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Abstract— Sleuth is a gamified platform developed as a 
practical tool for teaching introductory programming to large 
student cohorts. It focuses on building fluency through repeated 
practice whilst developing syntactic and conceptual knowledge. 
The platform is currently used for online and campus-based 
teaching with around 1200 active students at any given time. We 
are currently using Sleuth as an iterative testbed for empirically 
testing theoretical considerations around gamification and 
automated feedback generation. Our ongoing research 
investigates effects of varying feedback types on student 
attainment and optimising student progression.  
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I. INTRODUCTION 
Programming can be viewed as comprising a varied and 

interlaced set of high and low order skills which can be 
developed over time through regular practice [1]. However, 
facilitating practice presents the lecturer with numerous 
challenges; the production of sufficient unseen code exercises, 
meeting the volume of grading given the large size of modern 
undergraduate cohorts; detecting and preventing plagiarism, 
and motivating students to undertake repeated practice [2].  

We have designed Sleuth as a practical teaching tool to 
address these issues. Sleuth is a series of gamified code 
puzzles themed around a film-noir detective story. Students 
play the character of a fledgling detective and are guided by 
‘the Chief’ who gives them feedback on individual puzzle 
attempts as well as their general progress in the game. The 
platform uses automatic grading and exercise generation to 
provide instant feedback and an inexhaustible supply of 
puzzles for students to practice on.  

Gamification is the use of game design elements in non-
game contexts [3]. There is an emergent consensus around 
theory within the field, but despite numerous studies reporting 
positive impacts, there is a lack of empirical work validating 
theoretical conjecture [3], [4]. The context of deployment for 
Sleuth in which it is used simultaneously with multiple large 
cohorts, provides an opportunity for carrying out such 
research.  

Given gamification’s interdisciplinarity, our current 
research draws on theory comprising game design, computing 
pedagogy, assessment automation and theories of motivation. 
In particular we are investigating how student attainment is 
affected by varying the types of feedback provided by our 
automated system. This research direction is motivated by 
theoretical considerations from the literature as well 
informally collected data from logs of initial runs of Sleuth 
and module evaluations. Further topics include utilising game 
mechanics to influence learner behaviours, testing for optimal 

progression, and exploring the degree to which intrinsic 
motivation [5] is generated through the addition of ungraded, 
hidden, ‘Easter egg’ puzzles. 

II. CONTEXT 
Computer science pedagogy is widely recognised as 

problematic [1], [2]. It is the worst performing subject with 
regards to undergraduate non-continuation in the UK by a 
margin of more than 2%. 9.8% of the 2016/17 cohort of 
young undergraduate entrants, terminated their studies early 
[6].  

In reviewing the pedagogical literature, Qian and Lehman 
classify difficulties pertaining to ‘syntactic knowledge, 
conceptual knowledge, and strategic knowledge.’  Syntactic 
and conceptual knowledge are presented as prerequisites for 
developing strategic knowledge. Deficiencies in the former 
prevent students from developing the latter. Students’ ‘lack 
of well-established strategies and patterns often leads to 
various challenges in planning, writing and debugging 
programs.’ [1] 

Additionally, in teaching first year students through lab-
based activities we observe difficulties with mechanical skills 
such as accurately typing syntactical patterns, correctly 
selecting code blocks for cutting and pasting, making use of 
code completion in the editor, arranging screen space for 
effective editing and monitoring, managing files and folders, 
and effectively executing the save, compile and run 
workflow. A firm grounding in such skills are prerequisite to 
the development of syntactic and conceptual knowledge. 

Thus programming can be viewed as comprising a varied 
and interlaced set of high and low order skills which can be 
developed over time through regular practice. However, 
facilitating practice presents the lecturer with numerous 
challenges; the production of sufficient unseen code 
exercises, meeting the volume of grading given the large size 
of modern undergraduate cohorts; detecting and preventing 
plagiarism, and motivating students to undertake repeated 
practice [2], [7]. 

Such issues are exacerbated by the modern university 
context in which staff increasingly teach large and 
heterogeneous cohorts of students with finite resources. In the 
authors’ host institution, the Introduction to Programming 
cohort typically exceeds 300 students approximately 50% of 
whom have no prior programming experience with 10% 
reporting more than three years. Students to staff ratios are 
maintained at around 25:1 through a combination of 
academic staff and hourly paid teaching assistants. The 
emerging online context, where the authors run an online 
version of the module as part of a BSc Computer Science, 



presents greater challenges still. Here cohorts exceed 600 
students with a staff student ratio of 50:1 with one hour a 
week of student contact time. 

III. STATE OF THE ART 
Gamification is a nascent term becoming widely adopted 

in the second half of 2010. Whilst the various available 
literature reviews report inconsistencies in definitions and 
theoretical frameworks, Deterding et al’s definition of ‘the 
use of game design elements in non-game contexts.’ has 
gained most traction [3], [4]. Research into gamification 
continues to grow and shows signs of institutionalising as a 
cross-disciplinary field [4], [8], [9]. Within education 
O’Donovan et. al highlight the existence of game-like 
attributes and advocate improving the ‘university game’ 
through game design techniques [10]. Indeed numerous 
applications of gamification within the educational context 
appear in the literature. Applications in the field of Computer 
Science are well-represented. Dicheva et al speculate that this 
is because “utilizing gamification assumes a certain type of 
environment that supports incorporating and visualizing the 
selected game mechanisms and dynamics”  [9], [11]. 

In their seminal paper Deterding et al. classify ‘game 
design elements’ into five levels ordered from concrete to 
abstract; Game interface design patterns, game design 
patterns and mechanics, game design principles and 
heuristics, game models, game design methods [3]. Dicheva 
et al refine this model for specific use in the educational 
context arriving at a series of ‘educational gamification 
design principles’, not exclusive to games; goals/challenges, 
personalization, rapid feedback, visible status, unlocking 
content, freedom of choice, freedom to fail, storyline/new 
identities, onboarding, time restriction, and social 
engagement. Their mapping study identifies visual status, 
social engagement, freedom of choice, freedom to fail, and 
rapid feedback as most commonly employed within the 
educational context. Theories of intrinsic and extrinsic 
motivation, as grounded in self-determination theory 
developed by Ryan and Deci [5], are commonly cited in 
theoretical writings about Gamification, and this is reflective 
of the concern with effecting motivational and behavioural 
change within its practice.  

The automation of feedback generation for assignments 
has been commonly applied in the teaching of computer 
programming, the practice dating back to the 1960s [12]. 
Such systems are helpful in addressing the aforementioned 
problems of facilitating sufficient programming practice in 
modern teaching contexts. Feedback from such tools can take 
a variety of forms including hints, visualisations and 
summative grades. Narciss sets out a conceptual framework 
for feedback in interactive instruction in which feedback is 
separated into components range from concrete types such as 
‘Knowledge of performance for a set of tasks’ to higher-level 
categories such as ‘Knowledge about Meta-cognition’ [13]. 
Keuning et al specialise this framework for the domain of 
computer programming, for example subdividing 
‘Knowledge about mistakes’ into ‘Test failures’, ‘Compiler 
errors’, ‘Solution errors’, ‘Style Issues’ and ‘Performance 
Issues’, and ‘Knowledge about how to Proceed’ into ‘Bug-
related hints for error correction’, ‘Task-processing steps’, 
and ‘Improvements.’[12] They identify that feedback from 
current systems is predominantly ‘Knowledge about 
mistakes,’ and that this feedback alone is not sufficient for all 
students to progress. 

‘Automated exercise generation’ refers to the use of 
procedural content generation to produce on-demand 
variations of assignments [14]. The practice is less 
widespread than automatic grading. Sadigh et al take a 
template-based approach, identifying differentiating 
elements which can be parameterised and varied to create 
new exercises. Le and Pinkwart classify programming 
exercises into a number of types based on the degree of 
problem definition [15]. Class 1 exercises have a single 
correct solution, Class 2 exercises can be solved by 
implementation variants, whilst Class 3 exercises can be 
solved by applying alternative solution strategies. 

In combining gamification, automatic feedback 
generation and automatic exercise generation, Sleuth falls 
into a niche sub-category with few examples of existing 
practice. Code Combat [16] is a comparable example which 
follows a themed hierarchical level-based design. Despite 
commercial-grade production values and 42 code puzzles 
within its first level alone, the puzzles themselves are static 
and produced without automation. In, Microsoft Research’s 
Code Hunt [17] challenges are set by providing players with 
series of tests which match the functional behaviour of a 
secret goal algorithm to be deduced by the player. Although 
it was not designed as a teaching game but rather as a tool for 
practice and competition, Code Hunt nevertheless has a 
‘default zone’ which takes students through a progressive set 
of puzzles covering arithmetic, loops, strings, arrays and so 
on. Despite the claim of ‘impressive’ figures, the retention 
rate of 85% per puzzle falls far below what would be 
acceptable at a University level. As with Code Combat, Code 
Hunt uses static puzzles. However, these are arranged in 
terms of difficulty by using player performance metrics.  

More recent studies in Gamification have seen a 
maturation in terms of empirical study [8]. Whilst the first 
wave of studies attempted simply to establish the efficacy of 
Gamification, more recent studies have drawn on theoretical 
conjecture to investigate how particular design elements 
work. Sleuth’s context, in which there are multiple 
simultaneous deployments running with large cohorts of 
students on a cyclical basis, provides us with a unique 
opportunity for theory-driven empirical studies carried out in 
the field. Through such studies we aim to investigate a range 
of topics whilst iteratively improving the design of Sleuth. 

IV. DESIGN 

A. Design Description 
Sleuth is a gamified assessment platform for learning 

programming using the p5.js framework which is designed 
around a media programming pedagogy (ie. teaching code 
through visually orientated application development). The 
platform is designed to facilitate opportunities for students to 
practice elementary programming techniques comprising, 2D 
drawing, variables, conditional logic, iteration, data 
structures, and functions.  

In the game, students play a rookie detective working for 
the agency ‘Sleuth & Co’. Using a web-app they gain points 
and unlock adventures by solving code crimes. A fictional 
entity called ‘The Chief’ provides students with feedback 
about individual attempts at solving code crimes as well as 
more general communication about their progress. Code 



crimes are hierarchically organised into 16 cases, each based 
on a particular topic and consisting of four crimes to be 
solved. These are presented as a series of clickable badges 
arranged in an ordered grid. Students can attempt the cases in 
any order and need not complete them before starting another. 
However, the crimes of each case progress in order of 
difficulty and are unlocked in sequence as the student solves 
them. Once a crime has been solved a ‘solved’ tag appears on 
the top left-hand corner of the badge for that crime and 
proceeding crime is unlocked. 

Students’ grade comprises a rookie score and pro score. 
The rookie score is made up of the average of the first nine 
cases which are made available to students from the start of 
the course. At the midpoint of the course, the students ‘go 
pro.’ Their rookie score is frozen and the remaining seven 
cases are released. The pro score is made up of the average of 
all the cases.  

Crimes take the form of template code to be downloaded 
and completed according to themed instructions. Students 
can upload their solutions multiple times for automatic 
grading and feedback, with the highest score being retained 
on each attempt. They receive immediate feedback from the 
Chief which includes any compile or runtime errors and tells 
them what parts of the task they have achieved and what parts 
they still need to work on. Students get five attempts to solve 
a crime after which the Chief suspends them from that 
particular case for one hour. Upon returning, students must 
begin afresh by downloading a new variant. 

Such variants are produced through automatic exercise 
generation [14]. This approach provides the opportunity for 
repeated practice where necessary whilst reducing scope for 
plagiarism.  Variation occurs by permuting selected 
parameters of a code template. Example parameters include 
task requirements, organisation of data, image dimensions 
and variable names.  All crimes can be catagorised as ‘Class 
2’ type problems which can be solved through 
implementation variants [15]. 

Fig 1 Shows two variations of case 101 - The case of Lina 
Lovelace. Students are tasked with writing code to draw a 
rectangle around a Lina Lovelace, the character wearing the 
red dress. 

B. Design Motivation 
The above specification was guided by a number of 
pedagogical concerns and game design considerations. 
Dicheva et al [11] define a framework of Educational 
Gamification Design principles which we have used to 
describe our design motivations in Fig 2 below.  

There are nevertheless design principles from the 
framework which are out of scope the platform. Whilst 

‘competition and cooperation’ suggests further research 
directions in terms of introducing leaderboards, and clans, 
others such as ‘time restriction’ are pedagogically 
inappropriate for this context. 

V. PRELIMINARY FINDINGS 
Sleuth was not designed as a research study, but rather as 

a practical teaching tool for improving the experience of 
campus-based and distance-learning students. It has been 
used by approximately 1,500 students as an assessed 
coursework assignment across both aforementioned contexts. 
We have obtained sensitising findings to inform directions for 
our research from an initial run of Sleuth with our campus 
cohort  

Overall, the students in the cohort performed to a very 
high standard with a median grade of 90.67% (Q1: 75.79 and 
Q3: 96.49). In taking module tests the same cohort performed 
considerably poorer with a median grade of 66.94% (Q1: 
53.33% and Q3: 84.17%). However, in performing a 

  
 
Fig. 1. 2 examples of Sleuth crime 101 showing varied puzzle generation  
 
 

 

 
Fig 3: scatter plot of sleuth grades against test scores with regression 

line. 

 

Design Principle Features in Sleuth 

Goals and Challenges Solving code crimes and 
cases. 

Rapid Feedback Autograded feedback from 
the Chief. 

Progress: visible 
progression to mastery  

% Complete score for 
individual code crimes.  
Solved badges on crimes. 

Accrual grading Rookie and Pro scores. 

Access/Unlocking Content Hierarchical level design 
realised through Cases 

Freedom of choice Students are able to choose 
cases in any order 

Freedom to fail: low risk 
from submission, multiple 
attempts 

Use of exercise generation 
to provide variant puzzles. 

Storytelling Rich theming around ‘Sleuth 
& Co’ detective agency 

New identities / roles Students play the detective. 
Fig. 2. Design motivations for the Sleuth platform 

 



Spearman’s rank correlation between the two assignments, a 
positive correlation was found (r=0.63 p<0.01). Whilst some 
of the stronger performances in Sleuth can be explained by 
attainment gains through coursework over test conditions, we 
believe that much of this can be attributed to improved 
student motivation through the aforementioned game design 
principles. This supposition is supported by the high levels of 
student activity from the cohort where there was an average 
of 158 attempts per student. 

Such high levels of activity occasionally segued into 
undesirable, obsessive behaviours. For example, students 
demanding deadline extensions to achieve grades of 100%, 
students working on Sleuth throughout the night at the 
expense of class attendance, and students posting angrily to 
VLE forums targeting the fairness and accuracy of the 
autograder as they struggled to identify the correct solution. 
Contrary to our expectations, students made little strategic 
use of the open level design. Instead the majority progressed 
doggedly in sequence.  A Spearman’s rank correlation 
comparing the case and stage numbers of students attempts 
with timestamps revealed an ordinal tendency within the data, 
with a mean r of 0.947 across the cohort. This linear approach 
was often at the cost of many failed attempts at harder code 
crimes as they fixated on individual problems. Nevertheless, 
we found evidence of self-pacing as is shown by Fig 4 which 
presents changing grade distributions across the cohort for the 
period of the assessment. 

In a post-assignment survey students reported on their 
perception of the difficulty of Sleuth scoring a mean rating of 
2.7 (5-point Likert scale where 1 represents most difficult).  
36% of students found the assignment to be “a little difficult” 
and 51% found it to be “just right”. In open-form feedback 
students requested extra features such as hidden “Easter egg” 
levels and leaderboards.  

VI. PLANNED RESEARCH 
The cyclical nature and multiple deployments of Sleuth, 

combined with its multilevel design provides a unique 
opportunity for in the field testing with controls. Based on our 
preliminary findings and informed by the literature we 
envisage a number of investigations the first of which is 
already underway.  

Our first investigation explores the role of feedback in 
student performance. Keuning et al identify that the majority 
of automated feedback from code exercises takes the form of 

‘Knowledge about mistakes’, and that this alone is not 
sufficient for students to make progress [12]. Using our 
preliminary data we have identified two cases which are 
particularly challenging for students. For one case students 
who submit incomplete or incorrect attempts are offered a 
chance to see an automatically generated solution in return 
for restarting their attempt with a new variation. For the other 
case students are repeatedly offered hints with each incorrect 
or incomplete submission. Testing is underway with our 
campus cohort of 280 students, whilst our online cohort of 
580 students is acting as a control group. We will be 
measuring the degree to which the hints and solutions 
improved performance and reduced the number of attempts, 
and also measuring student preferences for these types of 
feedback. 

Our second investigation seeks to mitigate the sequential 
approach of students in solving crimes as established by our 
preliminary data. We suspect that the layout of crimes and 
cases in a sequentially ordered grid heavily reinforces this 
behaviour. We will develop an alternative interface design 
which presents puzzles hidden in a 2D map of ‘Console City,’ 
the fictional setting of Sleuth. Students will navigate their 
way to available crimes in the mode of open world 
exploration games such as ‘Grand Theft Auto '. Whilst 
encouraging students into a more flexible approach, such a 
design change also makes the presentation of student progress 
less transparent, so we will also be investigating how this 
affects student motivation. 

The high levels of student achievement in the preliminary 
data combined with the student perception of task difficulty 
implies some degree of intrinsic motivation at play [5]. We 
propose to test how intrinsically motivated students are by 
providing two cohorts with “Easter egg” crimes which appear 
only once a certain score has been reached. These provide an 
opportunity to introduce ‘Class 3’ problems allowing for the 
application of alternative solution strategies [15].  In the 
control cohort these crimes will have summative marks 
attached to them, but in the experimental cohort there will be 
no extrinsic reward for solving the crimes.  

The character of ‘The Chief’ provides other opportunities 
for investigation. We are interested in the effectiveness of 
encouraging student behaviours through platform 
interventions. One scenario where this might be applied is 
where students have repeated failed to solve a crime and are 
suspended from the case. In this circumstance we would 
attempt to stimulate continued engagement by ‘The Chief’ 
suggesting an alternative case to be attempted. 

The discrepancy between Sleuth grades and test results in 
preliminary data calls us to question whether in its current 
form Sleuth is providing a suitably rigorous environment for 
summative assessment. We suspect that some weaker 
students may be solving crimes with an inappropriate degree 
of peer support. One possible solution would be to introduce 
a degree of repetition in the game. Students would be 
occasionally presented with crimes that they had already 
solved once, but now they would be challenged to solve them 
with a limited number of attempts. From this intervention we 
would be looking for a reduction in the discrepancy between 
the two assessments and an improvement in performance of 
the bottom quartile in the tests. 

 
Fig 4: changing grade distributions across the period of the Sleuth 
assessment 

 



VII. CONCLUSION 
We have presented Sleuth as an ideal platform for 

iterative in-the-field investigation into gamified learning and 
automated feedback. We have positioned this work within the 
fields of automated feedback and exercise generation in 
computing pedagogy and gamification within education. We 
have described the specification of Sleuth and its design 
motivations. We have explained our preliminary findings 
from use in the classroom and used these to set out a scheme 
of research. 
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