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Abstract

Background: We introduce a method for quickly determining the rate of implicit learning.

Methodology/Principal Findings: The task involves making a binary prediction for a probabilistic sequence over 10
minutes; from this it is possible to determine the influence of events of a different number of trials in the past on the current
decision. This profile directly reflects the learning rate parameter of a large class of learning algorithms including the delta
and Rescorla-Wagner rules. To illustrate the use of the method, we compare a person with amnesia with normal controls
and we compare people with induced happy and sad moods.

Conclusions/Significance: Learning on the task is likely both associative and implicit. We argue theoretically and
demonstrate empirically that both amnesia and also transient negative moods can be associated with an especially large
learning rate: People with amnesia can learn quickly and happy people slowly.
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Introduction

The process by which we can incidentally acquire knowledge of

the structure of the environment without being aware of the

knowledge is called implicit learning [1,2]. Implicit learning is a

fundamental process involved in mastering music, languages,

social and cultural rules, perceptual-motor skills, and almost any

domain involving the gradual refinement of judgment or action

[3,4]. Implicit learning is normally investigated by requiring

people to learn complex structures, like finite state grammars or

complex control systems [5]. Such tasks are ill-suited for

determining an individual’s effective learning rate, because a

neural network or other model will typically have an optimal

learning rate in the middle of its range with either a very high or

very low learning rate producing slower learning overall for the

system on such complex tasks [6]. Perhaps for this reason,

researchers have not systematically addressed the question of what

factors influence implicit learning rate per se, despite the

fundamental nature of the question (though cf [7] outside the

context of implicit learning paradigms).

We introduce a task to measure the learning rate of a person

quickly and simply. A fast or large learning rate means, by

definition, that each trial changes strength of prediction by a large

amount, and thus recent trials will have a large influence on the

current prediction. Consequently, more distant trials will have a

relatively smaller influence. Conversely, a small (slow) learning rate

means, by definition, that each trial introduces a small change to

strength of predictions, prior knowledge is changed only

marginally, and distant trials will have a relatively strong influence

on current predictions. Thus, for example, on a simple

conditioning task, a large learning rate corresponds to learning

the simple association quickly.

In our task, the participant makes a series of binary predictions,

e.g. whether a probabilistic stimulus will appear on the left or the

right. Our sequences were all in fact random. Despite the random

nature of the sequence, a learning device will on any given trial be

influenced by the idiosyncratic pattern of past trials to have an

expectation of right or left. We correlate what the participant

predicts on a trial with what happened one trial back, two trials

back, etc. The random nature of the sequence means each of these

correlations is independent. That is, each correlation directly

indicates the influence of events a given number of steps in the past

on current predictions regardless of what happened on any other

number of steps into the past. If a manipulation increases learning

rate it will show in the plot of correlations against number of trials

into the past: Correlations of the current prediction with recent

trials will increase and correlations of the current prediction with

distant trials will decrease. The simplicity of the task is what allows

it to be a tool for clearly measuring learning rate.

In the first two experiments we demonstrate relevant properties

of our method as a measure of implicit learning rate, namely that it

involves associative learning rather than simply conceptual

priming, and it also involves the phenomenology of guessing,

characteristic of implicit learning. In the second two experiments
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we motivate the method by illustrating its use in particular

domains, showing how it sheds light on amnesia and also on the

way emotional stimuli influence learning. Knowing learning rates

can allow surprising conclusions in a range of psychological

domains.

Experiment 1

Experiment 1 explored whether the learning on the task was

associative or involved just conceptual priming of ‘‘left’’ or ‘‘right’’.

We tested the associative nature of learning on the task by having a

distinctive context (a tone) associated with most trials, but absent

on every fourth trial. In classical conditioning, more salient stimuli

acquire more associative strength than less salient stimuli, a

phenomenon called over-shadowing [8]. Less salient stimuli may

acquire very little associative strength because of the presence of a

salient stimulus. Thus, if people are learning to associate

contextual cues with the prediction for left or right, removing

salient cues should reduce the reliance of the prediction on past

trials. That is, if associative learning has occurred, then there

should be a weaker dependency of predictions on past trials for no

tone trials than for tone trials.

Methods
Participants. Thirty-four students from the University of

Sussex participated. The protocol used in this and subsequent

experiments was approved by the University of Sussex School of

Psychology Research Governance Committee following the

guidelines for human research of the British Psychological

Society. Written informed consent was obtained from all

participants in all experiments.

Procedure. On each trial the word ‘‘ready’’ was first

displayed for 400 ms. On tone trials, there was a simultaneous

500 Hz tone; ‘ready’ was displayed in white Sanserif Turbopascal

size 8 font. By contrast, every fourth trial had no tone (that is,

there were always three tone trials between every no-tone trial),

and ‘ready’ was displayed in yellow Gothic size 4 font. Participants

were then instructed to press Z or M to predict left or right

respectively, which they did in their own time. A square was

displayed randomly on the left or right for 400 ms; on tone trials it

was coloured blue and on no tone trials it was yellow. Finally there

was a wait of 800 ms to make sure the tone of the next trial was

heard as a warning for that trial and not a response to the previous

one. There were 300 trials in total. Each participant experienced a

different random sequence.

Results and Discussion
In experiment 1 participants were presented with a majority of

trials involving a tone accompanying the ready prompt and in

some trials the tone was missing. Figures 1 and 2 show the Pearson

(i.e. phi) correlation of current prediction with where the square

actually was from one to ten trials back for experiment 1. For

example, for one trial back, the correlation shows how strongly

what happened on the just preceding trial influenced the

prediction on the current trial. Note that this is not the influence

of the subject’s prediction in the previous trial on the current

prediction - but the influence of where the square actually just was

in the previous trial on the current prediction. If the learning rate

was one, a single trial would result in maximum associative

strength for whatever just happened, and so prediction would

correlate one with the event one trial back. With a learning rate of

one, if the square had been on the right on the previous trial, the

subject would predict right 100% of the time on the next trial (and

the same for left). Thus, of necessity, the correlation with all trials

more than one trial back would be zero. On the other hand, if the

learning rate was less than one, the correlation with events one

trial back would be less than one, and events further back could

influence prediction. Thus, the profile of influence over time gives

information about learning rate. Further, only with a learning rate

of zero would there be no influence on any trial; thus a general

influence from the trials overall indicates learning occurred.

Figure 1 shows the data for tone trials and Figure 2 for no tone

trials. The average correlation of predictions with what happened

for trials one to ten back was detectably higher for tone trials (.03,

SD = .04) than no tone trials (.01, SD = .07), t(33) = 2.03, p = .05,

dz = 0.35, supporting the claim that learning in the task is

associative. On the tone trials, overall the correlations were above

chance, t(33) = 3.77, p = .001, 95% CI [.013, .043], showing that

overall people were influenced by past trials; conversely, for the no

tone trials the correlations were not on average detectably above

chance, t(33) = .96, p = .35, 95% CI [–.013, .036]. While the latter

result may be due to the larger standard errors for the no tone

trials, the difference between tone and no trials cannot be due to

larger standard errors in the latter, as the difference is significant.

In sum, people’s learning was influenced by context with evidence

of learning particularly when the context was relatively common.

If learning on the task consisted merely of non-associative priming

of the abstract concepts of left and right (i.e. if seeing something on

the left primed a tendency to respond left regardless of context)

then the presence or not of a tone would be irrelevant. Associative

learning predicts an influence of context, as we found.

The results do not illuminate the basis of the associative

learning, for example whether based on exemplar coding of a

whole trial (e.g. tone plus side of square) (cf [9]) rather than a

strength-based mechanism (like Rescorla Wagner). We can be sure

that whatever the context-linking mechanism, however, it involves

developing sensitivity to several trials in the past, so is not based on

a memory of just one trial back (contrast [10]).

[11] and [12] used a similar task as ours, but with a reaction

time measure of learning. Participants had to press a button when

a stimulus appeared, which could be indicated by a tone. [12]

argued (contrary to [11]) that rather than associative learning,

response priming could account for the RT benefits, i.e. people press

a button faster when they have just pressed it. While this is a

possible explanation in their task, in the current task subjects make

a prediction about a random stimulus so repeating the response of

the previous trial would not produce any sensitivity of the current

response to the stimulus location on the previous trial. Yet what we

show is strong sensitivity of the current response to what the

stimulus was on the just previous trial. Thus, this sensitivity cannot

be response priming.

A weakness of the method is illustrated by the negative

correlation three time steps back. Associative learning would only

produce positive correlations. [13] found that when people were

asked to predict a binary event (presence or absence of an air puff),

such predictions were susceptible to the gambler’s fallacy, even

when an eye-blink response showed standard conditioning. That

is, the more often an air puff followed a tone, the less subjects

expected it after a tone. Figure 1 illustrates that for the conditions

of our method (including the rapid time scales: [13] had an

interval of 10 seconds between trials instead of less than a second

we used), the gambler’s fallacy is swamped by a process producing

positive correlations, except for three trials back. Nonetheless, the

contribution of the gambler’s fallacy to our findings is an

important issue which we consider again in the discussion, with

additional analyses.

Indeed, an alternative interpretation of the difference between

tone and no trials is that the diminished sensitivity to past trials in

Measuring the Speed of Unconscious Learning
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the latter case reflects not diminished associative learning but an

enhanced gambler’s fallacy tendency on no tone versus tone trials.

However, a change in context has been found to reduce the

tendency to use the gambler’s fallacy (with a coin toss) [14],

rendering gambler’s fallacy a less plausible explanation of

experiment 1.

As the structure to be learned is minimal (i.e. the sequence is

random) people are learning spurious correlations when they

become sensitive to past trials. In order to show that learning does

occur on the task when there is real long term structure, 60 subjects

were ran on the task (all trials no tones) where the probability

systematically changed over trials. Specifically, for half the

participants, for the first 120 trials the probability of left was 60%,

then for 40 trials it was 50%; then for 120 trials it was 40%; for the

other half of the participants the blocks occurred in reverse order.

While people did not probability match perfectly, there was a 9%

change in the actual probability of the stimulus occurring on the left

or right in the final rather than first block, the probability of people’s

responses changed by 6% in the appropriate direction, t(59) = 4.09,

p,.0005, illustrating that people do learn structure in the task.

Experiment 2

In experiment 2 we sought to determine the implicit nature of the

knowledge. Implicit learning is a process by which people acquire

knowledge of the structure of an environment without being aware

of what that knowledge is [15]. In addition, implicit learning

involves not only unconscious structural knowledge but also on

occasion, produced by that structural knowledge, expectations

which people are unaware of having [16–18]. Thus, in experiment 2

we determined if people were aware of having any knowledge.

Methods
Participants. Fifty participants were recruited from the

University of Sussex students and alumni to obtain a range of

ages (20 to 67) so that any effect of age on the task could be

controlled for when investigating amnesia below. These

participants are the normal controls for the amnesic patient in

experiment 3, and discussed further below.

Procedure. The timings were the same as in experiment 1. After

‘ready’ was displayed for 400 ms (no tone was sounded), participants

were instructed to press the X key if they purely guessed left; Z if they

had any confidence in a left prediction; N if they purely guess right;

and M if they had any confidence in their right prediction. Participants

were told that despite the fact that the sequence was random they may

develop expectations of left or right; if they are aware of any

expectations they should indicate some confidence.

Results and Discussion
Experiment 2 asked people about their phenomenology. If people

are sometimes unaware of expectations people should be influenced

by past trials when they believe they are purely guessing. In

experiment 2, people said they were guessing on 66% (SD = 24.5%)

of trials. On those trials, predictions were influenced by past trials,

the average correlation of predictions with what happened for trials

one to ten back was .02 (SD = .04), significantly above zero,

t(49) = 2.64, p = .011, d = 0.37. On trials in which people were sure,

the average correlation was .00 (SD = .08).

In the applications to particular domains below we will

distinguish between recent and distant influences on current

predictions. To provide a measure of recent influences, the

correlations of current prediction with past occurrences of the

square for one and two trials back were averaged together. To

provide a measure of distant influences, the correlations for four to

ten trials into the past were averaged together. The division is

based on the predominance of the gambler’s fallacy at three trials

back only. We use the same division in the remaining experiments.

When people said they were guessing, the mean level of recent

influence was .07 (SE = .018), significantly different from zero,

Figure 1. Results for testing whether learning is associative. Correlation of current prediction with what happened on the nth trial in the past
plotted against trials into the past (n). Figure 1 shows the data for tone trials.
doi:10.1371/journal.pone.0033400.g001
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t(47) = 3.88, p,.0005, d = 0.55, and the mean level of distant

influence was .01 (SE = .005), significantly different from zero

t(49) = 2.17, p = .035, d = .31. Thus, people showed significant

learning of both recent and distant events even when they thought

they were purely guessing. The corresponding figures for when

people were partially sure for recent and distant influences were

.06 (.035) and .00 (.01).

Experiment 4 provided further data on people’s learning when

they believed they had used guessing or intuition, using different

stimuli than experiment 2. In Experiment 4 it is argued that mood

will affect learning, and either a happy or a sad mood was induced.

Only the sad condition is analysed here because the happy

condition eliminated any clear signs of learning overall. Partici-

pants reported guessing or using intuition on 65% (SD = 25.3%) of

trials indicating the phenomenology characteristic of implicit

learning on a majority of trials. On those trials, predictions were

influenced by past trials, the average correlation of predictions

with what happened for trials one to ten back was .02 (SD = .03),

significantly above zero, t(26) = 2.77, d = 0.53, p = .01. On trials in

which people were using rules or recollections, the average

correlation was .00 (SD = .10).

In sum, a majority of trials involved a phenomenology

characteristic of implicit learning, i.e. feelings of guessing or of

intuition, while demonstrating sensitivity to structure. Having

established that the method does measure the rate of specifically

implicit learning, we turn now to consider two applications of the

method.

Experiment 3

In experiment 3 we applied the method to understanding

amnesia. People with anterograde amnesia, following damage to

the temporal lobes and underlying regions, have difficulty creating

new explicit long-term memories resulting in major impairments

in recalling post-morbid events. Nonetheless, they can be near

normal in acquiring procedural skills [19]. A standard explanation

is that there are different memory systems, for example a

procedural one and also an episodic or declarative one, and

people with anterograde amnesia have damage only to the latter

[20]. Another explanation is that damage to the temporal lobes

changes the learning rate of a single system (or at least of a relevant

system). Two possibilities are that amnesia is a result of (1) an

increase or (2) a decrease in learning rate compared to normal. We

consider each possibility in turn.

Perhaps people with amnesia have a small learning rate on all

tasks [21–23]. Thus, they cannot perform one-shot learning like

storing one-off episodes in their life, but they can still fine tune

procedural skills over many trials, which requires a small learning

rate. Shanks and his colleagues have simulated learning in

complex tasks and fitted the data by assigning people with

amnesia a lower learning rate than healthy controls. This evidence

is suggestive but depends on complex tasks where performance can

be made worse by either an increase or a decrease in learning rate

from its optimal value. Here we explore the relation between

amnesia and learning rate using our method where there is a more

transparent relation between data and learning rate.

While the hypothesis that amnesia is associated with as small

learning rate seems plausible, it has some counter-intuitive

consequences. If amnesia is associated with a smaller learning

rate, each new trial makes a small contribution to associative

strength, so associative strength depends on a proportionately

greater influence of past trials. In that sense, learning rate is a

measure of memory into the past: The smaller the learning rate,

the longer the memory into the past. On these grounds one might

expect that amnesia is associated with a large learning rate:

Responses depend mainly on only the last trial or two and hence

Figure 2. Results for testing whether learning is associative. Correlation of current prediction with what happened on the nth trial in the past
plotted against trials into the past (n). Figure 2 shows no tone trials. Figure 2 is based on fewer trials than 1, hence the wider confidence intervals. The
overall level of correlation is detectably stronger for Figure 1 rather than 2, indicating context is important.
doi:10.1371/journal.pone.0033400.g002
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memory into the past is short. For example, with a learning rate of

1, current predictions would depend completely on the one

previous trial and memory would go only one time step into the

past.

It is likely people adjust learning rates to different tasks. In a task

with the random structure we used, there is no ‘‘optimal’’ learning

rate: all strategies will lead to the same performance. In a slowly

changing world, small learning rates will average out the noise by

taking into account many trials, and in a quickly changing world, a

faster learning arte will more effectively track these changes. Thus

we expect normal people to have relatively small learning rates on

our task. The question is whether amnesic people will have a small

learning rate on this task also.

Methods
Participants. JC is discussed in chapter 4 of [24], referred to

as case ‘‘Jay’’. JC suffered an aneurysm at the age of 20, resulting

in severe anterograde with virtually non-existent retrograde

amnesia. An MRI scan indicates lesions are restricted to the

hippocampal area. On the Wechsler Memory Scale, immediate

recall is 8 (normal) and delayed recall is 0 (severely impaired). He is

severely impaired also on the Rivermead Behavioural Memory

Test and recall of the Rey-Osterreith Complex Figure. By

contrast, recall of childhood and (pre-morbid) early adult life is

normal.

At the time of testing JC was 42 years old. We recruited 30

University of Sussex students and alumni to create an even spread

of ages from around 20 s to 60 s; mean age was 40.1 years

(SD = 15.8), range 20 to 67. The correlation of recent influences

with age was .05, not detectably different from zero, 95% CI [–.40,

.32]. The correlation of distant influences with age was –.26, also

not detectably different from zero, 95% CI [–.57, .11]. To increase

power for comparing with JC, this sample was combined with

another of 20 Sussex students, aged in their 20 s, and the

combined sample of 50 students and alumni used as the controls

for JC. Note that as JC was a University student when he suffered

his aneurysm, all controls were University educated.

Procedure. The same procedure as experiment 2 was used.

JC performed the task on 18 separate days, for 300 trials on each

day. Each control participant performed the task once, for

300 trials.

Results and Discussion
Experiment 3 tested a dense amnesiac, JC, and matched

controls. Figures 3 and 4 show the profile of correlations of current

predictions with what happened for from one to ten trials into the

past for JC and the normal controls in experiment 3. The pattern

is consistent with JC having a large rather than small learning rate.

The strength of recent influences (as defined above) was stronger

for JC (.25, SD = .13) than for controls (.09, SD = .13), t(66) = 4.56,

p,.0005, d = 1.24, while the strength of distant influences (as

defined above) was stronger for controls (.01, SD = .03) than for JC

(–.01, SD = .02), t(66) = 2.73, p = .008, d = 0.79. The data provide

impressive support for the theory that people with amnesia, at least

on this task, have an exceptionally high learning rate, and against

the theory that people with amnesia have a generalised low

learning rate. Note the evidence applies separately for recent and

distant trials: One cannot try to e.g. explain away the evidence just

for recent trials because the distant trials also provide evidence that

JC has an especially large learning rate (and vice versa).

Other paradigms have found a range of results for the rate of

conditioning for people with amnesia. For example, people with

amnesia can show slower trace eye blink conditioning compared to

controls [25], and equivalent delay eye blink conditioning [26].

Thus, we do not claim that people with amnesia have a

generalised large learning rate, nor that a single system explains

human learning (e.g. see [27] and [28] for dual systems

approaches to learning in general). Our working hypothesis is

that people normally do not have a fixed learning rate, but adjust

according to how slowly the world appears to be changing and the

amount of noise that needs to be averaged out. In a noisy slowly

changing world small learning rates are optimal because they

average the noise out of as many trials as possible. In normal

people, learning may proceed by selecting from multiple learning

devices for the one with the most effective learning rate for the task

at hand (cf [7]). Thus, normals have a relatively low learning rate

on the current task (random probability structure static over many

trials), but a relatively large learning over a few conditioning trials

with a clear signal. People with amnesia may be more rigid in the

learning rate they can settle on. The task we have introduced

provides a simple environment in which such issues can be

explored.

Experiment 4

In experiment 4 we applied the method to understanding the

role of emotion in learning. According to the ‘‘affect as

information’’ hypothesis [29–30] mild transient affective feelings

arising with the performance of a task may be experienced as

feedback about one’s performance. Success feedback should lead

to use of prior knowledge and failure feedback to learning [31–

32]. For example, people surreptitiously induced to be sad rather

than happy rely more on stereotypes in social judgments. If the

‘‘affect as information’’ argument applies to implicit learning,

then a surreptitious induction of a sad mood should indicate to

the learning system that what it knows is not working: It can’t rely

on prior knowledge but needs to attend to the present. That is a

sad rather than happy mood should be associated with a larger

learning rate. Similarly, according to the theory, happy moods

lead to more global processing and more integration [33]; i.e.

happy moods should lead to a small learning rate, involving a

greater integration of information over time.

Methods
Participants. Twenty-seven participants from the University

of Sussex participated in the sad condition and 29 in the happy.

Procedure. In this experiment the random stimulus to be

predicted was a face, which appeared on the left or right of the

screen. The same timings were used as in the previous experiments

on half the trials. On these trials an emotionally neutral male or

female face was used as the stimulus. The remaining half of the

trials (randomly intermixed with the neutral trials) were the mood

inducing trials. The neutral trials were inserted to decrease

habituation to the mood inducing stimuli. On the mood trials, the

word ‘ready’ was displayed for 200 ms, the word ‘sad’ or ‘happy’

(depending on group) was displayed for 100 ms, then the word

‘ready’ was displayed for 200 ms (thus, the word ‘ready’ was

displayed for 400 ms altogether, as in the previous experiments).

The neutral face was displayed (on the left or right) for 200 ms,

then either a sad or happy face (depending on group) was

displayed for 150 ms, and the neutral face again for 200 ms. All

faces were equally likely to be male or female.

On all trials, participants were instructed to press the X key if

they chose left because they were purely guessing or using

intuition; Z if they using some conscious rule or recollection of a

pattern to predict it will appear on the left; N for choosing right on

the basis of guessing or intuition; and M for choosing right on the

basis of a rule or recollection.

Measuring the Speed of Unconscious Learning
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At the end of the experiment participants rated on a 1 to10 scale

how happy, sad, and alert they felt.

Results and Discussion
In experiment 4, we investigated the effect of mood on learning

rate. Mood valence was measured by subtracting the sad rating

from the happy rating. Participants in the happy condition had a

more positive valence (3.1, SD = 3.0) than those in the sad

condition (1.0, SD = 3.0), t(50) = 2.58, p = .013, d = 0.72. Usefully,

participants in the happy condition were not detectably different in

alertness (4.2, SD = 2.0) than those in the sad condition (4.3,

SD = 2.2), t(50) = .10, p = .92, d = .02, 95% CI [–1.2, 0.7],

consistent with the manipulation changing only the valence and

not the arousal of participants’ mood.

The mean recent influence in the sad condition (.13, SD = .11)

was, as predicted, greater than that in the happy condition (.03,

SD = .16), t(52) = 2.54, p = .014, d = .70. The mean distant influence

was not detectably different between sad (–.00, SD = .02) and happy

conditions (.00, SD = .02), t(53) = 0.64, p = .47, d = .20, 95% CI on

the difference [–.01, +.01]. A Bayes factor (see Materials and

Methods for explanation) indicated the data for recent influences

provided, relative to the null, strong support for the theory the sad

condition had a higher learning rate than the happy, B = 11.86; and

the data for distant influences were neutral between this theory and

the null, B = 0.77. Thus, together the data for recent and distant

influences provide strong support for the theory, overall

B = 11.86*0.77 = 9.13. That is, the rate of implicit learning is

sensitive to the use of mood inducing stimuli consistent with the

predictions of the affect-as-information hypothesis (cf also [34]).

Discussion

We introduce a method for measuring learning rate in a very

simple prediction task. Its virtue is its simplicity and the

transparency by which learning rate shows itself. The task is

premised on implicit learning involving a strength of prediction of

an event. Specifically, the method assumes that the strength of

prediction on a given trial can be represented as a weighted mean

of the strength on the previous trial and of what happened on the

current trial. This assumption is a good characterisation of most

models of implicit learning, including the Rescorla-Wagner rule in

associative conditioning, error correction in connectionist net-

works, Kalman filters as used in models of reinforcement learning,

or chunking models in which the strength of a chunk is

incremented less as chunk strength approaches a ceiling

[21,35,36]. The weighting for the current trial is the learning

rate: The more the current trial is weighted, the more impact each

trial has on changing the strength of prediction. The consequence

of such a rule is that strength on a given trial is influenced by past

trials in an exponentially decaying way. The slope of the decay is

governed by learning rate: The larger the learning rate the

stronger the influence of recent trials and the weaker the influence

of past trials. This property of the learning rate can be used to

measure it. To make measurement clear, we also used a random

sequence so the influence of each trial on current predictions does

not need to be adjusted by what happened at other time points;

each trial is independent, thus making computations clean.

We show that people often develop expectations sensitive to

events in the past; that is, there is learning. Further the

phenomenology associated with this learning is largely that

associated with implicit learning [16–18,28,37] (compare [38]

for a similar task). Although people sometimes use conscious rules

and recollections, they largely rely on guessing and intuition.

Further, the learning people show is sensitive to context, consistent

with it being associative.

We illustrate the usefulness of the method by showing it sheds

light on important psychological questions. Paradoxically we argue

that amnesia should be associated with a large learning rate in

Figure 3. Results for testing normal controls. Correlation of current prediction with what happened on the nth trial in the past plotted against
trials into the past (n).
doi:10.1371/journal.pone.0033400.g003
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certain situations: A large learning rate means a small memory

into the past and this is just what we find with a case study with a

very dense amnesic. Future research could address the conditions

under which amnesia is associated with an especially high or low

learning rate on different versions of the task. According to the

Bayesian approach, learning rates will be adjusted according to the

probabilistic structure and dynamics of the domain (e.g. [39]). On

this approach, people with amnesia may have trouble adjusting

learning rates to deal with domains with learning rates that are

optimally low (i.e. dealing with long time scales), but they will not

in general be quicker than average to implicitly learn (for example,

on a task that optimally has a relatively large learning rate). [40]

found in an implicit spatial context learning task that presenting

subjects first with a block of trials with no regularity to be learned

inhibited subsequent learning of a regularity. Thus, using a

genuinely random sequence may induce low learning rates in

normal people on our task. Future research could explore if

constantly changing the probability of the outcome, e.g. with a

sinusoid, increases learning rate (note that the dependence

between trials would then have to be partialed out to determine

the profile of influence of past trials).

We use the affect-as-information hypothesis to predict that sad

rather than happy moods should be associated with a large learning

rate. Showing people sad faces as stimuli rather than happy ones

indeedproduceda larger learningrate.Futureresearchcouldusefully

explore therelationbetweenemotionand learningrate.Forexample,

can happy and sad images implicitly give success and failure feedback

independently of mood? Conversely, is mood associated with a

change in learning rate when the target stimuli are emotionally

neutral? We hope these applications motivate other ideas in

researchers. For example, we showed the importance of the valence

of stimuli in affecting learning rate, but what about arousal, which we

controlled? In general, how does the rate of learning depend on

different contents? How does learning rate vary over time on a task or

with different populations, or by drug induced changes to different

neurotransmitter systems?

A potential weakness of the method is that associative learning is

not the only process that the task engages; people are also liable to the

gambler’s fallacy [41], as is evident in Figures 1 and 2 for three time

steps back, and four time steps back in the case of JC, where there is a

tendency to predict the opposite to what happened. Overall, this

influence is weak compared to the effect of implicit learning. In order

to ensure the influence of the gambler’s fallacy was disentangled from

implicit learning, trial-by-trialdecisionswere fit byamodel consisting

of a) a Rescorla-Wagner learning device with its learning rate, and

simultaneously b) a gambler’s fallacy process with its equivalent rate

parameter (see Materials and Methods). Controlling for gambler’s

fallacy in this way, JChadanestimated learning rateof .80 (SD = .14),

stilldetectablyhigher thanthatofcontrols (.63,SD = .32), t(60) = 3.01

(df adjusted for unequal variances), p = .004, d = 0.69. In fact, there

was no detectable difference in gambler’s fallacy rate parameter

between JC and controls (nor between people in the happy and sad

conditions of the mood experiment). Nonetheless, future research

could usefully explore conditions where the effect of the gambler’s

fallacy could be mostly eliminated: For example, by using a situation

more complex than a simple binary choice, by eliciting faster

responses, or by using a cover story indicating the sequence was

generated by human skill rather than a mechanical process [41].

The method assumes a learning process in which the enduring

influence of a trial is determined completely by its contribution to

a single overall strength term. But not all models of implicit

learning make this assumption. For example, learning sequences of

locations or musical tones has been successfully modelled with a

‘‘buffer network’’ in which the last n trials are explicitly

represented and used to predict what happens on the next trial

(i.e. there is a buffer of size n). [42–43]. In the models used by

Figure 4. Results for testing JC. Correlation of current prediction with what happened on the nth trial in the past plotted against trials into the
past (n). JC shows a stronger influence of recent trials than normal controls, and normal controls show a stronger influence of distant trials than JC.
doi:10.1371/journal.pone.0033400.g004
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[42,43], the stimuli up to n trials back would all have equal

influence in prediction, and any stimulus more than n trials back

would have no influence. While the buffer network (with n = 4) was

successful in accounting for the relatively complex tasks of [42,43],

Figures 1, 2, 3, 4 show that the influence of past events was

qualitatively different in the current task than the buffer model

predicts. The buffer model could be made to fit the influence

profiles shown in Figures 1, 2, 3, 4 by having a large buffer (up to

at least n = 7) and adding an assumption that the representation of

a stimulus decays according to n. This would ad hoc fit the data by

brute force. The current method would then not so much measure

learning rate as buffer size or the decay profile within the buffer. It

would be measuring an interesting characteristic of the learning

system, but not directly the learning rate of the component units in

the network.

Another approach to modelling implicit learning that violates

the assumptions of the method is the exemplar approach [44–46],

in which correct responses are stored together with contexts. If a

correct response together with general context (e.g. warning signal)

was stored on each trial, there would be a flat influence profile

back in time, as each time in the past would be equally

represented. If these stored exemplars decayed, then most recent

trials would have more influence, just as we find. In this case the

learning rate measured by our method would reflect the decay rate

of the exemplars.

Future research could examine our task in a more fine-grained

way to determine if a model more complex than simple

accumulating strength is needed to account for performance.

Given the simplicity of the task and the fit of the profiles to such a

simple model (barring the gambler’s fallacy effect), a Rescorla-

Wagner model can be taken as at least an emergent approxima-

tion to the learning system, which defines a level of description to

which we can assign a meaningful learning rate. It will be

interesting to see how far such an approximation takes us, and

what lower level features the measured learning rate reflects, for

example, underlying learning rates of neurons.

Learning is a fundamental process characteristic of much of the

brain; exploring the factors that the rate of learning depends on is

hence a fundamental problem for psychology. It has been

investigated in the animal learning domain, and its generalisation

to people, with respect to particular problems, such as the relative

learning rates of different stimuli of varying salience (over-

shadowing) and effects of predictability or surprise on subsequent

learning rate [47,48]. Here we broaden the scope of the enquiry

and provide a general tool for doing so. We show how exploring

the problem of learning rate in people can produce interesting and

surprising findings.

Materials and Methods

Bayesian analyses
A Bayes factor is useful for indicating continuous degrees of

support for a hypothesis and hence when a null result counts against

a theory that predicts a difference or doesn’t count one way or the

other (see [49,50]). Values around one indicate the data are equally

consistent with both null and experimental hypotheses. Values

greater than one indicate increasing evidence for the experimental

hypothesis and values approaching zero indicate increasing

evidence for the null. [51] regarded Bayes factors of greater than

3 or less than 1/3 as providing substantial evidence. A Bayes factor

requires specification of what effect sizes the theory predicts. We

based these predictions on a pilot study with 59 undergraduate

students predicting whether a square will appear on the left or right.

The mean degree of recent influences was .10, SD = .15, and of

distant influences was .01, standard deviation = .03 (both

significantly above zero). For the mood study, the difference

predicted by theory between happy and sad moods was modelled

with half-normals with a standard deviations equal to the means for

the pilot; i.e. .10 for recent influences and .01 for distant influences.

That is, the theory was taken as predicting differences in the

required direction on the order of magnitude of the obtained pilot

means, with smaller differences being more likely than larger ones.

See [49] and the associated website, http://www.lifesci.sussex.ac.

uk/home/Zoltan_Dienes/inference/Bayes.htm, which provides

explanation and an on-line Bayes factor calculator.

Computational modelling
Trial-by-trial predictions were modelled with a Rescorla-

Wagner learning device that predicted left or right based on one

permanently on unit coding general context. It could have any

learning rate between 0 and 1 in steps of 0.1. Specifically, let what

happened on a trial, S, is coded one if the square was on the right

and 0 if on the left; and the rate parameter be R and the current

strength of prediction for ‘right’ being W, then the error in

prediction was (S – l). W was updated according to: W = W +
R*error.

A gambler’s fallacy process behaved in the same way except if

the stimulus had just appeared on the left it increased the strength

of prediction for right and vice versa; it thus also had a rate

parameter between 0 and 1 in steps of 0.1. Specifically, let what

happened on a trial, S, is coded one if the square was on the right

and 0 if on the left; and the rate parameter be R and the current

strength of prediction for ‘right’ being G, then G was updated

according to: G = R*(1–S) + (1–R)*G.

On each trial the predictions of the two devices were combined

with a weighted mean with a weight p for the Rescorla-Wagner

output (and thus 1–p for the gambler’s fallacy) which also varied

in steps of 0.1 between 0 and 1. That is, the overall strength of

prediction for right was T = p*W + (1–p)*G. Thus the 300 trials

of a given run of the experiment with a person was checked

against the predictions of all 11 X 11 X 11 parameter

combinations and the combination which minimised least mean

square error was chosen as the best fitting parameter set. That is,

error on a given trial was the difference between the subject’s

response on that trial (coded 1 for right and 0 for left) and T. The

error was squared and averaged over all 300 trials to provide a

mean square error for a given model. Because the structure to be

learned is random, and the Rescorla-Wagner and gambler fallacy

processes are opposites, the error space is relatively flat around

the minimum. Thus, this method of determining learning rate is

less sensitive than the main method used in the text (i.e. directly

testing differences in correlations). In other data we have found

that the method becomes sensitive when the structure to be

learned is non-random.

The estimated gambler’s fallacy rate for JC was .46 (SD = .40)

and for normal controls .43 (SD = .35), not detectably different,

t(66) = .28, 95% CI [–.17, .23]. Nonetheless, JC had an estimated

learning rate of .80 (SD = .14), detectably higher than that of

controls (.63, SD = .32), t(60) = 3.01 (df adjusted for unequal

variances), p = .004, d = 0.69. For the mood study, people in the

happy condition had an estimated gambler’s fallacy rate of .58

(SD = .32) not detectably different from those in the sad condition,

.46 (SD = .37), t(54) = 1.24, 95% CI [–.07, .30]. Similarly, people

in the happy condition had an estimated learning rate of .51

(SD = .34) not detectably different from the .63 (SD = .33) of

people in the sad condition, t(54) = 1.34, though in the right

direction and the confidence interval is wide in the predicted

direction, [–.30, .06].
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