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ABSTRACT
We introduce the idea of using a perception-based medial point de-
scription of a biological form (such as a 2D profile of a moving
animal) as a basis for movement computing which delivers com-
putational schemes to automatically annotate movement and be ca-
pable of producing meaningful qualitative descriptions. We distin-
guish interior from exterior shape representation. Interior medial-
ness is used to characterise deformations from straightness, corners
and necks, while exterior medialness identifies the main concavi-
ties and inlands which are useful to verify parts extent and reason
about articulation and movement. We define an interior dominant
point as a well localised peak value in medialness representation,
while an exterior dominant point is evaluated by identifying a re-
gion of concavity sub-tended by a minimum angular support. Fur-
thermore, significant convex points are extracted from the object’s
form to further characterise the elongation of parts. We propose
that our evaluated feature points are sufficiently representative, as
a basis for shape characterisation, to address many of the goals of
movement computing.

Categories and Subject Descriptors
I.4.7 [IMAGE PROCESSING AND COMPUTER VISION]: Fea-
ture Measurement —representation, shape
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Medialness. Line of Action. Codons. Visualising movement.

1. INTRODUCTION
In this short communication we introduce our proposed shape

representation for movement computing applicable to animated bi-
ological objects1 which is inspired by results and techniques from
cognitive psychology, artistic rendering and animation and com-
puter vision. Figure 1 (top row) shows an artistic way to draw spe-
cific movements of an animal where the artist perceives a biological
1We present results for human-scale animals, but the method also
can be applied to smaller animals, like insects, or plants (bending,
deforming), and artistic objects like animated characters.
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Figure 1: Top row: An artistic way to draw animal forms, here
of a playful cat (Artist: c©Kelvin Chow). Middle row: Our
proposed shape representation in terms of dominant medial (in
green) and contour (convex (red) and concave (blue)) points.
Bottom row: A possible set of contour reconstructions of the
moving cat using our proposed point-based medialness repre-
sentation.

character as the combination of primitive structures (here approxi-
mate disks of various radii). Each body movement is characterised
by a particular combination in size and orientation of these primi-
tives. From the point of view of psychophysical investigations on
the perception of shape movements by humans, Kovács et al. have
shown that such articulated motions can best be captured via a min-
imal set of dominant features, potentially being represented as iso-
lated points [18]. Inspired with these two approaches to the per-
ception of natural motions, we have investigated a possible com-
putational scheme based on the notion of robust medialness pre-
sented by Kovács et al. that can capture the important structural
part-based information commonly used in artistic drawings and an-
imations. The main advantage over other classical medial-based
representations of shape is one of combined compactness, robust-
ness and capacity of dealing with articulated movements. Note also
that we do not require to have a complete object segmented and thus
can produce movement computing descriptions from partial object
views (e.g. under occlusions).

Shape representation has been addressed in many ways by com-
puter scientists, including: by contour analysis [7], using Blum’s
medial axis transform (MAT) and its related 2D shock graph [16,
28], combining contour and a skeletal medial graph [21, 1], or us-
ing instead the related inner distance [23]. Closest to our approach
from a computational point of view are the contour enclosure-based



symmetries [15] and medial point transform [31] — but in these
earlier works no attempt is made to isolate and use dominant points.
Other classical approaches emphasise similarly either boundary in-
formation (e.g. Fourier, wavelet and scale-space analyses of closed
contours) or interior information (e.g. primitive retro-fitting or ap-
proximation). Most of these (medial or not) shape-based approaches
do not explicitly tackle deformations and articulated movements
[24], while we do.

Our representation, derived from the earlier proposal by Kovács
et al. [18], maps the whole shape information into a few number
of points we call “dominant”. Contrarily to classical medial-based
representations, ours is not overly sensitive to small boundary de-
formations and furthermore gives high response in those regions
where the object has high curvature with large boundary support
and in the vicinity of joints (between well-delineated parts, such as
the limbs of an animal). We augment the medial dominant points
with main contour points indicating significant convex and concave
features, thus bringing together with our notion of medialness the
main 2D point-based shape systems proposed over the years in the
fields of cognitive psychology and computer vision: the so-called
“codons” denoting contour parts [27] and high curvature convexi-
ties often used in scale-space analyses [24].

2. MOTIVATIONS & BACKGROUND
By movement computing we understand a developing discipline

which aims at providing computational schemes to automatically
annotate movement and be capable of producing meaningful qual-
itative dynamics descriptions, including the inherent quality of a
movement, its phrasing, embodiment and motivation, which are in-
tegral and should be included as parameters [8, 20].

The earliest known attempts to annotate movement were in dance
and date from the 15th century [12], but the first true annotator of
movement to include a strong qualitative element was Rudolf La-
ban who created a Labanotation in the first half of the 20th Century,
based on the idea of harmonic movement [10, p.77]. Originally
designed for choreography and dance, Labanotation has developed
into one of the most widely used systems of human movement anal-
ysis in dancing, in Jungian therapies such as authentic movement
[26], and as a tool for analysing the movement of actors [25]. Laban
created scales (similar to musical scales) in imaginary structures
made of platonic solids or “kinespheres”. His notation splits move-
ment into two components: kinematic, the quantitative position of
a body or its parts in space at one time, and the non-kinematic (har-
monic) components of Effort and Shape, where relative qualities of
expressive force are annotated [8, 20].

Prior to Laban, two important pioneers of camera systems to
record and study movement were the late 19th century chronopho-
tographers Eadweard J. Muybridge and Étienne-Jules Marey. Both
took a keen interest in uncovering the details of movement in peo-
ple and animals by filming motions in a series of sequenced stills.
Muybridge’s system used multiple cameras that shot stills spatially
separated, and the physical movement in space tripped a photo-
graph being taken. Marey further developed this idea by design-
ing different cameras, including what is to be considered the first
modern film camera replacing glass plates with sensitised paper
and later transparent celluloid film. Marey also was the first to
introduce the concept of tracking light dots over a dark suit and
background, where the dots are positioned along a skeletal frame
to study in particular the movement of humans, a technique rein-
vented in the 1970’s and modernised today in motion capture sys-
tems [17]. Muybridge and Marey proved many new facts about
movement such as studying the way a horse galloped and if its
four hooves ever completely left the ground in the process (they

do). They also made numerous studies of everyday movements
of people [5]. With the advent of cinematic film, studies of natu-
ral movement by stills was left to anthropologists recording ethnic
interactions and to the early stages of animation, where senior an-
imators drew extreme “key-frames” of action with frame timings
leaving the “in-between” drawings to be carried out by less experi-
enced animators. Even today 3D animators in games and films cre-
ate key-frames, but now the in-betweening is made with software.
Lately there has been a rise of interest in the notion of key-framing
for notating movement as it cuts out extra data [14, 13].

Animation takes motivation as a central tenet. Motion in anima-
tion cannot be discussed without referring to the twelve animation
principles first espoused by the Disney studios in the 1930’s and
still going strong today [29]: 1- Squash and Stretch; 2- Timing;
3- Anticipation; 4- Staging; 5- Follow Through & Overlapping Ac-
tion; 6- Straight Ahead & Pose-To-Pose Actions; 7- Slow In(to) and
Out; 8- Arcs; 9- Exaggeration; 10- Secondary Action; 11- Appeal;
and 12- Personality. The fact that these principles have stood the
test of time and have been adapted successfully to new methods of
animating such as in 3D Computer Graphics [19] means that they
underpin most animator’s work today every bit as much as they did
on Walt Disney’s first animated feature film “Snow White and the
Seven Dwarfs” a lifetime ago (in 1937).

With all these principles in their toolkit the animator has no prob-
lem communicating and an animated version would certainly in-
clude full body movement and motivation. It has been pointed out
by Leslie Bishko that there is some similarity between Labanota-
tion and these principles of animation in expressing the functional
aspects of movement [3]. While animation principles permit to im-
pose a specific style of movement (such as in cartoons) they lack the
depth and richness of Labanotation in exposing not only functional
aspects of movement but their detailed expression [4]. However,
animation principles do not yet form the basis of a theory which
can lead to formal models, ease of simulation and computational
implementations [9]. Similarly, Labanotation lacks complete com-
putational models, as the representation and analysis of qualia in
the notions of Effort and Shape remain very challenging, but the
theory is more developed and progress is being made [8, 30].

One important tool used in animation for controlling qualia which
offers the potential for implementation is the idea of a central line
of deformation being key to our assimilation of full body move-
ment. The Line of Action (LoA) is a single line running through
the character, which represents the overall force and direction of
each drawing. In traditional celluloid animation such as used by
early Disney full-length features like Snow White, before drawing
the full character, an animator would frequently draw in a LoA to
help determine the position of the character. By simply changing
the LoA – making it more curved, sloped or arched in a different
direction – the entire essence of the drawing can be changed. Bre-
gler et al. have investigated capturing such a contour (the LoA) as
the source of the motion and re-targeting it to other characters in
other media. Although there is not enough information in this con-
tour to solve for more complex motion, such as how the legs move
relative to each other, the investigators discovered that a surprising
amount of information comes from this single curve: the essence
of the motion is still present in the re-targeted output [6]. A more
recent application of the LoA to 3D character interactive animation
is being explored at the INRIA in France [11].

The proposed representation via medial nodes of Kovács et al.
can be seen as a potential psychologically motivated support for
the LoA, where the later is a simplification of a full medial trace.
Kovács et al. define a pseudo-distance function, Dε, which cap-
tures medial symmetries within a pair of disks defining an annulus



Figure 2: Adapted from [18]. The Dε function for a sim-
ple shape defined as a sum of boundary segments falling in-
side the annulus neighbourhood of thickness ε (thick boundary
segments within the grey ring) centred around the circle (with
centre p). M(p) is taken as the minimum radial distance from
point p to the nearest contour point.

region, where “ε” denotes the (parametric) thickness of the annu-
lus [18, 17]. Under this metric, the special nodes of the skeletal
field are those which locally maximise the amount of outline trace
they capture: they are “the most informative points along the skele-
ton” of an object in motion. Such a compact medial representa-
tion shares strong resemblance to the chronophotographs of Marey
(circa 1880) and to G. Johansson’s work (circa 1970) on the per-
ception of biological motion for point-light walker displays [17].
The Dε distance function of Kovács et al. can be computed for
each frame of a video sequence, when applied directly to avail-
able outlines. “The maxima of the function are good candidates
as primitives for biological motion computations” [18, 17]. Such a
representation of bodies in movement by a graph connecting nodes
of high (visual) interest is a potentially richer model than the single
LoA used in (cartoon) animation. It also offers an explicit marker-
less computational model and relates to human perception.

3. COMPUTATIONS
Mathematically, following Kovács et al. [18], medialness of a

point in the image space is defined as the containment of the longest
segment of boundary (information, edges) falling into the annulus
of thickness parametrised by the tolerance value (ε) and with inte-
rior radius taken as the minimum radial distance of a point from
boundary (Figure 2). On completion of medialness measurements
each pixel in the transformed image space holds a local shape in-
formation (of accumulated medialness). Assuming figure-ground
separation, thickness variations, bulges and necks of an object are
captured via interior medialness measurement, while the concav-
ities and joints are defined via exterior medialness measurement.
The interior and exterior medialness measurements give different
types of information about the shape of an object and they are pro-
cessed separately in our proposed method.

In the work of Kovács et al. it is shown that humans are most
sensitive to a small number of localised areas of medialness [18].
Our equivalent (extended) notion is defined as dominant points and
can be applied to any objects, animated or not. Dominant points
are constrained to be a relatively small number of points of high
medialness obtained by filtering out the less informative, redundant
and noisy data from the initial medialness image space.

To identify internal dominant points a top-hat transform [32] is
applied to isolate peaks in the medialness signal. Peaks are filtered
using an empirically derived threshold. The selected peaks are then
each characterised by a single representative point. To avoid con-

sidering large numbers of nearby isolated peaks which are charac-
teristic of object regions with many small deformations, only peaks
at a given minimum distance away from each other are retained.
The extraction process of external dominant point is achieved by
combining a concavity measure together with length of support on
the contour. Again, a spatially localised filtering is applied to iso-
late representative dominant points. Furthermore, to improve the
robustness of our representation, we extract a set of convex points
to capture the protrusion-like structure of an object. All the selected
internal and external dominant points along with convex points are
then considered as the representative feature points of the shape.
This computational scheme can then be applied to a set of frames
in a movement sequence.

3.1 Medialness Measure
A medial point is defined by computing the Dε function based

on an equidistant metric (to boundary segments). The Dε value
at any point in space represents the degree to which this point is
associated with a percentage of bounding contour pixels of the ob-
ject within a tolerance of value ε (after Kovács et al. [18]; Figure
2). Formally, Dε is defined as : Dε(p) = 1

T

∫
|p−b|≤M(p)+ε

db,
for any point p = [xp, yp], vector b(t) = [(x(t), y(t)] describing
the 2D bounding contour (B) of the object, and normalising factor
T =

∫
b∈B db. The metric M(p) is taken as the smallest distance

between p and the bounding contour: M(p) = min
0≤t≤1

|p− b(t)|. In

Figure 6 (top row), the medialness measurement is performed on
a standing dog showing the variation in internal medialness mea-
surement (different value of the Dε-function) by augmenting the
value of tolerance (ε) which reflects a smoothing effect: as ε in-
creases, smaller symmetries are discarded in favour of large scale
ones (external measurements are described later).

3.2 Dominant Points Extraction
Medialness measurement is currently done separately for inter-

nal and external regions, taking advantage of the perceptual figure-
ground dichotomy known to be a powerful cue in humans. This
also enables our method to consider articulated objects as potential
targets in pattern recognition tasks, as will become clearer later.
Each point in the transformed image space has some local shape
information in the form of medialness for a globally selected tol-
erance ε. Among these points, some have, cumulatively, enough
information to represent parts or ultimately the whole object. Con-
sequently, our hypothesis is that by using Kovács et al.’s definition
of medialness the entire shape of a 2D object can be confined into
a few number of salient points, which we refer to as dominant.

3.2.1 Internal Dominant Points
Medialness increases with “whiteness” in our transformed im-

ages (which proves also useful for its visualisation). To select
points of internal dominance, a “white” top-hat transform is ap-
plied, resulting in a series of bright white areas. The white top-hat
transform is defined as the difference of an input function (here an
image of medialness measures as a grey-level 2D function) with the
morphological opening of this function by a flat structural element
(a disk parametrised by its radius as a function of ε). Opening is a
set operator on functions which “removes” small objects from the
foreground of an image, placing them in the background (augment-
ing the local function set values) [32]. This filtering is followed
by a thresholding to discard remaining areas of relatively low me-
dialness significance. Figure 3(b) shows the result obtained after
applying the white top-hat transform on a medialness image 3(a).

We still require to process further the output of the top-hat trans-
form to isolate the most dominant points amongst the remaining



Figure 3: The 3 successive steps in isolating internal dominant
points: (i) medialness representation of (the interior of) a dog
figure; (ii) top-hat transform; and (iii) internal dominant points
shown as enlarged black dots.

selected medialness points which tend to form clusters. To do so, a
flat circular structuring element of radius ε/2 (but of at least 2 pixels
in width) is applied over the top-hat image — such that within the
scope of the structural element, only that locus which maximises
medialness is selected.We further impose that no remaining points
of locally maximised medialness are too close; this is currently im-
plemented by imposing a minimum distance of length 2∗ ε is taken
between any pair of selected points. We have found that in prac-
tice this is sufficient to avoid clustering interior dominant points (an
example of the result of this filtering is shown in Figure 3(c)).

3.2.2 External Dominant Points
In practice, if an object can be deformed or is articulated, salient

concavities can be identified in association to those deforming or
moving areas (such as for joints and limbs of a robot or human
body). Considering this empirical observation, the location of an
external dominant point can be made invariant to this deforma-
tion/articulation only up to a certain extent. For example, if the lo-
cation of an external dominant point is initially relatively far away
from the corresponding contour segment, a slight change in the
boundary shape near the movable part (such as an arm movement)
can considerably change the position of that associated dominant
point (Figure 4, left). On the other hand, if a point is located very
close to the contour, it can easily be due to noise or small perturba-
tions of the boundary.

Figure 4: Left: External medialness processing on a humanoid.
The articulated movement of the left arm changes the location
and orientation of the associated external dominant point. If
located far from the contour, it then proves difficult to retrieve
a (shape-based) match with the modified form. Blue arrows
show the local support for concavity while brown arrows indi-
cate the direction of flow of medialness (away from the concav-
ity). Right: Top: Detection of concave regions (on a butterfly)
using angular support. Bottom: Detected Concave points.

In practice, to resolve these issues, we define a candidate external
dominant point as a local concavity if it falls under a threshold an-
gular region, with a constraint of length of support which itself de-
pends on the tolerance value (ε). The value of the threshold (θout)
is tunable but is always less than π, which permits to control the an-
gular limit of the concave region. A locus whose concavity is larger
than θout is considered a flat point. In our experiments we tuned the
value of θout from 5π/6 to 8π/9. In association, we define an ex-
ternal circular region (of radius function of ε) centred at each con-
cavity containing candidate external dominant points. Each such
region may provide only one representative dominant point, as a
function of the maximum containment of boundary points inside
the associated annulus (of medialness) and corresponds to (our def-
inition of) the maximum length of support. Finally, we position the
representative dominant point to be near and outside the contour at
a fixed distance (Figure 4, right).

3.2.3 Convex Points
Our final shape feature is a set of convex points, where an ob-

ject has a sharp local internal bending and gives a signature of a
blob-like part or significant internal curvature structure (i.e. a peak
in curvature with large boundary support). The goal is to repre-
sent an entire protruding sub-structure using one or few boundary
points. Such protrusions are known to be important contributors
in characterising shape [27, 21, 2]. The process of extraction of
convex points is very similar to the extraction of concave loci, one
difference being in the value of the threshold angle (θin), where
π < θin ≤ 2π. In our experiments we have found useful values to
be in the range: 5π/4 to 4π/3.

Such convex and concave points are complementary to each oth-
ers and have been used in the “codon” theory of shape description:
a codon is delimited by a pair of negative curvature extrema de-
noting concavities and a middle representative positive maximum
of curvature denoting a convexity [27]. In our case we associate
these two sets with the extremities of the medial axis of H. Blum:
end points of interior branches correspond to centre of positive ex-
trema of curvature and end points of exterior branches are mapped
to negative extrema of curvature of the boundary. The reposition-
ing of these extrema near the boundary is alike the end points of
the PISA (Process Inferring Symmetry Axis) representation of M.
Leyton [22]. Together, the three sets: concave, convex and interior
dominant, form a rich enough point-based description of medial-
ness to allow us to efficiently address applications with articulated
movement for real image data.

3.3 Articulation
Anatomically, an animal’s articulated movement is dependent on

the point of connection between two bones or elements of a skele-
ton. Our results show that the concave points (representative exte-
rior dominant points) have good potential to indicate and trace such
articulations, unless the shape is highly deformed. For usual move-
ments (e.g. walking, jogging, gesticulating), these feature points re-
main present and identifiable in association to an underlying bone
junction and hence can provide a practical signature for it; exam-
ples of this property are given in Figures 5, 6 and 7.

4. DISCUSSION
We have presented early results in applying our proposed point-

based medialness representation to support movement computing.
Medialness here refers first to the model proposed by Kovács et al.
in terms of “hot spots” along the thick trace of medial measures
for the interior of a biological form (in movement or in a static
pose) [17]. We introduced here a possible algorithmic method to



Figure 6: Top row: Medialness and tolerance. Left: A dog taking a pose. Other images to the right show variations in Dε for
increasing tolerance values (ε = 2, 4, 8, 12, 16). 2nd row: The Dε-function for a sequential set of frames of the movement of a
running cat. The maxima (white spots) of the function are good candidates as primitives for biological motion representation. 3rd
& 4th rows: Illustration of the changes in feature points loci for the (same) running cat and a trotting horse. Bottom row: Similar
illustration for a few frames of a running athlete captured by E. Muybridge in 1887.

Figure 7: A running cat captured in 6 different frames. Different dominant points (internal dominant, external dominant and
convex points) are shown using colours to indicate their persistence in time: Red: present in all frames; Green: highly frequent (4-5
times); Blue: less frequent (2-3 times), and Yellow: not consistent (single occurrence). NB: Due to the animal’s movement, sometimes
dominant points overlap each other.



Figure 5: Two samples from an articulated set of Vitruvian
men (after L. da Vinci, 1490) illustrating some features of our
perception-based selection of dominant points.

extract such hot spots as dominant points of interior medialness.
We extend this representation by augmenting it with notions of
concave and convex points located near the outline and based on
local medialness measures. Note that we have applied Kovács et
al. medialness measure also to the exterior of a form, in order to
characterise concavity (a further extension of their model) and to
capture a part-based representation of shape (combining it with the
codon and PISA models). Note also that all our parameters (e.g. in
morphological filtering) are set with respect to the tolerance level
in medialness, ε, which is currently globally set to a single value.
One area of future experimentation will be to evaluate the use of
multi-scale medialness (e.g. refer to Fig.6 (top row)) versus a lo-
cally varying ε (alike adaptive/anisotropic smoothing).

Beyond perception-based models, we also are trying to capture
useful concepts from animation and more generally the art of draw-
ing forms in movement. The Line of Action which can be inter-
preted both as a simplification of medialness (a single medial curve)
and an extension (applicable to more than one form at a time) can
potentially be represented on the basis of our medial point set by
selecting and interpolating a subset. Such an interpolation can also
be used to recover a skeletal graph or sketch which can feed in
recently proposed information retrieval methods applied to video
archives of dance footage [14, 13]. We are also exploring the re-
lation between drawing techniques using primitives (like disks) to
create a scaffolding for a final drawn rendering of a moving form
(Fig. 1).

One of our motivations for wanting to relate to drawing and an-
imation is to combine qualitative with quantitative descriptions of
movement. This has lead us to also consider the field of dance nota-
tion where a rich tradition of bridging such a gap exist. Currently,
we are exploring the notation of Eshkol-Wachman which is built
from an explicit skeletal graph [20].

Our work also directly relates to the early findings of Marey and
Muybridge. Ours can be seen as providing a marker-less approx-
imation to solve the inherent problem of capturing space and time
information in one notation from an analysis based on photographic
snapshot sequences or video (Fig. 6, bottom 3 rows). We are still
exploring the full potential of this representation; e.g. in Fig. 7 we
track our feature point set over a frame sequence to highlight their
dynamics (here persistence in time).
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