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a b s t r a c t

A pressing need exists to disentangle age-related changes from pathologic neurodegeneration. This study
aims to characterize the spatial pattern and age-related differences of biologically relevant measures
in vivo over the course of normal aging. Quantitative multiparameter maps that provide neuroimaging
biomarkers for myelination and iron levels, parameters sensitive to aging, were acquired from 138
healthy volunteers (age range: 19e75 years). Whole-brain voxel-wise analysis revealed a global pattern
of age-related degeneration. Significant demyelination occurred principally in the white matter. The
observed age-related differences in myelination were anatomically specific. In line with invasive histo-
logic reports, higher age-related differences were seen in the genu of the corpus callosum than the
splenium. Iron levels were significantly increased in the basal ganglia, red nucleus, and extensive cortical
regions but decreased along the superior occipitofrontal fascicle and optic radiation. This whole-brain
pattern of age-associated microstructural differences in the asymptomatic population provides insight
into the neurobiology of aging. The results help build a quantitative baseline from which to examine and
draw a dividing line between healthy aging and pathologic neurodegeneration.

� 2014 The Authors. Published by Elsevier Inc. All rights reserved.
1. Introduction

Age is the highest risk factor for neurodegenerative disease yet it
remains unclear what triggers normal aging processes to diverge
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into neurodegeneration. In older adults, brain pathology can be
present with no apparent cognitive impairment (Fotuhi et al., 2009;
Zecca et al., 2004). Macrostructural tissue loss has proved a sensi-
tive marker for neurodegeneration despite having poor pathologic
specificity (Barkhof et al., 2009; Benedict and Zivadinov, 2011;
Frisoni et al., 2010; McDonald et al., 2009; Scahill et al., 2002).
Markers of microstructural changes accompanying atrophy are
required to increase sensitivity and specificity (Barkhof et al., 2009;
Benedict and Zivadinov, 2011; Frisoni et al., 2010; Noseworthy,
1999; Scahill and Fox, 2007). Our aging population presents a
pressing need to disentangle age-related changes from pathologic
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neurodegeneration. This motivated our study in which we examine
normal age-related differences and population variance of quanti-
tative magnetic resonance imaging (MRI) parameters that have
been shown to reflect underlying differences in the brain micro-
structure (Dick et al., 2012; Draganski et al., 2011; Freund et al.,
2013; Sereno et al., 2013).

Myelin sheaths exhibit degenerative changes with age that
reduce conduction velocity (Adinolfi et al., 1991; Aston-Jones
et al., 1985) along affected nerve fibers and may explain some
of the cognitive decline seen in older adults (Marner et al., 2003;
Peters, 2002). The effects of age on myelin are complex because
even though some myelin sheaths are seen to degenerate with
age, the process of myelin production continues throughout life,
though possibly in an uncontrolled or dysfunctional manner
(Peters, 2002). Oligodendrocytes are crucial for the production
and maintenance of myelin and require iron to sustain their high
metabolic rate and facilitate the synthesis of lipids and choles-
terol necessary to carry out these functions (Bartzokis, 2011;
Connor and Menzies, 1996; Todorich et al., 2009). This makes
iron a key co-factor in the production and maintenance of
myelin. Iron levels are highly spatially and developmentally
heterogenous, increasing rapidly during development with linear
increases in later life, even plateauing in some regions (Hallgren
and Sourander, 1958). Oligodendrocytes that differentiate later in
life produce thinner sheaths that cover a larger number of
thinner axons that are more susceptible to functional impair-
ment and destruction (Bartzokis, 2004; Kemper, 1994; Marner
et al., 2003; Terao et al., 1994). Over the course of aging, iron
accumulates in brain regions that are susceptible to neurode-
generative diseases (Connor et al., 1990; Dexter et al., 1991;
Jellinger and Paulus, 1990; Zecca et al., 2004) though it is not
wholly clear whether this accumulation is a cause or an effect of
degeneration.

Quantitative MRI can circumvent some of the drawbacks
of histologic analysis by producing neuroimaging markers for
biologically relevant quantities noninvasively. Recent technical
developments have enabled in vivo mapping to be performed with
high resolution andwhole brain coverage (Deoni et al., 2005; Helms
and Dechent, 2009; Helms et al., 2008a, 2008b). Macromolecular
protons, such as those found in myelin, can be selectively saturated
using off-resonance radiofrequency (RF) pulses leading to attenu-
ation of the magnetic resonance (MR) water signal by magnetiza-
tion transfer (MT) (Wolff and Balaban, 1989). Voxels with a higher
macromolecular content will show a greater percentage loss of
water magnetization as a consequence of a given pre-pulse (MT
saturation). Magnetization transfer measures have been shown to
correlate with histologically measured myelin content (Schmierer
et al., 2004, 2007), whereas quantitative relaxation rate measure-
ments correlate with iron content (Daugherty and Raz, 2012; House
et al., 2007; Langkammer et al., 2010; Rodrigue et al., 2013; Vymazal
et al., 1996).

Gaining insight into the multifaceted and inter-dependent bio-
logical processes that underlie both aging and neurodegeneration is
a complex problem. Here, we use quantitative multiparameter
mapping (MPM), which is ideally suited to probe the multiple
factors of aging. MPM quantifies the longitudinal relaxation rate, R1,
effective transverse relaxation rate, R2*, percent saturation because
of MT and effective proton density (PD*). We present a cross-
sectional whole brain voxel based quantification (VBQ) analysis of
these 4 parameters acquired on a large cohort of healthy volunteers
covering a broad age range. We hypothesized that age would
correlate with regionally specific reductions in myelin content,
changes in iron and water content and ultimately with brain atro-
phy and that these microstructural changes would be reflected by
age-related differences in the MPM data.
2. Methods

2.1. Participants

Participants were recruited from the local university population
and by advertising on the departmental website and in local
buildings as well as through word of mouth. Potential participants
were screened and excluded if they had any of the following:
metallic implants, epilepsy, diabetes, history of seizures, neurologic,
medical or psychiatric disorders. Of the final pool of participants, all
but 2 (1 male, 1 female) were right-handed. To assess cognitive
integrity, all older adult participants (60 years or more) additionally
underwent a Mini Mental State Examination and achieved scores of
28 or greater. The final cohort consisted of 138 volunteers, of which
49 were men. The group ranged in age from 19 to 75 years with a
mean age of 46.6 years and a standard deviation of 21 years.
Informed written consent was obtained before scanning.

2.2. Data acquisition

Participants were examined on two 3T whole body MR systems
(Magnetom TIM Trio, Siemens Healthcare, Erlangen, Germany, 69
participants per scanner) each equipped with a standard 32 chan-
nel head coil for receive and RF body coil for transmission. The data
were acquired as part of several cognitive neuroimaging studies at
the Wellcome Trust Centre for Neuroimaging with approval from
the local ethics committee.

A whole-brain quantitative MPM protocol was used. This con-
sists of 3 spoiled multi-echo 3D fast low angle shot (FLASH) acqui-
sitions with 1 mm isotropic resolution and 2 additional calibration
sequences to correct for inhomogeneities in the RF transmit field
(Lutti et al., 2010, 2012; Weiskopf et al., 2013). The FLASH volumes
were acquired with predominantly proton density (PD), T1 or MT
weighting, determined by the repetition time, and flip angle (a)
(repetition time and flip angle were for the PD- and MT-weighted
acquisitions: 23.7 ms/6�; and for the T1-weighted acquisition: 18.7
ms/20�). In the case of the MT-weighted acquisition, a Gaussian RF
pulse with 4 ms duration and 220� nominal flip angle was applied 2
kHz off-resonance before nonselective excitation. Gradient echoes
were acquired with alternating readout gradient polarity at 6
equidistant echo times between 2.2 ms and 14.7 ms. Two additional
echoes were acquired for the PD-weighted acquisition at 17.2 ms
and 19.7 ms. A high readout bandwidth of 425 Hz/pixel was used to
reduce off-resonance artefacts (Helms and Dechent, 2009). To speed
up data acquisition, parallel imaging with a speed up factor of 2 was
used in the phase-encoded direction (anterior-posterior) using the
generalized auto-calibrating partially parallel acquisition algorithm.
A partial Fourier acquisition (6/8 sampling factor) was used in the
partition direction (left-right). The total scanning time of the MPM
protocol was approximately 25 minutes.

To obtain quantitative maps, the data were processed in the
Statistical Parametric Mapping SPM8 framework (Wellcome Trust
Centre forNeuroimaging, London)usingbespokeMATLAB tools (The
Mathworks Inc, Natick, MA, USA). Examplemaps are shown in Fig.1.
In brief, regression of the log signal from the 8 PD-weighted echoes
wasused tocalculateamapofR2*. The setof echoes for eachacquired
weighting were then averaged to increase the signal-to-noise ratio
(Helms and Dechent, 2009). The 3 resulting volumes were used to
calculate MT, R1, and PD* maps as described in Helms et al., 2008a,
2008b; Weiskopf et al., 2013. To maximize the accuracy of the R1
map, inhomogeneity in the flip angle was corrected bymapping the
B1
þ transmit field according to the procedure detailed in Lutti et al.

(2012) and the intrinsically imperfect spoiling characteristics were
correctedusing the approachdescribed byPreibisch andDeichmann
(2009).



Fig. 1. Example maps of an individual volunteer: effective proton density, PD* (A); longitudinal relaxation rate, R1 (B); magnetization transfer, MT (C), and transverse relaxation rate,
R2* (D).
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TheMTmap is semi-quantitative depicting the percentage loss of
magnetization resulting from the MT pre-pulse used. This differs
from the commonly used MT ratio (percentage reduction in steady
state signal) by explicitly accounting for spatially varying T1 relax-
ation times and flip angles (Helms et al., 2008b). This results in
higher and more robust contrast in the brain than the MT ratio
(Helms et al., 2010). PD*mapswere estimated fromsignal amplitude
maps by adjusting for receive sensitivity differences using a post-
processing method similar to UNICORT (Weiskopf et al., 2011,
2013). To make these maps comparable across participants, they
were scaled to ensure that the mean white matter PD* for each
subject agreed with the published level of 69% (Tofts, 2003, chapter
4). This quantity is referred toas PD*because therewasno correction
for R2* signal decay. This map was calculated from the averaged
multi-echo FLASH data, which has an effective echo time of 8.45ms.
2.3. Age-related differences in brain microstructure

Differences in MR parameters and microstructure were assessed
usingwhole brainVBQ.Differences in local graymatter volumewere
assessed with voxel-based morphometry (VBM). For voxel-based
analysis within the brain, the MT maps were segmented into gray
and white matter probability maps using the unified segmentation
approach (AshburnerandFriston, 2005). Inter-subject registrationof
the tissue classes was performed using Dartel, a nonlinear diffeo-
morphic algorithm (Ashburner, 2007), as implemented in SPM8.
Fig. 2. Whole brain pattern of aging. Myelin reductions are estimated from R1 and MT decre
the p < 0.001 uncorrected level for display purposes only. The t score for the combined e
longitudinal relaxation rate; R2*, transverse relaxation rate.
This algorithm estimated the deformations that best align the tissue
probability maps by iteratively registering themwith their average.
The resulting Dartel template and deformations were used to
normalize the tissue probability maps to the stereotactic space
defined by the Montreal Neurological Institute (MNI) template.

For VBM analysis, the normalization procedure included scaling
the gray matter tissue probability maps by the Jacobian de-
terminants of the deformation field and smoothing with an
isotropic Gaussian smoothing kernel of 6 mm full width at half
maximum (FWHM). For VBQ analysis, a different normalization
procedure was used on the multiparameter maps to preserve the
correct quantitative values. The maps were normalized using the
subject-specific deformation fields but without modulating by the
Jacobian determinants. Instead a combined probability weighting
and Gaussian smoothing procedure described in Draganski et al.
(2011) was used with a 3 mm FWHM isotropic smoothing kernel.
This method produces tissue-specific parameter maps in MNI space
while optimally preserving the quantitative parameter values
within each tissue class (reducing effects of residual misregistration
and partial volume effects).
2.4. SPM analysis in the brain

Statistical analyses were carried out using a multiple linear
regressionmodel embedded in the general linear model framework
of SPM8. A total of 4 regressors were included in the model. These
ases while iron increases are estimated from increased R2*. This figure is thresholded at
ffects is indicated by the color square. Abbreviations: MT, magnetization transfer; R1,



Fig. 3. Statistical parameter maps identify regions in which GM atrophy occurs with age at the p < 0.05 FWE corrected level. The statistical parametric maps were superimposed on
the mean MT map for the cohort in MNI space. Abbreviations: FWE, family-wise error; GM, gray matter; MT, magnetization transfer.
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described age, gender, total intracranial volume, and scanner.
One-tailed t tests were used to test the hypotheses that MT and R1
decrease with age in line with demyelination. A 2-tailed t test was
used to look for age-related differences in PD* and R2* with age. An
F-test was used to check for systematic differences in MPMs ac-
quired on the 2 different scanners. In all cases statistical thresholds
were applied at p < 0.05 after family-wise error correction for
Table 1
Comparison of published R2* values with age-matched data measured via the MPM
protocol

Label Literature value Age-matched VBQ measure

Globus pallidusa 33.0 (30.9e35.2) 28.32 (21.71e49.84)
Leftb 35.47 (3.3) 26.99 (2.94)
Rightb 33.99 (3.7) 25.70 (2.65)
Putamena 23.7 (22.2e26.1) 20.74 (17.49e26.90)
Leftb 25.06 (2.2) 20.65 (1.50)
Rightb 24.08 (2.2) 19.02 (1.30)
Caudatea 21.1 (20.0e22.9) 18.75 (16.06e22.25)
Leftb 24.78 (2.5) 17.77 (1.10)
Rightb 24.66 (2.9) 18.72 (1.11)
Thalamusa 20.5 (19.9e21.0) 18.50 (16.05e22.22)
Leftb 20.96 (1.2) 18.07 (1.14)
Rightb 22.12 (1.4) 18.30 (1.22)
Substantia nigrac 37.59 (3.11) 26.70 (4.08)
Leftb 31.78 (3.7) 24.14 (3.08)
Rightb 31.47 (2.9) 23.66 (2.89)
Red nucleus
Leftb 29.67 (3.3) 17.39 (1.44)
Rightb 27.39 (3.3) 16.36 (1.53)

VBQ measures are from areas defined by the AAL atlas. The substantia nigra and red
nucleus are defined by the Wake Forest University (WFU) atlas.
Key: AAL, automated anatomical labeling; MPM, multiparameter mapping; VBQ,
voxel-based quantification.
Study details (N ¼ number of subjects) are given in the following footnotes:

a Khalil, 2011; N ¼ 35, 36.7 � 13.7 years, NVBQ ¼ 93.
b Peran, 2007; N ¼ 18, 20e41 years, NVBQ ¼ 58.
c Ordidge, 1994; N ¼ 7, 47e72 years, NVBQ ¼ 63.
multiple comparisons using Gaussian random field theory as
implemented in SPM. These tests were carried out voxel-wise
across the gray matter (GM) and white matter (WM) sub-space
separately using explicit masks defining GM and WM voxels. The
masks were generated as follows: smoothed (FWHM of 3 mm
isotropic), Jacobian-modulated tissue probability maps in MNI
space were averaged across all subjects for each tissue class (GM,
WM, and cerebrospinal fluid). Masks were generated by assigning
voxels to the tissue class for which the probability was maximal.
Voxels for which neither the GM nor the WM probability exceeded
20% were excluded from the analysis. This approach was used to
ensure that each voxel was analyzed in only one subspace and that
non-brain tissue was excluded.

2.5. Labeled analysis in the brain

For comparison with previously published data and to stan-
dardize the analysis, the automated anatomical labeling (AAL) atlas
(Tzourio-Mazoyer et al., 2002) was used to define anatomic regions.
The substantia nigra and red nucleus, which are not present in the
AAL atlas, were labeled using the Brodmann atlas supplied with the
WFU toolbox for SPM (Maldjian et al., 2003). The AAL labels were
also used to extract reference MPM data from GM voxels that
showed significant age-related differences (see Supplementary
Data).

2.6. Age-related differences in the spinal cord

Age-related effects were also examined by investigating dif-
ferences in quantitative MR parameters within the spinal cord
(Freund et al., 2013) and in spinal cord cross-sectional area, which
is well established in degenerative disease and trauma (Freund
et al., 2011). MPM data were extracted as follows: the central
sagittal slice from the averaged T1-weighted FLASH volume was
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used to manually define the angulation of the spinal cord with
respect to the horizontal axis of this view, and to define the cer-
vical vertebra C2 as an anatomic landmark (performed by an
expert in spinal cord imaging, PF). The center of C2 was defined on
the axial slice containing the anatomic landmark voxel. The
boundary of the cord was determined via the nearest-neighbor
region growing. The stopping criterion was a 25% drop in signal
intensity, which was taken to signify that the WM-cerebrospinal
fluid boundary had been reached. The center of the resulting re-
gion of interest (ROI) was used to initialize region growing in the
adjacent superior slice. A total of 15 slices were included in the
analysis giving a total caudal-rostral coverage of 1.5 cm. Spinal
cord area was defined as the mean of the area across slices after
multiplying by the cosine of the through-plane angulation to ac-
count for variation in subject positioning. Mean MT and R2* values
were extracted from segments coincident with the fibers of the
spinal cord tract (bilaterally spanning 45

�
posteriorly about the

midpoint of the cord). R1 and PD* were not analyzed because both
maps required the correction of RF transmit field inhomogeneities,
the mapping of which did not extend to the cord. Linear regression
was used to examine the dependency of spinal cord MPM data on
age. One-tailed t tests were used to test our hypotheses that the
spinal cord area decreases with age, is larger in men than in
women, that spinal cord MT decreased with age and that spinal
cord R2* increased with age. The threshold for statistical signifi-
cance was set at p < 0.05.
3. Results

A whole-brain pattern of aging was identified (Fig. 2) in which
all 116 cortical areas defined in the AAL atlas contained voxels in
Fig. 4. Statistical parametric maps of regions in which R2* significantly increased with age
superimposed on the mean MT map for the cohort in MNI space. The color bar indicates th
transfer; WM, white matter.
which at least one quantitative parameter showed significant age-
related differences (see Supplementary Information).

3.1. Voxel-based morphometry

We identified significant age-related GM volume reductions
primarily in frontal regions, distributed throughout the cortex and
within the putamen (Fig. 3).

3.2. Effective transverse relaxation rate

The R2* values measured in this study showed good agreement
with published values; though typically our values were somewhat
lower (Table 1). We found significant positive correlations between
R2* and age in the putamen, the pallidum, the caudate nucleus, the
rednucleus aswell as in extensive cortical regions, particularly in the
motor cortex (Fig. 4). Most age-related differences were seen bilat-
erally. Exemplardata extracted fromthenormalizedR2*maps for the
supplementary motor cortex, caudate nucleus, pallidum, and puta-
men along with the respective linear age dependence derived from
the SPM analysis are plotted in Fig. 5. Across all structures the range
of significant R2* increase was from 0.03 to 0.22 s�1 per year.

Less widespread R2* decreases were also seen (Fig. 6). These
occurred within the medial part of the ventral surface of the frontal
lobe, along the superior occipitofrontal fascicle, the optic radiation,
and at a small number of focal locations within the corpus callosum
and the corticospinal tract.

3.3. MT saturation

Extensive significant negative correlations between MT and age
were identifiedwithinWM,particularly in frontal andparietal regions
at the p < 0.05 FWE corrected level. The SPMs (of both the GM and WM analyses) are
e t score. Abbreviations: FWE, family-wise error; GM, gray matter; MT, magnetization



Fig. 5. Significant increase in apparent transverse relaxation rate (R2*) in gray matter masked regions of the supplementary motor cortex, caudate nucleus, pallidum, and putamen
as a function of age. Similar patterns were observed in the left (circles) and right (squares) hemisphere. The lines (left dashed, right solid) depict the linear model fit. These data are
shown for illustration purposes only and were not used for any additional analyses.
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(Fig. 7). BilateralMT reduction occurredwithin theoptic radiation, the
genu and body of the corpus callosum, and portions of the cortico-
spinal tract. Significant negative correlationswere also seen in cortical
regions and in the thalamus both at focal central locations and along
the medial and posterior periphery. Data extracted from the normal-
ized MT maps are given for the Heschl gyri, the caudate nucleus, cer-
ebellum (crus I), and thalamus along with the respective linear
dependence derived from the SPM analysis (Fig. 8). The significant
age-dependent decrease in MT ranged from 0.0013% to 0.0031% per
year. Post hoc comparison showed that the rate of MT reduction over
the course of aging was significantly higher in the genu than the
splenium at 0.0019% and 0.0005% per year, respectively (p ¼ 0.008).
Fig. 6. Statistical parametric maps of regions in which R2* significantly decreased with age
superimposed on the mean MT map for the cohort in MNI space. The color bar indicates th
transfer; WM, white matter.
3.4. Longitudinal relaxation rate

Negative correlations between R1 and age were primarily
identified bilaterally along the optic radiation and in the genu of the
corpus callosum (Fig. 9). The age-correlated decrease in R1 ranged
from 0.0007 to 0.0016 s�1 per year.

3.5. Effective proton density

We identified negative correlations between effective proton
density and age in the putamen, pallidum, caudate nucleus, and the
red nucleus (Fig. 10A). We also identified positive correlations
at the p < 0.05 FWE corrected level. The SPMs (of both the GM and WM analyses) are
e t score. Abbreviations: FWE, family-wise error; GM, gray matter; MT, magnetization



Fig. 7. Statistical parametric maps of regions in which MT significantly decreased with age at the p < 0.05 FWE corrected level. The SPMs are superimposed on the mean MT map for
the cohort in MNI space. The color bar indicates the t score. Abbreviations: FWE, family-wise error; MT, magnetization transfer.
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between effective proton density and age in the optic radiation and
superior regions of white matter (Fig. 10B).

3.6. Spinal cord

The measured spinal cord area was 79.2 � 7.2 mm2 (mean �
standard deviation). The cord area was significantly larger in men
(80.7� 6.1 mm2 vs. 76.6� 6.9 mm2, p< 0.01, t score¼ 3.28) but did
not significantly decrease with age. Linear regression showed a
significant increase in spinal cord R2* with age (p < 0.05, linear
coefficient ¼ 0.031s�1 per year, t score ¼ 2.91) but not MT.

3.7. Scanner differences

A small number of voxels showed significant differences be-
tween the 2 scanners used for data acquisition. In all cases, these
were randomly distributed across the brain and maximally
encompassed less than 0.07% of the analyzed volume. In the R2*
data, 2 clusters correlated with scanner (3 voxels in GM, F ¼ 31.00
and 2 voxels in WM, F ¼ 27.19). The MT data contained 29 scanner-
related cluster (383 voxels in total, peak F ¼ 39.66) in the WM but
no voxels were identified in GM. Nine clusters (31 voxels in total,
peak F¼ 35.23) were identified in the GM sub-class of the PD*maps
but none inWM. Finally, 2 clusters were identified in the R1 maps in
GM (121 voxels, F ¼ 58.05 and 5 voxels, F ¼ 32.40) but none in WM
and no voxels were identified in the VBM analysis.

4. Discussion

The MPM approach demonstrates widespread age-related dif-
ferences in the microstructure of the human brain. The observed
differences in the quantitative MR parameters are in line with
ex vivo histologic reports and have high specificity for tissue
properties such as macromolecular, iron, and water content. The
results will inform future studies about age-related differences in
R2*, R1, PD*, and MT. This quantitative multiparameter mapping
approach offers a promising opportunity for concurrently investi-
gating a number of tissue properties and validating the MRI-based
measures against their histologic counterparts.

Decreases in MT reflect a loss of macromolecular content, typi-
cally myelin. Later-myelinating regions such as the temporal and
frontal lobes appear more susceptible to myelin breakdown than
earlier-myelinating regions such as the motor and sensory systems
(Flechsig, 1901; Kemper, 1994). The pattern of decreased MT we
have observed is consistent with this, showing high levels of
demyelination in frontal WM, a finding that is in keeping with an
anterior-posterior gradient of age-related differences in white
matter (Bartzokis et al., 2012; Head, 2004; Raz, 2000). Under the
hypothesis of later differentiating oligodendrocytes being more
vulnerable, it is expected that the genu of the corpus callosum
connecting the prefrontal lobes should be at greater risk of demy-
elination than the splenium (Bartzokis et al., 2012; Head, 2004),
connecting the occipital lobes because the latter is myelinated
earlier in life. Our data is also consistent with this. Significant
demyelination manifesting as reductions in both MT (Fig. 7, axial
slice, z ¼ þ10) and R1 (Fig. 9, axial slice, z ¼ þ11) can be seen in the
genu but not in the splenium where the rate of MT reduction with
age was significantly lower.

The interpretation of level and change in iron content is com-
plex. Under normal conditions, oligodendrocytes strongly stain for
iron, ferritin, and transferrin in the human brain (Connor et al.,
1990; Gerber and Connor, 1989; LeVine and Macklin, 1990; Morris
et al., 1992). Therefore, some of the observed age-related differ-
ences in R2* may reflect age-related underlying differences in
oligodendroglia, and perhaps by extension also myelination levels
because of the determinative role of oligodendrocytes on myelin
status. However, in various neurologic conditions iron increases are
associated with demyelination when iron is released by damaged



Fig. 8. Significant decrease in magnetization transfer (MT) in Heschl gyri, the caudate nucleus, cerebellum (crus I), and thalamus as a function of age. Similar patterns were observed
in the left (circles) and right (squares) hemisphere. The lines (left dashed, right solid) depict the mean behavior modeled by the linear fit. There appear to be nonlinear effects and
rapid decline after 60 years in all regions. These data are shown for illustration purposes only and were not used for any additional analyses.
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oligodendrocytes (Beard et al., 2009; Zecca et al., 2004); is present
in the form of hemosiderin deposition (an iron storage complex
with poor bioavailability which is associated with micro-bleeds in
AD) (Frisoni et al., 2010); or selectively accumulated in particular
structures (Jellinger and Paulus, 1990). By having multispectral
measures we can better distinguish these conflicting processes. For
example, primary motor regions are early-myelinating and can be
expected to maintain myelin levels to a more advanced age
(Kemper, 1994). Our data are indicative of significant iron increases
in themotor cortex but no differences inmyelin content. In this case
the increased iron is likely present within the iron-rich oligoden-
drocytes, which serve to maintain the myelin sheath of the motor
Fig. 9. Statistical parametric maps of regions in which R1 significantly decreased with age at
for the cohort in MNI space. The color bar indicates the t score. Abbreviations: FWE, family
area. Positive staining for ferritin and iron have been reported to
occur within astrocytes and microglia in the cerebral cortex of aged
brains (Connor et al., 1990) and may in part explain the observed
increase in R2*. Conversely, the pattern of age-dependent demye-
lination (decreased MT) concurrent with increased iron (R2*) that
could be attributed to iron release from damaged oligodendrocytes
was not prevalent in our healthy cohort but was seen only in the red
nucleus of the mid-brain. Our data also show that where reductions
in R2* occurred, they were coincident with reduced MT. This is
perhaps indicative of a loss of oligodendrocytes and associated iron,
concomitant with demyelination. This pattern was seen primarily
in the optic radiation and the superior occipitofrontal fascicle. These
the p < 0.05 FWE corrected level. The SPMs were superimposed on the mean MT map
-wise error; MT, magnetization transfer.



Fig. 10. Statistical parametric maps identify regions in which PD* significantly (A) decreased with age and (B) increased with age at the p < 0.05 FWE corrected level. The SPMs were
superimposed on the mean MT map for the cohort in MNI space. The color bar indicates the t score for the decrease with age in A and the increase with age in B. Abbreviations: FWE,
family-wise error; MT, magnetization transfer.
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structures also showed significant decreases in R1, which is
dependent on both iron and myelin stores. The age-related differ-
ences of all 3 parameters are in line with recent models of myelin
describing its effect on local magnetic susceptibility (Wharton and
Bowtell, 2012) and previous studies on relaxometry and magneti-
zation transfer observed in myelin (Koenig et al., 1990; Schmierer
et al., 2004).

Our hypothesis of significantly increased iron stores in the basal
ganglia, in keepingwith the seminalhistologic studybyHallgrenand
Sourander (1958), was confirmed. Age-dependent increases in R2*
have also been reported for the hippocampus (Bartzokis et al., 2007;
Rodrigue et al., 2013). We did not see such correlations; however,
these studies used ROI analysis as opposed to the whole brain
approach adopted here. The correction for multiple comparisons
across voxels and spatial smoothing may have reduced the sensi-
tivity of the statistical test in comparison to a targeted ROI analysis.

Thalamic volume loss is associated with cognitive impairment
(Benedict and Zivadinov, 2011). We saw significant atrophy occur-
ring with age in our asymptomatic, healthy cohort. This was coin-
cident with significantly decreased MT values, suggesting a
concomitant loss of myelination in this structure. Spinal cord at-
rophy has also been reported as a sensitive marker for disease
progression in multiple sclerosis (Barkhof et al., 2009). Our cohort
did not show a decrease in spinal cord area suggesting that age-
related atrophy was not occurring, though we cannot exclude the
possibility of small differences that cannot be observed with this
study’s statistical power.

Head position in the scanner, specifically translation in y and z
and rotation about x, was systematically related to age, our
parameter of interest. We believe this was because of postural
changes occurring with age leading to systematic positioning ef-
fects within the scanner. It is possible that position within the bore
could affect the measured R2*. For example, orientation dependent
effects of myelinated fiber tracts on R2* have been described
(Bender and Klose, 2010;Wharton and Bowtell, 2013). However, the
average change in head orientation was only circa 0.17� per year.
Using themodel of Bender and Klose, 2010 an upper estimate of the
change in R2* that could result is 0.008 s�1 per year, far lower than
the significant age-related differences observed in this cohort,
which ranged from 0.03 to 0.22 s�1 per year. Moreover, the R2*
values measured in this study are in good agreement with pub-
lished values (Gorell et al., 1995; Khalil et al., 2011; Péran et al.,
2007; Ordidge et al., 1994; see Table 1). There is only a slight bias
toward lower values in our study. We explain this by the higher
resolution 3D approach we have used, which reduces the effects of
spurious background magnetic field gradients.

Therewas negligible dependence onwhich scanner was used for
data acquisition, in line with a previous MPM multicenter study
demonstrating minimal inter-site variation (Weiskopf et al., 2013).
Those voxels that did significantly correlate with scanner choice
were sporadic rather than spatially structured. The scanner inde-
pendence bodes well for multicenter and longitudinal studies, a
typical requirement of any study monitoring disease progression or
treatment response (Barkhof et al., 2009).

It has been suggested that age-dependent changes follow a
nonlinear trajectory (Bartzokis et al., 2012; Fjell et al., 2014;
McDonald et al., 2009; Ziegler et al., 2012), whereas here we
consider only linear age-related differences. Although our cohort
included participants from each decade of the age span studied
(19e75 years) the bracket 35 to 55 years was more sparsely
sampled, which is likely to have made our analysis particularly
sensitive to linear rather than higher order differences. However,
the reduction in MT saturation seen in this study is indeed sug-
gestive of accelerated demyelination with advancing age. A sharp
decrease can be seen after the age of 60 years (Fig. 8). Early
nonlinear age-dependence is also seen in the R2* profile in the
putamen (Fig. 5) in keeping with the slower iron accumulation
reported for this structure (Hallgren and Sourander, 1958). How-
ever, the absence of children and adolescents from our cohort
means that we cannot adequately sample early nonlinear effects
such as the proposed “inverted-U” myelination trajectory
(Bartzokis, 2011; Westlye et al., 2010) or exponential iron accu-
mulation (Hallgren and Sourander, 1958). Increased biological
variation is seen at more advanced ages. Despite the fact that our



M.F. Callaghan et al. / Neurobiology of Aging 35 (2014) 1862e1872 1871
participants had no evidence of cognitive impairment, the influence
of pre-clinical degeneration on this increased variation cannot be
ruled out. We also cannot exclude the possibility of biased sam-
pling. For example, preferential sampling of high functioning older
adults (minimumMini Mental State Examination score of 28), given
the fact that our cohort was recruited from participants of other
studies within the Wellcome Trust Centre for Neuroimaging. These
complex aging effects further highlight the difficulty of making
inferences about population variance from small cohort numbers in
histologic studies. Longitudinal rather than cross-sectional studies
are best placed to elicit insight into the true aging trajectory, which
is impossible with invasive histology but feasible using the MPM
approach.

The effective proton density (PD*) measure used in this study
does not account for multi-exponential signal decay and has re-
sidual T2* weighting because of its effective 8.45 ms echo time.
Although the differential effect between GM and WM is small
(w3%) it is likely that this is why there is considerable overlap
between regions, such as the basal ganglia, that show decreased
PD* and increased R2*.

Some of the identified age-related differences may be because of
partial volume effects because of the coincidence of age-dependent
atrophy and registration errors. However, these sources of bias were
minimized by using the highly nonlinear diffeomorphic inter-
subject registration algorithm (Dartel), which has been shown to
result in maximally accurate registration (Klein et al., 2009), and by
using a 20% threshold on the average probability map to conser-
vatively partition the data into gray and white matter before sta-
tistical analysis.
5. Conclusions

We present quantitative multiparameter maps that act as sen-
sitive neuroimaging markers of age-related differences in the brain
and spinal cord microstructure over the course of normal aging.
There is complex interplay between various neurobiological factors
such as oligodendrocyte integrity, ferritin levels, myelin production,
and maintenance and neurodegeneration. The multispectral maps
provide complementary information that allows the underlying,
interdependent biological features to be more fully investigated.
Myelin and iron content combine in a mixed manner to determine
the measured R1 and PD* but directly influence MT and R2*,
respectively, increasing the sensitivity of these latter parameters to
age-related differences. MT acts as an anatomically-specific marker
for myelin and identified widespread regions in which demyelin-
ation occurred with age, including differential demyelination
within the corpus callosum that is in keeping with histologic
findings. The iron marker R2* identified increased iron levels with
age, particularly in the cortex and basal ganglia. The MPM param-
eters combine to give a multispectral whole-brain view of the
neurobiology of aging (Fig. 2). Many opportunities arise from un-
derstanding these age-related mircrostructural differences
including identifying pathologic deviations from the expected
course of aging, monitoring disease progression, and response to
treatment and stratifying disease sub-types. The VBQ approach
used here could be extended to study neurodegenerative disorders.
This study provides reference values and an estimate of population
variance from a healthy cohort over and above which we should
expect to see differences in pathologic conditions if they are to be
used as reliable measures to monitor disease status and progres-
sion. Given the profound age-related differences identified in this
study, future quantitative studies are motivated to include age as a
confounding factor to differentiate disease effects within the aging
population.
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