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Abstract. This paper presents how non-representational views of cog-
nition can inform interaction design as it moves from traditional graph-
ical user interfaces to more bodily forms of interaction such as gesture
or movement tracking. We argue that the true value of these “bod-
ily” interfaces is that they can tap our prior skills for interacting in
the world. However, these skills are highly non-representational and so
traditional representational approaches to interaction design will fail to
capture them effectively. We propose interactive machine learning as an
alternative approach to interaction design that is able to capture non-
representational sensori-motor couplings by allowing people to design by
performing actions rather than by representing them. We present an ex-
ample of this approach applied to designing interactions with video game
characters.
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Interaction Design is a discipline saturated with representations. The primary
interaction mechanism with modern computers is a graphical interface which is
composed largely of visual representations of the computer system. These can
include a wide variety of displays representing anything from documents to sci-
entific data sets to social interactions. The interface also includes many different
representations of possible actions that people can take from simple buttons to
directly manipulable visualisations. The implementations of the interfaces also
require complex logical representations, as any feature of the world or computer
system has to be represented in program code, normally with explicit represen-
tations of items in the world and explicit mapping of these representations to
the visual interface.

These representations are in no way incompatible with a non-representational
view of cognition. They are, after all, external representations, part of our dis-
tributed cognitive apparatus that we can manipulate to achieve our aims. They
largely exist in domains where we have very well established forms of external
representation that most educated people are well versed in manipulating as
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part of our working process: written language, diagrams and photographs. In
fact, the graphical user interface is now so ubiquitous that it is a key part of the
distributed cognitive apparatus of most adults in the developed world.

So we could be happy that a representational approach to interaction de-
sign and a non-representational approach to cognition are compatible if it were
not for certain new developments in interaction design. New developments in
human computer interaction are leaving the confines of the computer monitor
and entering the 3 dimensional world of our full body movements. This paper
will argue that this move will force interaction design to take account of non-
representational cognition.

1 Bodily Interaction

The use of body movement to interact with computers has a long history, going
back to pioneering work from the 1970s by researchers such as Myron Krueger[1].
However, only in recent years has it become feasible to create low cost, mass
market bodily interfaces, due to the advent of commercial movement tracking
devices such as the Microsoft KinectTMor the accelerometers built into modern
smart phones. These new devices enable us to make use of large scale movements
of many different parts of the body, in contrast to the small scale movements
required by a keyboard and mouse. Much of the research in this areas has con-
cerned gesture recognition and it’s use in user interfaces, for example the work
of Bevilacqua et al.[2] or Fails and Olsen[3]. However, there is also research that
makes use of holistic movement in interaction ranging from dance controlled
music (Antle et al. [4]) and expressive digital musical instruments (Fiebrink [5])
to interactive art (Snibbe [6]) and body monitoring for healthcare (Fergus [7]).
With devices such as the Microsoft KinectTMbody movement interfaces are now
being used by ordinary consumers, with the first area of growth being in video
games, given that most devices are marketed as video game controllers. However,
their use is spreading, even if they remain attached to video game consoles, body
movement interfaces are being used for other activities, for example the WiiFit
software uses a games console as a platform for exercise and health.

2 What is natural about “Natural User Interfaces”?

What is the value of this for interaction? The type of interaction I have been
describing has been marketed by Microsoft and others as “Natural User Inter-
faces”: interfaces that are claimed to be so natural that they do not need to be
learned. The logic behind this phrase is that, because body movements come
naturally to us, a body movement interface will be natural. This idea has been
criticised by many people, most notably by Norman in his article “Natural User
Interfaces are not natural”[8] in which he argues that bodily interfaces can suffer
from many problems associated with traditional interfaces (such as the difficulty
of remembering gesture) as well as new problems (the ephemerality of gestures
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and lack of visual feedback). So is there value in the intuition that bodily inter-
faces are natural, and if so what is that value and why is it often not seen in
existing interfaces?

I would argue that there is a fundamental difference in the nature of bodily
interfaces and traditional interfaces. Jacob et al.[9] propose that a variety of new
forms of interaction, including bodily interaction, are successful because they
leverage a different set of our pre-existing skills from traditions GUIs. While
a graphical user interface leverages our skills in manipulating external visual
and symbolic representations, bodily interfaces leverage leverage skills related
to body and environmental awareness. The skills that enable us to move and
act in the world. Similarly, Dourish [10] proposes that we analyse interaction
in terms of embodiment which he defines as: “the property of our engagement
with the world that allows us to make it meaningful”. This leads him to define
Embodied Interaction as “the creation, manipulation, and sharing of meaning
through engaged interaction with artefacts”. While he applies this definition
to both traditional and new forms of interaction, the nature of this engaged
interaction is very different in bodily interfaces. Following Jacob we could say
that, in a successful bodily interface, this engaged interaction can be the same
form of engagement we have with our bodies and environment in our daily lives
and we can therefore re-use our existing skills that enable us to engage with the
world.

If we take a non-representational, sensorimotor view of perception and action
these skills are very different from the skills of a traditional interface involving
manipulation of representations. This view allows us to keep the intuition that
bodily interfaces are different from graphical user interfaces and explain what is
meant by natural in the phrase “natural user interface” (the so-called natural
skills are non-representational sensorimotor skills), while also allowing us to be
critical of the claims of bodily interfaces. Natural user interfaces, on this view,
are only natural if they take account of the non-representational, sensorimo-
tor nature of our body movement skills. Body movement interfaces which are
just extensions of a symbolic, representational interface which are just a more
physically tiring version of a GUI.

A good example of this is gestural interaction. A common implementation
of this form of interface is to have a number of pre-defined gestures that can
be mapped to actions in the interface. This is one of the types of interface
that Norman[8] criticises. When done badly there is a fairly arbitrary mapping
between a symbolic gesture and a symbolic action. Users’ body movements are
used as part of a representation manipulation task. There is nothing wrong with
this per se but it does not live up to the hype of natural user interfaces and is not
much different from a traditional GUI. In fact, as Norman notes, it can be worse,
as users do not have a visual cue to remind them which gestures they should
be performing. This makes it closer to a textual command line interface where
users must remember obscure commands with no visual prompts. Gestural user
interfaces do not have to be like this.
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These problems can be avoided if we think of gestural interfaces as tap-
ping sensorimotor skills, not representation manipulation skills. For example,
the work of Bevilacqua et al.[2] uses gesture to control music. In this work, ges-
tures are tracked continuously rather than being simply recognised at the end of
the gesture. This allows users to continuously control the production of sound
throughout the time they are performing the gesture, rather than triggering the
gesture at the end. This seemingly simple difference transforms the task from
representation manipulation (producing a symbolic gesture and expecting a dis-
crete response) to a tight sensorimotor loop in which the auditory feedback can
influence movement which in turn controls the audio. A more familiar example
of this form of continuous feedback is the touch screen “pinch to zoom” ges-
ture developed for the iPhoneTM. In this gesture an image resizes dynamically
and continuously in response to the users’ fingers moving together and apart.
This continuous feedback and interaction enables a sensorimotor loop that can
leverage our real world movement skills.

A second feature of Bevilacqua et al.’s[2] system is that is allows users to
easily define their own gestures and the do so by acting out those gestures
while listening to the music to be controlled. I will come back to this feature in
more detail later, but for now we can note that it means that gestures are not
limited to a set of pre-defined symbolic gestures. Users can define movements
that feel natural to them for controlling a particular type of music. What does
“natural” mean in this context? Again, it means that the user already has a
learnt sensorimotor mapping between the music and a movement (for example
a certain way of tapping the hands in response to a beat).

3 How do we design non-representational interactions?

This brings us to the question of how we design bodily interactions. Interaction
design for traditional user interfaces is largely a task of designing representa-
tions, for example, the layout of widget or the display of information. If we take
successful bodily interaction to require non-representational sensorimotor skills,
then the task of designing it must be something very different. Rather than
designing representations, it means designing sensorimotor couplings. In fact,
designing sensori-motor couplings are not restricted to bodily interactions. The
two are not as distinct as I have presented them here. Viewed from this perspec-
tive, direct manipulation GUIs involve elements of sensorimotor coupling and
most bodily interfaces are likely to involve some external representations.

The key challenge is that, if we are designing sensorimotor couplings that we
perform without mental or external representations, then we must design them
without representations. If we do not use mental representations to perform
these skills and we do not have a well established system of external represen-
tations to handle them, we are unlikely to be able to explicitly represent details
of our movement skills. If we use traditional, representational methods of inter-
action design we will be asking designers to provide explicit representations of
low level details of their movements, to which they have no conscious access.
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This is likely to be an impossible task. This is one explanation of the problems
of existing bodily interaction techniques. Designers have to explicitly represents
their movements in numerical terms programme code or other formal tools but
they do not have this level of access to complex sensorimotor skills. So instead,
they fall back on representing simple features of the movement (responding to
position or velocity) or falling back on traditional user interface metaphors (but-
tons in 3D space). Neither of these approaches are designed to make effective use
of sensorimotor skills, rather they are driven by what can easily be represented
in code. The result is interactions that are not “natural” in the terms we have
discussed above and which are hard to remember and perform.

We need a different approach. If we are to successfully create complex move-
ment interfaces we must develop software tools that support creating based on
our existing, non-representational sensorimotor skills. That means we cannot ask
designers to form explicit representations of their movements. Instead we should
allow designers to design interactions by directly applying their bodily skills.
The should define movements by moving.

Designing by moving can be enabled by software tools that allow designers to
specify interaction by giving examples of those interactions. This type of tool can
be implemented using machine learning techniques to infer recognition models
from these examples. However, traditional batch approaches to machine learning
are not particularly well suited to a design process as designers must collect large
amounts or data initially and then must rely on the algorithm to produce the
desired results based on this data. This makes it hard to support the iterative
processes and refinement that are key to successful interaction design. Interac-
tive Machine Learning (Fails and Olsen [3]) is a approach to machine learning
which attempts to overcome these issues by making user interaction central to
the learning process. Users provide training data interactively and in doing so
progressively refine the classifiers they are creating. This approach has been used
in a variety of domains from image classification (Talbot et al. [11]) to end user
training of spam filters (Kulesza et al. [12]). This method can allow designers
to design interactions by interactively providing examples of movement which
would be used to train and refine a machine learning algorithm that controls the
interaction. This would make the process of designing one of performing exam-
ples of movement. Designers can design by performing movements that emerge
out of their sensorimotor skills without ever having to form explicit, detailed
representations of the movements they are performing. Fiebrink et al. [13] have
applied interactive machine learning to gestural control of digital musical in-
struments. Their participants noted that interactive machine learning provided
a fundamentally different way of designing which focused on direct embodied
movement rather than analyzing gestures in terms of specific features.
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Fig. 1. The actor being motion captured (left) and a participant interacting with the
virtual character (right).

4 Non-Representational Interaction Design for Video
Game Characters

This section presents a prototype that attempts to use Interactive Machine
Learning to enable the type of non-representational interaction design that we
are proposing. It is a system for designing bodily interaction with video game
characters. Two people can play the roles of the video game character and the
player, showing how the character should respond by acting out the movements
themselves. This allows them to design movements in a natural way, by moving,
rather than having to think about explicit representations of their movement.
The motion of both participants are recorded and synchronized. This data is
then used as input to a machine learning algorithm which learns a model for
automatically controlling a video game character so that it responds in the same
way as the people designing it.

The capture set up enables two people to improvise interaction in order to
design the virtual agent. One participant plays the part of the agent while the
other plays the part of the player. The two participants are in different spaces
and their movements are streamed live to each other. The movements of the
performer playing the agent are motion captured using an OptitrackTMoptical
motion capture system and mapped live onto the agent, which can be seen live by
the other participant. This second participant’s movements are recorded using
a Microsoft KinectTMconsumer motion tracking device. His or her movements
are visible to the other participant as a live video stream. Both sets of data
are synchronised and recorded as input to our machine learning system. For
interaction with the AI agent, the participants’ set up is identical; they interact
with a virtual agent via the Kinect, but in this case the agent’s actions are
selected by the learnt model rather than being controlled live by a participant
in motion capture.

Once data had been recorded the participants use a desktop computer to
select clips from the recorded data that will be used as input to train the machine
learning classifier. The resulting clips contain two types of data. Firstly they
contain a range of motion capture data which can be used to animate the virtual
agent in response to the player’s action. Secondly they contain kinect data, which
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can be used to classify the player’s actions. The kinect data at the start of the
clip is taken to be the action that produced the response contained in the clip
and this is used as input for training the machine learning engine, for which we
used a decision tree algorithm.

The final result of our system is a virtual agent that responds live to a player’s
actions as sensed by the Microsoft KinectTM. The task of the decision tree is
therefore to determine which action the participant had performed and then
select a suitable response from the agent. The decision tree is used to classify
the participant’s posture into one of the possible actions. This classification is
then used to select an animation clip to play back on the virtual agent.

We tested the system by working with a physical performer to design an
interactive character. The performer was a professional who worked in the the-
atre and also taught performance, and whose practice centred on physical body
movement. As such he had considerable expertise in movement and was well
suited to designing bodily interaction. He worked with a number of members of
the public to design the interaction and was encouraged to use his own working
practices as far as possible. He used a long process of physical improvisation,
which is a key part of his performance practice. This enabled him to design
the detail of the movement. While he was readily able to talk at a high level
about the movements and given them names, movement improvisation was key
to working out the details of the movements and interactions. The prototype
enabled him to design the interaction entirely through this process of physical
improvisation without ever having to make explicit low level details of move-
ment. Our non-representation approach therefore fitted easily with his practice
as performer and movement expert.

5 Conclusion

Sensorimotor theory provides a powerful lens for understanding both what is
compelling about bodily interaction and how it can fail. Seeing bodily interfaces
as a way of leveraging our sensorimotor skills that are left out of traditional
representational user interfaces helps explain the intuition that this type of in-
terface is some how “natural” while also explaining how many actual example
fail to be natural by falling back on representational gestures. More importantly,
it shows us a way forward for how we can create interfaces that do make better
use of our sensorimotor skills. Since our sensori-motor skills are highly non-
representational, design approaches that rely on representing actions will never
capture them apporpriately. Interactive machine learning on the other hand al-
lows people to design interactions by performing actions, thus allowing them to
directly make use of their non-representational skills. The examples presented in
this paper provide an idea of what these new design method might be like, while
the central argument is a call to make sure we do change the way we design
interfaces to adapt to our non-representational skills.
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