
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Work In Progress: Sleuth, a programming
environment for testing gamification

line 1: 4th Given Name Surname
line 2: dept. name of organization

(of Affiliation)
line 3: name of organization

(of Affiliation)
line 4: City, Country

line 5: email address or ORCID

line 1: 2nd Given Name Surname
line 2: dept. name of organization

(of Affiliation)
line 3: name of organization

(of Affiliation)
line 4: City, Country

line 5: email address or ORCID

Abstract— Sleuth is a gamified platform developed as a
practical tool for teaching introductory programming to large
student cohorts. It focuses on building fluency through repeated
practice whilst developing syntactic and conceptual knowledge.
The platform is currently used for online and campus-based
teaching with around 1200 active students at any given time. We
are currently using Sleuth as an iterative testbed for empirically
testing theoretical considerations around gamification and
automated feedback generation. Our ongoing research
investigates effects of varying feedback types on student
attainment and optimising student progression.

Keywords—gamification, introductory programming,
automated feedback, programming pedagogy

I. INTRODUCTION
Programming can be viewed as comprising a varied and

interlaced set of high and low order skills which can be
developed over time through regular practice [1]. However,
facilitating practice presents the lecturer with numerous
challenges; the production of sufficient unseen code exercises,
meeting the volume of grading given the large size of modern
undergraduate cohorts; detecting and preventing plagiarism,
and motivating students to undertake repeated practice [2].

We have designed Sleuth as a practical teaching tool to
address these issues. Sleuth is a series of gamified code
puzzles themed around a film-noir detective story. Students
play the character of a fledgling detective and are guided by
‘the Chief’ who gives them feedback on individual puzzle
attempts as well as their general progress in the game. The
platform uses automatic grading and exercise generation to
provide instant feedback and an inexhaustible supply of
puzzles for students to practice on.

Gamification is the use of game design elements in non-
game contexts [3]. There is an emergent consensus around
theory within the field, but despite numerous studies reporting
positive impacts, there is a lack of empirical work validating
theoretical conjecture [3], [4]. The context of deployment for
Sleuth in which it is used simultaneously with multiple large
cohorts, provides an opportunity for carrying out such
research.

Given gamification’s interdisciplinarity, our current
research draws on theory comprising game design, computing
pedagogy, assessment automation and theories of motivation.
In particular we are investigating how student attainment is
affected by varying the types of feedback provided by our
automated system. This research direction is motivated by
theoretical considerations from the literature as well
informally collected data from logs of initial runs of Sleuth
and module evaluations. Further topics include utilising game
mechanics to influence learner behaviours, testing for optimal

progression, and exploring the degree to which intrinsic
motivation [5] is generated through the addition of ungraded,
hidden, ‘Easter egg’ puzzles.

II. CONTEXT
Computer science pedagogy is widely recognised as

problematic [1], [2]. It is the worst performing subject with
regards to undergraduate non-continuation in the UK by a
margin of more than 2%. 9.8% of the 2016/17 cohort of
young undergraduate entrants, terminated their studies early
[6].

In reviewing the pedagogical literature, Qian and Lehman
classify difficulties pertaining to ‘syntactic knowledge,
conceptual knowledge, and strategic knowledge.’ Syntactic
and conceptual knowledge are presented as prerequisites for
developing strategic knowledge. Deficiencies in the former
prevent students from developing the latter. Students’ ‘lack
of well-established strategies and patterns often leads to
various challenges in planning, writing and debugging
programs.’ [1]

Additionally, in teaching first year students through lab-
based activities we observe difficulties with mechanical skills
such as accurately typing syntactical patterns, correctly
selecting code blocks for cutting and pasting, making use of
code completion in the editor, arranging screen space for
effective editing and monitoring, managing files and folders,
and effectively executing the save, compile and run
workflow. A firm grounding in such skills are prerequisite to
the development of syntactic and conceptual knowledge.

Thus programming can be viewed as comprising a varied
and interlaced set of high and low order skills which can be
developed over time through regular practice. However,
facilitating practice presents the lecturer with numerous
challenges; the production of sufficient unseen code
exercises, meeting the volume of grading given the large size
of modern undergraduate cohorts; detecting and preventing
plagiarism, and motivating students to undertake repeated
practice [2], [7].

Such issues are exacerbated by the modern university
context in which staff increasingly teach large and
heterogeneous cohorts of students with finite resources. In the
authors’ host institution, the Introduction to Programming
cohort typically exceeds 300 students approximately 50% of
whom have no prior programming experience with 10%
reporting more than three years. Students to staff ratios are
maintained at around 25:1 through a combination of
academic staff and hourly paid teaching assistants. The
emerging online context, where the authors run an online
version of the module as part of a BSc Computer Science,

presents greater challenges still. Here cohorts exceed 600
students with a staff student ratio of 50:1 with one hour a
week of student contact time.

III. STATE OF THE ART
Gamification is a nascent term becoming widely adopted

in the second half of 2010. Whilst the various available
literature reviews report inconsistencies in definitions and
theoretical frameworks, Deterding et al’s definition of ‘the
use of game design elements in non-game contexts.’ has
gained most traction [3], [4]. Research into gamification
continues to grow and shows signs of institutionalising as a
cross-disciplinary field [4], [8], [9]. Within education
O’Donovan et. al highlight the existence of game-like
attributes and advocate improving the ‘university game’
through game design techniques [10]. Indeed numerous
applications of gamification within the educational context
appear in the literature. Applications in the field of Computer
Science are well-represented. Dicheva et al speculate that this
is because “utilizing gamification assumes a certain type of
environment that supports incorporating and visualizing the
selected game mechanisms and dynamics” [9], [11].

In their seminal paper Deterding et al. classify ‘game
design elements’ into five levels ordered from concrete to
abstract; Game interface design patterns, game design
patterns and mechanics, game design principles and
heuristics, game models, game design methods [3]. Dicheva
et al refine this model for specific use in the educational
context arriving at a series of ‘educational gamification
design principles’, not exclusive to games; goals/challenges,
personalization, rapid feedback, visible status, unlocking
content, freedom of choice, freedom to fail, storyline/new
identities, onboarding, time restriction, and social
engagement. Their mapping study identifies visual status,
social engagement, freedom of choice, freedom to fail, and
rapid feedback as most commonly employed within the
educational context. Theories of intrinsic and extrinsic
motivation, as grounded in self-determination theory
developed by Ryan and Deci [5], are commonly cited in
theoretical writings about Gamification, and this is reflective
of the concern with effecting motivational and behavioural
change within its practice.

The automation of feedback generation for assignments
has been commonly applied in the teaching of computer
programming, the practice dating back to the 1960s [12].
Such systems are helpful in addressing the aforementioned
problems of facilitating sufficient programming practice in
modern teaching contexts. Feedback from such tools can take
a variety of forms including hints, visualisations and
summative grades. Narciss sets out a conceptual framework
for feedback in interactive instruction in which feedback is
separated into components range from concrete types such as
‘Knowledge of performance for a set of tasks’ to higher-level
categories such as ‘Knowledge about Meta-cognition’ [13].
Keuning et al specialise this framework for the domain of
computer programming, for example subdividing
‘Knowledge about mistakes’ into ‘Test failures’, ‘Compiler
errors’, ‘Solution errors’, ‘Style Issues’ and ‘Performance
Issues’, and ‘Knowledge about how to Proceed’ into ‘Bug-
related hints for error correction’, ‘Task-processing steps’,
and ‘Improvements.’[12] They identify that feedback from
current systems is predominantly ‘Knowledge about
mistakes,’ and that this feedback alone is not sufficient for all
students to progress.

‘Automated exercise generation’ refers to the use of
procedural content generation to produce on-demand
variations of assignments [14]. The practice is less
widespread than automatic grading. Sadigh et al take a
template-based approach, identifying differentiating
elements which can be parameterised and varied to create
new exercises. Le and Pinkwart classify programming
exercises into a number of types based on the degree of
problem definition [15]. Class 1 exercises have a single
correct solution, Class 2 exercises can be solved by
implementation variants, whilst Class 3 exercises can be
solved by applying alternative solution strategies.

In combining gamification, automatic feedback
generation and automatic exercise generation, Sleuth falls
into a niche sub-category with few examples of existing
practice. Code Combat [16] is a comparable example which
follows a themed hierarchical level-based design. Despite
commercial-grade production values and 42 code puzzles
within its first level alone, the puzzles themselves are static
and produced without automation. In, Microsoft Research’s
Code Hunt [17] challenges are set by providing players with
series of tests which match the functional behaviour of a
secret goal algorithm to be deduced by the player. Although
it was not designed as a teaching game but rather as a tool for
practice and competition, Code Hunt nevertheless has a
‘default zone’ which takes students through a progressive set
of puzzles covering arithmetic, loops, strings, arrays and so
on. Despite the claim of ‘impressive’ figures, the retention
rate of 85% per puzzle falls far below what would be
acceptable at a University level. As with Code Combat, Code
Hunt uses static puzzles. However, these are arranged in
terms of difficulty by using player performance metrics.

More recent studies in Gamification have seen a
maturation in terms of empirical study [8]. Whilst the first
wave of studies attempted simply to establish the efficacy of
Gamification, more recent studies have drawn on theoretical
conjecture to investigate how particular design elements
work. Sleuth’s context, in which there are multiple
simultaneous deployments running with large cohorts of
students on a cyclical basis, provides us with a unique
opportunity for theory-driven empirical studies carried out in
the field. Through such studies we aim to investigate a range
of topics whilst iteratively improving the design of Sleuth.

IV. DESIGN

A. Design Description
Sleuth is a gamified assessment platform for learning

programming using the p5.js framework which is designed
around a media programming pedagogy (ie. teaching code
through visually orientated application development). The
platform is designed to facilitate opportunities for students to
practice elementary programming techniques comprising, 2D
drawing, variables, conditional logic, iteration, data
structures, and functions.

In the game, students play a rookie detective working for
the agency ‘Sleuth & Co’. Using a web-app they gain points
and unlock adventures by solving code crimes. A fictional
entity called ‘The Chief’ provides students with feedback
about individual attempts at solving code crimes as well as
more general communication about their progress. Code

crimes are hierarchically organised into 16 cases, each based
on a particular topic and consisting of four crimes to be
solved. These are presented as a series of clickable badges
arranged in an ordered grid. Students can attempt the cases in
any order and need not complete them before starting another.
However, the crimes of each case progress in order of
difficulty and are unlocked in sequence as the student solves
them. Once a crime has been solved a ‘solved’ tag appears on
the top left-hand corner of the badge for that crime and
proceeding crime is unlocked.

Students’ grade comprises a rookie score and pro score.
The rookie score is made up of the average of the first nine
cases which are made available to students from the start of
the course. At the midpoint of the course, the students ‘go
pro.’ Their rookie score is frozen and the remaining seven
cases are released. The pro score is made up of the average of
all the cases.

Crimes take the form of template code to be downloaded
and completed according to themed instructions. Students
can upload their solutions multiple times for automatic
grading and feedback, with the highest score being retained
on each attempt. They receive immediate feedback from the
Chief which includes any compile or runtime errors and tells
them what parts of the task they have achieved and what parts
they still need to work on. Students get five attempts to solve
a crime after which the Chief suspends them from that
particular case for one hour. Upon returning, students must
begin afresh by downloading a new variant.

Such variants are produced through automatic exercise
generation [14]. This approach provides the opportunity for
repeated practice where necessary whilst reducing scope for
plagiarism. Variation occurs by permuting selected
parameters of a code template. Example parameters include
task requirements, organisation of data, image dimensions
and variable names. All crimes can be catagorised as ‘Class
2’ type problems which can be solved through
implementation variants [15].

Fig 1 Shows two variations of case 101 - The case of Lina
Lovelace. Students are tasked with writing code to draw a
rectangle around a Lina Lovelace, the character wearing the
red dress.

B. Design Motivation
The above specification was guided by a number of
pedagogical concerns and game design considerations.
Dicheva et al [11] define a framework of Educational
Gamification Design principles which we have used to
describe our design motivations in Fig 2 below.

There are nevertheless design principles from the
framework which are out of scope the platform. Whilst

‘competition and cooperation’ suggests further research
directions in terms of introducing leaderboards, and clans,
others such as ‘time restriction’ are pedagogically
inappropriate for this context.

V. PRELIMINARY FINDINGS
Sleuth was not designed as a research study, but rather as

a practical teaching tool for improving the experience of
campus-based and distance-learning students. It has been
used by approximately 1,500 students as an assessed
coursework assignment across both aforementioned contexts.
We have obtained sensitising findings to inform directions for
our research from an initial run of Sleuth with our campus
cohort

Overall, the students in the cohort performed to a very
high standard with a median grade of 90.67% (Q1: 75.79 and
Q3: 96.49). In taking module tests the same cohort performed
considerably poorer with a median grade of 66.94% (Q1:
53.33% and Q3: 84.17%). However, in performing a

Fig. 1. 2 examples of Sleuth crime 101 showing varied puzzle generation

Fig 3: scatter plot of sleuth grades against test scores with regression

line.

Design Principle Features in Sleuth

Goals and Challenges Solving code crimes and
cases.

Rapid Feedback Autograded feedback from
the Chief.

Progress: visible
progression to mastery

% Complete score for
individual code crimes.
Solved badges on crimes.

Accrual grading Rookie and Pro scores.

Access/Unlocking Content Hierarchical level design
realised through Cases

Freedom of choice Students are able to choose
cases in any order

Freedom to fail: low risk
from submission, multiple
attempts

Use of exercise generation
to provide variant puzzles.

Storytelling Rich theming around ‘Sleuth
& Co’ detective agency

New identities / roles Students play the detective.
Fig. 2. Design motivations for the Sleuth platform

Spearman’s rank correlation between the two assignments, a
positive correlation was found (r=0.63 p<0.01). Whilst some
of the stronger performances in Sleuth can be explained by
attainment gains through coursework over test conditions, we
believe that much of this can be attributed to improved
student motivation through the aforementioned game design
principles. This supposition is supported by the high levels of
student activity from the cohort where there was an average
of 158 attempts per student.

Such high levels of activity occasionally segued into
undesirable, obsessive behaviours. For example, students
demanding deadline extensions to achieve grades of 100%,
students working on Sleuth throughout the night at the
expense of class attendance, and students posting angrily to
VLE forums targeting the fairness and accuracy of the
autograder as they struggled to identify the correct solution.
Contrary to our expectations, students made little strategic
use of the open level design. Instead the majority progressed
doggedly in sequence. A Spearman’s rank correlation
comparing the case and stage numbers of students attempts
with timestamps revealed an ordinal tendency within the data,
with a mean r of 0.947 across the cohort. This linear approach
was often at the cost of many failed attempts at harder code
crimes as they fixated on individual problems. Nevertheless,
we found evidence of self-pacing as is shown by Fig 4 which
presents changing grade distributions across the cohort for the
period of the assessment.

In a post-assignment survey students reported on their
perception of the difficulty of Sleuth scoring a mean rating of
2.7 (5-point Likert scale where 1 represents most difficult).
36% of students found the assignment to be “a little difficult”
and 51% found it to be “just right”. In open-form feedback
students requested extra features such as hidden “Easter egg”
levels and leaderboards.

VI. PLANNED RESEARCH
The cyclical nature and multiple deployments of Sleuth,

combined with its multilevel design provides a unique
opportunity for in the field testing with controls. Based on our
preliminary findings and informed by the literature we
envisage a number of investigations the first of which is
already underway.

Our first investigation explores the role of feedback in
student performance. Keuning et al identify that the majority
of automated feedback from code exercises takes the form of

‘Knowledge about mistakes’, and that this alone is not
sufficient for students to make progress [12]. Using our
preliminary data we have identified two cases which are
particularly challenging for students. For one case students
who submit incomplete or incorrect attempts are offered a
chance to see an automatically generated solution in return
for restarting their attempt with a new variation. For the other
case students are repeatedly offered hints with each incorrect
or incomplete submission. Testing is underway with our
campus cohort of 280 students, whilst our online cohort of
580 students is acting as a control group. We will be
measuring the degree to which the hints and solutions
improved performance and reduced the number of attempts,
and also measuring student preferences for these types of
feedback.

Our second investigation seeks to mitigate the sequential
approach of students in solving crimes as established by our
preliminary data. We suspect that the layout of crimes and
cases in a sequentially ordered grid heavily reinforces this
behaviour. We will develop an alternative interface design
which presents puzzles hidden in a 2D map of ‘Console City,’
the fictional setting of Sleuth. Students will navigate their
way to available crimes in the mode of open world
exploration games such as ‘Grand Theft Auto '. Whilst
encouraging students into a more flexible approach, such a
design change also makes the presentation of student progress
less transparent, so we will also be investigating how this
affects student motivation.

The high levels of student achievement in the preliminary
data combined with the student perception of task difficulty
implies some degree of intrinsic motivation at play [5]. We
propose to test how intrinsically motivated students are by
providing two cohorts with “Easter egg” crimes which appear
only once a certain score has been reached. These provide an
opportunity to introduce ‘Class 3’ problems allowing for the
application of alternative solution strategies [15]. In the
control cohort these crimes will have summative marks
attached to them, but in the experimental cohort there will be
no extrinsic reward for solving the crimes.

The character of ‘The Chief’ provides other opportunities
for investigation. We are interested in the effectiveness of
encouraging student behaviours through platform
interventions. One scenario where this might be applied is
where students have repeated failed to solve a crime and are
suspended from the case. In this circumstance we would
attempt to stimulate continued engagement by ‘The Chief’
suggesting an alternative case to be attempted.

The discrepancy between Sleuth grades and test results in
preliminary data calls us to question whether in its current
form Sleuth is providing a suitably rigorous environment for
summative assessment. We suspect that some weaker
students may be solving crimes with an inappropriate degree
of peer support. One possible solution would be to introduce
a degree of repetition in the game. Students would be
occasionally presented with crimes that they had already
solved once, but now they would be challenged to solve them
with a limited number of attempts. From this intervention we
would be looking for a reduction in the discrepancy between
the two assessments and an improvement in performance of
the bottom quartile in the tests.

Fig 4: changing grade distributions across the period of the Sleuth
assessment

VII. CONCLUSION
We have presented Sleuth as an ideal platform for

iterative in-the-field investigation into gamified learning and
automated feedback. We have positioned this work within the
fields of automated feedback and exercise generation in
computing pedagogy and gamification within education. We
have described the specification of Sleuth and its design
motivations. We have explained our preliminary findings
from use in the classroom and used these to set out a scheme
of research.

REFERENCES
[1] Y. Qian and J. Lehman, “Students’ Misconceptions and

Other Difficulties in Introductory Programming,” ACM
Transactions on Computing Education, vol. 18, no. 1. pp.
1–24, 2017.

[2] R. P. Medeiros, G. L. Ramalho, and T. P. Falcao, “A
Systematic Literature Review on Teaching and Learning
Introductory Programming in Higher Education,” IEEE
Transactions on Education, vol. 62, no. 2. pp. 77–90,
2019.

[3] S. Deterding, From Game Design Elements Tot
Gamefulness: Defining “gamification.” 2011.

[4] K. Seaborn and D. I. Fels, “Gamification in theory and
action: A survey,” International Journal of Human-
Computer Studies, vol. 74. pp. 14–31, 2015.

[5] R. M. Ryan and E. L. Deci, “Self-determination theory
and the facilitation of intrinsic motivation, social
development, and well-being,” American Psychologist,
vol. 55, no. 1. pp. 68–78, 2000.

[6] “Non-continuation: UK Performance Indicators 2017/18
| HESA.” [Online]. Available:
https://www.hesa.ac.uk/news/07-03-2019/non-
continuation-tables. [Accessed: 05-Apr-2019].

[7] B. Marín, J. Frez, J. Cruz-Lemus, and M. Genero, “An
Empirical Investigation on the Benefits of Gamification
in Programming Courses,” ACM Transactions on
Computing Education, vol. 19, no. 1. pp. 1–22, 2018.

[8] L. E. Nacke and S. Deterding, “The maturing of
gamification research,” Computers in Human Behavior,
vol. 71. pp. 450–454, 2017.

[9] J. Hamari, J. Koivisto, and H. Sarsa, “Does Gamification
Work? -- A Literature Review of Empirical Studies on
Gamification,” 2014 47th Hawaii International
Conference on System Sciences. 2014.

[10] S. O’Donovan, J. Gain, and P. Marais, “A case study in
the gamification of a university-level games
development course,” Proceedings of the South African
Institute for Computer Scientists and Information
Technologists Conference on - SAICSIT ’13. 2013.

[11] Dicheva D, Dichev C, Agre G, Angelova G,
“Gamification in Education: A Systematic Mapping
Study,” Educational Technology & Society, vol. 18, no.
3, pp. 1176–3647, 2015.

[12] H. Keuning, J. Jeuring, and B. Heeren, “A Systematic
Literature Review of Automated Feedback Generation
for Programming Exercises,” ACM Transactions on
Computing Education, vol. 19, no. 1. pp. 1–43, 2018.

[13] S. Narciss, “Feedback strategies for interactive learning
tasks,” in Handbook of Research on Educational
Communications and Technology., S. A. B. Kathy L.
Schuh, Ed. Routeledge, 2008, pp. 125–144.

[14] Sadigh, D. Seshia, S A. , Gupta, M, “Automating
Exercise Generation: A Step towards Meetingthe MOOC
Challenge for Embedded Systems,” in Proceedings of the
Workshop on Embedded and Cyber-Physical Systems
Education - WESE ’12, Tampere, Finland, 2013, pp. 1–
8.

[15] N. Pinkwart and N.-T. Le, “Towards a classification for
programming exercises,” in Proceedings of the
Workshop on AI-supported Education for Computer
Science., 2014, pp. 51–60.

[16] CodeCombat, “CodeCombat: Learn to Code by Playing
a Game,” CodeCombat. [Online]. Available:
http://codecombat.com. [Accessed: 23-Oct-2019].

[17] J. Bishop, R. Nigel Horspool, T. Xie, N. Tillmann, and J.
de Halleux, “Code Hunt: Experience with Coding
Contests at Scale,” 2015 IEEE/ACM 37th IEEE
International Conference on Software Engineering.
2015.

