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ABSTRACT 

Machine learning offers great potential to developers 

and end users in the creative industries. For 

example, it can support new sensor-based 

interactions, procedural content generation and end-

user product customisation. However, designing 

machine learning toolkits for adoption by creative 

developers is still a nascent effort. This work focuses 

on the application of user-centred design with 

creative end-user developers for informing the 

design of an interactive machine learning toolkit. We 

introduce a framework for user-centred design 

actions that we developed within the context of an 

European Union innovation project, RAPID-MIX. We 

illustrate the application of the framework with two 

actions for lightweight formative evaluation of our 

toolkit—the JUCE Machine Learning Hackathon and 

the RAPID-MIX API workshop at eNTERFACE’17. 

We describe how we used these actions to uncover 

conceptual and technical limitations. We also 

discuss how these actions provided us with a better 

understanding of users, helped us to refine the 

scope of the design space, and informed 

improvements to the toolkit. We conclude with a 

reflection about the knowledge we obtained from 

applying user-centred design to creative technology, 

in the context of an innovation project in the creative 

industries.   
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1 | INTRODUCTION 

Recent developments in artificial intelligence are 

generating a surge of interest around making 

machine learning (ML) more accessible to new 

groups of people—particularly people who are not 

ML experts—for problem-solving and practical 

applications in various domains. However, using ML 

is still often difficult for those who are not ML experts 

or data scientists. Nonetheless, as with other 

computer technologies that have seen mass 

adoption (e.g., email interfaces, word processing 

software, web technologies, etc.), broader adoption 

of ML can be facilitated by improving the usability of 

tools for employing ML.  

Many software developers within the creative 

industries, as well as many non-professional 
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developers working with creative technology, can 

benefit from ML techniques. For instance, ML can 

facilitate the analysis of audio, visual, and sensor 

data. ML can support the creation of new systems 

for embodied interaction and expression, as well as 

provide new creative workflows for rapid prototyping 

and product customisation (Hartmann et al., 2007; 

Fiebrink, Cook, & Trueman, 2011; Katan, Grierson, 

& Fiebrink, 2015). 

This paper describes the development of new ML 

tools within the context of a European Commission-

funded “Innovation Action”—a joint effort between 

academic institutions and companies aimed at 

technology transfer and the production of new or 

improved products or services.  This project, called 

RAPID-MIX (“Realtime Adaptive Prototyping for 

Industrial Design of Multimodal Interactive 

eXpressive technology”), has involved a consortium 

of three European research labs and five small and 

medium-sized enterprises (SMEs) collaborating in 

the development of creative technology tools for 

rapid prototyping and product development. Central 

to RAPID-MIX’s goals is the creation of new 

machine learning tools targeting developers in the 

creative industries.  

A user-centred approach to design has been critical 

to ensure that these new tools are usable and useful 

for creative developers. The needs of creative 

developers using ML are not well-understood. ML 

presents unique challenges to developers (Patel et 

al., 2010), and the needs of people employing 

technology used in design and other creative 

practices are often distinct from people engaging in 

activities with more well-defined outcomes (Cherry & 

Latulipe, 2014). Further, the design of software 

application programming interfaces (APIs) presents 

distinct challenges from other design processes in 

which user-centred methodologies are often used 

(e.g., the design of end-user-facing graphical 

interfaces) (Myers & Stylos, 2016). In RAPID-MIX, 

we have thus needed to carefully craft user-centred 

methodologies appropriate to the design of our new 

ML tools, within the additional constraints of a 

complex project with multiple academic and industry 

partners. 

The paper is structured as follows. In the following 

section, we review prior work in user-centred design 

and interactive machine learning. We then present 

our main adopted research methodology and the 

framework we devised to employ user-centred 

design techniques systematically. We describe two 

user interventions that involved different user 

groups, methods and data collection strategies. 

Finally, we discuss the emerging knowledge about 

the application of user-centred design in the context 

of innovation projects and creative technology. 

2 | BACKGROUND WORK 

2.1 USER-CENTRED DESIGN 

User-centred design (UCD), a term coined by 

Norman and Draper (1986), is a design approach 

based on understanding users, their tasks and 

environments. UCD has been characterised as 

“philosophy and methods, which focus on designing 

for and involving users in the design of computerised 

systems” (Abras, Maloney-Krichmar, & Preece, 

2004).  

When adopting UCD, we look for ways to better 

understand users, their characteristics, skills and 

behaviour in specific tasks. Users are at the centre 

of this process; they are involved at an early stage 

and throughout the design process. This approach 

enables the design team to communicate and 

negotiate a better and shared understanding of the 

right problem, and to reason about and inform 

design decisions for the right solution (Monk, 2007). 

However, Norman notes that in UCD, “even though 

the ideal can seldom be met in practice, it is always 

good to aim for the ideal, but to be realistic about the 

time and budgetary challenges”  (2013, p. 239).  

According to Ritter, Baxter and Churchill (2014), 

UCD has a broader focus, greater emphasis on the 

user, and lesser use of formal methods for 

requirements gathering and specification than other 

approaches, such as human factors and 

ergonomics, or socio-technical systems design. 

They claim that adopting a user-centred approach 

can help to address essential design problems and 

lead to systems that are more useful, usable and 

satisfying. It can help designers overcome errors or 

issues that arise from relying on their personal 

assumptions, experience or intuition. Ritter, Baxter 

and Churchill argue that, on the one hand, UCD 

leads to financial savings, as iteratively refining 

designs can lead to fewer problems in the final 

product.  On the other hand, though, UCD entails its 

own costs, and UCD does not guarantee the 

success of a product: while “the lack of usability can 
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be a sufficient reason for failure”, “usability is neither 

a necessary nor sufficient condition for success” (p. 

14). The value of UCD may be assessed by 

estimating its return on investment (ROI)—the extent 

to which the time and effort spent doing user 

research provide worthwhile benefits; ROI is highly 

valued but also often difficult to measure and to 

manage (Ritter et al., 2014). Holtzblatt, Wendell and 

Wood (2004) also refer to the ROI as an important 

criterion for the adoption of UCD practices in 

organisational contexts. 

To avoid complicated, time-consuming and 

expensive techniques for ensuring usability of a new 

product, Nielsen (1994) proposed applying 

“discount” methods—such as user and task 

observation, scenarios, simplified thinking aloud and 

heuristic evaluation—to design problems with a well-

defined user population and set of tasks. Monk 

(2007) similarly proposed lightweight techniques that 

can be easily picked up and applied effectively (i.e., 

learned in one day, only taking person-days to 

apply).  

2.2 INTERACTIVE MACHINE LEARNING 

Many different approaches have emerged for 

enabling application of ML by non-experts to various 

problem domains. One approach involves packaging 

learning algorithms, evaluation strategies, etc., into 

high-level, GUI-based tools that can be used without 

programming; this is the approach used by tools 

such as Weka (Hall et al., 2009). Other approaches 

provide additional mechanisms for users to 

incorporate information about their goals or domain 

knowledge into their work with ML algorithms. Some 

of these may employ an interactive machine learning 

(IML) approach, in which users engage in iterative 

training, evaluation, and corrective actions (such as 

modifying the data on which an ML algorithm is 

trained) (Fails & Olsen, 2003).  

IML can be useful for ML problems in which the 

user’s goal is to encode a human-understandable 

behaviour into the system. In the creative industries, 

this can include the design of many types of systems 

that respond to human activity (e.g., new musical 

instruments or games controlled by human 

movement) or that map between different domains 

of multimedia data (e.g., visualisations that respond 

to real-time characteristics of music). In such 

applications, users can provide training examples 

that communicate their intention for the trained 

model (e.g., showing that certain actions performed 

with a sensor should result in certain sounds or 

game commands). Users can iteratively steer the 

behaviour of the trained model by modifying these 

training examples.  

Previous research on IML has mostly focused on 

designing graphical user interfaces for end-user 

interaction with learning systems. This includes 

interfaces that enable domain expert users (who 

may have little or no machine learning expertise) to 

steer models by providing new training examples 

(Fails & Olsen, 2003; Fiebrink et al., 2011), adjusting 

misclassification costs (Kapoor et al., 2010), 

adjusting weightings of component classifiers in an 

ensemble system (Patel et al., 2010), etc. 

Prior work by Bernardo et al. (2017) has proposed 

that the experience and challenges faced by 

developers using learning systems should also be 

considered. Developers are “users” of machine 

learning when they configure learning algorithms, 

and when they train, evaluate, and export models. 

Some research has focused on methods to make 

these activities more efficient and effective (Amershi 

et al., 2015; Patel et al., 2010). Developers are also 

users of ML when they create intelligent systems 

ultimately intended for use by others (i.e., the “end 

users”). Developers building intelligent systems use 

ML through infrastructural software (i.e., 

middleware) such as software libraries, APIs, online 

services, etc. These tools inevitably influence 

developers’ working processes and experiences. 

Some existing research considers usability and user 

experience factors of programming languages, IDEs, 

middleware, API documentation and code examples 

(e.g., Clarke, 2011; Edwards et al., 2003; Myers & 

Stylos, 2016). However, the additional challenges 

experienced by developers working with ML 

middleware are underexplored. New research 

should focus on these challenges and contribute 

with additional understanding about the needs and 

the experience of developers working with ML 

middleware.  

3 | METHODOLOGY 

In 2015, members of the RAPID-MIX consortium 

developed a UCD framework (Bernardo et al., 2015; 

Bevilacqua et al., 2015) for internal guidance of the 

consortium (RAPID-MIX researchers and industrial 

stakeholders), for other actors within the creative 

industries (individuals, start-ups, academia, etc.) and 
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the general public. This framework consists of a 

methodology of UCD actions—research 

interventions in which a UCD technique is deployed 

to answer questions about the design of a new 

technology. These questions are directed by the 

goals of understanding the characteristics of 

potential users and of users’ experiences with the 

RAPID-MIX technologies as they developed.  

Early UCD actions within RAPID-MIX included co-

design workshops with project stakeholders, 

hackathons, and public workshops with different 

user groups, including professional audio 

developers, creative developers and students (see 

Figure 1). In the next sections, we describe the two 

selected UCD actions that are the focus of the 

remainder of this article. These actions (which took 

place in months 23 and 29 of the 36-month RAPID-

MIX project) investigated the usability and 

appropriation of two different subsets of the RAPID-

MIX API by different types of users. With these 

activities, we wanted to investigate the following 

questions: 

• What are the needs, goals and values of this 

user group? 

• How do these users use the RAPID-MIX API and 

what for? What about machine learning or the 

RAPID-MIX API was confusing for these users? 

What errors did they make? What was unexpected? 

• What other API features might they need, and 

which would they need the most? 

3.1 JUCE MACHINE LEARNING HACKATHON WITH 

AUDIO DEVELOPERS 

The JUCE Machine Learning Hackathon (Figure 2a) 

was a one-day hackathon in December 2016, 

organised with ROLI [1], an SME in music 

technology that participates in the RAPID-MIX 

consortium. Part of ROLI’s product portfolio, JUCE 

[2] is a popular cross-platform C++ framework with a 

focus on audio applications, which is widely used in 

the industry. JUCE’s customers and users are audio 

software engineers, developing audio and music 

apps for different platforms (standalone applications 

and plug-ins for desktop, and mobile apps for iOS 

and Android). The hackathon focused on the JUCE 

RAPID-MIX Module, a thin wrapper around the 

RAPID-MIX API that exposed functions for training 

and evaluating classification and regression models, 

utility functions for model serialization/de-

serialization from JSON (JavaScript Object Notation) 

files, and data structures with JUCE primitive data 

types.  

3.1.1 METHOD 

The JUCE Machine Learning Hackathon was 

advertised on an online booking site, on the JUCE 

forum and mailing lists, and on mailing lists of 

educational institutions. As motivation, a ROLI 

Lightpad BLOCK [3] was given as an award for each 

of the winning team’s attendees. The hackathon 

began with an induction introducing participants to 

supervised machine learning techniques and to the 

JUCE RAPID-MIX Module. Consent forms were 

 
Figure 1 | RAPID-MIX UCD framework with selected UCD actions. 
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distributed along with a short pre-hack questionnaire 

about participants’ skills in software development, 

programming languages and environments, and 

machine learning. Participants then had six hours to 

complete a “hack”—a small project of their choosing 

that used the JUCE RAPID-MIX Module—after 

which every team presented their hack to a jury 

panel of JUCE and RAPID-MIX representatives. 

Participants worked in groups of no more than three. 

Teams posted their hack code to GitHub. Hackathon 

facilitators recorded questions, critiques and 

feedback that were voiced by the participants. After 

the awarding ceremony, we conducted structured 

interviews with participants. We interviewed 

participants about changes in their design goals 

throughout the hack, module features that they 

used, limitations they discovered and strategies they 

used to overcome them, and suggestions for real-

world applications of the module. The interviews 

were video recorded and subsequently analysed.  

3.1.2 RESULTS 

Around 20 developers attended the event. The pre-

hack questionnaire indicated that most of the 

participants were proficient in C++, had extensive 

programming knowledge, and had used JUCE 

before. Most participants stated they had very 

limited or no knowledge of machine learning 

techniques. Most teams had a clear idea of what 

they wanted to build for their hack after the ML 

presentation. Some participants indicated that they 

did not intend to submit a hack; rather, they 

participated to learn about machine learning. Five 

teams submitted a hack. We briefly describe each 

hack as follows: 

• “Embedded ML” - This hack ran the JUCE 

RAPID-MIX module on Beagle Bone Black with Bela 

(McPherson, 2017), a highly constrained embedded 

system tailored for ultra-low-latency audio. This 

system used ML for gesture recognition with a ROLI 

Lightpad BLOCK. The author interestingly stripped 

the JUCE wrapper code away and used the RAPID-

MIX API directly in a console application. 

• “Filter Classification” - used ML as a quick 

prototyping alternative for digital audio filter design. 

This system classified filter types (i.e., high-pass, 

low-pass, band-pass) from a set of coefficients of a 

Finite Impulse Response (FIR) filter—i.e., 

feedforward filter type with a finite duration impulse 

response (Steiglitz, 1996).  

•  “Harmeggiator” - implemented a MIDI effect VST 

plugin (Virtual Studio Technology by Steinberg [11]) 

to arpeggiate chords from gestures performed with 

the ROLI Lightpad BLOCK. The system provided 

functionalities for applying the IML workflow for 

training and mapping arpeggiation parameters 

(speed, arpeggiation direction, shape) extracted 

from gestures to a set of intervals extracted from 

chord note values (Figure 2b). 

• “Feature Extractor + RapidMix” - extended this 

participant’s existing audio feature extraction 

software with IML capabilities. IML was applied to 

the audio analysis features and used to drive 

generic parameters of an audiovisual application.  

• “FM Synth Patch Generator” - calculated FM 

synthesis (Chowning, 1973) parameters to match 

synthesiser output with sampled instruments through 

similarity analysis of audio—i.e., to make an FM 

synthesizer to resemble the sound of a recorded 

 
Figure 2 | a) The JUCE Machine Learning Hackathon and b) the winning ‘hack’ “Harmeggiator”. 
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piano. Technical and conceptual issues prevented 

the timely delivery of a fully functional hack. 

In general, observation and feedback from 

interviews about the use of JUCE RAPID-MIX 

module confirmed it was an appropriate tool to 

achieve the users’ proposed hacks and prototypes. 

There was highly positive feedback about module 

code quality and clarity, and the fast implementation 

results it enabled. Documentation and examples 

were found easy to navigate and use. The diversity 

in the type of applications submitted showed that the 

JUCE RAPID-MIX module is useful and usable for a 

broad range of applications and for a variety of 

hardware platforms. One participant mentioned that 

introductory talks delimited the state and capabilities 

of the library very well and that this influenced the 

scope of what the participant wanted to do.  

There were usability issues identified along with 

other technical issues, including: 

• Participants were confused by one of the higher-

level abstractions built into the API that targeted a 

use case that was not relevant to these hacks 

(specifically, an abstraction aggregating many ML 

models into one data structure for use in 

multiparametric synthesiser mapping). 

• Some participants noted that the lack of C++ 

templated data structures could exclude applications 

where significant numerical precision was required. 

• Some participants noted the lack of 

asynchronous API calls for progress notification in 

the ML model training. 

• The use of much larger datasets than anticipated 

unveiled some bugs in the RAPID-MIX API 

implementation. 

Participants expressed a desire for additional and 

more effective documentation about general 

machine learning concepts, specific API methods, 

and more domain-specific code examples (i.e., IML 

applied to audio). Participants also suggested 

additional features for the JUCE RAPID-MIX module 

such as: 

• incorporating more types of ML algorithms, 

particularly for temporal modelling, such as dynamic 

time warping (DTW). 

• providing more granular control over ML 

algorithms and evaluation methods by exposing 

more parameters for expert use (e.g., changing the 

architecture or activation function of neural 

networks). 

• providing more ways to examine the ML models, 

for example through data visualisation, to aid 

understanding of model decision boundaries or 

model behaviour in higher dimensional spaces. 

• improving the training speed of ML models. 

validation of input data for both training and model 

evaluation.   

3.2 TWO-WEEK SUMMER WORKSHOP WITH 

CREATIVE DEVELOPERS AT ENTERFACE’17 

We ran a two-week workshop at eNTERFACE, a 

yearly summer workshop organized by the SIMILAR 

European Network of Excellence. eNTERFACE 

2017 was held between 3–15 of July, at 

Universidade Católica Portuguesa in Porto. This 

workshop followed the official beta release of the 

RAPID-MIX API (May 2017).  

The beta release included several new features; 

additional learning algorithms, such as DTW, 

Gaussian Mixture Models (GMM), Hierarchical 

Hidden Markov Models (HHMM)—via improved 

integration with the XMM package (Françoise, 

Schnell, & Bevilacqua, 2013)—and particle 

filtering—via integration with Gesture Variation 

 
Figure 3 | a) and b) Participants working on their projects and c) presenting a final project. 
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Follower (Caramiaux, Montecchio, Tanaka, & 

Bevilacqua, 2014); a new class library with signal 

processing primitives (e.g., circular buffer, Root 

Mean Square, Mel Frequency Cepstral Coefficients, 

first- and second-order derivatives, etc.), and an 

improved web API for cloud-based multimodal data 

storage and retrieval.  

This UCD action targeted creative coders who had a 

more diverse set of interests (i.e., not just audio 

programming), and who used a wider variety of 

programming languages and tools. It focused on 

helping participants to gain practical experience with 

elements of the toolkit, and on simultaneously 

identifying usability issues, learning obstacles and 

intended uses. 

3.2.1 METHOD 

Thirteen participants (2 female, 11 male) with prior 

background in creative coding and multimedia were 

recruited in two rounds through research mailing 

lists, creative communities on Facebook, and 

personal contact networks. Most participants had 

master's level degrees, three participants were PhD 

students, and two participants were professionals in 

web development and game development, 

respectively.  

In the weeks before the workshop, we surveyed 

participants about their background and motivations 

for attending. We then refined the UCD action plan 

to reflect these. For instance, as participants all had 

prior experience in JavaScript (JS), we narrowed the 

scope of evaluation to the JS subset of the RAPID-

MIX API. The RAPID-MIX API JS library had been 

previously integrated into CodeCircle (Zbyszyński, 

Grierson, Yee-king, & Fedden, 2017), an online live 

coding environment for beginning coders and 

computing students. CodeCircle aims to support 

efficient experimentation and prototyping activities 

(Parkinson, Zbyszyński & Bernardo, 2017; 

Zbyszyński, Grierson, & Yee-king, 2017).  

Each day of the first workshop week began with a 

researcher-led induction session. These sessions 

progressively introduced participants to ML concepts 

and use cases, and to the relevant components of 

the RAPID-MIX API. After the induction session, 

participants spent 2–3 hours engaged in hands-on 

exploration with the tools (Figures 3a and 3b). Each 

day concluded with a video-recorded group 

discussion.  

In the second week, the workshop format changed 

to mentored project work. Participants worked 

independently on their creative projects, and at the 

end of each day a group discussion took place in 

which they reported on their progress and 

challenges.  

Participants also completed questionnaires after the 

workshop in which they provided information about 

their experience with the different elements of the 

RAPID-MIX API and how they benefited from them.  

We provided several resources for assistance, 

reference and learning during the workshop. The 

RAPID-MIX API code repository and website 

provided documentation. A Slack channel supported 

Q&A with remote mentors and participants. We also 

provided CodeCircle documents exemplifying how to 

use different functionalities of the JS RAPID-MIX 

API (e.g., classification, regression, temporal 

classification, etc.) with different sensors (e.g., 

mouse, webcam, LeapMotion [4], MYO [5], 

Gametrak, etc.), and audiovisual outputs (e.g., 

WebGL [6], Web Audio API [7], P5.js [8], Three.js 

[9], etc.). 

The workshop was structured to allow flexible 

participation schedules. From the 13 participants 

who attended most of the first week, only the 5 

participants (3 males, 2 females) who had previously 

enrolled for the full 2-week workshop attended the 

second week. The participants who opted not to 

carry on lacked availability due to academic or 

professional commitments and stated they had 

fulfilled their initial goal of getting a cursory 

understanding of ML and the RAPID-MIX API. 

3.2.2 RESULTS 

At the end of the second week, four participants 

submitted their projects (as source code in GitLab 

[10] or in CodeCircle documents) and delivered a 

final demonstration to the remaining group. They 

presented the following projects: 

• Participant A explored the use of ML to exert 

more expressive control over the feedback loop and 

slide transitions of a Kodak carousel projector. She 

mixed and mashed-up CodeCircle examples until 

she focused her exploration on using ML regression 

with the Myo sensor’s EMG and motion signals, to 

control different visual outputs such as colour 

gradients and animations. She also employed 

temporal classification with DTW, using an Arduino 
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microcontroller board to control the projector 

(https://vimeo.com/225762966). 

• Participant B submitted two projects: 1) a web 

application that implemented the rock-paper-

scissors game—single player against computer—for 

which he used RAPID-MIX API JS and Leap Motion 

for classification of hand poses, providing both pre-

trained pose models and optional customisation 

features; and 2) a “Gesture server” application that 

used a server-side component to do gesture 

recognition with the accelerometer data of a 

wirelessly connected smartphone (Figure 3b). 

• Participant C used RAPID-MIX API regression 

with Leap Motion hand pose data to train and control 

3D mesh deformation, iterating from using a simple 

regression model to control single-parameter mesh 

transformation, to employing a more sophisticated 

solution that used multiple models to control 

individual vertices (Figure 3c). 

• Participant D decided to build his own toolkit with 

building blocks for visualization of the Myo sensor 

data and ML processing, wrapping the RAPID-MIX 

API in a single-page web application. His project 

evolved from building client-side to server-side ML 

training and processing. The project involved recent 

web technologies but unfortunately was not finished 

before the conclusion of the workshop. 

The data collected from the workshop included 

observation notes, Slack chat logs, pre- and post-

workshop questionnaires, video recordings from 

group discussions and final presentations, 

and source code of the participants’ projects.  

In the discussion groups, we asked participants to 

identify compelling uses of the RAPID-MIX API for 

creating future technology. Identified uses include: 

making products for others (e.g., games, physical 

activity recognisers, interactive music performances, 

smartphone sensor apps); creating personalised 

experiences for oneself; enabling social and group 

interaction; emotion classification; providing 

corrective user feedback; enabling more natural and 

expressive interaction and controllers; using it as a 

teaching material for kids in hands-on workshops; 

using it for efficient workflows and fast results when 

working with sensors; and combining different ML 

algorithms for simultaneous use in real-time 

applications. 

User feedback about API usability was distilled from 

the group interviews and from the post-workshop 

questionnaire into the following items: 

• Participants were generally enthusiastic about 

the speed of prototyping with the RAPID-MIX API, 

particularly using CodeCircle and the RAPID-MIX JS 

library. They found CodeCircle examples useful for 

prototyping interface designs with different sensors, 

and for providing building blocks for quick integration 

into their own creative projects.  

• Participants appreciated the code clarity, 

simplicity and terseness of the provided examples. 

However, they perceived the significant boilerplate 

code and poor-quality code comments negatively, 

mentioning that these impeded their understanding 

of the API. Other participants requested that we 

added better code comments to explain the role of 

constant values that were not clearly contextualised 

or explained. 

• Participants complained about the examples’ 

focus on audio, and the lack of examples applying 

ML to visual media. In general, the group was not 

knowledgeable about digital audio and found audio 

examples too abstract. Code examples that provided 

richer audiovisual feedback and control were most 

highly regarded. 

• Participants suggested the provision of 

complementary high-level documentation that could 

give them a quick and broad explanation about ML 

concepts and expected API workflows. They also 

requested improvements to the structure and visual 

presentation of documentation, claiming it was not 

uniform across the whole set and that it was 

confusing to navigate. 

• Some participants revealed difficulties in 

understanding how to use data with IML. One 

participant found it difficult to understand the 

conceptual difference between using data for 

training and for running ML models; she overcame 

this difficulty by creating different variables to store 

the datasets for each functionality and testing the 

outcomes step-by-step, offline. Another participant 

was not getting the expected classification results, 

because he had made a conceptual error of 

implementing training with raw data, and testing with 

RMS-smoothed (Root Mean Square) data.    

https://vimeo.com/225762966
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• As in the JUCE Hackathon, some participants 

noted the lack of asynchronous API calls for 

progress and termination notification in the ML 

model training.  

• Participants found the thread-hogging behaviour 

in the ML model training function problematic for 

browser applications. Two participants opted for a 

server-side ML design implementation because this 

limitation made their application unresponsive.  

• Several participants expected a community 

forum, which did not exist at the time of the 

workshop. They suggested it would have been 

useful to collect their interactions in the workshop 

and to support future adopters and users of the 

RAPID-MIX API. 

Based on this feedback, we synthesised a set of 

recommendations to inform further development of 

the RAPID-MIX API and its documentation. So that 

these recommendations could directly influence 

subsequent development, we created Gitlab Issues 

[10] within the RAPID-MIX repository for each 

recommendation.  

4 | DISCUSSION 

In this section, we discuss how these two UCD 

actions enabled a better understanding of users and 

the scope of the design space. We also discuss 

some of the challenges of applying UCD in RAPID-

MIX.  

4.1 UNDERSTANDING THE USER 

Our UCD actions contributed to a better 

understanding of the needs, goals and values of the 

target users of the RAPID-MIX API. The JUCE 

Machine Learning Hackathon focused on 

understanding audio developers, users of the JUCE 

RAPID-MIX module that wraps the RAPID-MIX C++ 

API. The eNTERFACE17 workshop was useful for 

understanding a more diverse user group—creative 

coders with different skill sets—and how they used 

the JS library. These two actions motivated the 

definition of two design personas (Cooper, Reimann 

and Cronin, 2007; Clarke, 2007) that are part of a 

more comprehensive set that characterises the 

users of RAPID-MIX:  

• Jack, 35, experienced audio software developer, 

has a computer science degree. Programming 

means using C++. He owns/works for a start-up that 

produces VST plugins and mobile music apps. He 

uses JUCE as his main development tool. He is 

interested in machine learning but doesn’t really 

know what it is about, beyond data mining in large 

databases and music information retrieval. As a 

pragmatic/systematic developer, he has built deep 

technical understanding and prides himself on 

developing DSP code with maximum performance, 

predictability and minimal memory usage.  

• Sue, 23, creative computing and media student. 

She learned basic coding skills in C++, Python and 

JavaScript. She also made a couple of games in 

Unity and has experimented with physical computing 

and biofeedback sensors. She is interested in 

creating and expressing and is driven by concepts 

more than by technology. As an opportunistic 

developer, she writes code in an exploratory fashion 

and develops the sufficient technical understanding 

to solve her design problem.  

According to Cooper, Reimann and Cronin (2007), 

design personas can support more natural and 

effective reasoning about design. In creating 

personas, we wanted to ground the design process 

in the most precise user population. Besides the 

characteristics uniquely conveyed by these 

personas, we found additional characteristics that 

are transversal to both groups. Most importantly, 

both groups share having little or no experience in 

ML. Further, these groups share other 

characteristics—e.g., high degree of intrinsic 

motivation, customisation and development skills, 

anticipating market needs, building for their personal 

needs, hobbyism, bricoleurism, etc.—that have been 

captured by previous research on Lead Users (von 

Hippel, 1986) and End-User Developers ( Lieberman 

et al., 2006; Blackwell, 2017).  

This knowledge about the user has provided a frame 

to the design process and has had practical 

implications. For instance, after considering the 

needs of the audio developer, we exposed lower-

level primitives for configuration of the neural 

networks in the RAPID-MIX API C++ (e.g., hidden 

layers, activation function, etc); we built templated 

data types into the library for allowing a finer control 

over the numerical precision required in many audio 

applications and embedded hardware. We also 

added additional ML algorithms such as DTW to the 

library based on the overall interest in temporal data. 

To address the needs of the creative coder, we 
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created new examples with more visual feedback 

and better code styling. Online documentation was 

restructured to integrate a set of interactive tutorials 

with increasing complexity and contrasting features 

onto the website; these changes aimed for providing 

a smoother learning curve and an accelerated 

learning experience to the general audience.  

4.2 SCOPING THE DESIGN SPACE 

The set of artefacts that the RAPID-MIX API enables 

contributes to map and delimit its design space, by 

unveiling concepts, features, and technical 

integrations, i.e., plausible designs that match users’ 

and stakeholders’ goals with the affordances of the 

RAPID-MIX API. 

A variety of project activities helped us to scope the 

design space. These include earlier UCD actions 

such as co-design sessions, prototypes created by 

members of the consortium, and products ultimately 

created by SMEs. The projects created at JUCE 

Machine Learning Hackathon and eNTERFACE17 

contributed to improve the scope and understanding 

of the design space at these points in the project. 

The hacks and prototypes produced are real-world 

artefacts that can help characterise classes of 

designs enabled by our toolkit. Participants applied 

the IML workflow to quickly prototype, customise or 

personalise expressive control and real-time 

mappings between multimodal sensor data, 

application logic and multimedia outputs. We were 

able to confirm the applicability of RAPID-MIX 

technologies for rapid prototyping of sensor-based 

interactive applications and expressive multimodal 

controllers.  

We were also able to deepen our understanding of 

certain aspects of the design space, such as design 

factors around the end-user interaction goals and 

contexts of use; or, how these factors and technical 

constraints manifested in end-user design decisions. 

For instance, we observed that certain participants’ 

interaction goals led them to build technologies 

whose functionalities or interaction models differed 

significantly from our induction examples and 

demonstrators: some designs limited the exposure 

of the IML workflow to the end-user (e.g., in rock-

paper-scissors, making the IML workflow optional 

and relegated to the settings panel); other designs 

were not interactive (e.g., FIR classifier used a unit 

test fixture). Some designs used unexpected 

volumes of data or number of inputs (e.g., FM synth 

path generator used FFT (Fast Fourier Transform) 

bins as inputs, gestural 3D mesh modelling used up 

to 76 models). Some participants changed their 

goals for ML over time (e.g., moving from 1-hand 

rock-paper-scissors to ambidextrous support). Some 

designs introduced new devices as data sources 

(e.g., ROLI Lightpad), or hosted ML models in new 

and particularly constrained systems (e.g., Bela on 

Beaglebone Black, which required float types). Other 

designs hit critical usability issues related to the 

inherent performance and memory limitations of the 

browser environment (i.e., single-thread client-side 

JS runtime) and the current architecture of the 

library when working with a high volume of data or 

number of models (e.g., gestural data controlling 

one model per vertex of 3D geometry). In terms of 

end-user constraints, most designs assumed little or 

no machine learning knowledge, and wrapped up 

data collection and model training in domain-specific 

abstractions or UI metaphors which facilitated the 

IML workflow.  

4.3 MANAGING THE UCD PROCESS AND ITS ROI 

UCD has most often been applied to the design of 

physical artefacts and graphical user interfaces. 

However, the application UCD with technologies 

such as middleware or ML is not as straightforward. 

In such cases, it might be challenging to verify 

success or recognise the benefits of such an 

approach.  

The practical implementation of UCD within the large 

RAPID-MIX scale had a complex and challenging 

nature. Our experiences accord with Norman’s 

(2013) remarks about the compromise between the 

UCD philosophy ideal and its practical 

implementation problems (e.g., conflicting 

requirements between different teams, process 

management difficulties, the explosion of data, 

limited and overworked personnel, etc.). For 

instance, some of the UCD actions had additional 

goals related to dissemination, promotion or 

pedagogy. Such additional layers can contribute to 

the complexity of UCD actions by blurring the roles 

within the team deploying the actions, challenging its 

coordination and effectiveness, and undermining the 

actions’ end goals.  

We observed that the methodology had different 

degrees of acceptance with different RAPID-MIX 

stakeholders. Despite the efforts to make sure we 

selected the right techniques, applied them correctly, 

deployed the actions effectively, and delivered 

useful documentation, their overall usefulness was 
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occasionally questioned. We received contradictory 

remarks about the relative contribution compared to 

the amount of time invested in UCD actions; or, 

about whether this was an adequate methodology to 

apply to the design of an API. In some situations, 

there was a lack of interest in engaging with 

particular techniques recommended in the UCD 

literature, for instance, collaboratively analysing user 

data, crafting user personas or doing API 

walkthroughs. Many of these occurrences could be 

identified as instances of what Holtzblatt, Wendell 

and Wood (2004) identified as the organisational 

backlash; or, as consequences of fragmentation in 

the overall design process, as suggested by Norman 

(2013). 

However, the application of UCD for lightweight 

formative evaluation yielded undeniably useful 

results. As we have shown before, both actions led 

to useful insights which had an impact on the 

development of the RAPID-MIX API, with real and 

incremental enhancements. On the one hand, it 

validated some of the design assumptions, such as 

the abstraction level, general usability, usefulness 

for rapid prototyping, and how it caters well to the 

opportunistic approach of creative developers who 

lack ML expertise. On the other hand, it identified 

usability and technical issues, shortcomings of the 

documentation and learning materials, and lack of 

support for working more effectively with data. It also 

challenged some of the design assumptions—mostly 

about the distinct support that should be provided for 

different user groups with different levels of 

expertise in ML and software development—in terms 

of the learning content, learning curve, and ceiling of 

the middleware. 

UCD actions, despite being lightweight, still require a 

great deal of thought and preparation to be engaging 

and simultaneously useful for participants and 

organisers. The data organisation and analysis can 

require significant time and effort, which is difficult to 

estimate before the action. Furthermore, in the 

overall UCD cycle, the outcomes of one stage must 

be clear and of consequence to the next stage (i.e., 

insights obtained from one UCD action should 

inform a subsequent design or development stage, 

and the design stage outcome should be used for 

inquiry in the next UCD action). This requires 

sequencing and integration with the overall 

development cycle, which may or may not be 

straightforward. Here, knowledge of UCD 

methodology alone was insufficient; management 

skills and practical working experience with UCD 

were invaluable, as was intuition to strike the right 

balance to between breadth and depth of 

assessment.  

Overall, we found that UCD actions for lightweight 

evaluation provided gains that compared favourably 

to their operational costs. Using a lightweight 

approach, we managed to iteratively assess a broad 

set of dependent artefacts iteratively in the wild. This 

approach seems particularly well-suited for a 

technology with the level of indirection, and 

dependency on documentation and examples, such 

as the RAPID-MIX API or other software toolkits. 

5 | CONCLUSION 

We used the JUCE Machine Learning Hackathon 

and eNTERFACE’17 workshop for lightweight 

evaluation of our IML toolkit. These UCD actions 

were particularly useful for the assessment of a 

more comprehensive set of elements (C++ and JS 

APIs, documentation and code examples) with two 

different user groups. We uncovered conceptual and 

technical limitations and informed subsequent 

improvements to the toolkit and its documentation. 

Both UCD actions allowed us to gain a deeper 

understanding of the user groups—i.e., professional 

audio software developers and creative coders. We 

observed how participants in both actions were able 

to quickly grasp and successfully use different 

subsets of the RAPID-MIX API. Participants 

produced fully working hacks and prototypes that 

contributed to understand further and refine the 

scope of the design space of the RAPID-MIX toolkit. 

Both actions illustrate the effectiveness of our UCD 

approach by contributing with useful iterations to the 

overall design process of our toolkit. The practical 

experience of applying multiple UCD iterations in a 

multi-stakeholder innovation project comes with a 

significant caveat: even lightweight UCD actions 

require careful management of the organisational 

backlash and significant effort to achieve 

recognisable effectiveness and ROI. 
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ENDNOTES 

[1] https://roli.com 

[2] https://juce.com 

[3] https://roli.com/products/blocks/lightpad-m  

[4] https://www.leapmotion.com/  

[5] https://www.myo.com/ 

[6] https://www.khronos.org/webgl/ 

[7] https://developer.mozilla.org/en-

US/docs/Web/API/Web_Audio_API  

[8] https://p5js.org   

[9] https://threejs.org   

[10] http://gitlab.doc.gold.ac.uk/rapid-mix/RAPID-

MIX_API/issues?scope=all&state=all&label_name=

UCD 

[11] https://www.steinberg.net/en/products/vst.html  
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