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Optimizing Chew and
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Pitch-spelling algorithms attempt to compute the
correct pitch names (e.g., C#4, B�5) of the notes in a
passage of tonal music, when given only the onset
time, MIDI note number, and possibly the duration
and voice of each note. This article reports on a
study in which Chew and Chen’s (2003a, 2003b,
2005) pitch-spelling algorithm was re-implemented
and then optimized by running it with a range of
different parameter value combinations on a test
corpus containing 195,972 notes and consisting of
216 movements from works by eight Baroque and
Classical composers. The results of this evaluation
cast doubt upon some of the claims made by Chew
and Chen that were based on results obtained by
running their algorithm on a much smaller test cor-
pus containing only 4,462 notes and consisting of
just two movements from sonatas by Beethoven and
You-Di Huang’s Song of Ali-Shan. The results pre-
sented here suggest that Chew and Chen’s algo-
rithm could be simplified in various ways without
compromising its performance.

Background

There are good practical and scientific reasons for
attempting to develop a reliable pitch-spelling algo-
rithm. For example, such an algorithm must be in-
corporated into any system for transcribing music
from audio or MIDI to staff notation. Furthermore,
encoding the pitch names of the notes in a collec-
tion of MIDI files can make certain music informa-
tion retrieval tasks more effective (Meredith 2006).
Developing a reliable pitch-spelling algorithm can
also further our understanding of the cognitive
mechanisms that underlie the perception and cogni-
tion of tonal music. For example, Temperley (2001,
p. 122) claims that “recognizing spelling distinc-
tions” (i.e., identifying the pitch names of the notes
in a piece) is “of direct experiential importance, for

pitches, chords, and keys” and “provides useful in-
put in harmonic and key analysis.”

Pitch-spelling algorithms have been developed by
a number of researchers aside from Chew and Chen,
including Longuet-Higgins (1976, 1987a, 1993),
Cambouropoulos (1996, 1998, 2001, 2003), Temper-
ley (2001), Honingh (2006), Stoddard et al. (2004),
and Meredith (2003, 2005, 2006, 2007). My disserta-
tion (Meredith 2007) provides a detailed analysis
and evaluation of my ps13 algorithm together with
the algorithms proposed by Longuet-Higgins, Cam-
bouropoulos, Chew and Chen, and Temperley. To
set the current discussion in context, brief descrip-
tions of Temperley and Sleator’s Melisma system
and my ps13 algorithm will now be given.

Using Temperley and Sleator’s Melisma System for
Pitch Spelling

Temperley’s (2001) theory of music cognition con-
sists of preference rule systems for six aspects of
musical structure: meter, phrasing, counterpoint,
harmony, key, and pitch spelling. Most of this theory
has been implemented by Daniel Sleator in a suite
of computer programs called Melisma (available 
on-line at www.link.cs.cmu.edu/music-analysis).
These programs take “note list” representations as
input in which the pitch of each note (or sequence
of tied notes) is represented by its MIDI note num-
ber, and its onset-time and offset-time are given in
milliseconds. In Temperley’s theory, the tonal pitch
class (TPC) of a note is an integer that indicates the
position of the pitch name class of the note on the
line of fifths.

Temperley’s theory of pitch spelling consists of
three “tonal-pitch-class preference rules” (TPRs).
He claims that TPR 1, which states that notes
should be spelled so that they are as close together
as possible on the line of fifths, is “the most impor-
tant” TPR and that “in many cases, this rule is suf-
ficient to ensure the correct spelling of passages”
(Temperley 2001, p. 125). TPR 2 is designed to ac-
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count for the way that notes are typically spelled in
chromatic scale segments. TPR 3 states that the
system should “prefer TPC representations which
result in good harmonic representations” (Temper-
ley 2001, p. 131). He formally defines the concept of
a “good harmonic representation” in the first rule
in his theory of harmony, HPR 1 (Temperley 2001,
p. 149), which states that, in choosing the roots for
chords, certain specified TPC-root relationships
should be preferred over others. His theories of pitch
spelling and harmony are therefore interdependent,
and this is reflected in the fact that they are both
implemented in the harmony program in Melisma.

The complexity of Temperley’s pitch-spelling al-
gorithm is increased still further by the fact that his
theory of harmony depends on his theory of metri-
cal structure. For example, the second harmonic
preference rule states that the system should “pre-
fer chord spans that start on strong beats of the me-
ter” (Temperley 2001, pp. 151, 359). The harmony
program therefore requires as input both a “note
list” and a representation of the metrical structure
of the passage in the form of a “beat list” of the type
generated by the Melisma meter program.

Consequently, if one wishes to use Temperley’s
theory to determine the pitch names of the notes in
a passage, one must first use the meter program to
generate a beat list from a note-list and then use the
harmony program to compute the pitch names of
the notes in the passage from the note list and the
beat list. In an attempt to take harmonic rhythm
into account when computing metrical structure,
Temperley and Sleator also experimented with a
“two-pass” method (Temperley 2001) in which the
meter and harmony programs are both run twice,
once in a special “prechord” mode and then again in
“normal” mode.

Meredith’s ps13 algorithm

In other publications (Meredith 2006, 2007), I have
described a two-stage algorithm called ps13. In this
algorithm, the pitch name of a note is assumed to
depend on the local key and voice leading. In the
first stage of ps13, the pitch name implied for a
note by a tonic is assumed to be the one that lies

closest to that tonic on the line of fifths. The
strength with which a pitch name is implied for a
note is assumed to be proportional to the sum of
the frequencies of occurrence, within a context
around the note, of the tonics that imply that pitch
name. In the second stage of ps13, certain neighbor-
note and passing-note errors in the output of the
first stage are corrected. However, I found that
omitting the second stage of the algorithm im-
proved its performance on both “clean” test data
and data containing temporal perturbations
(Meredith 2006, 2007).

Chew and Chen’s Pitch-Spelling Algorithm

Chew and Chen (2003a, 2003b, 2005) describe sev-
eral variants of a real-time pitch spelling algorithm
based on Chew’s (2000) “Spiral Array Model,”
which is a geometric model of tonal pitch relations.
In the spiral array, pitch classes are arranged on a
helix so that adjacent pitch classes along this helix
are a perfect fifth apart and adjacent pitch classes
along the length of the cylinder in which the helix
is embedded are a major third apart (see Figure 1).
As Chew and Chen (2005, p. 67) point out, the spiral
array is “a spiral configuration of the line of fifths.”
That is, the spiral array can be constructed by “coil-
ing up” the line of fifths. Like Longuet-Higgins’s
two-dimensional “map of notes” (1987b) and his
three-dimensional “tonal space” (Longuet-Higgins
1987a), Chew’s spiral array is a geometric represen-
tation of the idea that, in tonal music, pitches a ma-
jor third and a perfect fifth apart are perceived to be
particularly closely related. Chew and Chen (2005,
p. 66) claim that the “depth added by going from
one to three dimensions [i.e., from the line of fifths
to the spiral array] allows the modeling of more
complex hierarchical relations.”

Chew and Chen (2005) define the index of a note
to be an integer that indicates the position of the
pitch class of the note on the line of fifths. The in-
dex of C-natural is defined to be 0, and the index in-
creases by 1 for each step in the “sharp” direction;
thus, the index of G is 1, that of F is –1, and so on.

The aspect ratio of the spiral array is a measure of
how “tightly coiled” it is. The aspect ratio is de-
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fined to be r/h, where r is the radius of the cylinder
in which the pitch-class helix is embedded, and h is
the distance parallel to the axis of the helix corre-
sponding to one step along the spiral array (i.e., two
pitch name classes a perfect fifth apart) (see Figure
1). The value of the aspect ratio determines the ratio
of the distances in the spiral array between notes a
major third apart and notes a perfect fifth apart.

Chew and Chen set r/h to √(15/2) to ensure that
“the major thirds and [perfect] fifths are equidis-
tant” (Chew 2004).

Let’s suppose that S is a set of notes in a piece of
tonal music, that p(n) denotes the vector represent-
ing the three-dimensional position in the spiral array
of the pitch class of the note n, and that d(n) is the
duration of note n. Chew and Chen (2005) define
the center of effect (CE) of S, denoted by CE(S), to be

(1)

That is, the CE of a set of notes is the weighted cen-
troid of the position vectors of the pitch classes of
the notes in the spiral array, each note being
weighted by its duration. Given r and h, the spiral-
array position vector of a note, p(k), can be com-
puted from its index k using the following formula
(Chew and Chen 2005):

(2)

In Chew and Chen’s (2005) algorithm, the CE for a
set of notes is used to represent (or “act as a proxy
for”) the key. The basic principle underlying the algo-
rithm is that each note should be spelled so that it is
as close as possible in the spiral array to the CE of the
notes that precede it. Considering only the notes that
precede the one to be spelled allows the algorithm to
process music in real time. This principle is almost
identical to that expressed in Temperley’s (2001)
first “tonal-pitch-class preference rule” (TPR 1),
which states that nearby events in a passage of tonal
music should be assigned pitch names “so that they
are close together on the line of fifths.” The two
theories differ in that Chew and Chen use the spiral
array, whereas Temperley uses the line of fifths.
Also, the windowing system used in Temperley and
Sleator’s implementation of Temperley’s theory is
quite different from that used by Chew and Chen.

In Chew and Chen’s (2005) algorithm, it is as-
sumed that the input data gives the MIDI note
number, together with the onset and duration in
milliseconds of each note. The data is then divided
into “equal time slices” called chunks, and the algo-
rithm spells the notes one chunk at a time. Let
Wsound(i, j) denote the set of notes that are sounding
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Figure 1. Part of Chew’s
(2000) spiral-array model
representing the perceived
tonal relations between
pitch name classes. Here, r
is the radius of the cylin-
der in which the helix is
embedded, and h is the

distance parallel to the
axis of this cylinder be-
tween two points one step
apart along the helix. The
ratio r/h is the aspect ratio
of the spiral array (Chew
and Chen 2005).
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in a window consisting of chunks i to j, and let
Wstart(i, j) denote the set of notes that start in a win-
dow consisting of chunks i to j. Chew (2004) has
confirmed that, in her and Chen’s implementation,
the CE for a window is calculated by considering
the notes that sound in the window, not the notes
that start in it. Also, in this implementation, each
note is weighted not by its total duration but by the
duration for which it sounds within the window
over which the CE is being calculated.

Suppose that the algorithm is about to spell the
notes in chunk j. According to Chew and Chen
(2005), the steps shown in Appendix A of the pres-
ent article are executed. [Editor’s note: The algo-
rithm is essential to the discussion; it was moved to
an appendix for technical reasons.] Steps 1 and 2
constitute what they call “Phase I” of the algorithm
and steps 3 to 5 make up “Phase II.” The procedure
for spelling the notes in the first chunk of the music
to be processed is different from that described in
Appendix A. The notes in the first chunk are first
spelled so that their indices are as close as possible
to some specified initial index which Chew and
Chen (2005) set to 2 (corresponding to D-natural),
on the grounds that this biases “the notation to-
wards fewer sharps and flats.” Note that this strat-
egy for initializing the algorithm is essentially
identical to that used by Temperley (2001). Temper-
ley initializes the “center of gravity” (COG) on the
line of fifths to 4 (i.e., D-natural), because “the COG
is generally about two steps in the sharp direction
from the tonic.” It is therefore not surprising that,
when Chew and Chen (2003a, 2003b) set the initial
index to 0 (corresponding to C), they found that
“there was a bias toward the flatted keys” (Chew
2004). Having assigned pitch names to the notes in
the first chunk, a CE for this first chunk is then
computed, and the notes in the first chunk are re-
spelled so that they are as close as possible on the
spiral array to this newly computed CE.

Versions of the Algorithm Described in Chew and
Chen’s Publications

As Chew and Chen (2005) point out, most of the
variants of their algorithm described in their publi-

cations are either specific instances or classes of in-
stances of the algorithm described in Appendix A,
in which some of the parameters ws, wr, f, r/h, and
the initial index are set to particular values. Table 1
gives the combinations of parameter values in the
algorithm described in Appendix A that correspond
to the versions of the algorithm described by Chew
and Chen in their publications.

The first row in Table 1 gives the parameter values
for the “two-phase boot-strapping algorithm” (Chew
2004; Chew and Chen 2005). This version is simply
the algorithm described in Appendix A, with r/h set
to √(15/2). The second and fifth rows of Table 1 indi-
cate that Chew and Chen’s (2003a) “Algorithm 1”
and the algorithm described by Chew and Chen
(2003b), which are essentially the same in that both
use just the cumulative CE to assign pitch names,
can be implemented by setting both ws and f to 0
(Chew and Chen 2005). If ws = 0, then, from Equa-
tion 3 (in Appendix A), CEglobal,j = CE(Wsound(j, j – 1)).
Chew and Chen (2005, p. 71) state that, when the
window over which a CE is to be computed is empty,
“a CE is not generated, and the algorithm defaults to
a do-nothing step.” Therefore, setting ws to 0 causes
steps 1 and 2 of the algorithm described in Appendix
A to be skipped. Because f = 0, there is also no point
in computing CElocal,j in step 3, since this value will
be multiplied by 0 when computing CEhybrid,j in step
5. When f = 0 we should therefore assume that the
term f.CElocal,j in Equation 6 (in Appendix A) is ig-
nored. To summarize, when f = 0 and ws = 0, only
steps 4 and 5 of the algorithm in Appendix A are ex-
ecuted, and, in step 5, CEhybrid,j is set to equal CEcum,j.

Chew and Chen (2005, p. 71) also state that their
sliding-window algorithm (2003a) can be imple-
mented using the algorithm in Appendix A by “set-
ting ws to the desired window size, wr to 0 and f to 1.”
This is indicated in the third row of Table 1. Setting
wr to 0 implies that the window over which the lo-
cal CE would be calculated will be empty, which, in
turn, implies that “a CE is not generated, and the al-
gorithm defaults to a do-nothing step” (Chew and
Chen 2005, p. 71). Setting wr to 0 therefore causes
step 3 of the algorithm in Appendix A to be skipped.
It also causes the term f. CElocal,j in Equation 6 to be
ignored. Setting f to 1 means that the cumulative
CE is multiplied by 0 in step 5 of the algorithm;
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therefore there is no point in calculating the cumu-
lative CE in step 4, and the term (1 – f ).CEcum,j in
step 5 is also ignored. To summarize, setting wr to 0
and f to 1 causes only steps 1 and 2 of the algorithm
in Appendix A to be executed. Finally, as indicated
in the fourth row of Table 1, the “two-phase assign-
ment” algorithm (Chew and Chen 2003a) is essen-
tially the same as the algorithm in Appendix A with
the initial index set to 0.

The CHEWCHEN Implementation of Chew and
Chen’s Algorithm

In this study, Meredith’s (2007) implementation of
the algorithm, called ChewChen, was used. I provide
full pseudo-code for this implementation elsewhere
(Meredith 2007). The ChewChen algorithm has
eleven parameters: CCNoteList, ws, wr, f, AspectRa-
tio, ChunkSize, InitialIndex, MinSAIndex, MaxSAIn-
dex, StartOrSound, and SAOrLOF. The ws, wr, and f
parameters have the same meanings in ChewChen
as they do in Equations 3, 4, and 6 in Appendix A;
AspectRatio gives the spiral array aspect ratio, r/h,
as defined earlier; and the ChunkSize parameter
specifies the duration of each chunk in millisec-
onds. In Chew and Chen’s own implementations of
their algorithm, the chunk duration was defined to
be a metrical unit in the score-based test corpus.
However, chunk size can only be defined in this
way if the metrical structure of the input passage is
known. In the ChewChen implementation, it is as-
sumed that the input data does not contain metrical
information (as is often the case in real-world tran-
scription situations), so the chunk size is set to be a
fixed number of milliseconds in duration. Every on-
set time and duration in the test corpus used here

was strictly proportional to its notated value, and
every input encoding was set to be at a reasonable
tempo. However, the algorithm was also run on a
“noisy” version of this test corpus in which the du-
rations and onset times of the corresponding move-
ments in the clean version were multiplied and
shifted respectively by small random amounts in or-
der to simulate (very crudely) asynchronous chord
onsets and expressive local tempo changes.

The CCNoteList parameter is an ordered set of
records representing the passage of music to be
spelled. Each record in CCNoteList represents a
single note or sequence of tied notes in the music.
As previously explained, the notes in the first
chunk are initially spelled so that their indices are
as close as possible to some specified initial index
that Chew and Chen (2005) set to 2. The InitialIn-
dex parameter of the ChewChen algorithm is used
to specify this initial index.

Chew and Chen (2003b, 2005) explain that their
algorithm is actually restricted to assigning pitch
name classes within a specified range on the spiral
array. Specifically, their own implementation can
only assign pitch name classes whose indices are
between –15 (F-double-flat) and 19 (B-double-sharp),
inclusive. In ChewChen, this range is specified by
providing the minimum and maximum permitted
spiral array indices in the parameters MinSAIndex
and MaxSAIndex, respectively.

As previously explained, in their own implemen-
tation, Chew and Chen calculate the CE for a win-
dow by considering the notes that sound in it, not
the notes that start in it. They also weight each note
by the duration for which it sounds within the win-
dow over which the CE is being calculated. How-
ever, it seems possible that good results might be
obtainable by adopting the simpler strategy of con-

Table 1. The Various Versions of Chew and Chen’s Pitch-Spelling Algorithm Described in Their Publications

Algorithm Publication ws wr f r/h Init. index

Two-phase boot-strapping algorithm Chew and Chen (2005); Chew (2004) Any < ws 0 ≤ f ≤ 1 √(15/2) 2
Algorithm 1: Cumulative CE Chew and Chen (2003a) 0 0 0 ? 0
Algorithm 2: Sliding window Chew and Chen (2003a) Any 0 1 ? 0
Algorithm 3: Two-phase assignment Chew and Chen (2003a) Any < ws 0 ≤ f ≤ 1 ? 0
Cumulative CE Chew and Chen (2003b) 0 0 0 ? 0
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sidering the notes that start in a window and
weighting each note by its entire duration. In the
ChewChen algorithm, it is possible to adopt this
latter strategy instead of that used by Chew and
Chen by setting the StartOrSound parameter to
“Starting” instead of “Sounding.”

Finally, as previously pointed out, Chew and
Chen (2005) acknowledge that the spiral array is
just “a spiral configuration of the line of fifths.”
However, they claim (2005, p. 66) that the “depth
added by going from one to three dimensions [i.e.,
from the line of fifths to the spiral array] allows the
modeling of more complex hierarchical relations.”
Nevertheless, it is not obvious that “the modeling
of more complex hierarchical relations” necessarily
leads to better pitch-spelling performance. In the
ChewChen algorithm, the user can choose to use
the line of fifths instead of the spiral array by set-
ting the SAOrLOF parameter to “LOF” instead of
“SA.” This allows the algorithm’s performance
when using the line of fifths to be directly compared
with its performance when using the spiral array.

Switching On and Off the Local, Global, and
Cumulative CEs

As should by now be apparent, the parameters ws,
wr, and f can be used to “switch off” one or more of
the three types of CE (global, local, or cumulative)
that Chew and Chen’s algorithm uses to spell the
notes. Table 2 gives the parameter values required
to turn off each combination of these three types of
CE as well as the CEs that are left operational after
doing so.

Thus, if the global CE is switched off by setting
ws to 0, no names are assigned in Phase I, so no local
CE can be computed in Phase II. Consequently,
switching off the global CE has the net effect of
causing the notes to be spelled as close as possible
to the cumulative CE. (See the first row in Table 2.)

The local CE can be switched off by setting either
wr or f to 0. Either way, the notes are spelled as close
as possible to the cumulative CE in Phase II, over-
riding the global CE spellings assigned in Phase I.
(See the second row in Table 2.) The cumulative CE
can be switched off by setting f to 1. This causes the
global CE spellings assigned in Phase I to be modi-
fied in Phase II using the local CE. (See the third
row of Table 2.)

Both the global and local CEs are effectively
switched off by setting ws to 0, because switching
off the global CE in Phase I means that the local CE
cannot be computed in Phase II. In this case, there-
fore, the notes are spelled so that they are as close as
possible to the cumulative CE in Phase II. (See the
fourth row in Table 2.) The fact that the global CE
cannot be switched off without also switching off
the local CE means that if both the global and cu-
mulative CEs are switched off, no notes are spelled
whatsoever. (See the fifth row in Table 2.) To switch
off both the local and cumulative CEs (i.e., omit
Phase II), wr must be set to 0 and f must be set to 1.
(See the sixth row in Table 2.) The net result is that
the notes are spelled so that they are as close as pos-
sible to the global CE. Finally, all the CEs can be
switched off by setting ws to 0 and f to 1. Setting ws

to 0 switches off the global CE and therefore the
local CE; setting f to 1 switches off the cumulative
CE. (See the seventh row in Table 2.)

Table 2. Combination of Values for ws, wr, and f Required for Switching Off Each Combination of the CE
Types (Global, Local, and Cumulative)

CEs to switch off Parameter values Operational CEs

Global ws = 0 Cumulative
Local wr = 0 or f = 0 Cumulative
Cumulative f = 1 Global and local
Global and Local ws = 0 Cumulative
Global and Cumulative ws = 0 and f = 1 None
Local and Cumulative wr = 0 and f = 1 Global
Global, Local, and Cumulative ws = 0 and f = 1 None
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There are therefore just four possible CE combi-
nations in practice: (1) all three CEs have an effect
(ws ≠ 0, wr ≠ 0, and 0 < f < 1); (2) just the cumulative
CE is used (f = 0 ∨ (0 < f < 1 (wr = 0 ∨ ws = 0))); (3)
just the global CE is used (f = 1, wr = 0, and ws > 0);
or (4) only the global and local CEs have an effect
(f = 1, wr > 0, and ws > 0).

Chew and Chen’s Own Evaluations of
Their Algorithms

The test corpus used by Chew and Chen (2003a,
2003b) consisted of just two movements from
Beethoven’s piano sonatas: the third movement of
the Sonata in G major, Op. 79 (1375 notes) and the
first movement of the Sonata in E major, Op. 109
(1516 notes). In a later evaluation (2005), they ran
the algorithm on the Song of Ali-Shan, a set of vari-
ations on a Taiwanese folksong by You-Di Huang
(1,571 notes), in addition to the two Beethoven pi-
ano sonata movements. It is difficult to see how one
could justify assuming that the results obtained on
such a small corpus generalize to some interesting
larger population of tonal works.

Chew and Chen (2005) claim that, over all three
pieces, the algorithm makes 28 errors when 〈ws, wr, f 〉
is either 〈4, 3, 0.8〉 or 〈8, 6, 0.9〉. However, it seems
that only the cumulative CE version of their algo-
rithm was run on the third movement of Beethoven’s
Sonata in G major, Op. 79. If this is indeed the case,
then the results for this movement cannot mean-
ingfully be combined with the results obtained
when the two-phase version of the algorithm was
run on the other two movements in the test corpus.
Therefore, their claim that their algorithm made 28
errors over all three movements may be invalid.
Chew and Chen (2005, p. 71) state that they “set the
chunk size to one beat” and that “the beat size was
read from the MIDI files.” It is therefore also pos-
sible that the chunks did not all have the same du-
ration in milliseconds in all three of the movements
in their test corpus.

In Chew and Chen’s experiments, the least num-
ber of errors on the first movement of Beethoven’s
Op. 109 was made when the two-phase algorithm
was used and 〈ws, wr, f 〉 was set to 〈4, 3, 0.8〉, 〈4, 3,

0.7〉, or 〈8, 6, 0.9〉. With these settings, the algorithm
made 27 errors on this movement. They state (2005,
p. 74) that “the next best result had 30 errors using
the parameters 〈8, 6, 0.8〉 and 〈16, 6, 0.8〉” and claim
that “since the best results were achieved with high
values for f, we can deduce that the local context is
more important than the global [i.e., cumulative]
context.” However, the second-lowest note-error
count on the first movement of Beethoven’s Op. 109
was actually 28 errors and was made when the pa-
rameters 〈ws, wr, f 〉 were set to 〈4, 2, 0.6〉—that is,
with f set to the lowest value tested in their experi-
ments. This clearly casts some doubt on their claim
that the local context is more important than the
cumulative context.

However, the main point to be made here is that,
owing to the small size of the test corpus and the
small range of parameter values tested in Chew and
Chen’s experiments, any conclusions drawn from
their results must be considered tentative at best.

A More Thorough Evaluation of Chew and
Chen’s Algorithm

A more thorough evaluation of Chew and Chen’s
algorithm was therefore carried out in which the
ChewChen implementation of the algorithm (Mer-
edith 2007) was run 1,296 times on a test corpus C
consisting of 216 movements by eight Baroque and
Classical composers (J. S. Bach, Beethoven, Corelli,
Handel, Haydn, Mozart, Telemann, and Vivaldi).
This test corpus contained 195,972 notes, almost
exactly equally shared between the eight com-
posers represented. On each of the 1,296 runs of
ChewChen over C, the algorithm was run with a
different combination of parameter values. Table 3
shows, for each parameter, the set of values used in
the evaluation.

First, all parameter value combinations in the
cross product of the sets in the right-hand column
of Table 3 were generated to give a set P. Then a re-
duced set P' of parameter value combinations was
generated by removing all elements from P except:
(1) those in which the global, local, and cumula-
tive CEs all have an effect (i.e., those for which
ws ≠ 0, wr ≠ 0, and 0 < f < 1); (2) those that have one
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particular combination of values for ws, wr, and f
that causes only the cumulative CE to be used (the
combination f = 0, wr = 2, and ws = 4 was used, as the
results for this combination had already been ob-
tained in an earlier experiment); (3) those in which
only the global CE is used (i.e., those in which f = 1,
wr = 0, and ws > 0); and (4) those in which only the
global and local CEs have an effect (f = 1, wr > 0, and
ws > 0). (See the discussion above concerning
switching the different types of CE on and off.)

A subset of P', denoted by P", was then generated,
containing all the parameter value combinations in
P' except (1) those in which wr > ws + 1 (apart from
the chunk currently being spelled, the local context
window should not contain chunks that are not in
the global context window); and (2) those in which
SAOrLOF is set to “LOF” and AspectRatio is √(15/2).
(Note that when SAOrLOF is “LOF,” the AspectRa-
tio parameter has no effect, so there is no point in
using more than one “dummy” value of AspectRa-
tio in this case.) The ChewChen algorithm was run
on the test corpus C with each of the 1,296 parame-
ter value combinations in P".

Results and Discussion

In this study, the spelling accuracy of an algorithm
is measured in terms of note error count and note
accuracy. The note error count of an algorithm A
over a set of movements S is the total number of
notes in S spelled incorrectly by A. The note accu-
racy of A over S is the proportion of notes in S
spelled correctly by A, expressed as a percentage. In

this study, the standard deviation of the note accu-
racies achieved by an algorithm over the eight com-
posers in C was used to measure the extent to
which the note accuracy of an algorithm is depend-
ent on the style of the music being processed.

Parameter Value Combinations Achieving Highest
Note Accuracy

The highest overall note accuracy achieved by the
ChewChen algorithm in this experiment on the test
corpus C was 99.15%. The algorithm achieved this
note accuracy with 12 of the 1,296 parameter value
combinations in P". The twelve parameter-value
combinations with which ChewChen achieved this
highest note accuracy were those in which ws = 8,
wr = 2, f = 0.5, and ChunkSize was set to 500 msec.
That is, ChewChen performed best when (1) the lo-
cal, global, and cumulative CEs all had an effect; (2)
the local context window was as small as possible;
(3) the global context window was a moderate size;
(4) the local and cumulative CEs were given equal
weighting in Phase II; and (5) the chunks were
small, leading to a frequent updating of the CEs.

The parameters that were critical for achieving
the highest note accuracy were therefore those con-
trolling the duration of the windows used (deter-
mined by wr, ws, and ChunkSize) and the relative
weighting given to the local and cumulative CEs in
Phase II (determined by f ). Note that, for these
twelve best versions of the algorithm, it did not
matter whether the spiral array or the line of fifths
was used; nor did the aspect ratio of the spiral array
make any difference to the results. Note also that,
for these twelve best parameter value combina-
tions, changing the range of permitted indices from
〈MinSAIndex, MaxSAIndex〉 = 〈–15, 19〉 to 〈Min-
SAIndex, MaxSAIndex〉 = 〈–22, 26〉 made no differ-
ence to the results.

Table 4 gives the parameter values for the twelve
most accurate versions of the ChewChen algorithm
tested, together with an identification code,
CCOP01–CCOP12, for each. The results obtained
using these twelve most-accurate versions of the
ChewChen algorithm are summarized in Tables 5
and 6. As can be seen in Table 5, the standard devia-

Table 3. The Sets of Parameter Values Used to Eval-
uate Chew and Chen’s Algorithm

Parameter Set of values used

ws {0, 4, 8, 16}
wr {0, 2, 4, 6}
F {0, 0.25, 0.5, 0.75, 1}
AspectRatio {√(2/15), √(15/2)}
ChunkSize (in msec) {500, 1000, 2000}
StartOrSound {“Sounding”, “Starting”}
SAOrLOF {“SA”, “LOF”}
〈MinSAIndex, MaxSAIndex〉 {〈–15, 19〉, 〈–22, 26〉}
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tion (SD) of the note accuracies achieved by algo-
rithms CCOP01–06 over the eight composers was
lower than that for algorithms CCOP07–12. This
indicates that, of these twelve best versions of the
algorithm, the six which took into account all the
notes sounding within each window when calculat-
ing the CEs (i.e., CCOP01–06) were less dependent
on style than those which only took into account

the notes starting in each window. It is worth not-
ing, however, that all twelve of the algorithms
CCOP01–12 were less dependent on style over the
corpus C than any of the other algorithms that I
considered (Meredith 2007). Note also, from Table 6,
that, although CCOP07–12 only made one more er-
ror overall than CCOP01–06, the errors made by
CCOP01–06 were different in general from those

Table 4. Parameter Values for the Best Performing Versions of the CHEWCHEN Algorithm Tested

Code ws wr f AspectRatio ChunkSize StartOrSound SAOrLOF MinSAIndex MaxSAIndex

CCOP01 8 2 0.5 √(15/2) 500 “Sounding” “SA” –22 26
CCOP02 8 2 0.5 √(15/2) 500 “Sounding” “SA” –15 19
CCOP03 8 2 0.5 √(2/15) 500 “Sounding” “LOF” –22 26
CCOP04 8 2 0.5 √(2/15) 500 “Sounding” “LOF” –15 19
CCOP05 8 2 0.5 √(2/15) 500 “Sounding” “SA” –22 26
CCOP06 8 2 0.5 √(2/15) 500 “Sounding” “SA” –15 19
CCOP07 8 2 0.5 √(15/2) 500 “Starting” “SA” –22 26
CCOP08 8 2 0.5 √(15/2) 500 “Starting” “SA” –15 19
CCOP09 8 2 0.5 √(2/15) 500 “Starting” “LOF” –22 26
CCOP10 8 2 0.5 √(2/15) 500 “Starting” “LOF” –15 19
CCOP11 8 2 0.5 √(2/15) 500 “Starting” “SA” –22 26
CCOP12 8 2 0.5 √(2/15) 500 “Starting” “SA” –15 19

The first column gives an identification code for each parameter value combination.

Table 5. Note Accuracies Expressed as Percentages for Each Set of Algorithms on the Complete Test Cor-
pus (Comp), and for Each Subset of the Test Corpus Containing Movements by One of the Eight Com-
posers (Bach to Viva)

Algorithm Bach Beet Core Hand Hayd Moza Tele Viva Comp Mean SD

CCOP01–06 99.29 98.73 99.38 99.44 98.51 99.06 99.39 99.40 99.15 99.15 0.35
CCOP07–12 99.39 98.80 99.44 99.46 98.28 99.10 99.37 99.37 99.15 99.15 0.42

The columns labeled Mean and SD give the mean and standard deviation, respectively, of the values in columns Bach
to Viva. CCOP01–06 differ from CCOP07–12 only in that StartOrSound is set to “Sounding” in the former and “Start-
ing” in the latter.

Table 6. Note Error Counts for Sets of Algorithms on the Complete Test Corpus (Complete), and for Each
Subset of the Test Corpus Containing Movements by One of the Eight Composers (Bach to Vivaldi)

Algorithm Bach Beethoven Corelli Handel Haydn Mozart Telemann Vivaldi Complete
(24505) (24493) (24493) (24500) (24490) (24494) (24500) (24497) (195972)

CCOP01–06 175 311 152 136 365 230 149 147 1665
CCOP07–12 150 295 138 132 421 220 155 155 1666

The number in parentheses underneath each column heading gives the number of notes in that subset of the test cor-
pus. CCOP01–06 differ from CCOP07–12 only in that StartOrSound is set to “Sounding” in the former and “Starting”
in the latter.
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made by CCOP07–12, as is evident from the differ-
ing note error counts for the individual composers.

Frequency Distribution of Note Accuracies Over P"

The set of parameter value combinations P" can be
partitioned into four classes according to the combi-
nation of CEs that is used (i.e., cumulative, global
alone, global and local, or all three). If p is a parame-
ter value combination in P", then let GLC(p) denote
the combination of CEs employed when the Chew-
Chen algorithm is run with the parameter value
combination p, where GLC(p) = “GLC” if and only
if the global, local, and cumulative CEs are all used;
GLC(p) = “GL” if and only if the global and local
CEs are exclusively used; GLC(p) = “G” if and only
if the global CE is used exclusively; and GLC(p) = “C”
if and only if the cumulative CE is used exclusively.

If [x] denotes the set {p|p ∈ P" GLC(p) = x}, then
P" can be partitioned into the four equivalence
classes: [GLC], [GL], [G], and [C]. The histogram in
Figure 2 has two peaks, suggesting that the note ac-
curacies over the whole of P" can be derived from
two separate populations, one with a mode at just
above 97% and the other with a mode at around 99%.

The box plot in Figure 3 shows the distributions
of note accuracies over each of these four equiva-

lence classes. From this box plot, it is clear that the
distribution in Figure 2 has two peaks, because the
note accuracies for [GL] and [G] are mostly between
97 percent and 98 percent, whereas those for [GLC]
and [C] lie above 98 percent.

As indicated in Figure 3, all the versions of the al-
gorithm that used the cumulative CE were more ac-
curate than those that did not, with those that used
the cumulative CE achieving a median note accu-
racy of 98.86 percent and those that did not achiev-
ing a median note accuracy of 97.35 percent. Figure
3 also shows that the note accuracies achieved by
the versions in which the cumulative CE was not
used are much more widely dispersed than those
achieved by the versions in which the cumulative
CE was used: the standard deviation of the note
accuracies for [G] ∪ [GL] was 0.8145, whereas it
was only 0.1990 for [C] ∪ [GLC]. This suggests that
using the cumulative CE makes the algorithm
much less sensitive to changes in its parameter val-
ues. Indeed, by using the cumulative CE alone, it
was possible to achieve almost as high a note accu-
racy as it was by combining it with the local and
global CEs.

These results cast doubt on Chew and Chen’s
suggestion that “a purely sliding-window method
should perform better than a purely cumulative-
window method” (2005, p. 74) and suggest that the

Figure 2. Histogram show-
ing the distribution of note
accuracies achieved by
CHEWCHEN over C for all
the 1,296 parameter value
combinations in P".
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opposite may, in fact, be the case. Note that the re-
sults reported here were obtained on a relatively
large collection of Baroque and Classical works of
which several contained highly chromatic passages,
whereas Chew and Chen’s claims were based on re-
sults obtained on just two Beethoven sonata move-
ments and The Song of Ali-Shan by You-Di Huang,
which is a highly stable, tonal work (indeed, it is al-
most entirely diatonic).

The non-parametric, distribution-free Wilcoxon
rank sum test for two independent samples (which
is equivalent to the Mann–Whitney test) was used
to determine whether there were any statistically
significant differences with respect to note accuracy
between the four equivalence classes [C], [G], [GL],

and [GLC]. According to this test, all four classes
were significantly different from each other with re-
spect to note accuracy (p < 10–7). Also, the note ac-
curacies achieved when the cumulative CE was
used (i.e., [C] ∪ [GLC]) were very significantly differ-
ent from those achieved when it was not ([G] ∪ [GL])
(p < 2.2 × 10–16).

Effect of SAOrLOF and AspectRatio

The set of parameter value combinations P" tested
in this evaluation can be partitioned into 432 equiv-
alence classes Ei such that each class Ei contains all
and only those elements in P" that have a particular

Figure 3. Box plot of note
accuracy against GLC(p)
for all p in P".
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combination of values for the parameters ws, wr, f,
ChunkSize, StartOrSound, MinSAIndex, and Max-
SAIndex. In other words, within each class Ei, the
parameter value combinations differ only with re-
spect to SAOrLOF and AspectRatio. Each of the 432
classes Ei contains three parameter value combina-
tions: one with SAOrLOF set to “LOF” and Aspect-
Ratio = √(2/15); another with SAOrLOF set to “SA”
and AspectRatio = √(2/15); and a third with an
SAOrLOF of “SA” and AspectRatio = √(15/2).

Out of the 432 equivalence classes Ei, it was found
that there were only two classes in which the three
parameter value combinations did not have the same
note-error count. Moreover, both of these equivalence
classes contained only poorly performing parameter
value combinations that achieved note accuracies
between 93.64 percent and 95.02 percent over C. In
other words, for 99.54 percent of the parameter value
combinations tested (including the best-performing
ones), it did not matter whether the spiral array or
the line of fifths was used, and the aspect ratio of
the spiral array made no difference to the results.

Effect of StartOrSound

The set of parameter value combinations P" can be
partitioned into 648 equivalence classes Fi such that
each Fi contains two parameter value combinations
that are identical, except that, in one, StartOrSound
= “Starting,” whereas, in the other, StartOrSound =
“Sounding.” The effect of the StartOrSound param-
eter can be studied by comparing the note accura-
cies of the two parameter value combinations in
each of the equivalence classes Fi.

It was found that changing the value of StartOr-
Sound from “Sounding” to “Starting,” without
changing any of the other parameter values, in-
creased the overall note accuracy over C in 510
(78.7 percent) of the 648 cases tested and decreased
note accuracy in the remaining 138 cases. However,
in 621 (95.83 percent) of the 648 cases tested, the
absolute change in percentage note accuracy over C
caused by changing the value of StartOrSound was
less than 0.3. In the remaining 27 cases (4.17 per-
cent), changing the value of StartOrSound from
“Sounding” to “Starting” reduced the note accuracy

expressed as a percentage by 1.6 or more. It is worth
noting that the parameter value combinations in
which StartOrSound = “Starting” in the 27 most af-
fected Fi were precisely the 27 worst performing
(i.e., least accurate) combinations of the 1,296 tested.

From a practical point of view, this result suggests
that not much is gained by using Chew and Chen’s
more complex method of calculating the centers of
effect for the notes (corresponding to StartOrSound =
“Sounding”), instead of the simpler method suggested
above (i.e., with StartOrSound = “Starting”) in which
only the notes starting in each window are taken into
account when calculating the CEs, and each note is
weighted by its whole duration. In particular, for
the twelve most-accurate versions tested, using the
simpler method in CCOP07–12 resulted in just one
more error over the entire test corpus (Table 6).

Effect of ws

Recall that ws is the size of the global context win-
dow. The effect of ws on the performance of the
ChewChen algorithm can be studied by examining
the effect that changing the value of ws has on the
overall note accuracy over C when the values of all
the other parameters are kept constant. To do this,
each of the equivalence classes [G], [GL], and [GLC],
previously defined, can themselves be partitioned
into smaller equivalence classes Gi such that the pa-
rameter value combinations in each Gi are identical
except for the values of ws. Because ws must be
greater than or equal to wr – 1, each Gi will contain
three parameter value combinations when wr < 6:
one for ws = 4, one for ws = 8, and one for ws = 16.
However, an equivalence class Gi in which wr = 6
will contain only two parameter value combinations:
one in which ws = 8 and another in which ws = 16.

It was found that increasing ws from 4 to 8 sig-
nificantly increased the percentage note accuracy
(according to the Wilcoxon test) when the local
window was used, but the size of the increase was
greater (0.29) when the cumulative window was not
used than when it was (0.02). Increasing ws from 8
to 16 significantly increased the percentage note ac-
curacy by around 0.10 when only the global and lo-
cal windows were used. Increasing ws from 4 to 16
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significantly increased the percentage note accuracy
when the cumulative window was not used, but the
increase was greater (0.48) when the local window
was used than when it was not (0.03). When all the
tested parameter value combinations were consid-
ered together, increasing the global window size
from 4 to either 8 or 16 significantly increased the
percentage note accuracy by around 0.05, whereas
increasing it from 8 to 16 significantly increased the
percentage note accuracy, but only by about 0.01.

Effect of wr

Recall that wr is the size of the local context win-
dow. The effect that wr has on the performance of
the ChewChen algorithm can be studied by exam-
ining the effect that changing the value of wr has on
the overall note accuracy when the values of all the
other parameters are kept constant. To do this, each
of the equivalence classes [GL] and [GLC] can them-
selves be partitioned into smaller equivalence
classes Hi such that the parameter value combina-
tions in each Hi are identical except for the values of
wr. Because ws must be greater than or equal to wr –
1, each Hi will contain three parameter value com-
binations when ws ≥ 6: one for wr = 2, one for wr = 4,
and one for wr = 6 (see Table 3). However, an equiva-
lence class Hi in which ws = 4 will contain only two
parameter value combinations: one in which wr = 2,
and another in which wr = 4.

It was found that increasing the size of the local
window generally led to a reduction in overall note
accuracy. Under most conditions, increasing the lo-
cal window size by 2 or 4 chunks reduced the per-
centage note accuracy by less than 0.2, with slightly
larger decreases occurring when the cumulative CE
was not used.

Effect of f

The effect that f has on the performance of the
ChewChen algorithm can be studied by measuring
the change in overall note accuracy that results
when f is changed and the values of the other pa-

rameters are held constant. When wr = 0 and f = 1,
only the global CE calculated in Phase I of the algo-
rithm has any effect. When wr = 0 and f < 1, only
the cumulative CE has any effect, regardless of the
specific value of f. Therefore, for each case in which
wr = 0, we only need to compare the result obtained
when f = 1 with that obtained when f = 0. Further-
more, when f = 0, the values of wr and ws are imma-
terial. Therefore, to investigate the effect on note
accuracy of changing f when wr = 0, we must com-
pare the result for each parameter value combina-
tion p in which wr = 0 and f = 1 with that for the
parameter value combination in which f = 0 and all
other parameters (except possibly ws and wr) have
the same values as in p. The total set of parameter
value combinations over which this comparison is
carried out will be denoted by Swr = 0. Swr = 0 can be
partitioned into 288 pairs of parameter value combi-
nations Ii such that each equivalence class Ii con-
tains one parameter value combination p in which
wr = 0 and f = 1, and a second combination in which
f = 0 and the other parameter values (apart from pos-
sibly wr and ws) have the same values as in p.

It was found that changing f from 0 to 1 when
wr = 0 resulted in a highly significant pseudomedian
reduction in the percentage note accuracy of 1.495.
Note that when wr = 0, changing f from 0 to 1 is
equivalent to changing from using only the cumula-
tive CE to using only the global CE (see previous
discussion).

For wr ≠ 0, then (1) when f = 1, only the global and
local CEs have an effect; (2) when f = 0.75, all three
CEs have an effect, but in Phase II, the local CE
has a greater influence than the cumulative CE;
(3) when f = 0.5, all three CEs have an effect, and in
Phase II, the local and cumulative CEs have the
same degree of influence; (4) when f = 0.25, all three
CEs have an effect, but in Phase II, the cumulative
CE has a greater influence than the local CE; and (5)
when f = 0, only the cumulative CE has an effect.

To investigate the effect of changing f when wr ≠ 0,
the set Swr ≠ 0 containing all parameter value combi-
nations in P" in which wr ≠ 0, can be partitioned
into 288 equivalence classes Ji such that each Ji con-
tains parameter value combinations that are identi-
cal except for their values of f. Each Ji therefore



Meredith 67

contains five parameter value combinations, one for
each of the five values of f used in the evaluation.

It was found that changing between any of the
five values of f resulted in a highly significant
change in overall note accuracy. The value of f that
led to the highest accuracy was 0.5, followed in or-
der by 0.25, 0, 0.75, and 1. The best accuracy was
therefore achieved when the cumulative and local
CEs made equal contributions in Phase II. Changing
f from 0.5 to 0.25 (i.e., making the contribution of
the cumulative CE greater than that of the local CE)
reduced the overall percentage note accuracy by
about 0.12. Changing f from 0.25 to 0 (i.e., eliminat-
ing the local CE altogether) reduced the overall per-
centage note accuracy by a further 0.25. However,
omitting the local CE altogether was marginally
better than weighting it more heavily than the cu-
mulative CE in Phase II: changing f from 0 to 0.75
reduced the percentage note accuracy by a small,
but apparently significant, 0.05. Finally, eliminating
the cumulative CE altogether produced the worst
results: changing f from 0.75 to 1 caused a relatively
large drop of around 1.2 in the percentage note accu-
racy. (For more details, see Meredith 2007.)

These results clearly cast doubt on Chew and
Chen’s claims that the local context is more impor-
tant than the cumulative context and that “a purely
sliding-window method should perform better than
a purely cumulative-window method” (2005, p. 74).
In fact, the results obtained on the relatively large
and varied test corpus used here seem to suggest,
first, that a “purely cumulative-window method” is
more accurate than one that only uses the sliding
windows; and, second, that the cumulative context
is just as important as the local context in Phase II
of the algorithm.

Effect of ChunkSize

In Chew and Chen’s own implementations of their
algorithm, the chunk duration was defined to be a
metrical unit in the score-based test corpus. How-
ever, chunk size can obviously only be defined in
this way if the metrical structure of the input pas-
sage is known. In the study reported here, it was as-

sumed that the input data did not contain metrical
information (as is usually the case in real-world
transcription situations), so the chunk size was set
to three different absolute time periods. The effect
that ChunkSize has on the performance of the
ChewChen algorithm can be studied by examining
the effect that changing the value of ChunkSize has
on the overall note accuracy when the values of all
the other parameters are kept constant. To do this,
each of the equivalence classes [GLC], [GL], [G], and
[C] can themselves be partitioned into smaller
equivalence classes Ki such that the parameter
value combinations in each Ki are identical except
for the values of ChunkSize.

The three box plots in Figure 4 give a general im-
pression of the way that the note accuracy is af-
fected over each of the sets [GLC], [GL], [G], and [C]
when ChunkSize is changed from 500 to 1,000 msec
(Figure 4a), 1,000 to 2,000 msec (Figure 4b), and 500
to 2,000 msec (Figure 4c). These box plots suggest
that, when the cumulative CE is not used, then (1)
increasing ChunkSize from 500 to either 1,000 or
2,000 msec often causes an increase in note accu-
racy; (2) increasing ChunkSize from 500 to either
1,000 or 2,000 msec has a much more varied effect
than when it is increased from 1,000 to 2,000 msec;
and (3) increasing ChunkSize from 1,000 to 2,000
msec generally has only a very small effect on note
accuracy.

When the cumulative CE is used, (1) increasing
ChunkSize generally decreases the overall note ac-
curacy; and (2) increasing ChunkSize generally has a
larger and more varied effect when the global and
local CEs are also used. A more detailed statistical
analysis has shown these effects to be significant
(Meredith 2007).

As just observed, increasing ChunkSize generally
reduces note accuracy when the cumulative CE is
used. Increasing ChunkSize reduces the frequency
with which the CEs are updated but also increases
the size of the local and global windows. As dis-
cussed above, all the parameter value combinations
in which the cumulative CE is used achieved higher
note accuracies than those that did not (Figure 3).
Using the cumulative CE also seems to reduce the
sensitivity of the algorithm to changes in the pa-



68 Computer Music Journal

Figure 4. Box plots showing
the effect for each of the
sets [GLC], [GL], [G], and
[C] on percentage note
accuracy of changing

ChunkSize from (a) 500 to
1,000 msec; (b) 1,000 to
2,000 msec; and (c) 500
to 2,000 msec.

(a) (b) (c)



rameter value combinations. It therefore seems that
the cumulative CE dominates over the other two
CEs when it is used. In those cases where the cumu-
lative CE is used, one might therefore expect the
overall effect of changing ChunkSize to be domi-
nated by the effect that this has on the cumulative
CE. Because the cumulative CE is always calculated
over the entire segment of music that has already
passed, the only effect that increasing ChunkSize
has on the cumulative CE is to reduce the frequency
with which it is updated, which one would expect
to lead to lower note accuracy, as observed.

On the other hand, when the cumulative CE is
not used, increasing ChunkSize increases the sizes
of the global and local windows as well as reducing
the frequency with which the CEs are updated. In-
tuitively, one would expect there to be some opti-
mal window sizes for calculating the global and
local CEs: if these windows are too big, the algo-
rithm will not be sufficiently sensitive to changes
in key; if they are too small, the context may not
contain enough information to determine the key
accurately. This intuition is in agreement with the
results obtained here, which suggest that over the
set [G], increasing ChunkSize from 500 to 1,000
msec generally improves note accuracy, but that in-
creasing it from 1,000 to 2,000 msec slightly re-
duces note accuracy. This seems to imply that,
when the global CE is used alone, there is an opti-
mal value for ChunkSize that is somewhere be-
tween 500 and 2,000 msec. Similarly, over the set
[GL], increasing ChunkSize from 500 to 1,000 msec
increases the percentage note accuracy by a pseudo-
median value of around 0.15, but increasing Chunk-
Size by a further 1,000 to 2,000 msec only increases
the percentage note accuracy by around 0.03.

Note that the twelve best-performing parameter
value combinations (Table 4) are in [GLC] and that,
in these cases, ChunkSize is set to 500 msec.

Effect of MinSAIndex and MaxSAIndex

To investigate the effect of changing the value of
〈MinSAIndex, MaxSAIndex〉, the complete set of
parameter value combinations tested, P", was parti-
tioned into 648 equivalence classes Li such that each

Li contained two parameter value combinations that
were the same, except that, in one, 〈MinSAIndex,
MaxSAIndex〉 was set to 〈–15, 19〉, whereas in the
other, it was set to 〈–22, 26〉. Recall that, when
〈MinSAIndex, MaxSAIndex〉 = 〈–15, 19〉, the algo-
rithm is restricted to choosing pitch classes that lie
between F-double-flat and B-double-sharp (inclusive)
on the line of fifths. However, when 〈MinSAIndex,
MaxSAIndex〉 = 〈–22, 26〉, the algorithm can choose
from a wider range of pitch classes, extending from
F-triple-flat to B-triple-sharp, inclusive.

It was found that, for over 99 percent of the pa-
rameter value combinations tested, changing 〈Min-
SAIndex, MaxSAIndex〉 from 〈–15, 19〉 to 〈–22, 26〉
had no effect when the cumulative CE was used and
changed the overall note accuracy when the cumu-
lative CE was not used. When the cumulative CE
was not used, changing 〈MinSAIndex, MaxSAIndex〉
from 〈–15, 19〉 to 〈–22, 26〉 increased the percentage
note accuracy by an average of 0.01 in about half of
the cases and reduced it by an average of 0.8 in the
other half of the cases. Changing 〈MinSAIndex,
MaxSAIndex〉 had no effect on the best-performing
parameter value combinations.

Comparing Chew and Chen’s Algorithm with Other
Pitch-Spelling Algorithms

As previously mentioned, I compared the perfor-
mance of a number of pitch spelling algorithms, in-
cluding those of Chew and Chen, on the test corpus C
used here (Meredith 2007). I found that CCOP01–12
were the least dependent on style of the algorithms
that were tested over this corpus. The optimized
versions of Chew and Chen’s algorithm (i.e.,
CCOP01–12) achieved a note accuracy of 99.15 per-
cent over C, and the only algorithms that achieved a
higher note accuracy than CCOP01–12 over C were
the best versions of my ps13 algorithm and the best
versions of Temperley and Sleator’s Melisma pro-
grams. However, the best versions of the Melisma
programs were much more dependent on style than
CCOP01–12 and also highly sensitive to tempo. For
most practical applications, therefore, CCOP01–12
would be preferable to the Melisma programs for
pitch spelling.

Meredith 69
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Nevertheless, the optimized versions of Chew
and Chen’s algorithm made over 50 percent more
errors over the test corpus C than my PS13s1 algo-
rithm, which achieved an overall note accuracy of
99.44 percent and a low standard deviation in note
accuracy of 0.49 over the eight composers. More-
over, a real-time version of PS13s1 spelled 99.19
percent of the notes in C correctly, thus making
over 4 percent fewer errors than the best versions
of Chew and Chen’s algorithm. Also, PS13s1 is
somewhat simpler to implement than Chew and
Chen’s algorithm as it uses a much simpler win-
dowing process.

I also ran the best versions of the ChewChen al-
gorithm (i.e., CCOP01–12) on a temporally “noisy”
version of C, which is denoted here by C' (Meredith
2007). C' was derived from C by artificially intro-
ducing temporal deviations of the type typically
found in MIDI files derived from human perfor-
mances. Specifically, the onset times of the notes
were randomly shifted by up to 50 msec, and the
durations of notes were randomly multiplied by a
factor between 0.5 and 1.5. This provided a very
crude simulation of the spreading of chords and in-
accuracies in synchonicity typical in performances
(Gabrielsson 1999).

Interestingly, the six best versions of the Chew-
Chen algorithm in which only the notes starting in
each window were considered when calculating the
CEs (i.e., CCOP07–12) performed better over the
noisy corpus C' than the six best versions in which
the notes sounding in each window were considered
(i.e., CCOP01–06). CCOP07–12 spelled 99.12 per-
cent of the notes in C' correctly with a standard de-
viation over the eight composers of 0.47, whereas
CCOP01–06 spelled 99.01 percent of the notes in C'
correctly with a standard deviation over the eight
composers of 0.55.

By comparison, the best-performing algorithm
over C' in my study was the best (non-real-time)
version of my PS13s1 algorithm, which spelled
99.41 percent of the notes in C' correctly with a
standard deviation over the eight composers of 0.50.
The real-time version of this algorithm achieved an
overall note accuracy over C' of 99.16 percent with
a standard deviation over the eight composers of 0.53.

Conclusions

The results of this study suggest that Chew and
Chen’s pitch-spelling algorithm (as described in Ap-
pendix A) works best when (1) the local, global, and
cumulative CEs all have an effect; (2) the local con-
text window is relatively small (two chunks); (3) the
global context window is a moderate size (eight
chunks); (4) the local and cumulative CEs are given
equal weighting; and (5) the chunks are relatively
small (500 msec), leading to a frequent updating of
the CEs. This result, obtained on a test corpus con-
taining 195,972 notes and 216 movements from
works composed by eight different composers be-
tween 1681 and 1808, casts doubt on Chew and
Chen’s claim (based on results obtained on just two
Beethoven sonata movements and a highly stable
tonal work by You-Di Huang) that the local context
is more important than the cumulative context. In-
deed, of the 1,296 parameter value combinations
tested, all those in which the cumulative CE was
used achieved higher note accuracies than those in
which it was not, with those that used the cumula-
tive CE achieving a mean note accuracy of 98.83
percent and those that did not achieving a mean
note accuracy of 97.19 percent. Moreover, using the
cumulative CE alone worked almost as well as us-
ing it in combination with the global and local CEs.
The results obtained on the relatively large and var-
ied test corpus employed here cast doubt on Chew
and Chen’s claim that, in general, “a purely sliding-
window method should perform better than a
purely cumulative-window method” and suggest
that the opposite may, in fact, be the case. Never-
theless, the algorithm worked best when the local
and cumulative contexts were given equal weight in
Phase II of the algorithm.

It was also shown that Chew and Chen’s algo-
rithm performs just as well when the spiral array is
replaced with the simpler line of fifths, strongly
suggesting that—at least for pitch spelling—the spi-
ral array offers no advantages over the simpler line
of fifths. The performance of the algorithm is also
largely unaffected when Chew and Chen’s method
of calculating the CEs, which involves considering
all the notes that sound in a window, is replaced



with a simpler method in which only the notes
starting in a window are considered. Moreover, the
latter, simpler method worked better than the for-
mer when the data contained temporal deviations of
the type that typically occurs in MIDI files derived
from human performances.

When compared with other algorithms Chew and
Chen’s algorithm performed relatively well but was
outperformed on both “clean” and “temporally
noisy” data by my PS13s1 algorithm (Meredith
2006, 2007), which can be made to work in real time
and uses a much simpler windowing process than
Chew and Chen’s algorithm.
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Appendix A

The following provides a brief overview of Chew
and Chen’s pitch-spelling algorithm.

1. First, the algorithm computes the global CE,
CEglobal,j, which is the CE of the set of notes
in a sliding global context window that con-
sists of the ws chunks immediately preced-
ing the jth chunk. In other words, the
algorithm computes the value

(3)

where ws, the number of chunks in the slid-
ing global context window, is a parameter of
the algorithm.

2. Next, the algorithm names each note in
chunk j so that its pitch name is as close as
possible to CEglobal,j in the spiral array.

3. Then the algorithm computes a local CE,
CElocal,j, which is the CE of the set of notes in
a local context window that consists of the
chunk j that has just been spelled, together

CE CE W j w jjglobal, sound s= − −( ( , ))1

with the (wr – 1) chunks immediately pre-
ceding the jth chunk. That is, it computes
the value of

(4)

where wr, the number of chunks in the local
context window, is another parameter of the
algorithm.

4. Next, the algorithm computes the cumula-
tive CE, CEcum,j, which is the CE of the notes
in a cumulative window that consists of all
the chunks preceding the jth chunk. That is,
it computes the value of

(5)

5. Finally, the notes in chunk j are respelled so
that their pitch names are as close as pos-
sible to the hybrid CE,

(6)

where f is a parameter with a value between
0 and 1 which determines the relative weight
given to the local and cumulative CEs.

CE f CE f CEj j jhybrid, local, cum,= + −. ( ).1

CE CE W jjcum, sound= −( ( , ))1 1

CE CE W j w jjlocal, sound r= − +( ( , ))1
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