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ABSTRACT
We present BackPat – a technique for supporting one-handed
smartphone operation by using pats of the index finger, mid-
dle finger or thumb on the back or side of the device. We
devise a novel method using the device’s microphone and gy-
roscope that enables finger-specific gesture detection and ex-
plore efficiency and user acceptance of gesture execution for
each finger in three user studies with novice BackPat users.
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INTRODUCTION AND PREVIOUS RESEARCH
Using a phone with only one hand is the preferred mode of
operation for many users [5]. However, input via the thumb is
often limited. Research to overcome this and enrich the one-
handed input vocabulary can be divided into three groups:

Motion as input: JerkTilts [8] uses the accelerometer to
define a set of eight quick jerk gestures performed with the
wrist. However, this technique seems unsuitable for con-
tinuous input, as moving the whole device could be tiring
and requires the user to refocus on the interface after each
jerk. ForceTap [3] uses the accelerometer to determine a tap’s
force on the screen to enrich input, but does not solve prob-
lems such as interface occlusion and reaching distant targets.
TapPrints [7] infers tap location on the front of the device
by analysing accelerometer and gyroscope data, but does not
show if and how this can be achieved on the device’s back.
Sound as input: [6] and [2] use the different sounds of
the finger nail, tip, pad or knuckle on the device’s screen, ex-
tracted via a stethoscope. However, these gestures are largely
unsuitable for one-handed input.
Back-of-device interaction: Wobbrock et al. [13] recom-
mend complementing thumb input on the front of the device
with index finger input on the back of the device. In [1] re-
searchers use an additional touch pad on the back to improve
bimanual input, whereas [12] shows how a button on the back
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of a phone can be used to show contextual information, but
does not explore its capabilities for continuous input. The
Unifone [4] uses additional, touch-sensitive hardware on the
side of a phone to use squeezes of the device for input. Al-
though a prototype, the system seems prone to inadvertent
operation, especially if sensors were attached to both sides
for ambidextrous users or if the users corrected their grip.
TimeTilt[10] shows how the phone’s accelerometer can be
used to detect a tap on the back for switching a mode, whereas
[9] uses a sound created by tapping the back of the phone to
control voice services. Finally, [14] shows how taps on a
tablet’s corners can be detected using internal sensors. How-
ever, the researchers only use sound volume and device mo-
tion for classification, but not frequency analysis (FA) and do
not explore the technique’s applicability to one-handed inter-
action or finger differentiation.
Altogether, previous work uses either additional hardware, is
not suitable for continuous input, does not solve the problem
of interface occlusion or does not exhaust the sensors’ poten-
tial. Thus, it remains unclear to what extent sound volume,
sound profile and motion can be combined to enrich one-
handed input without external hardware. Also, which finger
is most suitable for a technique using these properties on the
device’s back or side, which applications can benefit, and can
the technique be used for continuous input while addressing
problems of interface occlusion and thumb mobility?

DESCRIPTION
To approach these questions, we present BackPat (BP): A
technique for supporting one-handed input by using pats of
either the index finger, middle finger or thumb on the back
or the side of the device – not to replace but to supplement
existing on-screen input via the thumb. This way, users can
choose their preferred input method and use the BP gestures
for more functionality or facilitation of hard-to-perform tasks.
The gestures (Fig. 1) we refer to in this paper are:

• BP-index: Using the index finger to pat the upper part of
the device’s back.

• BP-middle: Using the middle finger to pat the middle outer
part of the device’s back.

• BP-thumb: Using the thumb to pat the device’s side.

For activation, the user long-taps the screen with their thumb.
Subsequent “patting” of the device’s back with index or mid-
dle finger, or of the device’s side with the thumb, will be inter-
preted as input by the system. To perform a patting gesture,
users can either lift their thumb off the screen and then pat
the back of the device, or leave it pressed down while patting.
This is subject to user preference and app configuration. A



Figure 1. The 3 BackPat gestures: BP-index, BP-middle, BP-thumb.

Figure 2. LEFT: The typical gyroscope patterns of BP-index (I), BP-
middle (M) and BP-thumb (T) when holding the device with one hand.
The full line represents the angular velocity around the x-axis, the
dashed line the angular velocity around the y-axis. For BP-index and
BP-middle the angular velocity around the z-axis is not noteworthy, but
is very high for pats of the thumb on the side of the device, support-
ing correct pat detection of the otherwise rather similar patterns T and
I. RIGHT: Averaged frequency (x-axis) magnitudes (y-axis) of each pat
between 0–2500Hz. A pat of the thumb shows a characteristic profile
between 0–1200 Hz, the middle finger between 0 and 2300 Hz – partially
resembling the thumb – and the index finger between 400 and 2700 Hz.

demo of the technique [11] showed great user interest and
learnability, but in this paper, we detail the gesture detection
and evaluate each gesture’s performance and user preference
in three applications.

Finger-specific gesture detection
To configure our gesture detector, we recorded gyroscope and
sound properties of pats made with the index and middle fin-
ger of each hand from six users (3 F, mean age 32, SD 3.74).
The gyroscope data shows characteristic patterns for each pat
(Fig. 2), allowing easy detection. However, gestures can be
falsely detected by inadvertent movement. Thus we chose the
sharp, brief changes in the volume of the microphone to act as
gesture delimiters, which are detectable even while talking in
close proximity to the phone. If the volume input rises above
a certain threshold, we compare the volume values in a short
window before and after the peak. If a pat (a high rise and fall
in a very short time) is detected we analyse the gyroscope data
to determine the finger used. This approach has two advan-
tages. First, by analysing a short window around the volume
peak, the pat can be easily distinguished from background
noise, providing a relatively reliable delimiter. Second, the
windowing delay allows enough time for the characteristic
velocity changes to be interpreted. In a following study with
the same users we adjusted the detection parameters for index
and middle finger pats and added the gyroscope characteris-
tics for pats of the thumb on the side of the device.

To further improve gesture detection, we examined the sound
created by each pat. For this we recorded the patting sounds
for all gestures from three users (1 F, mean age 30.3, SD
4.1). A Fast Fourier Transform of the data and visualisation
of the magnitude of the frequencies gives a distinctive image

Pat sound Speech Music Thumb Index Middle
Thumb 0.00 – 0.14 -0.10 – 0.20 0.58 0.37 0.44
Index 0.10 – 0.30 0.00 – 0.31 0.37 0.48 0.35
Middle 0.10 – 0.30 0.10 – 0.30 0.44 0.35 0.56

Table 1. PCC range for the pat sounds compared to a recorded parlia-
mentary speech (Speech) and to a Jungle tune (Music). Measurements
were taken twice per pat sound and sound source. PCC range is based
on the rounded average of the lowest and highest PCC measured during
60s of playback. Table also shows mean PCC of pats by six users (2 F,
mean age: 31.8, SD:3.7) compared to the pat data.

Pk (L) Pk (T) G (L) G (W) FA (L) FA (T) All (L)
T 87% 87% 85% 75% 77% 35% 91%
I 98% 98% 83% 70% 78% 63% 73%
M 97% 85% 87% 68% 78% 73% 80%

Table 2. Percentage of correctly interpreted pats by six users (1 F, mean
age: 33.2, SD:4.5, 10 pats/module) for each module (Gyro (G), Peak (Pk)
and Frequency Analysis (FA), separately in % under lab conditions (L =
sitting, low noise level), with recorded talking (T) at -0.6 to -0.3 db in the
background, while walking (W), and all modules active (All) with equal
weighting. Column All shows the importance of a tiered approach over
an equally weighted one, as overall accuracy can be lowered.

for each pat (Fig. 2). We used the averaged data as a com-
parative basis for a detection algorithm which extracts three
frequency ranges we defined to be representative of the pats
(Fig. 2) from the microphone input and calculates the Pearson
Correlation Coefficient (PCC) in relation to the comparative
data. The highest value designates the “winner” and registers
a pat of the respective finger when found to be above or equal
to 0.5. Tab. 1 shows that a differentiation of index, middle
finger and thumb patting gestures is possible due to the char-
acteristic audio profiles created by the different angles and
locations in which each finger connects with the device when
patting. However, talking partly overwrites the frequencies
of the pats and can lower the PCC down to 0.32, which is too
low for reliable detection, as this is close to the PCC observed
when comparing the pats to speech or music (Tab. 1).

As Tab. 1 suggests a minimum PCC of 0.38 for reliable de-
tection, we decided to define the following thresholds for our
accuracy test to improve detection under non-lab conditions:
Thumb: PCC >= 0.45, index and middle finger: PCC >=
0.38. We changed the minimum PCC for the thumb to 0.45
as opposed to 0.38 to reduce false identification as a mid-
dle finger pat, which is similar (Fig. 2). Tab. 2 shows the
average detection rates per pat and module in various con-
ditions. Peak and gyroscope pattern detection are the most
reliable modules, but the reliability of the latter is impacted
by walking. Good frequency and peak detection is possible
under lab conditions, but is reduced with background noise.
While pat detection based on FA might be improved with fre-
quency filtering, per-user calibration, a larger sample size or
contact microphones as recommended by [6], we consider it
not sufficiently reliable in a real life environment when used
as the sole classifier. Therefore, we allocated a minor role to
the FA: If a pat has occurred (peak) and a finger could not
be reliably determined (gyroscope) the FA is used as a fall-
back method if the PCC is sufficiently high. This way, the
FA can support detection especially when the gyroscope is
impacted by walking (Tab. 2). In return, gyroscope analysis
allows more reliable detection in a noisy environment than
the FA (Tab. 2). If a peak has been incorrectly detected, ei-



ther the gyroscope or FA pattern has to be characteristic of
one of the three pats to reduce false positives. This tiered
approach provides a relatively robust gesture detector which
can be used with either right or left hand, without extra hard-
ware and per-user calibration. However, the FA is likely to
require calibration per device, as different casings may cre-
ate different sounds. To gain an impression of the technique’s
performance, we conducted three user studies in a quiet of-
fice, using a PCC threshold of 0.5 for the FA module:

User study: Text selection
Text selection can be challenging when operating the phone
with only one hand. We wanted to find out if BP could im-
prove selection speed and which BP gesture is the most ef-
ficient and preferred by users. In particular, we compared
the performance of the BP gestures with “normal mode” (i.e.
moving the thumb left or right to drag the selection bracket).

A BP gesture extended or reduced the selection one word per
“pat”. The study was conducted using a text field 24 lines
high, a font size of 27 pixels (px) and line height of 32 px,
using the Roboto Regular font in black on a HTC Sensation
XE with a resolution of 540 x 960 px at 256 PPI. The text
field filled the whole screen, with six words per line (Fig. 3),
each in the form of “xxxxx”, surrounded by spaces. Tasks
started in the horizontal and vertical centre of the field, where
users had to select 0.5 lines, 1 line and 1.5 lines of text in
either direction using each technique three times, recorded in
milliseconds (ms). Selection of the correct words had to be
maintained for 500ms to be considered successful. Errors,
such as choosing the wrong start point or overshooting by
one word, resulted in users restarting the test round. 20 users
took part (5 F, mean age: 25.4, SD: 4.57, 18 right-handed, 2
left-handed). The study was counterbalanced by mode (nor-
mal/BP), task, and finger. We scanned for outliers using scat-
ter plots and a rule of thumb looking for values significantly
smaller or greater than three times the SD. Two participants
were removed due to missing data, one was removed due to
being unable to hold the phone, leaving 17 cases.

Results and Discussion
A Greenhouse-Geisser corrected ANOVA showed a main ef-
fect of amount of text to select F(1.81, 28.95) = 16.00, p
< .001; a main effect of mode, F(1.83, 29.24) = 6.19, p =
.007; and an interaction of mode and amount, F(4.23, 67.66)
= 10.78, p < .001. A Wilcoxon test shows that when select-
ing 0.5 lines of text beginning in the centre and ending at the
edge (Fig. 3), any BP method is faster than normal mode. As
shown in Tab. 3, BP-index is the fastest technique – signifi-
cantly faster than moving the thumb left (Z = 3.62, p < .001)
or to the right (Z = 2.68, p = .007) in normal mode. BP-index
is also significantly faster than BP-thumb, and BP-middle is
faster than normal mode. However, selecting 1 line of text
that starts in the middle of a line and ends in the middle of
the following line (Fig. 3) is fastest when moving the thumb
in normal mode. While faster than the normal mode of op-
eration in some cases, for longer selection tasks BP-thumb is
less suitable as it requires change in the grip of the phone.

Selecting 1.5 lines of text (Fig. 3), with the start in the screen
centre and the end at the screen edge, is fastest using the

M 0.5 SD 1 SD 1.5 SD
BP-T 3535 818 5395 1643 5702 2448
BP-I 2669 366 3521 583 4642 642
BP-M 2971 649 3775 710 4495 1400
N-R 3663 1384 3406 1575 3273 1048
N-L 4059 2548 3622 1479 3474 1894

Table 3. Rounded median task times (left column) and SD (right column)
of the text selection user study for each mode (M: BP and normal left and
right (N-L, N-R)) in ms for 0.5, 1 and 1.5 lines.

Figure 3. LEFT: The text selection tasks marked in red. To allow be-
ginning the selection tasks from the middle of the line, three words were
broken down into “xxx” and an “i” was appended to one. MIDDLE: List
selection task where the user has to select the grey list elements starting
at item 5. RIGHT: The target positions of the Pat-into-place study.

thumb in normal selection mode (Tab. 3). The fastest BP
technique is BP-index, which is faster than BP-thumb (Z =
2.81, p = .005. Bonferroni-Holm correction applied to each
test, starting with a divider of 10). For larger amounts of text,
normal mode outperforms BP as it allows quick jumping be-
tween lines of text which otherwise would have to be “patted”
down word by word. Thus, we recommend complementing
normal text selection via the thumb with BP: Users can cover
large areas of text by moving their thumb over the display and
fine-adjust their selection with a few pats. The better perfor-
mance of BP-index corresponds with the results of the user
feedback who judged BP-index to be easier to perform than
BP-middle and BP-middle to be easier than BP-thumb.

User study: Multiple selection
Another application of BP is multiple selection of list items.
Users create an initial selection using their thumb, and sub-
sequent BP-index or BP-thumb gestures extend the selection
upwards. Using a BP-middle gesture will shrink the selec-
tion or extend it downwards. This configuration was deemed
logical by users. We asked 24 users (6 F, 21 right-handed,
2 left-handed, 1 ambidextrous) to select either three, six or
eleven consecutive list items (Fig. 3) three times. Selection
started mid-list and mid-screen and had to be performed up
and down, with task completion time recorded in ms. This
way, we compared the performance of BP-index, BP-middle,
BP-thumb and moving the thumb up and down using direct
tap (normal mode). The study was counterbalanced by mode
(BP/normal) and task. The data had no outliers.

Results and discussion
An ANOVA showed a main effect of amount, F(1.28, 29.52)
= 353.21, p < .001; a main effect of mode, F(1.96, 45.18)
= 8.10, p = .001; and an interaction of amount and mode,
F(4.54, 104.51) = 10.40, p < .001 (G-G correction applied).

Here, BP shows potential for reducing selection time for six
items or more. A Wilcoxon test (Bonferroni-Holm correction



M 3 SD 6 SD 11 SD
BP-T 1236 646 2436 1466 3680 1975
BP-I 1073 548 1837 534 3071 991
BP-M 1728 2071 2764 1732 4352 3147
N-U 939 482 2544 1276 5704 1139
N-D 920 393 2439 815 5660 1520

Table 4. Rounded median task times (left column) and SD (right column)
for each mode (M: BP and normal up and down (N-U, N-D)) in ms for
selecting 3, 6 and 11 items in a list.

applied starting with a divider of 10) showed that when se-
lecting 11 items in a list, BP-index is the fastest approach,
being faster than BP-thumb (Z = 3.11, p = .002), BP-middle
(Z = 3.51, p < .001) and normal mode (Z = 3.97, p < .001).
BP-thumb is also faster than normal mode. When selecting
six items, BP-index is again the fastest technique (Tab. 4),
being significantly faster than using the thumb downwards in
normal mode (Z = 3.34, p = .001); faster than using the thumb
upwards in normal mode (Z = 3.26, p = .001); faster than us-
ing BP-middle (Z = 4.09, p < .001); and faster than using BP-
thumb (Z = 3.26, p = .001). BP-thumb is also faster than mov-
ing the thumb up in normal mode (Z = 3.97, p < .001). When
selecting three items (Tab. 4), normal mode outperforms BP
mode. The fastest BP method is BP-index, which is signifi-
cantly faster than BP-middle, Z = 3.26, p = .001). BP-middle
is the slowest, being significantly slower than BP-thumb (Z =
3.20, p = .001). For selecting only three items, direct selec-
tion seems fastest due to the cost of grip adjustment.
We recommend using BP as a complementary method: Small
selections should be performed using direct tap, whereas
larger selections can benefit greatly from using the BP tech-
nique. With BP-middle being the slowest BP technique, we
recommend BP-index for extending a selection upwards and
BP-thumb for extending a selection downwards. This corre-
lates with the evaluation of the user feedback, who preferred
BP-index over BP-thumb and BP-thumb over BP-middle.

User study: Reaching distant targets
In a third study we examined BP’s applicability to facilitat-
ing interaction with distant targets, which we termed Pat-
into-place (PIP). Users can perform a BP gesture to move
targets into the thumb’s reach by touching the screen and sub-
sequently patting the device. This will move targets at the top
or bottom of the screen to the level of the thumb, using ei-
ther BP-index or BP-middle (Fig. 3). While selecting targets
directly was faster than using PIP, users felt that PIP made
reaching the elements faster and easier than direct access.

CONCLUSION AND FUTURE WORK
This paper has contributed the following over previous work:

• Synthesis of audio profiles, volume changes and gyroscope
data can be used to produce three novel off-screen patting
gestures to support one-handed input, allowing reaching
distant targets as well as continuous input without inter-
face occlusion and extra hardware or per-user calibration
for both hands. Using these properties in a tiered approach,
gestures can be detected even if one component fails.

• The quantitative performance of thumb, index and middle
finger for performing these off-screen patting gestures and
user preference for each. This varies by application, but
users generally prefer index finger gestures.

This paper shows that BackPat can help to improve one-
handed interaction, either as a means of direct input or as
a “facilitator”. However, future work will involve extensive
comparison to existing techniques to better judge its impact.
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