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The human brain sets itself apart from that of its primate relatives by specific neuroanatomical features, especially the strong linkage of
left perisylvian language areas (frontal and temporal cortex) by way of the arcuate fasciculus (AF). AF connectivity has been shown to
correlate with verbal working memory—a specifically human trait providing the foundation for language abilities— but a mechanistic
explanation of any related causal link between anatomical structure and cognitive function is still missing. Here, we provide a possible
explanation and link, by using neurocomputational simulations in neuroanatomically structured models of the perisylvian language
cortex. We compare networks mimicking key features of cortical connectivity in monkeys and humans, specifically the presence of
relatively stronger higher-order “jumping links” between nonadjacent perisylvian cortical areas in the latter, and demonstrate that the
emergence of working memory for syllables and word forms is a functional consequence of this structural evolutionary change. We also
show that a mere increase of learning time is not sufficient, but that this specific structural feature, which entails higher connectivity
degree of relevant areas and shorter sensorimotor path length, is crucial. These results offer a better understanding of specifically human
anatomical features underlying the language faculty and their evolutionary selection advantage.
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Introduction
One of the key questions about human nature addresses the brain
mechanisms underlying the language faculty. In sharp contrast to
their closest relatives, humans learn novel words effortlessly and

extremely rapidly (Shtyrov et al., 2010; Kimppa et al., 2015) and
build vocabularies of tens of thousands of words (Pinker, 1994;
Brysbaert et al., 2016), which can also be stored in verbal working
memory (VWM). We here ask which neural mechanisms and
features of brain–structural connectivity might enable these uniquely
human abilities.
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Significance Statement

Why do humans have superior language abilities compared to primates? Recently, a uniquely human neuroanatomical feature has
been demonstrated in the strength of the arcuate fasciculus (AF), a fiber pathway interlinking the left-hemispheric language areas.
Although AF anatomy has been related to linguistic skills, an explanation of how this fiber bundle may support language abilities
is still missing. We use neuroanatomically structured computational models to investigate the consequences of evolutionary
changes in language area connectivity and demonstrate that the human-specific higher connectivity degree and comparatively
shorter sensorimotor path length implicated by the AF entail emergence of verbal working memory, a prerequisite for language
learning. These results offer a better understanding of specifically human anatomical features for language and their evolutionary
selection advantage.
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Comparative neuroanatomical investigations using diffusion
tensor imaging (DTI) and diffusion weighted imaging (DWI)
along with invasive tracer studies in nonhuman primates have
greatly advanced the search for the specific structural features of
the human brain. Lesion evidence shows that inferior frontal
[including Brodmann areas (BAs) 44/45] and superior temporal
areas (BAs 42/22) of the left perisylvian cortex are most crucial for
language, as lesions therein lead to aphasias involving both lan-
guage production and comprehension (Bates et al., 2003). These
core language areas are connected by a dorsal fiber bundle, the
arcuate fasciculus (AF; Schüz and Braitenberg, 2002), providing a
bidirectional link (Matsumoto et al., 2004). Whereas the ventral
connections between these areas do not seem to have changed
massively in primate evolution, this dorsal bundle via the AF is
rich and strong in humans (Rilling et al., 2008), available already
shortly after birth, and strongly lateralized to the left hemisphere
(Dubois et al., 2009, 2014)—the language-dominant hemisphere
in most people. Invasive tracing studies of macaque brains re-
vealed a similar dorsal link between temporal parabelt and pre-
frontal areas (Petrides and Pandya, 2009), but parallel DTI/DWI
and tractography in humans and macaques indicate relatively
richer direct connections between inferior prefrontal and tempo-
ral parabelt areas in humans (Rilling et al., 2012). In addition to
this quantitative statement, specific qualitative differences appear
to be present within the AF, where some area-specific long-
distance connections seem to have strengthened massively or
may even have newly emerged in the evolution from macaque
and chimpanzee to human. Whereas comparative neuroanat-
omical DTI studies show connections between prefrontal cortex
and temporal areas in the auditory parabelt in both humans and
monkeys (Thiebaut de Schotten et al., 2012, their Fig. 3), the
additional links between prefrontal and auditory belt and be-
tween premotor and auditory parabelt areas are well documented
with DTI/DWI in humans but not so in macaques or chimpan-
zees (Fig. 1A; Rilling et al., 2012; Thiebaut de Schotten et al.,
2012); as these connections introduce shortcuts to what can be
described as a 5-step next-neighbor architecture (Fig. 1C,D), we
call them “jumping links.” Although not implying a complete
absence of jumping links in nonhuman primates (Romanski
et al., 1999; Smiley et al., 2007; Scott et al., 2015), the DTI-
documented evolutionary change in dorsal connectivity leads to a
shorter path length (defined as minimal number of synaptic
steps) of strong links between auditory and articulatory motor
areas. The AF appears crucially important for language, not only
because of this evolutionary change, but also because its strength
correlates with numerous human language abilities (Yeatman
et al., 2011; López-Barroso et al., 2013; Saygin et al., 2013).
However, a neuromechanistic explanation for why, among
other factors, the quantitative topological differences in con-
nectivity may be vital for the emergence of human-like lan-
guage is still missing.

We here address this question using a novel approach of
neurocomputational modeling, which has key advantages over
both comparative studies and correlational evidence linking AF
strength to language abilities. In those studies, a range of al-
ternative features also distinguishing between monkey and
human brains (including cortical area size and fiber diame-
ters) could partly explain the observed performance differ-
ences. In contrast, models can be specifically designed to differ
only in their connectivity structure, so that any functional
change between them allows for definitive causal conclusions.
We asked whether word learning or VWM abilities of humans
could be causally linked to the presence of relatively stronger

jumping links in human perisylvian cortex, as suggested by
DTI/DWI data.

Materials and Methods
Network structure and function
We used a neurocomputational model of the perisylvian language cortex.
These networks were composed of graded response cells thought to rep-
resent the average activity of a local pool of neurons (Eggert and Van
Hemmen, 2000). Networks were subdivided into model areas of 25 �
25 � 625 excitatory and the same number of inhibitory neurons each
(Fig. 1E). One model area was established for each of the following peri-
sylvian areas (Fig. 1B; Garagnani et al., 2008): superior-temporal primary
auditory cortex (A1), auditory belt (AB), and parabelt (PB) areas and
inferior-frontal articulatory motor (M1), premotor (PM) and prefrontal
(PF) cortex. Adjacent areas in all models were connected, based on
reciprocal links documented between the corresponding brain areas
[Fig. 1B, green-colored arrows (e.g., A1 to AB, AB to PB); Pandya and
Yeterian, 1985; Braitenberg and Pulvermüller, 1992; Pandya, 1994;
Young et al., 1994, 1995; Kaas and Hackett, 2000; Rauschecker and
Tian, 2000].

As outlined in the Introduction, the rationale for this study was to
investigate the functional consequence of qualitative and quantitative
differences in connectivity between temporal and frontal regions along
the dorsal stream. We therefore implemented two model architectures, a
monkey architecture (MA) and human architecture (HA). In creating
these architectures, we focused on major differences in the connectivity
structure between monkey and human perisylvian regions that have been
suggested by DTI/DWI-based tractography. This method currently
offers the only prospect for comparative neuroanatomy of cortical long-
distance connectivity, as invasive tracer studies are not possible in hu-
mans. We did not aim at modeling the full complexity of the connectivity
structures in each species, because even tractography data of exception-
ally high quality are not as accurate as neuroanatomical tracing data
(Thomas et al., 2014) and therefore may not allow one to uncover all
functionally relevant links in a given species. However, DTI/DWI
tractography studies converge on showing stronger left frontotempo-
ral connections in humans compared with nonhuman primates and
more specifically the unique presence of strong jumping links (see
Introduction). Therefore, we focus on modeling these differences
between species, rather than complete architectures. Whereas the MA
included only next-neighbor connections between adjacent areas, the
HA included additional jumping links (Fig. 1B–D, purple). The
strengths of all links were identical.

In addition to the between-area connectivity, which differed between
the network architectures, both architectures were designed so as to
mimic a range of biologically realistic properties and therefore included
the following features: (1) within-area connectivity, which was random,
sparse (thus realizing only a small fraction of all possible connections),
patchy, and topographic (Gilbert and Wiesel, 1983; Amir et al., 1993;
Braitenberg and Schüz, 1998), and such that local connection probability
fell off with distance (Braitenberg and Schüz, 1998; Perin et al., 2011);
(2) local and area-specific inhibition mechanisms (Fig. 1E, caption; Palm,
1982; Bibbig et al., 1995; Wennekers et al., 2006), which act as a means to
regulate and control activity in the network (Braitenberg, 1978; Palm, 1982;
Garagnani et al., 2008); (3) synaptic modification by way of Hebb-type learn-
ing including both long-term potentiation (LTP) and long-term depression
(LTD; Artola et al., 1990; Artola and Singer, 1993); and (4) constant presence
of uniform, uncorrelated white noise during all phases of learning and re-
trieval in all parts of the network (Rolls and Deco, 2010).

The implementation of the computational model follows that used in
previous publications (Garagnani et al., 2008, 2009; Garagnani and Pul-
vermüller, 2013; Pulvermüller and Garagnani, 2014). Details about the
underlying computations are also given in the section on Full model
specification.

Simulation procedures
Simulations consisted of the following two phases: the learning phase and
the testing phase. Twelve pairs of network instances were built, with each
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pair consisting of one MA and one HA network (i.e., 24 networks in
total). In each instance, we first initialized an HA network, which entailed
(1) randomizing all synaptic links (and corresponding weights) between
cells in neighboring areas (and within areas) and (2) randomly generat-
ing 14 sensorimotor patterns (“words”) to be used during training. Fol-
lowing this HA initialization, the network was copied, preserving the
initial random links and the set of to-be-learned patterns, and the addi-
tional jumping links (Fig. 1C, purple connections) were removed, result-
ing in an initialized MA network. Both network architectures were then
trained separately but in exactly the same way (see below).

While each of the 12 different pairs of network instances had its own
initial randomization of synaptic links and its own set of to-be-learned
patterns, these features were identical to both pair members. Thus, there

was some degree of ‘between-subject’ variability among the 12 network
instances (because of randomly generated patterns and weight initializa-
tions for each pair), but there was parallelism with respect to these fea-
tures between the two instances of each MA–HA pair. This ensured that
the only difference between each MA–HA pair was in their long-distance
connectivity— our variable of interest—while keeping all other factors
identical. One may see this as the simulation of the same brain, once with
human and once with monkey architecture, and thus as a “within-
subject” manipulation.

Training phase
The 14 different acoustic–articulatory patterns were generated for each
pair of network instances including 17 specific cells in A1 and another 17

Figure 1. A, Illustration of perisylvian connectivity structure in macaques, chimpanzees, and humans as revealed by tractography studies [adapted by permission from Macmillan
Publishers Ltd: Nature Neuroscience (Rilling et al., 2008), copyright 2008]. Note the strong frontotemporal connectivity of the latter, especially through the dorsal AF curving around the
sylvian fissure, and the presence of ventral connections in both. B, A human brain schematic is used to illustrate the area subdivision of the primate frontotemporal perisylvian cortex into
M1, PM, and PF, and A1, AB, and PB areas (Garagnani et al., 2008). Green arrows give the connections available in both the human and monkey architecture (HA, MA); purple arrows give
connections unique to the human architecture. The purple arrows present only in the HA are meant to reflect the additional connectivity strength available only in humans, as shown by
comparative DTI/DWI studies (see main text for detailed discussion). C, Connectivity matrix schematizing the connections according to next-neighbor (green) and indirect, jumping links
(purple) skipping one intermediate area. D, Schematic depiction of the neural network architectures, equivalent to B. E, Microstructure of the connectivity of one single excitatory cell
(labeled “e”). Local (lateral) inhibition is implemented by an underlying cell “i” (representing a cluster of inhibitory interneurons situated within the same cortical column), which receives
excitatory input from all cells situated within a local (5 � 5) neighborhood (dark-colored area) and projects back to e, inhibiting it. Within-area sparse excitatory links (in gray) to and
from e are limited to a (19 � 19) neighborhood (light-colored area); between-area excitatory projections (green and purple arcs) are topographic and target 19 � 19 neighborhoods in
other areas (not depicted). Panel B has been adapted from Garagnani and Pulvermüller (2013); panels D and E have been adapted from Cortex, 57, Pulvermüller, F. and Garagnani, M.,
“From sensorimotor learning to memory cells in prefrontal and temporal association cortex: A neurocomputational study of disembodiment”, pp. 1–21, copyright 2014, with permission
from Elsevier.
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in M1, equaling 2.72% of the neurons in each respective 25 � 25 area.
These neurons were thought to represent abstract articulatory and acous-
tic phonological features (including articulatory and acoustic phonolog-
ical distinctive features and coarticulatory information) about spoken
word forms. The selection of neurons was random and (again) identical
between HA–MA pairs. When producing a spoken word form, specific
articulatory movements yield acoustic signals, which, in turn, stimulate,
with only minimal delay, the auditory system. To model this undeniable
correlation of sensorimotor neuronal activity related to speech, which
also receives support from recent electrocorticography studies (Cheung
et al., 2016; Leonard et al., 2016), stimulus patterns were presented to the
sensory and motor areas A1 and M1 networks. By “presenting a stimulus
pattern,” we mean that its 2 � 17 cells were activated together for 16 time
steps. We wanted to avoid any possibly contaminating activity related to
the previously presented stimulus pattern, and hence an interstimulus
interval (ISI) followed each stimulus presentation. This ISI lasted for at
least 30 time steps, until network activity had returned to the baseline
value. During these ISIs the only input to the network was uniform
white noise, simulating the spontaneous baseline neuronal firing ob-
served in real neurons. Note that all parts of the network were sub-
jected to the same amount of noise. The trial-to-trial presentation
sequence of the different patterns was random. Hebbian learning was
effective throughout learning trials, both during stimulus presenta-
tion and ISIs.

After stimulation to M1 and A1, activation spread throughout the
model areas. As a consequence of activation spreading and the resultant
coactivation of neurons across the network, associative learning led to
the formation of circuits interlinking the articulatory and auditory pat-
terns, as documented in several previous studies (Garagnani et al., 2008;
Garagnani and Pulvermüller, 2013, 2016; Pulvermüller and Garagnani,
2014; Tomasello et al., 2016). Due to sensorimotor activation, neural
activity was present in specific neurons in A1 and M1, which partly
activated further neural elements connected to these stimulated ones.
Correlated activity and Hebbian learning mechanisms led to synaptic
strengthening so that, eventually, sensorimotor stimulation led to in-
creasingly stronger activation spreading to specific neuron sets through-
out the network, which finally led to the formation of a distributed long-
term memory (LTM) trace, or cell assembly (CA; for a detailed
description and analyses of cell assembly formation in this type of net-
work, see Garagnani et al., 2008, 2009; Pulvermüller and Garagnani,
2014).

Testing phase
The functionality of the circuits developing in the HA and MA was then
compared in the testing phase, where all previously learned auditory
patterns were presented once again, in random order. Auditory stimula-
tion (without articulatory pattern stimulation) was chosen to simulate
speech perception. Stimulation was for two time steps; network re-
sponses were recorded during stimulation and the 30 subsequent time
steps (i.e., 32 time steps in total).

Data analysis
Structural network properties: cell assembly sizes. To assess whether articu-
latory–acoustic learning led to cell assembly formation, the presence and
sizes of these circuits were assessed in each network instance. To identify
the neurons forming cell assemblies across the different network areas,
the activity of all 3750 excitatory network cells was monitored in response
to one specific stimulation pattern. For each area, we calculated the max-
imum firing rate occurring across all 625 excitatory cells of a given area at
any time during the 30 time steps following sensory stimulation. A cell
was considered a member of a given cell assembly if and only if at any
time step its firing rate reached at least 50% of the firing rate of the
maximally responsive cell in the given area at that time step (provided
that such maximum firing rate was at least 0.2). These procedures and
thresholds were chosen on the basis of simulation results obtained with
the present and previous networks (Garagnani et al., 2008, 2009).

Dynamics of network activation. We also analyzed neural dynamics
within each area separately in response to learned patterns. To quantify

differences in activation dynamics, we first calculated, for each area, the
time point at which the firing rate was highest (Tmax). This value was then
used to quantify the area-specific duration of sustained activity (which
we interpret as a measure of verbal working memory; Fuster and Bressler,
2012), defined as the length of the interval (in simulation time steps)
during which activity in an area remained significantly above the pre-
stimulation average (�2 SDs of the average firing rate in the 10 time
steps immediately before stimulation). We refer to this quantity as the
(area-specific) “sustained memory period” (SMP). For both Tmax and
SMP data, we conducted repeated-measures ANOVAs with factors
model architecture (MA/HA) and area (six areas), both as within-
subjects factor (see section Simulation procedures).

Full model specification 1

Each model area consists of two layers of 625 excitatory and 625 inhibi-
tory cells (Fig. 1E). Each excitatory cell represents a cluster of cortical
neurons (pyramidal cells), and the underlying inhibitory cell models the
cluster of inhibitory interneurons situated within the same cortical col-
umn (Wilson and Cowan, 1972; Eggert and Van Hemmen, 2000). The
state of each cell x is uniquely defined by its membrane potential V(x, t),
representing the average of the sum of all (excitatory and inhibitory)
postsynaptic potentials acting upon neural pool (cluster) x at time t, and
governed by the following equation (see Table 1 for the parameter values
used):

� �
dV� x, t�

dt
� �V� x, t� � k1�VIn�x, t� � k2��x, t��, (1)

where VIn(x, t) is the net input to cell x at time t (sum of all IPSPs and
EPSPs; inhibitory synapses are given a negative sign), � is the time con-
stant of the membrane, k1, k2 are scaling constants, and �(x, t) is a white
noise process with uniform distribution over [�0.5, 0.5]. Time is in
arbitrary units. Cells produce a graded response that represents the aver-
age firing rate of the neuronal cluster; in particular, the output (transfor-
mation function) of an excitatory cell x at time t is as follows:

O� x, t� � � 0 if V�x, t� � 	
�V�x, t� � 	� if 0 
 �V�x, t� � 	� � 1,
1 otherwise

(2)

where O(x, t) represents the average (graded) firing rate (number of
action potentials per time unit) of cluster x at time t; it is a piecewise linear
sigmoid function of the cell membrane potential V(x, t), clipped into the
range [0, 1] and with slope 1 between the lower and upper thresholds 	
and 	 � 1. The output O(x, t) of an inhibitory cell is 0 if V(x, t) � 0, and
V(x, t) otherwise. In excitatory cells, the value of the threshold 	 in
Equation 2 varies in time, tracking the recent mean activity of the cell so

1This has been adapted from Garagnani and Pulvermüller (2013).

Table 1. Parameter values used for the simulations

Equations Parameters

1 Excitatory cells: � � 2.5 (in simulation time steps)
Inhibitory cells: � � 5 (in simulation time steps)
Scaling factor: k1 � 0.01
Noise scaling factor (training phase): k2 � 15 	48
Noise scaling factor (testing phase): k2 � 5 	48
Global inhibition strength (training phase): ks � 95
Global inhibition strength (testing phase): ks � 60

3 Adaptation: � � 0.026
4.1 Time constant for computing gliding average of cell activity:

�A � 15 (in simulation time steps)
4.2 �S � 8
5 Postsynaptic potential thresholds for LTP: �� � 0.15

Postsynaptic potential thresholds for LTD: �� � 0.15
Presynaptic output activity required for any synaptic change:

�pre � 0.05
Learning rate: 
w � 0.0007
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as to implement a simple version of neuronal adaptation (Kandel et al.,
2000; higher activity leads to a higher threshold). More precisely, it is
written as follows:

	� x, t� � � � � x, t�, (3)

where (x, t) is the time average of the recent output of the cell, and � is
the “adaptation strength.”

For an excitatory cell x, the approximate time average (x, t) of its
output O(x, t) is estimated by integrating the linear differential Equation
4.1 below with time constant �A, assuming an initial average (x, 0) � 0,
as follows:

�A �
d� x, t�

dt
� �� x, t� � O� x, t�. (4.1)

Local (lateral) inhibitory connections (Fig. 1E) and area-specific in-
hibition are also implemented, realizing, respectively, local and global
competition mechanisms (Duncan, 2006) and preventing activation
from falling into nonphysiological states (Braitenberg and Schüz,
1998). More formally, in Equation 1 the input VIn(x, t) to each excit-
atory cell of the same area includes an area-specific (“global”) inhibition
term kS � S(x, t), which is subtracted from the total sum of the IPSP and
EPSP postsynaptic potentials VIn in input to the cell, with S(x, t) defined
as follows:

�s �
ds� x, t�

dt
� �s� x, t� � �

x�area

O�x, t�. (4.2)

The low-pass dynamics of the cells (Eqs. 1, 2, 4.1, 4.2) are integrated using
the Euler scheme with step size 
t, where 
t � 0.5 (in arbitrary time
units).

Excitatory links within and between (possibly nonadjacent) model
areas are random and limited to a local (topographic) neighborhood;

weights are initialized at random, in the range
[0, 0.1]. The probability of a synapse to be cre-
ated between any two cells falls off with their
distance (Braitenberg and Schüz, 1998) ac-
cording to a Gaussian function clipped to 0
outside the chosen neighborhood (a square of
size n � 19 for excitatory cell projections and
n � 5 for inhibitory cell projections). This pro-
duces a sparse, patchy, and topographic con-
nectivity, as typically found in the mammalian
cortex (Amir et al., 1993; Kaas, 1997; Braiten-
berg and Schüz, 1998; Douglas and Martin,
2004).

The Hebbian learning mechanism imple-
mented simulates well documented synaptic
plasticity phenomena of LTP and LTD, which
are believed to play a key role in experience-
dependent plasticity, memory, and learning
(Rioult-Pedotti et al., 2000; Malenka and
Bear, 2004). In particular, the learning rule is
an implementation of the Artola–Bröcher–
Singer model of LTP/LTD (Artola et al., 1990;
Artola and Singer, 1993). In the model, we dis-
cretized the continuous range of possible syn-
aptic efficacy changes into two possible levels,
�
w and �
w (with 
w �� 1 and fixed). We
defined as “active” any link from an excitatory
cell x such that the output O(x,t) of cell x at time
t is larger than �pre, where �pre � ]0, 1] is an
arbitrary threshold representing the minimum
level of presynaptic activity required for LTP
(or LTD) to occur. Thus, given any two cells x
and y connected by a synaptic link with weight
wt(x, y), the new weight wt�1(x, y) is calculated
as follows:

wt�1� x, y�

� �
wt� x, y� � 
w �LTP� if O�x, t� � �pre and V� y, t� � ��

wt�x, y� � 
w �LTD� if O�x, t� � �pre and �� � V� y, t� 
 ��

wt�x, y� � 
w �LTD� if O�x, t� 
 �pre and V� y, t� � ��

wt�x, y� �no change� otherwise

.

(A5)

Results
Cell assembly sizes
Before analyzing the dynamics of network activation, we com-
puted the resulting cell assembly sizes obtained after representing
the sensory part of a previously learned pattern to the model
again (for cell assembly definition, see Materials and Methods).
We computed CA sizes for 50, 100, 200, 500, 1000, 1500, 2000,
6000, and 10,000 learning trials. The resulting CA sizes are shown
in Figure 2. CA sizes were always larger for the HA than the MA
(all p � 0.001), regardless of the number of learning trials (pre-
sentations per pattern). During the first 1000 presentations, the
number of CA cells grew at a very fast rate (relative ratios of CA
sizes at 1000 versus 50 presentations were 1.82 for HA and 2.87
for MA). Growth rate fell off after 1000 presentations for both
types of architectures (relative ratios of CA size ratios at 2000
versus 1000 presentations were 1.04 for HA networks and 1.06 for
MA networks). These observations were supported by Tukey’s
HSD tests, which confirmed that CA sizes differed between 50
and 1000 presentations for both architectures (both p � 0.001),
but did not significantly change between 1000 and 2000 presen-
tations for either HA or MA networks (HA: p � 0.17; MA: p �
0.14). In addition, we approximated the derivative of the CA size
changes at 500 and 1000 learning trials and found that at 500 time

Figure 2. Cell assembly sizes (number of cells in CA) as a function of the number of learning trials. Data are presented separately
for the MA (in red) and the HA (in blue). Each data point represents the average of 12 network instances with 14 patterns per
network (N � 168). Error bars show SEM after removing between-network variance (Morey, 2008). Note the asymptotic behavior
of both architectures with an increasing number of learning trials.
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steps the size increase per additional
learning trial (i.e., CA growth rate) was
larger for MA (0.3 cells/100 learning tri-
als) than HA (0.2 cells/100 learning trials).
However, at 1000 time steps, this growth
rate was 0.1 cells/100 learning trials for
both architectures. Hence, we assume that
at 1000 learning trials both networks had
become relatively saturated with respect
to learning, such that additional learning
trials produced very small increases in CA
sizes. We therefore focused further analy-
ses on networks trained to 1000 learning
trials.

Dynamics of network activation
Figure 3 shows network dynamics (sum of
firing rates as a function of simulation
time step) induced by presentation of the
sensory part of a previously learned word
pattern to area A1 in the MA (top) and HA
(bottom). Inspection of these plots reveals
three qualitative differences in the dy-
namics of activation: (1) overall sum of
firing rates are higher for the HA than for
the MA (in part reflecting larger CA sizes;
see Fig. 2); (2) activation is parallel for the
HA, with areas AB/PB and PF/PM activat-
ing nearly simultaneously; in contrast, in
the MA, activation spreads in a serial
manner throughout the six areas; and (3)
activation persists for a much longer time
in the HA than in the MA.

Note that the modeling results of serial
versus parallel activation seem to match
recent experimental results. Whereas in
the auditory system of macaques, “latencies
[of auditory-evoked activity sometimes] in-
crease with increasing hierarchical region”
(Camalier et al., 2012), a feature that Ca-
malier et al. see as partly “consistent with
[serial] anatomical predictions,” record-
ings from humans have been found to be
“not supportive of a strict serial model en-
visioning principal flow of information” along the A1 to para-
belt pathway (Nourski et al., 2014) but were supportive of largely
parallel auditory area activation instead. This contrast, al-
though coming from methodologically very different studies
and only reflecting some aspects of extremely rich datasets,
seems consistent with the tendencies toward serial versus par-
allel processing implicated by our MA and HA models, respec-
tively (Figs. 3, 4A).

To investigate aspects 2 and 3 mentioned above (i.e., the seri-
ality and persistence of activation quantitatively), we used the
following measures (separately for each area and network type):
the time step at which the maximum firing rate in a given area was
reached, Tmax (Fig. 4A) and the SMP (see Materials and Methods;
Fig. 4B).

We also conducted separate ANOVAs on these two measures.
For Tmax data, the ANOVA revealed significant main effects of
type (F(1,11) � 446, p � 0.001) and area [F(5,55) � 1878;
Greenhouse-Geisser epsilon (GGe) � 0.52; p [GGe] � 0.001] and

a significant interaction of type � area (F(5,55) � 466; GGe � 0.49;
p [GGe] � 0.001).

We conducted post hoc Tukey’s HSD tests comparing, sepa-
rately for HA and MA, Tmax for adjacent areas. For the MA, all
pairwise comparisons between adjacent areas were significant
(p � 0.001), confirming the seriality of activation of adjacent
areas. In contrast, for the HA, comparisons were not significant
between adjacent areas PB and PF (mean difference � 0.19 time
steps; p � 0.98), between PF and PM (mean difference � 0.18
time steps; p � 0.99), between PM and M1 (mean difference �
0.37; p � 0.37), or even between the nonadjacent areas PB and
PM (mean difference � 0.37; p � 0.37). All other comparisons
between adjacent areas (A1 and AB, AB and PB) for the human
architecture were significant (all p � 0.001). This indicates that in
the HA, activation initially spread serially from A1 via AB to PB,
at which point the remaining areas of PF, PM, and M1 activated
nearly simultaneously (Fig. 4A).

For SMP data, the ANOVA revealed significant main effects of
type (F(1,11) � 1388, p � 0.001) and area (F(5,55) � 186; GGe �

Figure 3. Dynamics of network activation after sensory stimulation. The panels show the sum of firing rates after
presenting the sensory components of previously learned patterns to A1. Stimulation was for the first two time steps
(marked by a black bar, “stim”), and, following this, firing rates were recorded for 30 time steps. As the sum of firing rates
is shown, this measure reflects the total amount of activity in an area rather than average firing rate per cell. Each data point
represents the average of 12 network instances with 14 patterns per network (N � 168). Error bars show SEM after
removing between-network variance (Morey, 2008).
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0.63; p [GGe] � 0.001) and a significant interaction of type �
area (F(5,55) � 62; GGe � 0.54; p [GGe] � 0.001).

We conducted post hoc Tukey’s HSD tests on the SMP data,
comparing HA and MA at for each area separately. These com-
parisons showed that the SMP was significantly larger for the HA
than for the MA in all six areas (all p � 0.001).

Repetition of analyses comparing HA 1000 to MA 10,000
Although, as described in the Results section for cell assembly
sizes, after 1000 learning trials, both models were at comparable
learning stages, we wanted to rule out the possibility that the MA
is simply slower in learning but still able to achieve qualitatively
similar results. Therefore, we tested whether all statistical analy-
ses obtained by comparing the HA and MA still obtained even
when comparing the HA after 1000 learning trials to the MA after
10,000 learning trials. The ANOVAs for Tmax and SMP data pro-
vided the same significance level for all effects. Thus, even when
giving the weaker architecture the benefit of a 10-fold increase in
learning trials, fundamental differences remained between the
dynamics of network activation, and, hence, we can rule this out
as a confound.

Discussion
We used a neural network model mimicking fronto-temporal
perisylvian language areas, including primary sensorimotor, sec-

ondary, and multimodal brain areas, to simulate word learning
and examine network responses to the sensory (“auditory”) com-
ponent of a previously learned pattern, akin to perceiving a fa-
miliar spoken word. Crucially, we compared the performances of
two types of architectures, MA (monkey architecture) and HA
(human architecture), implementing differences in the connec-
tivity of perisylvian areas suggested by DTI/DWI tractography
in monkeys/apes and humans. Our results showed the follow-
ing advantages of the HA over the MA: (1) larger overall size of
cell assemblies or action–perception circuits (APCs; Fig. 2),
and thus stronger and more robust circuit activation (Fig. 3);
(2) parallel rather than serial activation reflecting cell assem-
bly ignition (Figs. 3, 4A); and (3) long-lasting activity in the
network, reflecting cell assembly reverberation, and hence,
emergence of VWM only in the HA (Figs. 3 and 4B).

Crucially, the disadvantages of the MA could not be compen-
sated by longer training (up to 10,000 learning trials; see Results).

What are the linguistic implications of the observed
functional changes?
These results suggest that a change in neuroanatomical connectivity
structure emerging in primate evolution underlies the build-up of
a functionally robust lexicon of neuronal memory traces for mul-
timodal articulatory-auditory patterns. Although the present
simulations did not implement semantics, the emergent neuronal
assemblies with long-lasting reverberating activity can be seen as
a prerequisite for building a cortical lexicon of meaningful words.
As complementary simulation studies show, such semantic learn-
ing is possible based on the same mechanisms of correlation map-
ping as those functional in the current model (Garagnani and
Pulvermüller, 2016; Tomasello et al., 2016). In contrast to the
large and fast-activating cell assemblies in the HA, the smaller and
functionally sluggish circuits in the MA activated in a serial fash-
ion, area by area, and, despite this prolonged activation process, there
was little-to-no reverberatory activity (SMP; Fig. 4B). In con-
trast, the HA yielded longer-persisting activity in its APCs,
which we interpret as signifying verbal (phonological) working
memory (Fuster and Bressler, 2012; Zipser et al., 1993).

The evolutionary change in neuroanatomical structure
may provide a partial explanation for why nonhuman pri-
mates have extremely weak auditory working memory, not
only compared to humans but also compared to primates’
working memory abilities in other sensory modalities (Fritz et
al., 2005; Scott et al., 2012, 2014), and why, even after exten-
sive training, nonhuman primates achieve vocabularies of
only a fraction of those seen in humans (Savage-Rumbaugh et
al., 1993; Call and Tomasello, 2007).

The functional relevance of the motor system for VWM
It is widely agreed that a main function of the arcuate fasciculus is
to map acoustic to articulatory representations. In our models,
when presenting learned auditory patterns to A1, sustained acti-
vation in motor areas (M1 and PM)—those areas most distant
from the sensory input—was observed only in the HA, and it
occurred earlier than in the MA (Figs. 3, 4B). This motor activity
in our model can be viewed as reflecting (subvocal) articulation
or rehearsal processes in a “phonological loop” (Baddeley, 2003).
Our results thus support the idea that VWM is not subserved by
any dedicated module but, rather, consists in reverberating activ-
ity between frontal and temporoparietal areas, in line with
patient, neuroimaging, and transcranial magnetic stimulation
(TMS) evidence demonstrating the importance of speech percep-

Figure 4. Quantitative analyses of the dynamics of network activation in the MA (in red) and
the HA (in blue). A, Time step when the maximum firing rate is reached, Tmax (within the 30
poststimulation time steps only). Note the serial activation of the MA and the nearly simulta-
neous “ignition” effect of all areas except A1/AB in the HA. B, SMP, defined as the duration (in
time steps) starting from Tmax during which the firing rate remained at �2 SDs of the average
firing rate of the prestimulation phase. Note the significantly larger SMP values for the HA in all
areas. Each data point represents the average of 12 network instances with 14 patterns per
network (N � 168). Error bars show SEM after removing between-network variance (Morey,
2008). Both A and B are calculated based on the same data depicted in Figure 3 (prestimulation
baseline period not depicted).
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tion and production areas in VWM (Belleville et al., 1992;
Paulesu et al., 1993; Wilson, 2001; Buchsbaum et al., 2005; Jac-
quemot and Scott, 2006; Romero et al., 2006; Buchsbaum and
D’Esposito, 2008; Acheson et al., 2011; Liao et al., 2014). Hence,
an obvious explanation of why AF strength is important for
VWM is that the AF enables quick and efficient sensory-to-motor
coupling along the dorsal stream for retrieving word form repre-
sentations when listening and thereby activates bidirectional
auditory-to-motor and motor-to-auditory loops for activity
maintenance in reverberating working memory circuits (Pulver-
müller and Garagnani, 2014).

Individual differences in the degree of motor systems recruit-
ment during speech perception could also contribute to differential
working memory abilities. Correlations between verbal working
memory performance and speech motor system activations during
speech perception have been demonstrated, both in fMRI (Szenko-
vits et al., 2012) and using motor-evoked potentials (Murakami et
al., 2015). Hence, one can speculate that higher verbal working
memory abilities are driven by stronger motor systems recruit-
ment, although the existing studies do not allow definite conclu-
sions about the causality of this relationship.

We note that one prediction emerging from the present ac-
count is that the producibility of incoming auditory stimuli
should influence working memory. Producibility of speech
sounds influences the activation of motor areas (Wilson and
Iacoboni, 2006) and auditory-to-motor connectivity (Londei et
al., 2010) during perception. If this motor activation is also func-
tionally relevant for verbal working memory, then producibility
should similarly influence the learning of novel word forms. In-
deed, producibility has been shown to influence recognition ac-
curacy in word learning (Schulze et al., 2012). Furthermore,
neurophysiological memory traces for newly learned word forms
differ depending on whether they exhibit native-like—and hence
pronounceable—phonology (Kimppa et al., 2015) and also depend-
ing on whether they are actually articulated during learning (Pulver-
müller et al., 2012).

The relation between working memory and language learning
Just like large vocabularies, VWM is a unique feature of humans,
and even across human individuals there seem to be intrinsic
relationships between VWM and language-learning abilities
(Baddeley et al., 1988; Baddeley, 1993; Papagno and Vallar,
1995). Furthermore, speech production deficits can lead to re-
duced vocabulary size, presumably due to impairments in overt
or covert repetition of novel pseudowords (Bishop et al., 1990).
Finally, the perisylvian areas implicated in articulatory rehearsal
have been shown to also be important for word recognition
memory by fMRI (Wagner et al., 1998; Davachi et al., 2001; Clark
and Wagner, 2003; Paulesu et al., 2009) and non-invasive brain
stimulation experiments (Karabanov et al., 2015; Savill et al.,
2015).

In essence, current theory and data strongly support that word
learning in humans requires and relies on VWM. Human (ante-
rior and posterior) perisylvian cortex provides the substrate for
VWM, and the perisylvian dorsal connection by way of the AF
plays a crucial role in word learning (López-Barroso et al., 2013),
likely in concert with the extreme capsule (López-Barroso et al.,
2011). This is not to say that perisylvian connectivity is the only
relevant factor, as other structures, notably the hippocampus
(Breitenstein et al., 2005; Sederberg et al., 2007) and the amygdala
(Ripollés et al., 2014), play important complementary roles in
word learning.

What are the critical variables and benefits of the
evolutionary network topological change?
Although there is agreement that the human AF is important for
language (Wernicke, 1874; Rilling et al., 2008) and experimental
evidence demonstrates its importance for verbal working mem-
ory (Benson et al., 1973; Damasio and Damasio, 1980; Catani et
al., 2007; Rauschecker et al., 2009; Buchsbaum et al., 2011), the
precise reason and underlying cortical mechanisms for these
structure–function relationships had long remained unclear.
Carefully controlled comparison of neural architectures may
help here, as these can be exactly parallelized so that any func-
tional difference between architectural “twins” can be uniquely
attributed to the one and only manipulated structural feature. In
our present case, this specific feature was the implementation of
strong corticocortical “jumping link” connections, which, as sug-
gested by comparative neuroanatomical studies using DTI/DWI
tractography (see Introduction), may constitute an important
structural difference between human and nonhuman primate
brains. These connections provide “shortcuts” in the auditory-
articulatory pathway in left perisylvian cortex, leading to shorter
sensorimotor path length. In general, path length is an important
feature of cortical neuroanatomy, which can be used to charac-
terize functionally relevant differences (Kaiser and Hilgetag,
2006; van den Heuvel and Sporns, 2013). Furthermore, as more
connections were present in the HA, multiple parallel links be-
came available for projecting acoustic and articulatory phonolog-
ical information onto each other. Rapid activation flow between
articulatory and auditory regions appears necessary for building
“actively” reverberating loops, providing the rehearsal mecha-
nism in human verbal working memory, and it is precisely this
active memory component that nonhuman primates lack (Scott
and Mishkin, 2016). Hence, we propose that these two features
taken together—the more numerous connections and their
shorter path lengths—are the crucial variables determining the
more robust “word representations” and the emergence of verbal
(phonological) working memory in humans. Short sensorimotor
path length may offer a mechanism not only for verbal working
memory, but also for the coupling of auditory and motor infor-
mation related to speech (for a related computational model, see
Westermann and Miranda, 2004). This coupling could also ex-
plain why auditory-articulatory interactions are pervasive in
speech perception and comprehension (Schomers and Pulver-
müller, 2016; Skipper et al., 2017).

Conclusions
Our results suggest that the AF plays a critical role in word
learning because its rich connectivity in humans allows for
efficient binding of auditory and articulatory information
about speech into persistently active neuronal circuits carry-
ing VWM functions. As VWM is necessary for acquiring a vast
repertoire of meaningful words, such strongly reverberating
circuits may be essential for explaining human language. We
believe that the present comparative-neurocomputational re-
search approach may open new and exciting pathways for
explanatory evolutionary neuroscience.
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Schüz A, Braitenberg V (2002) The human cortical white matter: quantita-
tive aspects of cortico– cortical long-range connectivity. In: Cortical areas:
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