
Particle Swarm Optimization Algorithms for
Autonomous Robots with Leaders Using Hilbert Curves

Doina Logofatu1, Gil Sobol2, Daniel Stamate3

12Computer Science Department of Frankfurt University of Applied
Sciences 1 Nibelungenplatz 60318, Frankfurt am Main, Germany

3Department of Computing, Goldsmiths College, University of London,
London SE146NW, UK

Abstract. The approaches in this work combine the swarm behavior principles
of Craig W. Reynolds with space filling curves movements. We intend to eval-
uate how the entire swarm moves by including a deterministic leader behavior
for some agents. Therefore, we examine different combinations of Hilbert
Curves with the classical swarm algorithms. We introduce a practical problem,
the collection of manganese nodules on the sea ground by using autonomous
agents. Some relevant experiments, combining different parameters for the
leaders were run and the results are evaluated and described. Finally, we pro-
pose further developments and ideas to continue this research.

Keywords: particle swarm optimization, changing environments, autonomous
agents, Hilbert Curves, leaders, application.

1 Introduction

At the same time with the research of renewable resources, it would be useful to find
new ways in order to open up fossil ones. For example, manganese can be found on
the sea bottom in form of nodules. Actually, this is a chemical element with the peri-
odic table symbol Mn and atomic number 25. The biggest application area is for rust
and corrosion prevention on steel [9]. Degradation can be prevented by collecting
these manganese nodules from the sea ground using specialized robots. It is necessary
to find appropriate ways how to handle the action of these agents. The results can be
generalized and cover other collecting tasks as well. Consequently, this work focuses
on optimizing the swarm behavior of autonomous agents. The solution can be found
by either improving the achievements or reducing the effort by keeping the same size
of achievements. The background for our approach is a framework for simulation and
improvement of swarm behavior in changing environments [1]. It simulates the
swarm behavior after the principles of Craig W. Reynolds [2] later pointed out in

section 2.2. The main issue the associated application to the framework does, is to
deploy agents with a specific strategy and then to gather them. While gathering, the
agents are collecting the manganese which is distributed on every position in the
coordinate system. Once they are gathered together, there is no more movement and
the simulation ends. The intention of our work is to redesign and extend this frame-
work. Manganese occurs in form of nodules, so it is not really realistic that they are
distributed uniformly. Therefore, it is reasonable to implement a Manganese-Nodule-
Model, where each nodule is represented stand-alone. It should also be considered
that not all nodules have the same size (value). For this new design of the manganese
distributions, benchmarks have to be created for having the opportunity to compare
the results. The next issue is to improve the collecting procedure itself. The more
meters the agents pass, the higher is the chance to find manganese. Consequently, we
try to find a way to pass through a bigger area. The less complex solution would be to
give each agent his own route. This would probably scatter the swarm because of the
bad orientation and the uneven surface. Most of the research activities about swarm
behavior are inspired by nature like genetic algorithms or particle swarm optimiza-
tion. These researches focus on bird flocks or fish schools. An alternative discussion
could be focusing on a pack of wolves, for example. A pack of wolves consists of
autonomous individuals with a specific hierarchy. Not every wolf has the same power
of decision for the pack. Normally there is one wolf who leads the group and the
others are followers [11]. This work aims to study this concept more closely. We want
to have one or more leaders who will move after a specific route, but still being part
of the swarm and the rest calculates its new position, that means every iteration in
consideration of all agents. We imagine an area where we know that there should be a
big amount of manganese nodules. We need to find proper methods to explore sys-
tematically and carefully through a given area. One of the first things that comes to
one’s mind is the specialist mathematical field of space filling curves. Summarized, a
space filling curve is a curve that covers recursively an entire 2-dimensional square.
We are focusing on the one of the most famous space filling curves developed by
David Hilbert (section 2.4).

2 Background

This section describes the previous work the application is based on. It includes three
main topics: Moving Algorithms, Particle Swarm Optimization, Hilbert Curves.

2.1 Framework for Adaptive Swarms Simulation and Optimization

The starting application is based on [1]. The framework is an application that runs a
simulation of agents using moving algorithms Random, Square, Circle, Gauss, and
Bad Centers [1]. It has different deployment strategies implemented from where the
moving algorithms start. The frontend is based on the open source framework of pro-
cessing.org [4]. The whole visualization part is done in the Visualization class with
support of its derived class VisualRobot, which helps to represent the robots in the
visualization. The whole simulation part is managed by a class with the same name. It

creates the chosen deployment strategies and calculates the movement of the robots,
as well as the collection of manganese. Manganese is located on every position in the
coordinate system. In addition, it also counts the distance in walked meters of all
agents together. It is also possible to set at the beginning the number of agents. This
number must be between 2 and 100.

2.2 Moving Algorithms

Artificial systems are, for example, needed when it is wanted to solve problems which
are beyond the capabilities of a single individual. In our case it is actually required to
build a swarm of agents, where each agent individually moves forward with consider-
ation of the other agents of the swarm. There are several efficient algorithms for
swarm behavior and movement of agents that could be implemented in the application
[4]. The previous work [1] uses a simplification of the bird flock movement described
by Craig W. Reynolds [2]. The idea was to develop algorithms that simulate swarm
behavior inspired by flocks of birds or schools of fish. Therefore, three criteria every
robot follows at each iteration were settled up. The contribution implemented three
different algorithms that run simultaneously: cohesion, separation, alignment.

2.3 Particle Swarm Optimization

Particle Swarm Optimization (PSO) was first proposed in 1995 by J. Kennedy and R.
Eberhart [6]. The idea was to build swarm behavioral algorithms for solving problems
by iteratively improving a candidate’s solution until termination criteria is satisfied
[7]. It is similar to a genetic algorithm regarding that both algorithms are initialized
with a random population, in PSO called particles. The difference is that in PSO algo-
rithms, each particle is assigned to a randomized velocity and the particles move
through hyperspace. Each particle consists of its position, its velocity, its current
objective value and its personal best value of all time. PSO also keeps track of the
global best value that is the best objective value of all particles and also the corre-
sponding position.

2.1

The formula above describes a classical iteration for particle movement. The next
position x(i) (n+ 1) is made from the current position x(i)(n) and the velocity vector v (i)
(n+ 1) of a specific particle i. The velocity vector gets created by the following itera-
tion:

2.2

where xp represents the individual and xg the global best position. [xp
(i) (n) − x(i)(n)]

calculates a vector towards the personal best which is influenced by the random vec-
tor r1

(i) (n), that contains values uniformly distributed between 0 and 1.
[xg

(i) (n) − x(i) (n)] calculates a vector towards the global best which is also influenced
by some randomness r2

(i)(n). PSO has two options to focus on every iteration. The first
option is diversity, that means particles are scattered, searching a large area but im-
precise. The second option is convergence that means particles are close together,
searching a small area very precise. The best result can be achieved through a combi-
nation of both.

2.4 Hilbert Curves

A Space Filling Curve is a special line of the mathematical calculus that fully covers a
two or three dimensional area. Giuseppe Peano (1858-1932) was the first to discover
them in 1890. He wanted to create a continuous mapping construction from the unit
interval onto the unit square [7]. Space Filling Curves have a wide field of purpose in
computer science. They are used specially to linearize multidimensional data, e.g.
matrices, images and tables. With their help it is possible to simplify data operations
like load-store operations, matrix multiplications and updating and partitioning of data
sets by finding an efficient way to go through the data.

Definition 2.2. Hilbert Curve [10]. The unit square is divided into congruent sub
squares Qn

(k) with side length 2n. The only condition is, that neighboring sub intervals
are mapped onto neighboring sub squares, whereby the square that is next to the zero
position is always the first and the one that is next to the point (1, 0) is always the last.
If we are now connecting the center of these squares in the right order, we get une-
quivocal curves Cn (Fig. 1).

Fig. 1. Level 1-4 of the Hilbert Curve

3 Implementation Details

This section shows the practical changes and extensions that were necessary to im-
plement for the experimental procedure. At first, some new classes had to be imple-
mented to lay the basis for the new Manganese-Nodule-Model. These new classes
help us to represent the nodules on the map as well as for the calculations in the back.
In section 3.3 is described how these new classes get connected to the existing simula-
tion and visualization.

3.1 New Classes

The class DeployRing deploys the robots in a ring shaped way. It is part of the De-
ploymentStrategy interface. The deployment algorithm is similar to the DeployCircle,
but has a specific radius right from the beginning. Objects of type ManganeseNodule
represent the manganese nodules in the backend simulation. Each ManganeseNodule
object also contains a Coordiantes Object, which specifies the exact position of the
nodule in the coordinate system. The class VisualManganModule helps to visualize
the manganese nodule in the simulation. For each available ManganeseNodule object
in the corresponding list, a new VisualManganNodule object gets created every itera-
tion.

Fig. 2. DeployRing; Top Left initial deploy.

Objects of type ManganeseNodule represent the manganese nodules in the backend
simulation. They have two attributes. One is the size of the nodule that ranges from 1-
7 as an integer. The other one is the status if the nodule is available or already collect-
ed. Each ManganeseNodule Object also contains a Coordiantes Object, which speci-
fies the exact position of the nodule in the coordinate system.

Fig. 3. Visual Class Diagram ManganeseNodule.

The class VisualManganModule helps to visualize the manganese nodule in the simu-
lation. For each available ManganeseNodule object in the corresponding list, a new
VisualManganNodule object gets created every iteration. This class includes the con-
version from the size as an integer to the corresponding grey tone for placing it into
the map in the application.

3.2 General Evolution

The getMangan() method was advised due to the new structuring of the benchmarks.
As there is not manganese on every position anymore, this function needs to check if
there is a manganese nodule on this position. If so, the size of it is also returned. The
step() method helps creating the route to an specific space filling algorithm described
later.

3.3 Benchmarking

The benchmarks are provided as independent files. It was necessary to create new
classes ManganeseNodule and VisualManganNodule. These two classes help us to
simulate the collection of manganese by our autonomous agents. The class Manga-
nesNodule is thereby necessary for all backend happenings and the class VisualMan-
ganNodule is necessary for visualization in the graphical user interface. The visualiza-
tion part is done by the VisualManganNodule class. The files are deposited in the
project archive. Each line represents a y-value and each char represents a x-value in
the coordinate system of the graphical user interface. The lines are filled with num-
bers from 0 to 7 in accordance with the size of the nodule, where zero means that no
nodule can be find on this position. The user can choose between three options: MAP
1, MAP 2 or MAP 3 and load them. Then the associated file gets scanned and the
nodules created.

Fig. 4. Benchmarks: Fields (a), Lines (b), Diamond (c). All three graphics represent bench-

mark maps. The benchmarks include manganese nodules from size 1-7.

3.4. Hilbert Algorithm

The Hilbert algorithm is implemented with a recursive function which follows the
description of section 2.4. The function is called every time when the agent moves
into the next unit square. The function calls varying from clockwise rotation to nega-
tive rotation which means counterclockwise. The ground structure of how going
through the 9 sub-squares is fixed implemented. The algorithm function receives four
parameters:

double len: initial step length.
int direction: specifies the starting direction on the coordinate system in degree.
int rot: indicates whether the curve should run clockwise or not.
int deep: determines how many levels deep the algorithm should go.

Fig. 5. Hilbert Algorithm

4 Experimental Results

The measured variables are the distance and the collected amount of manganese of all
robots in one pass. The difference of robots between Rob Total and Rob Hilbert are
robots behaving after the principles of Moving Algorithms in section 2.2.

We increase successively the number of Hilbert Robots and ran 1000 iterations with
every increase. It runs with the benchmark Diamonds and the deployment strategy
Square. This experiment runs with the benchmark Diamonds and the deployment
strategy Square. With every increase of the number of Hilbert Robots, the covered
distance of all robots increases by 40,000-60,000 m with an average increase of
56,569.85 m. The collected manganese does not increase constantly as well. The
global maximum of 5335 kg is reached with a constellation of 46 Hilbert Robots (see
Fig. 6). The biggest jump is between the first and the second measurement, with an
increase of 562%. If we have a look at the efficiency in fig. 6 (left diagram) we see a
raising graph with some flat parts, all amounts of one flat part have the same efficien-
cy, that is the case for the amount of 3-6 Hilbert Robots (average absolute deviation
3.2 m), for the amount of 15-21 Hilbert Robots (average absolute deviation 5.2 m) or
34-40 Hilbert Robots (average absolute deviation 2.9 m).

a. Collected amount of manganese of Dia-
mond, Square, Hilbert 0-50.

b. Relation between the total amount of col-
lected manganese and the distance all robots
have covered, for the experiment Diamond,
Square, Hilbert 0-50.

Fig. 6. Analysis Hilbert 0-50 increase.

a. after 500 iterations

b. after 1000 iterations

Fig. 7. Diamond, Square, Hilbert 0-50: Screenshots experimental procedure.

The correlating local minimum occurs with the amount of 42 Hilbert Robots and 464
m per kg manganese. In this case, the total amount of manganese breaks down rough-
ly 21% compared to the simulation run with 49 Hilbert Robots.

5 Conclusion and Future Work

As this work was focused only on the beginning in combining swarm behavior with
specific space filling curves, there are further things to develop in order to get deeper
into this topic. It would be conceivable to think of different leaders with different
weightings. For example, the leader who collected the most manganese in the last 10
iterations could get the highest weight in calculating the next position of each agent of
the swarm. In addition to that, a distributed system could be implemented and thereby
the communication between the agents would be extended. To really get a maximum
amount of manganese, the swarm could divide and follow different leaders. The num-
ber of agents who join a specific leader could vary. If the leader loses strength, more
and more agents join another swarm. The leader stays on his route; this keeps the
chance high to find new manganese nodule fields. If a leader does not collect any
manganese for a longer period, he may become a follower and joins a swarm. This
could also be possible the other way around. If there is a big swarm, new leaders
could be chosen to search in a specific direction. Another interesting direction would
be to combine space filling curves with genetic algorithms. It would be imaginable to
build populations with different amounts of deterministic and swarm agents, like this
work already did, but keep on developing the next generation after the principles of
genetic algorithms. As extension, we can consider a changing environment with hun-
dreds or thousands of agents.

References

1. S. Canyameres, D. Logofatu, Platform for Simulation and Improvement of Swarm Behav-
ior in Changing Environments, 10th International Conference Artificial Intelligence Appli-
cations and Innovations, AIAI 14, Springer LNCS, Island of Rhodes, Greece, 2014.

2. W. Reynolds, Boids (simulated flocking), http://www.red3d.com/cwr/boids [Accessed 10
June 2017].

3. W.-J. Shyr, “Parameters Determination for Optimum Design by Evolutionary Algorithm”,
DOI: 10.5772/9638 [Accessed 10 June 2017].

4. B. Fry and C. Reas, “Processing.” https://processing.org/ [Accessed 10 June 2017].
5. F. Rodriguez and C. Garcia-Martınez, “An Artificial Bee Colony Algorithm for the Unre-

lated Parallel Machines Scheduling Problem”, PPSN XII (II) pp. 143-152. Springer,
Taormina (2012).

6. J. Kennedy and R. Eberhart, Particle swarm optimization, IEEE Conference on Neural
Networks, 4:1942-1948.

7. M. F. Barnsley, Fractals Everywhere, Dover Books on Mathematics, New Edition, ISBN
978-0486488707 (2012).

8. Detailed requirements for the first prototype.
http://informaticup.gi.de/fileadmin/redaktion/Informatiktage/studwett/Aufgabe_Manganer
nte_.pdf [Accessed 10 June 2017].

9. J. R. Rossum, Fundamentals of Metallic Corrosion in Fresh Water,
 http://www.roscoemoss.com/wp-content/uploads/publications/fmcf.pdf [Accessed 10
June 2017].

10. Min Jun Kim Jung Gu Kim, Effect of Manganese on the Corrosion Behavior of Low
Carbon Steel in 10 wt.% Sulfuric Acid, Int. J. Electrochem. Sci., 10 (2015) 6872 – 6885.

11. C. Muro, L. Escobedo, L. Spector, R.P. Coppinger, Wolf-pack (Canis lupus) hunting
strategies emerge from simple rules in computational simulations, Behavioral Processes,
Vol. 88, Issue 3, pp. 192-197 (2011).

