1993). As such, individuals who are more willing to take risks might be more willing to pursue 

creative ideas, and may place more weight on novelty than usefulness when assessing creativity. 

The relationship between risk-taking and creativity is not as clear-cut as for openness/intellect, 

with some studies finding a positive relationship (Dewett, 2007; Glover & Sautter, 1977) and 

others finding no relationship (Erbas & Bas, 2015; Shen et al., 2018). More recent research 

suggests that it may be social risk-taking (and not risk-taking in other domains) that relates to 

greater creativity (Bonetto et al., 2021; Tyagi et al., 2017). However, it remains unknown how risk-

taking affects the evaluation of creative ideas and the importance assigned to novelty and 

usefulness. 

 

6.1.4 The present research 

Empirical and theoretical work suggests that creative ideas are both novel and useful. However, 

while some research indicates that novelty is more important than usefulness to evaluations of 

creativity, it remains unknown how the contributions of these components depend on the nature 

of the creative task and how applicable it is to the real world. In addition, despite the importance 

of subjective assessments to creativity research, it is unclear how individual differences among 

raters can affect their evaluations of creativity and the importance they assign to novelty and 

usefulness.  

To investigate these outstanding questions, this study followed a hierarchical, mixed-effects 

design (with ratings nested within participants) to examine how idea context and rater personality 

can affect the contributions of novelty and usefulness to evaluations of creativity. Participants 

rated the novelty, usefulness, and creativity of ideas from two contexts: AUT ideas and genuine 
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suggestions for social development projects (subsequently referred to as “Projects”). Following 

these ratings, participants completed questionnaires assessing openness/intellect and risk-taking 

traits. Relationships between idea ratings and personality scores were then examined using both 

single-subject maximum likelihood estimation (SSMLE) and linear mixed-effects models (LMEMs). 

I had several predictions, in line with the hypothesis that when evaluating creativity, raters would 

weigh the novelty and usefulness of an idea differently depending on their personality traits and 

the idea’s context (i.e., real-world relevance). Concerning context, it was predicted that among 

AUT ideas, creativity ratings would be more related to novelty ratings than usefulness ratings (as 

found previously; Diedrich et al., 2015; Runco & Charles, 1993; Storme & Lubart, 2012). However, 

consistent with the notion that usefulness is a more important component of creativity in the 

context of more realistic problems (Long, 2014; Runco et al., 2005), it was also predicted that 

creativity ratings would be more related to usefulness ratings among Projects than among AUT 

ideas.  

Concerning personality traits, it was predicted that openness and risk-taking would both be 

associated with a stronger relationship between novelty and creativity, among idea ratings in both 

contexts. This would be consistent with the notion that individuals who are more open to new 

ideas, and more likely to take risks, are more driven toward novelty and so value novelty more 

when evaluating creativity. No specific predictions were made regarding how intellect would 

moderate relationships; however, the study aimed to examine whether higher intellect scores 

would be associated with a stronger relationship between usefulness and creativity, given 

research linking intellect to creative achievement in the sciences, but not in the arts (Kaufman et 

al., 2016). 

 

6.2 Methods 

6.2.1 Participants 

Using G*power software (version 3.1; Faul, Erdfelder, Lang, & Buchner, 2007), it was calculated 

that a sample size of 111 was required for a 95% power to detect correlations of r = .03 or greater. 

As such, 121 healthy human adults (88 females; mean age = 31.3 years, SD = 14.3) were recruited 
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for the study. 36 were recruited from Goldsmiths, University of London and did not receive any 

financial incentive, while 85 were recruited via Prolific and were paid a small cash incentive. 

Among paid participants, participation was contingent on a Prolific approval rating of 90% or 

above and a minimum of 40 previously completed studies. Fluency in English was required for 

participants in both samples due to the nature of the task, which involved evaluating the creativity 

of verbal ideas. Among both paid and non-paid participants, informed consent was given prior to 

data collection. Ethical approval for the study was given by the Local Ethics Committee of the 

Department of Psychology at Goldsmiths, University of London. 

 

6.2.2 Materials 

Idea ratings: AUT responses.  

AUT ideas were 48 suggested uses for one of two objects: “table” and “shoe”. The ideas were 

carefully selected from a total of 1866 responses produced by participants in a prior study (Luft et 

al., 2018), to ensure an even distribution in terms of creative quality. Each idea had been rated for 

creativity on a scale from 1 to 10 by three raters. For the present study, scores were averaged 

across these raters to produce one creativity score per idea. Ideas were then spelling-corrected, 

and repeated items were removed. Next, histograms of idea creativity were examined for each 

object. Ideas for both objects were highly skewed, with very few ideas scoring above 8 in 

creativity. To produce more even distributions, ratings of 9 or 10 were recoded as 8. Ideas were 

then separated into four bins, each corresponding to a rating of 1-2, 3-4, 5-6, and 7-8. For each 

object, 48 ideas were pseudorandomly selected (for a total of 96), such that 12 ideas came from 

each rating bin. These were then manually checked, and inappropriate or very similar ideas were 

removed, leaving 24 ideas per object (48 in total). Finally, ideas were rephrased for succinctness. 

 

Idea ratings: social development Projects.  

Projects were 10 suggestions for urban planning projects that might “restore vibrancy in cities and 

regions facing economic decline”. During a prior study (Pétervári, 2018), Projects had been 

selected from an open-source platform (OpenIDEO, 2011) from among entrees into a competition, 

and reduced to two-paragraph descriptions. Participants in this prior study (N = 80) rated their 

willingness to invest in each Project on a scale from 0 to 100, which was assumed to indicate the 



147 
 

Project’s overall quality. For the present study, 10 Projects were selected from a total of 15, due to 

time constraints and the longer length of the Project descriptions compared to the AUT ideas. This 

was achieved by removing the 5 Projects with the most variable ratings, which increased the 

uniformity of the quality scores across Projects. 

 

Openness/Intellect.  

The Openness/Intellect subscale of the Big Five Aspect Scale (BFAS; DeYoung et al., 2007) was used 

to assess openness and intellect (see Chapter 3). 

 

Risk-taking.  

The Domain Specific Risk-taking Scale (DSRS; Blais & Weber, 2006) was used to assess risk-taking 

(see Chapter 3). 

 

6.2.3 Procedure 

All data was collected using Qualtrics software. Participants completed idea ratings first, and 

personality measures second. Idea rating trials were organized into blocks by idea context (i.e., 

AUT or Projects), and by property (i.e., novelty, usefulness, or creativity). Participants completed 

blocks in one of four orders to counterbalance the order of contexts and properties. Specifically, 

half of the participants completed AUT ratings first, while half completed Projects ratings first. 

Within these groups, half of the participants completed novelty ratings first, while the other half 

completed usefulness ratings first. All participants completed ratings for overall creativity last, 

though the order of AUT ideas and Projects varied within creativity ratings (see Figure 11). Within 

each block (e.g., novelty ratings for AUT ideas) trials were randomized.  
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 Participants were initially told only that they would be “evaluating ideas”. No instructions 

regarding novelty, usefulness, or creativity were given until participants began the corresponding 

block. As such, participants were naive to the fact that they would be rating creativity until after 

they had completed both novelty and usefulness ratings. Upon starting each block, participants 

were told they would be asked to rate the novelty, usefulness, or creativity of either “ideas for 

how to use common, everyday objects” or “real proposals for urban planning projects”. 

Participants were then given further instructions to help them consider the property in question. 

Specifically, for novelty, usefulness, and creativity respectively, they were told to think about: 

“how novel, unusual, or unexpected each idea is”; “how useful, effective, or practical each idea is”; 

or “how creative each idea is”. Since instructions pertaining to creativity often ask participants to 

focus on originality, novelty, usefulness, or appropriateness (Acar et al., 2019), and since these 

components were being rated separately in this study, creativity was deliberately left open to 

interpretation, with minimal additional instructions. Participants then completed two (Projects) or 

five (AUT) practice ratings before seeing the same instructions again and beginning the real trials. 

Instructions were repeated to emphasize the points participants should consider in their ratings. 

Figure 11 
Order of rating blocks (top to bottom) 
 

Note. The order of contexts (i.e., AUT ideas or Projects) and properties (i.e., 
novelty or usefulness) were counterbalanced. Double-ended arrows 
denote interchangeability dependent on counterbalancing conditions. 
Creativity ratings were always completed last. 
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Within each trial, participants were shown a single line of instruction (e.g., “How NOVEL is this 

idea for how to restore vibrancy in cities and regions facing economic decline?”, or “How USEFUL 

is this idea for how to use a table?”), together with the idea itself, and a scale from 1 (not at all) to 

7 (very). After finishing all ratings, participants completed questionnaires assessing 

openness/intellect and risk-taking. 

 

6.2.4 Analyses 

Analyses made use of both SSMLE and LMEMs. LMEMs can account for the dependence of 

multiple data points from a single individual (here, ratings for different ideas), modeling them as 

random effects (Singmann & Kellen, 2019). This allowed us to model unique relationships between 

novelty, usefulness, and creativity for each participant, while simultaneously estimating group-

level effects (McNeish & Kelley, 2019). By contrast, SSMLE (Katahira, 2016) is a more intuitive 

approach that involves fitting a standard linear regression for each participant separately. While 

this approach is known to be generally less powerful than LMEMs (see Stein’s paradox; Efron & 

Morris, 1977; Katahira, 2016), SSMLE provides distributions of predictor estimates (e.g., for 

novelty and usefulness) which can then be compared for significant differences, while correlations 

can be computed between parameter estimates and individual differences (e.g., openness). The 

two forms of analysis have different assumptions, and so using both together can provide a richer 

understanding of the examined relationships, as well as an indication of the robustness of findings 

(see Steegen, Tuerlinckx, Gelman, & Vanpaemel, 2016). 

SSMLE was conducted first, and separately for AUT ideas and Projects, to compare the relative 

importance of novelty and usefulness when evaluating creativity in both contexts. Regressions 

were fitted for each participant individually, with creativity as the dependent variable and novelty 

and usefulness as joint predictors (i.e., novelty and usefulness were simultaneously present in 

each regression). Prior to computing regressions, creativity, novelty, and usefulness ratings were z-

scored within participants. The standardized beta coefficients for novelty and usefulness were 

then used in further analyses, to compare the coefficients between idea contexts, and to examine 

relationships between coefficients and personality measures. 

Following the SSMLE analyses, a series of LMEMs were computed to further examine the 

relationships between creativity, novelty, and usefulness ratings, and to test whether these 
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relationships were significantly moderated by context and participants’ personality scores. In 

addition, the study aimed to test for a significant interaction between novelty and usefulness, as 

has been found previously (Diedrich et al., 2015). Three LMEMs were computed, all of which had 

creativity rating as the dependent variable. These models were constructed by successively adding 

effects to create more complex versions of the model, comparing each model to the previous, 

simpler model via likelihood ratio testing (e.g., Wilken, Forthmann, & Holling, 2020). This should 

reveal whether each added effect contributes significantly to model fit. Models were computed 

using custom MATLAB scripts and the fitlme function. As with SSMLE, creativity, novelty, and 

usefulness were z-scored within participants. In addition, personality scores were z-scored across 

participants.  

 

6.3 Results 

Of 121 participants, data for nine were removed due to these participants failing attention checks 

or responding randomly. One additional participant’s data was removed from all analyses 

involving the Projects ratings due to incomplete data for this part of the study. The final sample 

sizes were thus 112 for the AUT data and 111 for the Projects data. 

To check for differences between paid (N = 76) and non-paid (N = 36) samples, a series of 

independent samples t-tests were conducted. No significant differences were found between paid 

and non-paid participants, either in terms of novelty, usefulness, or creativity ratings (among 

either AUT ideas or Projects) or in terms of personality measures (ps >.235). 

 

6.3.1 Descriptive statistics 

Descriptive statistics and zero-order correlations for participants’ personality scores and novelty, 

usefulness, and creativity ratings are shown in Table 22. Here, idea ratings are averaged within 

participants to produce a single score for each rating block and each participant. 
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Creativity was positively related to novelty, among both AUT (r = .51, p < .001) and Project ratings 

(r = .60, p < .001). By contrast, creativity was positively related to usefulness only among Project 

ratings (r = .61, p < .001), not AUT ratings (r = .03, p = .758). In addition, novelty and usefulness 

ratings were positively correlated only among Project ratings (r = .49, p < .001). While correlations 

between personality measures and participants’ mean ratings were of secondary interest in this 

study (which is primarily interested in how personality measures moderate relationships between 

creativity ratings and novelty and usefulness ratings), it was notable that no personality measures 

were significantly correlated with mean ratings for novelty, usefulness, or creativity (ps > .126). 

Within personality measures, social risk-taking was robustly correlated with intellect (r = .60, p 

= .001) and weakly correlated with openness (r = .19, p = .048). Meanwhile, general risk-taking was 

weakly and not significantly correlated with intellect (r = .18, p = .063), and did not correlate with 

openness (r = -.04, p = .709). 

 

6.3.2 Single-subject maximum likelihood estimation 

SSMLE was conducted for AUT ideas and Projects separately, to estimate standardized coefficients 

for novelty and usefulness for each participant individually. Differences between coefficients 

within and across contexts, and relationships between coefficients and personality measures were 

Table 22 

Means, standard deviations, and correlation coefficients for personality measures and participant-level idea 
ratings 

 Mean SD 1 2 3 4 5 6 7 8 9 

1.  Openness 38.63 5.47 -                 
2.  Intellect 37.11 5.79 .32** -               
3.  Risk General  93.88 22.33 -.04 .18 -             
4.  Risk Social  30.81 5.21 .19* .31** .47** -           
5.  AUT Nov. 4.03 0.60 .02 .12 .00 -.10 -      
6.  AUT Use. 3.81 0.57 -.03 -.14 -.04 .06 -.09 -    

7.  AUT Crea. 3.94 0.66 .10 .13 .01 -.13 .51** .03 -   
8.  Proj. Nov. 4.57 0.81 .03 .03 -.11 .13 .25**  .18  .31**  -   
9.  Proj. Use. 4.67 0.75 .02 -.06 .07 .14 .05 .31** .15   .49**  - 
10.  Proj. Crea. 4.88 0.79 .15 -.07 .05 .12 .10 .13 .31**  .60** .61**  

Note. Risk General = general risk-taking; Risk Social = social risk-taking; Nov. = novelty; Use. = usefulness; Crea. 
= creativity; Proj. = Projects. * p <.05., ** p <.01. 
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then examined. Since the statistical significance of individual participant estimates is not of 

interest to this study, significance values for individual estimates are not included here.  

Across all participants, within AUT ideas, coefficients had a mean of 0.48 (SD = 0.33) for novelty, 

and 0.08 (SD = 0.33) for usefulness. With Projects, coefficients had a mean of 0.38 (SD = 0.39) for 

novelty, and 0.24 (SD = 0.38) for usefulness. Boxplots summarizing the distributions of these 

coefficients are presented in Figure 12.  

A series of between-participants t-tests were conducted to test for significant differences between 

novelty and usefulness coefficients, both within and between idea contexts (AUT ideas and 

Projects). In all t-test results, Cohen’s dav is reported as a measure of effect size (Lakens, 2013). 

Results are summarized in Table 23. Novelty coefficients were significantly larger than usefulness 

coefficients among both AUT ratings and Projects ratings. Comparing across idea context, novelty 

coefficients were significantly higher among AUT ratings than Projects ratings. By contrast, 

usefulness coefficients were significantly higher among Projects ratings than AUT ratings. 

Together, results suggest that novelty plays a greater role in evaluations of creativity than 

Figure 12 
Boxplots showing means and ranges for standardized novelty and usefulness coefficient estimates across all 
participants, for AUT ratings (a), and Projects ratings (b) 

(a) AUT ratings (b) Project ratings 
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usefulness in both contexts, but is more important in the context of AUT ideas. In addition, results 

indicate that usefulness is far more important to evaluations of creativity among urban planning 

projects than among AUT ideas. 

Next, I examined whether the weightings given to novelty and usefulness relate to aspects of 

participants’ personalities. Correlations between participant personality scores and novelty and 

usefulness coefficients, for ideas in both contexts, are shown in Table 24. 

Table 24 
Correlations between novelty and usefulness coefficient estimates and personality 
scores 

Task Coefficient Openness Intellect Risk General  Risk Social  

AUT Novelty β .23* .22* -.03 -.01 

 Useful β .04 .09 .03 -.03 

Projects Novelty β -.03 -.15 -.14 -.03 

 Useful β .20* .16 .01 .02 

Note. Risk General = general risk-taking; Risk Social = social risk-taking.  
* p < .05. 

 

Among AUT ratings, novelty coefficients were significantly and positively correlated with both 

openness (r = .23, p = .015) and intellect (r = .22, p = .023) scores, while no significant relationships 

were found between usefulness coefficients and any personality measures (ps > .344). By contrast, 

among Project ratings, participants’ novelty coefficients were not significantly related to any 

personality measures (ps > .128), while usefulness coefficients were significantly and positively 

correlated with openness score (r = .20, p = .033), and positively but non-significantly related to 

intellect score (r = .16, p = .085). Together, results suggest that participants’ openness and intellect 

scores may differently moderate the contributions of novelty and usefulness to evaluations of 

Table 23 
Results of t-tests comparing novelty and usefulness coefficients within and between 
task types 

  t (d.f.)         p Cohen’s dav 

AUT: Novelty β > Usefulness β 13.63 (111) .000 1.29 
Projects: Novelty β > Usefulness β 2.35 (110) .020 0.22 

Novelty β: AUT > Projects 2.39 (110) .018 0.23 

Usefulness β: AUT < Projects 7.43 (110) .000 0.71 
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creativity depending on the context (see Figure 13). Specifically, when evaluating the creativity of 

AUT ideas, those higher in openness and intellect may place more weight on novelty, while when 

evaluating the creativity of urban planning projects, the same participants may place more weight 

on usefulness.  

Notably, no measures of risk-taking were found to be significantly related to either novelty or 

usefulness coefficients, either among AUT ideas or Projects (ps > .159). Therefore, risk-taking 

measures were left out of subsequent LMEM analyses. 

6.3.3 Linear mixed-effects models 

The first LMEM (Model 1) was primarily a sanity check to confirm the results of the SSMLE 

analyses, which had found significant differences between novelty and usefulness coefficients 

across idea context. As such, this model aimed to test whether idea context significantly 

moderated the relationships between creativity and novelty and usefulness. In addition, two 

Figure 13  
Scatterplots of the relationships between openness and novelty coefficients among AUT ratings (a) and 
between openness and usefulness coefficients among Project ratings (b) 

(a) AUT ratings 
(b) Project ratings 

 

  Note. * p < .05.      

r = .23* r = .20* 
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further LMEMs were constructed to examine AUT ideas (Model 2) and Projects (Model 3) 

separately. These models were identical in structure and aimed to examine the relative 

contributions of novelty and usefulness to creativity, the significance of the interaction between 

novelty and usefulness, and the significance of interactions between openness and intellect and 

novelty and usefulness. Predictors for novelty, usefulness, openness and intellect (and their 

interactions) were added successively. Due to multicollinearity concerns, openness and intellect 

were added separately in the final step of both Model 2 and Model 3. 

Model 1 (examining the effect of context) began with a null model containing only random 

intercepts across participants, with no fixed effects. Following this, main effects for novelty and 

usefulness were added (Model 1A) before random slopes for novelty and usefulness were added 

(Model 1B). Finally, the main effect for context was added together with interactions between 

context and novelty and usefulness (Model 1C). 

Results are presented in Table 25. Comparing Model 1A to the null model, adding main effects for 

both novelty and usefulness improved model fit, as indicated by likelihood ratio testing and 

information criteria. Significant effects were found for both novelty (β = 0.53, SE = 0.01, p < .001), 

and usefulness (β = -0.10, SE = 0.01, p < .001). Adding random effects slopes for novelty and 

usefulness in Model 1B also improved model fit, confirming that novelty and usefulness contribute 

differently to creativity across participants. Finally, in Model 1C, adding effects for context again 

improved model fit significantly. The main effect of context was not significant (p > .999), while 

interactions between novelty and context (β = 0.10, SE = 0.03, p < .001), and usefulness and 

context (β = -0.35, SE = 0.03, p < .001), were highly significant. These results confirm that novelty 

and usefulness had different relationships with creativity across contexts. Indeed, since AUT ideas 

were coded as 1 and Projects as 0, the positive moderation effect of Novelty x Context reflects the 

fact that novelty was more related to creativity among AUT ideas than Projects. Conversely, the 

negative and larger moderation effect of Usefulness x Context reflects the fact that usefulness was 

far more related to creativity among Projects than AUT ideas. These results are completely 

consistent with the SSMLE results (see Table 23 above). 
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For Model 2 (examining AUT ideas), following the null model (which again contained only random 

intercepts across participants), main effects for novelty and usefulness were added (Model 2A) 

before random slopes for novelty and usefulness were added (Model 2B). Next, an interaction 

effect between novelty and usefulness was added (Model 2C) before main effects and interactions 

were added for openness (Model 2D.1) and intellect (Model 2D.2) separately.  

Results are presented in Table 26. As expected, adding main effects for novelty and usefulness 

improved the fit of Model 2A relative to the null model. Adding random effects slopes for novelty 

and usefulness in Model 1B also improved model fit. Significant main effects were found for both 

novelty (β = 0.50, SE = 0.03, p < .001), and usefulness (β = -0.11, SE = 0.03, p < .001). In Model 2C, a 

Table 25  
Linear Mixed-Effects Model (LMEM) of Creativity Ratings for AUT ideas and Projects together, with 
Predictor Estimates for Novelty, Usefulness, and Context and Interactions 

 Null Model Model 1A Model 1B Model 1C 

Fixed effects β (SEb) β (SEb) β (SEb) β (SEb) 
   Intercept 0.00 (0.01) 0.00 (0.01) 0.00 (0.01) 0.00 (0.02) 
   N   0.53 (0.01)*** 0.53 (0.03)*** 0.40 (0.03)*** 

   U   

-
0.10 (0.01)*** 

-
0.05 (0.02) 0.23 (0.03)*** 

   Context       0.00 (0.02) 
   N x Context       0.10 (0.03)*** 

   U x Context       

-
0.35 (0.03)*** 

Random Effects s2  s2  s2  s2  
   Intercept 0.00  0.00  0.00  0.00  
   N     0.24  0.22  
   U     0.23  0.23  
Model Comparison        
   AIC 18185.55 15624.00 15624.00 14598.48 
   BIC 18205.88 15657.89 15657.89 14686.58 
   R2(m) .00 .33 .33 .46 
   ∆χ2 (df)  2565.55 (5) *** 2565.55 (10)*** 172.61 (13)*** 

Note. N = Novelty; U = Usefulness; Context = AUT ideas (coded as 1) vs Projects (coded as 0); 
Results for fixed effects are presented as standardized regression coefficients with standard error 
in parentheses; s2 is the standard error estimate for random intercepts and slopes; Model 1A is 
compared to the null model, Model 1B is compared to Model 1A, Model 1C is compared to Model 
1B; AIC = Akaike’s Information Criterion; BIC = Bayesian Information Criterion; R2(m) = proportion 

of variation explained by fixed effects (Nakagawa & Schielzeth, 2013); ∆χ2 = Likelihood ratio test 
statistic for comparison of models.  
*** p < .001.      
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significant interaction was found between novelty and usefulness (β = 0.08, SE = 0.01, p < .001), 

and this added effect again improved model fit. This result is broadly comparable to previous 

research that has examined ratings for AUT ideas (Diedrich et al., 2015), which found that 

usefulness was less related to creativity among non-novel (i.e., common) ideas, and more related 

to creativity among novel ideas. However, in the present data, usefulness was found to be 

negatively related to creativity among non-novel AUT ideas, while being unrelated to creativity 

among novel AUT ideas (see Figure 14). Comparing Models 2D.1 and 2D.2 to Model 2C, neither 

openness nor intellect significantly improved model fit. Main effects for openness and intellect 

were non-significant (ps > .583), however significant interactions were found between both 

novelty and openness (β = 0.07, SE = 0.03, p = .015; see Figure 15a) and novelty and intellect (β = 

0.07, SE = 0.03, p = .014), suggesting that both aspects of Openness/Intellect lead to a greater 

consideration of novelty when participants evaluated the creativity of AUT ideas. Neither 

openness nor intellect interacted significantly with usefulness (ps > .185). 
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Table 26  
Linear Mixed-Effects Model (LMEM) of Creativity Ratings for AUT Ideas, with Predictor Estimates for Novelty, Usefulness, and 
Personality Factors and Interactions 

 Null Model Model 2A Model 2B Model 2C Model 2D.1 Model 2D.2 

Fixed effects β (SEb) β (SEb) β (SEb) β (SEb) β (SEb) β (SEb) 
   Intercept 0.00 (0.01) 0.00 (0.01) 0.00 (0.01) 0.04 (0.01)*** 0.04 (0.01)*** 0.04 (0.01)*** 
   N   0.49 (0.01)*** 0.50 (0.03)*** 0.49 (0.03)*** 0.49 (0.03)*** 0.49 (0.03)*** 

   U   

-
0.17 (0.01)*** 

-
0.11 (0.03)*** 

-
0.10 (0.03)*** 

-
0.10 (0.03)*** 

-
0.10 (0.03)*** 

   N x U       0.08 (0.01)*** 0.08 (0.01)*** 0.08 (0.01)*** 
   O         0.00 (0.01)   
   N x O         0.07 (0.03)*   
   U x O         0.03 (0.03)   
   I           0.01 (0.01) 
   N x I           0.07 (0.03)* 
   U x I           0.04 (0.03) 
Random 
Effects s2  s2  s2  s2  s2  s2  
   Intercept 0.00  0.00  0.00  0.02  0.02  0.02  
   N     0.27  0.27  0.26  0.26  
   U     0.28  0.28  0.28  0.27  
Model Comparison            
   AIC 15149.24 12752.45 11846.56 11793.32 11793.48 11792.93 
   BIC 15169.01 12785.40 11912.45 11865.81 11885.74 11885.18 
   R2(m) .00 .36 .50 .50 .50 .50 
   ∆χ2 (df)  2400.79 (5)*** 915.90 (10)*** 55.24 (11)*** 5.84 (14) 6.39 (14) 

Note. N = Novelty; U = Usefulness; O = Openness; I = Intellect; Results for fixed effects are presented as standardized 
regression coefficients with standard error in parentheses; s2 is the standard error estimate for random intercepts and 
slopes; Model 2A is compared to the null model, Model 2B is compared to Model 2A, Model 2C is compared to Model 2B, 
and Model 2D.1 and 2D.2 are each compared to Model 2C; AIC = Akaike’s Information Criterion; BIC = Bayesian Information 
Criterion; R2(m) = proportion of variation explained by fixed effects (Nakagawa & Schielzeth, 2013). ∆χ2 = Likelihood ratio test 
statistic for comparison of models. 
* p < .05; *** p < .001.      
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Model 3 was constructed in exactly the same way as Model 2 but now applied in the context of 

Projects rather than AUT ideas. Results are presented in Table 27. Relative to the null model, 

adding main effects for novelty and usefulness again improved the fit of Model 3A. Adding random 

effects slopes for novelty and usefulness in Model 3B also improved model fit. Significant main 

effects were found for both novelty (β = 0.41, SE = 0.03, p < .001), and usefulness (β = 0.22, SE = 

0.03, p < .001). In Model 3C, an interaction between novelty and usefulness was added, but this 

was non-significant (β = -0.04, SE = 0.03, p = .116), and did not improve model fit. Comparing 

Models 3D.1 and 3D.2 to Model 3C, neither openness nor intellect significantly improved model 

fit. Main effects for openness and intellect were non-significant (ps > .964). A significant 

interaction was found between usefulness and openness (β = 0.08, SE = 0.03, p = .020), while an 

interaction between usefulness and intellect did not reach significance (β = 0.06, SE = 0.03, p 

= .063). These results suggest that participants who are higher in openness may place greater 

importance on usefulness when evaluating the creativity of Projects (see Figure 15b).  Neither 

openness nor intellect interacted significantly with novelty (ps > .155). 

Figure 14 
Simple slopes plot of the interaction between novelty and usefulness 
as predictors of creativity among AUT ratings 
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Table 27 
Linear Mixed-Effects Model (LMEM) of Creativity Ratings for Projects, with Predictor Estimates for Novelty, Usefulness, and 
Personality Factors and Interactions 

 Null Model Model 3A Model 3B Model 3C Model 3D.1 Model 3D.2 

Fixed effects β (SEb) β (SEb) β (SEb) β (SEb) β (SEb) β (SEb) 
   Intercept 0.00 (0.03) 0.00 (0.02) 0.00 (0.02) 0.01 (0.02) 0.01 (0.02) 0.01 (0.02) 
   N   0.41 (0.03)*** 0.40 (0.03)*** 0.39 (0.03)*** 0.39 (0.03)*** 0.39 (0.03)*** 
   U   0.22 (0.03)*** 0.23 (0.03)*** 0.23 (0.03)*** 0.23 (0.03)*** 0.23 (0.03)*** 

   N x U       

-
0.04 (0.03) 

-
0.04 (0.03) 

-
0.04 (0.03) 

   O         0.00 (0.02)   

   N x O         

-
0.01 (0.03)   

   U x O         0.08 (0.03)*   
   I           0.00 (0.02) 

   N x I           

-
0.05 (0.03) 

   U x I           0.06 (0.03) 
Random 
Effects s2  s2  s2  s2  s2  s2  
   Intercept 0.00  0.00  0.00  0.00  0.00  0.00  
   N     0.22  0.22  0.22  0.21  
   U     0.24  0.24  0.23  0.23  
Model Comparison            
   AIC 3056.37 2712.51 2680.53 2680.06 2680.25 2682.07 
   BIC 3071.44 2737.62 2730.74 2735.29 2750.54 2752.37 
   R2(m) .00 .27 .35 .35 .35 .35 
   ∆χ2 (df)  347.86 (5)*** 41.99 (10)*** 2.47 (11) 5.81 (14) 3.99 (14) 

Note. N = Novelty; U = Usefulness; O = Openness; I = Intellect; Results for fixed effects are presented as standardized 
regression coefficients with standard error in parentheses; s2 is the standard error estimate for random intercepts and 
slopes; Model 3A is compared to the null model, Model 3B is compared to Model 3A, Model 3C is compared to Model 3B, 
and Model 3D.1 and 3D.2 are both compared to Model 3C; AIC = Akaike’s Information Criterion; BIC = Bayesian Information 
Criterion; R2(m) = proportion of variation explained by fixed effects (Nakagawa & Schielzeth, 2013); ∆χ2 = Likelihood ratio test 
statistic for comparison of models. 
* p < .05; *** p < .001.      
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6.4 Discussion 

If creative ideas are both novel and useful (Runco & Jaeger, 2012; Stein, 1953), individuals should 

weigh up these two components when evaluating the creativity of ideas. The present study 

focused on the evaluation of exogenous (i.e., non-self-generated) ideas, and examined how the 

weightings applied to novelty and usefulness vary according to the context of the idea and the 

personality of the rater. Both SSMLE and LMEM analyses indicated that the relative importance of 

novelty and usefulness to evaluations of creativity can vary widely over different contexts, and 

that those with different personalities may consider novelty and usefulness to different extents. 

Specifically, while novelty was more important to evaluations of creativity than usefulness among 

both AUT ideas and Projects, I found that usefulness was far more important in the context of 

Projects than in the context of AUT ideas. Moreover, I found that individuals higher in openness 

(and to a lesser extent, intellect) placed a greater emphasis on novelty when evaluating AUT ideas, 

while placing a greater emphasis on usefulness when evaluating Projects. 

Figure 15 
Simple slopes plot of the interaction between openness and novelty, among AUT ratings (a), and between 
openness and usefulness, among Project ratings (b) 

(a) AUT ratings 
(b) Project ratings 
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The finding that raters generally consider novelty more than usefulness when evaluating creativity 

was in line with predictions and with prior research (Acar et al., 2017; Caroff & Besançon, 2008; 

Diedrich et al., 2015; Han et al., 2021; Runco & Charles, 1993). Among both AUT ideas and 

Projects, novelty coefficients were significantly greater than usefulness coefficients in SSMLE 

analyses, while LMEMs found larger coefficients for novelty than usefulness in both contexts.  

However, I also found clear differences between contexts. In line with predictions, raters 

considered novelty more in the context of AUT ideas, and usefulness more in the context of 

Projects. Specifically, LMEMs revealed significant interactions between idea context and both 

novelty and usefulness, while SSMLE analyses revealed greater novelty coefficients among AUT 

ideas than Projects, and greater usefulness coefficients among Projects than AUT ideas. Indeed, 

separate LMEMs for AUT ideas and Projects suggested that while usefulness was negatively 

related to creativity among AUT ideas, it was positively related to creativity among Projects. These 

findings are consistent with the notion that different contexts can lead to different considerations 

of novelty and usefulness (Long, 2014; Runco et al., 2005). In contexts such as the AUT, where 

ideas are unlikely to be used in the real world, usefulness may not contribute to evaluations of 

creativity, or may even contribute negatively. By contrast, in contexts where ideas are clearly 

applicable to the real-world, usefulness may play a far greater role in evaluations of creativity. 

These results extend previous research by highlighting how the context in which an idea was 

generated can impact evaluations of creativity. 

Considering the role of rater personality in evaluations of creativity, findings were more nuanced 

than expected. While it was predicted that higher openness would be related to a greater 

consideration of novelty, this was only the case in the context of AUT ideas. In the context of 

Projects, higher openness was related to a greater consideration of usefulness. In addition, while it 

was suggested that intellect might relate to a greater consideration of usefulness in both contexts, 

intellect actually followed the same context-dependent pattern as openness. Specifically, among 

AUT ideas, both openness and intellect were positively correlated with SSMLE novelty coefficients, 

while significant interactions between these traits and novelty were found in an LMEM. By 

contrast, among Projects, openness and intellect were positively correlated with SSMLE usefulness 

coefficients (though for intellect this correlation was non-significant), while significant interactions 



163 
 

between openness and usefulness were found in an LMEM. Indeed, there was no evidence to 

suggest that openness and intellect were differently related to considerations of novelty and 

usefulness, as might be expected based on the different relationships between these traits and 

achievements in the arts and sciences (Kaufman et al., 2016). Overall, this suggests that the twin 

aspects of openness and intellect may be better considered as a single trait in the context of 

creativity evaluations.  

Also contrary to predictions, no significant relationships were found between risk-taking and 

novelty and usefulness coefficients, suggesting that an individual’s preference for risk-taking does 

not relate to different considerations of these components when evaluating creativity. However, it 

is important to consider that the present study examined the evaluation of exogenous ideas. If 

participants had instead evaluated the creativity of their own ideas, it is plausible that their risk-

taking preference, and indeed their openness/intellect score, might have a more profound impact 

on their consideration of novelty and usefulness (see Rodriguez et al., 2020; Silvia, 2008). 

Considering other findings, in line with previous research (Diedrich et al., 2015) an interaction was 

found between novelty and usefulness among AUT ideas. Examination of a simple slopes plot of 

this interaction (see Figure 14) indicates that, in the present study, usefulness was negatively 

related to creativity among non-novel ideas and unrelated to creativity among novel ideas. By 

contrast, no such interaction was found among Projects. It was also notable that openness and 

intellect did not show significant main effects as predictors of creativity in the LMEMs, either 

among AUT ideas or among Projects. Indeed, no significant correlations were found between any 

personality measures and participant mean ratings for creativity, novelty, or usefulness in either 

context. This suggests that while the trait openness/intellect plays a role in how raters weigh 

novelty and usefulness, it may not impact overall creativity judgements, at least in the case of 

exogenous ideas. 

 

6.4.1 Impact and implications 

To my knowledge, the present study is the first to investigate how differences in idea context and 

rater personality can lead to different considerations of novelty and usefulness during evaluations 
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of creativity. These findings help extend a growing body of work that has examined how 

individuals consider novelty and usefulness when evaluating creativity (Acar et al., 2017; Caroff & 

Besançon, 2008; Diedrich et al., 2015; Runco & Charles, 1993; Storme & Lubart, 2012), and how 

variations in the evaluation of creativity relate to individual differences (Herman & Reiter-Palmon, 

2011; Karwowski et al., 2020; Lee et al., 2017; Mastria et al., 2019; Mueller et al., 2012). Overall, 

these findings highlight the importance of considering contextual and interpersonal factors when 

researchers examine how creativity is evaluated, defined, and perceived, strengthening recent 

calls for creativity assessments that can account for variation across raters (Barbot et al., 2019; 

Myszkowski & Storme, 2019). Indeed, it seems likely that both the generation and evaluation of 

creative ideas may involve markedly different processes depending on both the individual in 

question and the context of the problem. Different individuals may consider different criteria 

more important than others when performing creative tasks and may use a different balance of 

cognitive processes to produce ideas that meet these criteria. Similarly, different creative contexts 

may call for different levels of novelty and usefulness (or other components), leading individuals to 

weigh these aspects differently when they evaluate ideas depending on the specific requirements 

of the problem. 

  

6.4.2 Limitations and future directions 

One limitation of the present research is that it did not assess the intelligence or creativity of the 

raters. Intelligence has been linked to a greater consideration of novelty when raters evaluate 

creativity (Storme & Lubart, 2012), and it would be interesting to examine how intelligence 

interacts with the consideration of novelty and usefulness in different contexts. For example, 

intelligence might follow a similar pattern to openness, relating to a greater consideration of 

novelty among AUT ideas and greater consideration of usefulness among real-world projects. 

Meanwhile, assessing creativity would allow researchers to better examine links between how 

individuals generate their ideas and how they evaluate the ideas of others. For example, do 

individuals who tend to generate highly novel but non-useful ideas themselves also consider 

novelty more than usefulness when evaluating the ideas of others? These questions should be 

examined by future research. 
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Indeed, assessing the creativity of raters (e.g., by having them complete the AUT) would also 

provide an opportunity for them to evaluate their own ideas. The present study focused on the 

evaluation of exogenous ideas which, while more relevant to creativity assessment 

methodologies, has been found to differ from the evaluation of self-generated ideas (Karwowski 

et al., 2020; Rodriguez et al., 2020; Runco & Smith, 1992). It is possible that individuals consider 

novelty and usefulness differently when evaluating the creativity of their own ideas as opposed to 

others’ ideas. It is also possible that personality traits play a different role depending on whether 

participants evaluate their own ideas or others’ ideas. For example, research has found that 

individuals with higher general personality scores provide higher-quality evaluations of exogenous 

ideas, but lower-quality evaluations of their own ideas (Rodriguez et al., 2020). As such, future 

studies could examine and compare evaluations of both self-generated and exogenous ideas. 

Moreover, the present study focused on only the two most widely discussed components of 

creativity: novelty and usefulness. However, research suggests that additional factors, such as 

surprise (Acar et al., 2017; Simonton, 2018), may also be considered by individuals when they 

evaluate creativity. Indeed, the best-fitting LMEMs in the present study only explained around 

50% of the variance in creativity ratings, indicating considerable room for other explanatory 

factors. Future studies could therefore collect additional ratings for other components of 

creativity. 

A further option for future studies is to examine relationships between mood and uncertainty and 

the weightings placed on novelty and usefulness. Indeed, prior research has indicated that more 

positive moods (Mastria et al., 2019), and more certainty among raters (Lee et al., 2017), relate to 

higher creativity ratings of exogenous ideas, while greater promotion focus is related to more 

accuracy when evaluating the novelty of one’s own ideas (Herman & Reiter-Palmon, 2011). 

Together, this research implies that some individuals may show a greater affinity for creative and 

novel ideas, and led us to expect that those with higher openness and risk-taking scores might 

place a greater emphasis on novelty when evaluating creativity. However, the relationships 

between openness and considerations of novelty and usefulness were found to depend on the 

context, while no relationships were found for risk-taking. Future research could assess or 

manipulate the promotion vs. prevention focus of raters, as well as their current mood and level of 
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certainty, to examine how these factors specifically influence considerations of novelty and 

usefulness. For example, does greater uncertainty lead to a greater consideration of usefulness 

when participants evaluate creative ideas? 

 

6.4.3 Conclusion 

Relatively few existing studies have examined differences in how individuals evaluate creativity, 

and the factors they consider during their evaluations. The present study found that both the 

context of ideas and the personality of raters play important and interacting roles in how novelty 

and usefulness are considered in evaluations of creativity. There is enormous potential for further 

research to investigate the factors (including mood, personality, intelligence, and cultural 

background) that can influence how individuals weigh up different aspects of an idea when 

assessing its creativity. After all, evaluation is a critical part of creative cognition. Understanding 

how creativity is perceived and defined in different contexts and across different raters is highly 

important not just to our understanding of subjective assessments, but to our understanding of 

creativity itself.  
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CHAPTER 7: TOWARDS A MECHANISTIC UNDERSTANDING OF 

CREATIVE COGNITION 
 

7.1 Review of research questions 

Creativity is a hugely important yet mysterious ability that enables humans to craft innovative 

solutions, adopt original perspectives, to invent, imagine, and entertain. However, defining 

precisely what creativity is and what constitutes a creative idea has proven difficult and 

controversial (Plucker et al., 2004; Simonton, 2018; Taylor, 1988; Treffinger, 1992), with 

considerable variation in the working definition of creativity across fields of research (Hennessey & 

Amabile, 2010; Puryear & Lamb, 2020).  

Indeed, despite considerable growth in NCR in recent years, our understanding of the mechanisms 

underlying creative cognition, and the processes by which creative ideas are produced, remains in 

its infancy. Guided by theoretical accounts such as dual process theories (Barr, 2018; Benedek & 

Jauk, 2018; Sowden et al., 2015; Volle, 2018), NCR has examined how creative performance, both 

in the real world and in the lab, relates to cognitive and psychological factors including attention 

(Frith et al., 2021b; Zabelina, 2018), memory (Benedek et al., 2014b; Fugate et al., 2013; Kenett et 

al., 2018a; Madore et al., 2016; Storm et al., 2011), personality (Beaty et al., 2018a; Kaufman et al., 

2016; Oleynick et al., 2017), and executive control (Beaty et al., 2014; Benedek et al., 2014c; 

Krumm et al., 2018). Meanwhile, neuroimaging studies have consistently found evidence that 

creative performance relates to interactions between the DMN and ECN (among other networks; 

Beaty et al., 2016a, 2021a; Ellamil et al., 2012; Mayseless et al., 2015). 

However, considerable outstanding questions remain regarding the processes that produce 

creative ideas, and how these vary in different creative contexts. In addition, verbal theories seem 

increasingly ill-equipped to manage the size and complexity of creative cognition as a construct. 

For example, it remains unclear how exactly the DMN and ECN contribute to creative cognition, 

and what processes underlie their interactions. Meanwhile, though researchers have suggested 

that inhibitory control is important for creative performance in some contexts, but not others 

(Chrysikou, 2018; Benedek & Jauk, 2018), it is unclear exactly which forms of creative cognition 

benefit from which forms of inhibitory control. Likewise, while researchers have argued that 
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creative cognition involves several cognitive abilities likely to depend on control over WM, such as 

switching between categories of idea (Nijstad et al., 2010; Zhang et al., 2020), generative and 

evaluative states (Ellamil et al., 2012; Ward et al.,1997), and narrow-and broad forms of attention 

(Gabora, 2010; Zabelina & Robinson, 2010), it is unclear which forms of WM control benefit which 

aspects of creative cognition.  

Indeed, our understanding of the mechanisms underlying creative thought is currently mostly 

verbal in nature. As a high-level construct, creative cognition likely involves complex interactions 

between numerous cognitive and psychological factors. The interactions of these factors are 

difficult to conceptualize and make concrete predictions about using verbal theorizing alone, but 

could be made far clearer through the increased use of computational models. Finally, the 

evaluation of creative ideas is an important but relatively neglected part of the creative process. 

Differences in how individuals evaluate the creativity of ideas likely affects how they generate 

their own ideas, and can indicate how working definitions of creativity vary across persons. 

Indeed, the twin criteria for creativity are novelty and usefulness, but how and why individuals 

differ in their considerations of these factors when evaluating the creativity of ideas has not 

previously been explored. 

 

7.2 Review of chapters and findings 

This thesis sought to investigate these various outstanding questions for NCR, to push the field 

further towards a more mechanistic understanding of creative cognition.  

A first study, discussed in Chapter 2, examined how two large-scale brain networks, the DMN and 

ECN, contribute to creative cognition over time. Given that these networks have been associated 

with spontaneous, generative thought (Andrews-Hanna et al., 2014; Beaty et al., 2018d), and 

controlled, evaluative thought (Niendam, 2012; Seeley et al., 2007), respectively, understanding 

how their contribution to creative thinking varies over time during the course of a single creative 

trial could reveal the existence of distinct generative and evaluative stages. For example, an initial 

generative phase might involve more creative activity in the DMN, and less in the ECN, while a 

later evaluative phase might involve the opposite. Indeed, generative and evaluative phases in 
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creative cognition have often been suggested (e.g., Ellamil et al., 2012; Kleinmintz et al., 2019), but 

until now have remained largely speculative.  

Using multivariate pattern analysis (MVPA), the study assessed how the DMN and ECN contribute 

to creative cognition over three successive time phases during the production of a single creative 

idea. Training classifiers to predict trial condition (creative vs non-creative), classification accuracy 

was used as a measure of the extent of creative activity in each brain network and time phase. 

Across both networks, classification accuracy was highest in early phases, decreased in mid 

phases, and rose again in later phases, following a U-shaped curve. Notably, classification accuracy 

was significantly greater in the ECN than the DMN during early phases, while differences between 

networks at later time phases were non-significant. Correlations were also computed between 

classification accuracy and human-rated creative performance, to assess how relevant the creative 

activity in each network was to the creative quality of ideas. In line with expectations, classification 

accuracy in the DMN was most related to creative quality in early phases, decreasing in later 

phases, while classification accuracy in the ECN was least related to creative quality in early 

phases, increasing in later phases. These results could be interpreted as tentative evidence for the 

existence of separate generative and evaluative stages in creative cognition, dependent on distinct 

neural substrates. Future research could expand on these findings by examining creativity activity 

in sub-networks of the DMN and ECN, across narrower slices of time, to get a more fine-grained 

sense of how creative cognition unfolds in these brain regions.  

A second study (see Chapter 3) sought to unpack the details of the relationship between creative 

cognition and inhibitory control. Researchers have noted how creative cognition sometimes 

appears to be aided by inhibitory control (Benedek et al., 2012, 2014c; Camarda at al., 2018), and 

sometimes appears to be impeded by it (Carson, et al., 2003; Dorfman et al., 2008; Radel et al., 

2015). It has been suggested that the relationship between creative cognition and inhibitory 

control might depend on the nature of the creative task, with real-world creative tasks benefiting 

from reduced inhibitory control and in-lab creative performance benefiting from greater inhibitory 

control (Benedek & Jauk, 2018; Chrysikou, 2018). Meanwhile, a less frequently discussed 

possibility is that the relationship also depends on the nature of the inhibitory control in question. 

After all, inhibitory control is a multi-faceted construct consisting of response inhibition, cognitive 
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inhibition, and latent inhibition (among other forms; Cipolotti et al., 2016; Diamond, 2013; 

Engelhardt et al., 2008). 

The relationship between creative cognition and inhibitory control was examined using a large 

battery of measures including verbal and visual measures of divergent and convergent thinking, 

self-report measures of creative achievement and engagement in creative activities, two measures 

of response inhibition, a measure of cognitive inhibition (RIF), a measure of latent inhibition, and a 

self-report measure of self-monitoring, together with measures of openness, intellect, risk-taking, 

and fluid intelligence. Using correlations and regressions, it was found that both visual and verbal 

measures of divergent thinking related to cognitive inhibition (the suppression of distracting 

concepts), and were not related to response or latent inhibition. Moreover, it was found that 

verbal convergent thinking, as assessed by the RAT, was not significantly related to any form of 

inhibition, suggesting that this measure may be better described as a measure of associative 

processes and insight (e.g., Kounios & Beeman, 2014), and not as a measure of the executive 

processes that are commonly linked to convergent thinking (see also Cortes et al., 2019). Finally, 

the study did not replicate previous findings regarding a link between weaker latent inhibition and 

greater real-world creative achievement (Carson et al., 2003), and indeed did not find real-world 

creative achievement to be significantly related to any form of inhibitory control. Overall, the 

results suggest that cognitive inhibition may be the most relevant form of inhibitory control for 

creative cognition, but only as measured by lab-based tasks with limited time constraints. 

A third study, described in Chapter 4, examined whether control over WM is linked to creative 

cognition, and if so, which aspects of creative performance benefit from WM control. While WM 

control might enable individuals to adjust their attention in creative tasks, and to switch between 

generative and evaluative states, effective control over WM might also allow individuals to switch 

between a greater number of semantic categories, or to cover a larger area of semantic memory 

when generating ideas. I examined how WM control, as measured by the executive functions of 

cognitive inhibition, WM updating, and shifting, impacts performance on both verbal measures of 

convergent and divergent thinking, and measures of chain association and verbal fluency. I also 

collected data on WMC (which is often linked to WM updating; Schmiedek et al., 2014), real-world 

creative achievement, intelligence, openness, intellect, and self-report measures of attention 
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control. Notably, in addition to typical measures of creative performance such as RAT score and 

human-rated creativity in the AUT, I used automated measures of semantic distance (Beaty & 

Johnson, 2021; Devlin et al., 2019) to probe how often participants switch semantic categories, 

and the semantic breadth covered by their responses.  

In this exploratory, observational study, I found significant correlations among measures of 

creative cognition and association-making, both between tasks (RAT, AUT, and VF performance), 

and within the various AUT measures (fluency, creativity, and automated measures of creativity 

and semantic breadth). By contrast, few significant relationships were found between measures of 

executive functions (besides a moderate correlation between WM updating and WMC). Executive 

functions were also only slightly related to self-report measures of attention control. Critically, I 

found few relationships between executive functions and creative and associative abilities. 

Significant correlations were only found between updating and WMC and RAT and VF 

performance, suggesting that the associative processes involved in the RAT and VF tasks benefit 

from greater WM updating. The study was unable to replicate the finding from Chapter 3 where 

cognitive inhibition was found to relate to verbal divergent thinking. Though issues with data 

quality may have arisen from the online nature of the study (see Bianco et al., 2021), these results 

suggest that if creative cognition does in fact involve control over WM, executive functions may 

not be the best way to assess this, and there may be other forms of WM control that are more 

relevant to creative idea generation. Future, in-person studies should use multiple measures of 

each construct and examine relationships with structural equation modeling. 

Indeed, while observational studies examining correlations can highlight interesting relationships 

among variables, they are unable to test causal pathways by which a cognitive factor can influence 

creative outcomes. Creative cognition likely depends on a large number of cognitive processes, 

which may interact very differently in different tasks and individuals. Computational modeling can 

provide a much more effective means to examine the interactions of these processes than verbal 

theories alone (as discussed in Chapter 5). For example, models could be constructed to reflect 

competing hypotheses regarding the causal relationships between inhibitory control, control over 

WM, and creative performance. These models could then be trained and tested on data such as 

that collected in Chapter 4. Comparing how closely the models can simulate human creative 
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performance could then indicate which hypothesis is most accurate. Further, more fine-tuned 

empirical research might then be developed on the basis of these modeling results.  

A final study outlined in Chapter 6 examined the contextual and interpersonal factors that affect 

how people consider novelty and usefulness when evaluating creativity. Novelty and usefulness 

are the critical requisites for a creative idea, as defined in the standard definition of creativity 

(Runco & Jaeger, 2012), and yet how considerations of novelty and usefulness vary across 

individuals or across creative tasks during creative evaluations is unclear. Individual participant 

regressions and mixed-effects modeling were used to examine how the contributions of novelty 

and usefulness to ratings of creativity vary according to the context of the idea (i.e., how relevant 

it is to the real world) and the personality of the rater. Participants rated the novelty, usefulness, 

and creativity of ideas from two contexts: AUT responses and genuine suggestions for urban 

planning projects. The study also assessed three personality traits of participants: openness, 

intellect, and risk-taking.  

The study found that novelty contributed more to evaluations of creativity among AUT ideas than 

projects, while usefulness contributed more among projects than AUT ideas. Further, participants 

with higher openness and higher intellect placed a greater emphasis on novelty when evaluating 

AUT ideas, but a greater emphasis on usefulness when evaluating projects. These results indicate 

that both the context in which ideas are generated and the personality of raters play important 

and interacting roles in how novelty and usefulness are considered in evaluations of creativity. 

However, neither openness nor intellect affected the creativity rating itself. These findings 

underline the importance of considering interpersonal and contextual factors when examining 

evaluations of creativity, and future studies should examine if the same results emerge when 

participants evaluate their own ideas, and indeed if they show the same preferences for novelty vs 

usefulness when generating their own ideas. It would also be interesting to see how 

considerations of novelty and usefulness vary when greater uncertainty or reward-seeking 

behavior is induced in the participant. 
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7.3 Next steps for Neurocognitive Creativity Research 

This thesis found tentative evidence for the existence of distinct generative and evaluative phases 

in creative cognition, in a study highlighting the impressive potential of MVPA for examining the 

nuances of neural activity underlying creative thinking. In addition, two online studies comprising 

a large battery of tasks probed how creative cognition relates to executive functions including 

inhibitory control, WM updating, and shifting. While results were mixed overall, some evidence 

was found that divergent thinking benefits from cognitive inhibition, while convergent thinking 

and verbal fluency benefit from greater WM updating abilities. Finally, it was found that an 

individual’s openness to experience can affect how they consider novelty and usefulness when 

assessing the creativity of ideas in different contexts. 

Taking these studies as a whole, one can make several conclusions. The field of NCR has a great 

wealth of research findings, and while some are reliable, such as that creative ability is positively 

related to openness to experience (Oleynick et al., 2017), and that creative cognition involves the 

cooperation of the DMN and ECN (Beaty et al., 2016a, 2018b), many findings are not so reliable. As 

discussed, some studies have found that creative cognition benefits from increased inhibitory 

control, while others have found it benefits from reduced inhibitory control (Benedek & Jauk, 

2018; Camarda et al., 2018a; Radel et al., 2015). Similarly conflicting findings have been found for 

WM updating (de Vink et al., 2021; e.g., Lunke & Meier, 2016; Smeekens & Kane, 2016; Stolte et 

al., 2020), and executive shifting (e.g., Benedek et al., 2014c; Krumm et al., 2018; Pan & Yu, 2018; 

Zabelina et al., 2019), with some studies even reporting opposite results to others. Indeed, the 

present findings were similarly conflicting, with one study finding a relationship between cognitive 

inhibition and creative cognition (Chapter 3), and another finding no relationship between these 

factors (Chapter 4).   

There are various possible reasons for the present conflicting findings, and indeed those in the 

wider literature. First, it has been found that participant engagement can be reduced in online 

studies, particularly for demanding tasks (Bianco et al., 2021). The Stroop tasks administered in 

Chapter 3 used feedback for incorrect trials throughout, and the time penalty this incurred likely 

discouraged participants from responding randomly. However, similar tasks used in Chapter 4, 

such as the executive shifting task, followed prior studies by not including any feedback for non-
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practice trials, which may have led to lower participant engagement. Moreover, such conflicting 

results may simply be a sign that the relationships between creative cognition and executive 

functions like inhibitory control are nuanced and can vary greatly across persons. While sample 

sizes were relatively large in the studies in both chapters (N=151 and N=200, respectively), 

individual differences in the engagement of executive processes during creative cognition may be 

sufficient to produce markedly different results in different samples. 

An additional factor affecting the reliability of findings is variation in measures of creativity. In 

Chapter 3 both visual and verbal measures of divergent thinking were used, whereas Chapter 4 

used only verbal measures. Indeed, studies by different research groups often use quite different 

measures of divergent thinking ability (e.g., Benedek et al., 2014c; Camarda et al., 2018a; Menashe 

et al., 2020; Radel et al., 2015; Stolte et al., 2020), which may explain some of the variation in 

findings regarding the relationship between creative cognition and executive functions. Even just 

focusing on the AUT, research has found that the instructions given to participants (Acar et al., 

2019), and the object cues themselves (Beaty, Kenett, Hass, & Schacter, 2023), can lead to 

considerable variation in creative performance. Finally, as noted in Chapter 3, researchers often 

use only one measure of a given executive function, despite the existence of multiple sub-types of, 

for example, inhibitory control (Cipolotti et al., 2016; Diamond, 2013), and despite correlations 

between measures of the same executive function often being only small to moderate in strength 

(Schmiedek et al., 2014). 

Future studies examining the mechanisms of creative cognition should use multiple measures of 

each construct under investigation, and focus on relationships between latent factors, to minimize 

measurement error (e.g., Benedek et al., 2014c; Frith et al., 2021a). Researchers should also 

continue to work towards more standardized assessments, to minimize variance in how creative 

performance is operationalized across studies (Barbot et al., 2019). Moreover, researchers should 

focus on developing causal hypotheses regarding the relationships between creative cognition and 

factors such as inhibitory control, testing these using experimental intervention (e.g., Camarda et 

al., 2018a; Radel et al., 2015). Finally, greater computational modeling, especially in tandem with 

experimental intervention, could greatly help to increase our understanding of the mechanisms 
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underlying creative thought and the effects that variation in a specific cognitive factor has on 

creative performance. 

In addition to these points, research should continue to investigate the dynamics of neural activity 

supporting creative cognition. For example, future research using MVPA could compare less 

creative to more creative trials, removing the need for control tasks by providing a more direct 

measure of brain activity relevant to creative quality. Research could also focus on more tightly 

defined neural regions, and narrower time slices of fMRI data, to better unpack how creative 

activity unfolds over time across different networks and regions within networks. Use of a button 

press to indicate the precise point of idea generation could also help researchers to better identify 

the neural activity that produces creative ideas. Finally, research should continue to investigate 

the evaluation of creativity, and the factors that can affect how individuals judge the creativity of 

ideas in different contexts. 

 

7.3.1 Closing remarks 

Creativity is a large and complex construct, but it need not be mysterious. Vague and poorly 

defined theoretical accounts of creativity can be exchanged for more formal theories supported by 

computational models. Such models can aid the development and testing of causal hypotheses 

regarding the processes underlying creative cognition, and can highlight promising avenues for 

future research. Moreover, our understanding of the constructs involved in creativity can also be 

improved by taking a more fine-grained approach when examining the neural activity supporting 

creative cognition, and the relationships between creative cognition and more fundamental 

cognitive processes. Researchers should use multiple measures of each construct being examined, 

embody their hypotheses in formal computational models, and work towards standardized 

assessment techniques, to create a clearer and more reliable picture of the mechanisms 

underlying creative cognition. 
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