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Abstract

Gesture-to-sound mapping is generally defined as the association between gestural

and sound parameters. This article describes an approach that brings forward the

perception-action loop as a fundamental design principle for gesture–sound mapping in

digital music instrument. Our approach considers the processes of listening as the

foundation – and the first step – in the design of action-sound relationships. In this

design process, the relationship between action and sound is derived from actions that

can be perceived in the sound. Building on previous works on listening modes and

gestural descriptions we proposed to distinguish between three mapping strategies:

instantaneous, temporal, and metaphoric. Our approach makes use of machine learning

techniques for building prototypes, from digital music instruments to interactive

installations. Four different examples of scenarios and prototypes are described and

discussed.
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Introduction

In digital musical instrument, gestural inputs obtained from motion sensing

systems, image analysis or sound analysis, are commonly used to control or to interact

with sound processes or sound synthesis (Miranda and Wanderley (2006)). This has led

artists, technologists, scientists to investigate so-called mapping strategies between

gestural inputs and output sound processes.

Considered as an important vector of expression in computer music performance

(Rovan et al. (1997)), the exploration of mapping approaches have led to flourishing

research works dealing with taxonomy (Wanderley (2002)), the study of various

strategies for example based on perceptual spaces (Arfib et al. (2002)), on mathematical

formalization (Van Nort et al. (2004)), on dynamical systems (Momeni and Henry (2006)),

and evaluation procedures based on user studies and other tools “borrowed from

Human-Computer Interaction”. (Hunt and Kirk (2000); Wanderley and Orio (2002)).

It has been often discussed that for digital music instruments, unlike most of

acoustic instruments (Cadoz (1988); Wanderley and Depalle (2004)), there is no direct

coupling between the gesture energy and the acoustic energy. Precisely, as the mapping

is programmed in the digital realm, the relationship between the input and output

digital data streams can be set arbitrarily. This offers thus unprecedented opportunities

to create various types of mapping, which can be seen as part of the creative endeavour

in building novel digital instruments.

After several years of experimentation we have developed an approach that brings

back the perception-action loop as a fundamental design principle. Complementary to

approaches that focus on building active haptic feedback to enhance the

action-perception loop (Castagne et al. (2004)), we propose a methodology that is rooted

in the concept of embodied music cognition. Precisely, the methodology considers
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listening as a process from which emerge gestures and interactions defining key

elements for the design of mappings.

Our approach is anchored in advances in cognitive sciences and precisely rooted in

Embodied Cognition (Varela et al. (1991)). The enactive point of view on perception and

the idea of embodied cognition understand aspects of cognition as shaped by the body

which comprises the perceptual and motor system (Varela et al. (1991); Noë (2005)).

From this point of view, the action of listening – as our perception in general – is

intrinsically linked to the process of acquiring knowledge and applying this knowledge

when interacting with our environment (Merleau-Ponty (1945)). In music making, but

also in speech and many other everyday activities, listening plays a particular role in the

identification, evaluation, and execution of actions. The intrinsic relationship between

action and listening in human cognition has been confirmed by many studies (Liberman

and Mattingly (1985); Fadiga et al. (2002); Zatorre et al. (2007)). By extension, Embodied

Music Cognition, developed by Leman (Leman (2007)) and Godøy (Godøy (2006)), tends

to see music perception as based on actions. Many situations involve people moving

while listening to music. In the embodied music cognition framework, these movements

are seen as conveying information on the perceived sonic moving forms (Leman et al.

(2009)).

While embodied music cognition provides us with a theoretical framework for the

study of listening in a musical context and for the study of the link between music

perception and human actions, digital music performance requires computational tools

to implement experimental breakthroughs. Recent tools coming from the machine

learning research field allow for building scenarios and prototypes implementing

concepts borrowed from embodied music cognition. Such scenarios are indeed usually

best defined from high-level gesture and acoustic descriptions, which cannot generally

be easily programmed with other techniques. For examples, the use of machine learning
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techniques allows for setting the gesture-sound relationships from examples or database.

In this paper we propose a new approach of gesture-to-sound mapping that relies

on the concept of embodied sound cognition and we report applications that make use

of machine learning techniques to implement these scenarios.

The article is structured as follows. In the second section, we review previous works

characterizing different listening modes, and reporting on gestural descriptions of

sounds. The third section describes our approach for the design of mappings inspired by

the different modes of listening. The proposed mappings are presented as real-world

applications and stem from our past and current research in this field. In the last section,

we discuss the different scenario and mapping strategies.

Describing Sound Gesturally

As mentioned previously, we are interested in examining mapping strategies

through the theory of Embodied Music Cognition. In particular we focus on listening

processes that might induce gestural representations in order to conceptually invert the

process, from gesture to sound, to create the mapping. First, we review in this section

works describing different listening modes, that can be related to specific sound

properties. Second, we show that these listening modes can be related to different action

strategies.

Listening Modes

Sound, as considered here, refers to recorded audio material on a given support.

Recorded sound can be played back and processed through various techniques, which,

importantly, leads to different listening experiences. A vast body of work is devoted to

the mechanisms of listening gathering various research fields such as psychoacoustics,

neurosciences, auditory scene analysis, musicology. In this section, we focus on
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conceptual approaches of listening which originated principally from music theory and

ecological perception theory. Our goal is to create a comprehensive overview of listening

modes and their functions which will eventually be linked, in the next section, to

gestural representations.

First, in the context of musique concrète, Schaeffer (Schaeffer (1966)) defined four

functions of listening1: 1) Listening (écouter) that focuses on the indexical value of the

sound (i.e. the sound source); 2) Perceiving (ouïr) that is the most primitive mode

consisting of receiving the sound through the auditory system; 3) Hearing (entendre) that

refers to the selective process between auditory signals, the attention to inherent

characteristics of the perceived sound; and 4) Comprehending (comprendre) that brings

semantics in sounds, treated them as signs. These different functions of listening are non

mutually exclusive and operate competitively.

Based on Schaeffer’s theoretical taxonomy, and motivated by new concepts from

auditory display, Chion (Chion (1983)) proposed a taxonomy comprising three

categories, called modes of listening: 1) Causal listening, that consists in listening to a

sound in order to gather information about its cause (or source); 2) Semantic listening,

that refers to a code or a language to interpret a message; and 3) Reduced listening, that

focuses on the qualities of the sound itself, independent of its cause and of its meaning2.

Hence Chion does not consider the low-level aspect of perception called perceiving

(ouïr).

Modes of listening have also been of interest in the ecological approach to auditory

perception. One important application has been the design of sounds in

human-computer interaction. In this context, Gaver considered environmental sounds

1Note that translating Schaeffer’s listening mechanisms is far from trivial. Consequently we chose to
report in this article both the translation and the term in its original language.

2Note that the reduced listening is a concept that has first been introduced by Schaeffer to motivate the
concept of Sound Object in Musique Concrète.
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and proposed to differentiate between two types of listening (Gaver (1993b,a)) defined

as: everyday listening, in which the perception focuses on events rather than sounds; and

musical listening, in which perception is centered on the sound characteristics. As

mentioned by Gaver, musical listening of environmental sounds can be achieved by

listening “to the world as we do music” (Gaver (1993b), p1). Gaver took the example of

the work by the american composer John Cage that aims at hearing everyday world as

music in some of his compositions.

Recent studies proposed to enrich these previous taxonomies by adding an

emotional dimension evoked by the auditory stimulus. Huron proposed an analytic

framework supporting the idea that emotional experiences may be usefully

characterized according to a six-part classification (Huron (2002)): 1) Reflexive that refers

to fast automatic physiological responses; 2) Denotative that allows the listener to

identify sound sources; 3) Connotative that allows the listener to infer various physical

properties about sound sources such as size, proximity, energy, material, and mode of

excitation; 4) Associative that refers to arbitrary learned associations; 5) Empathetic that

refers to identify if the sound is produced by an animate agent and if it is a human it

refers to his or her “state of mind”; and, finally, 6) Critical that refers to conscious

cognitive processes by which the intentions of a sound-producing agent are evaluated.

Recently, Tuuri et al. (Tuuri and Eerola (2012)) proposed an extended taxonomy of

listening modes. The taxonomy is hierarchical with three levels: experiential, denotative,

reflective. The experiential level encompasses Huron’s reflexive and connotative modes.

The connotative mode more precisely focuses on the relation between the action and the

external world (object, people, cultural context). In Tuuri et al.’s taxonomy the

experiential mode also induces a kinaesthetic mode that refers to the inherent movement

qualities in the sound (for example characterizing a sound as “wavy”). The second level

in the hierarchy is the denotative mode. This mode has been first defined by Huron and
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extended by Tuuri in order to separate between modes focusing on sound sources and

sound contexts. Finally, the top level is the reflective mode that encompassed the reduced

mode as well as the critical mode.

The important point here is to realize that several of the listening modes make

reference explicitly or implicitly to motor imagery or action. Both the Causal listening

mode of Chion and the Denotative listening mode of Huron/Tuuri refer to associate the

sound to the action that created the sound. Such actions are generally linked to clear

interactions and motion between objects (e.g. a stick hitting a cymbal). We will keep the

term causal listening throughout this article to denote such an association between the

action and the sound.

The Reduced listening mode of Schaeffer and Chion, the Connotative mode of Huron,

and Kinaesthetic mode of Tuuri refer to acoustic properties of the sound. We will use the

term Acoustic listening throughout this article for such a type listening. These acoustic

aspects could be quantified using a set of sound descriptors from the sound signal.

However, a crucial point is to acknowledge that defining the reduced listening mode was

also linked to sound description such as the Schaeffer’s Typo-Morphology of Sonic

Objects (Schaeffer (1966)), or later to Temporal Semiotic Units (Unité Sémiotiques

Temporelles) (Frey et al. (2009)). As elucidated by Godøy (Godøy (2006)), these

descriptions can in many cases be linked to notions of motions and actions.

The last mode of listening encompasses semantic aspects of sound perception and

will be called as such. Figure 1 summarizes the three modes of listening Causal, Acoustic,

Semantic that will be considered in this paper and that we aim at associating to gestural

representations.
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Figure 1. Simplified taxonomy of listening modes. Causal listening refers to an explicit associa-
tion between sound and its producing action. Acoustic listening is related to perceptual acoustic
properties of the sound. Semantic listening integrates higher level notions of meaning and inter-
pretation.

Linking Gesture and Listening

In the previous section we reviewed the listening modes as introduced by various

authors in the literature that we summarized as a three-mode approach accounting for

Causal, Acoustic and Semantic listening. In this section, we posit that these modes of

listening can be linked to specific gestural strategies. We base this statement on a review

of important works within the field of behavioral approaches in embodied music

cognition, that reported on gestural sound description.

Interactions between sound perception and motion have been studied either

through a neuroscientific perspective or a behavioral perspective (Zatorre et al. (2007)).

Generally, the motor-auditory interaction has been recognized as important to describe

sound perception. Neuroscience studies have shown how listeners activate cognitive

action representations while listening to music performances whether they are expert

musicians or novices (Haueisen and Knösche (2001); Lahav et al. (2005); Zatorre et al.
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(2007)).

In a behavioral approach, a common experimental methodology consists in asking

participants to perform movements along with the music, while it is played. The

movement analysis can reveal important insights into the underlying embodied

cognitive processes related to music perception. A wide range of works concern

controlled tasking, for instance tapping task on beats (Large (2000); Large and Palmer

(2002)).

In systematic musicology, exploratory procedure is more commonly used such as

asking participants to spontaneously gesticulate while listening to a sound stimulus or

music. For instance, Leman (Leman et al. (2009)) studied participants’ movements made

with a joystick, along a guqin music performance that they heard. Also, Küssner

(Küssner (2013)) considered free tracing movements on a tablet along two Chopin’s

preludes. Other works concern specifically designed stimuli with well characterized

musical parameters. Consequently, it is possible to investigate how the chosen musical

parameters affect the resulting movements.

Godøy is one of the pioneer of this type of research and proposed to use the

morphology of the sound stimulus based on Schaeffer’s typology (impulsive, iterative,

sustained) (Godøy et al. (2006)). This methodology was then used by other authors such

as Merer (Merer (2011)) and Nymoen (Nymoen et al. (2011)). Recently Küssner (Küssner

(2013)) proposed the use of sequences of pure tones while changing the following

parameters: pitch, loudness and tempo.

These previous works provide us with promising methodology for the study of

gestural description of sounds. Most of these studies rely on exploring analog

relationships between gestural and sound parameters. We will refer to such an approach

as tracing/analog experiments where the motion trajectories are associated to acoustic
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parameter. In addition, in the following we will refer to sound morphology to designate

the temporal profile of its acoustic characteristics, e.g. amplitude, pitch, timbre aspects.

In our prior work, we conducted experiments to give evidence on the link between

gestural description and both acoustic and causal listening modes. We examined

experimentally how participants can associate different types of motion in the acoustic

and causal listening modes. We observed two related strategies Caramiaux et al. (2014):

mimicking the action related to the sound source (causal listening mode) or tracing the

shape of the sound parameter (acoustic listening mode). In particular, we showed that

the sound source identification, thus the mode of listening, has a direct consequence on

the gesture strategies. If the participants can identify the sound source as an action, they

tend to mimic the action. On the contrary, a non-identifiable sound leads participants to

trace the profile of perceived sound features.

This experimental study showed a link between causal/acoustic listening modes

and analog/mimicking motion strategies. This study brings grounds for establishing

mapping strategies based on listening modes and associated motion strategies. Mapping

strategies can stem from the reviewed experimental findings as well as they can evoke

particular links between listening modes and motion through a scenario and design of

interaction. In the next section we describe specific examples illustrating the link

between causal, acoustic and metaphoric listening modes and gestural strategies.

From Listening to Controlling

In this section we describe concrete examples that we developed and which were

used in different settings, from experiments, demos, interactive installations and

performances. All these examples are based on modeling the target sound from a

gestural perspective: a prior listening (or evocation) to the sound provides performers

with insights on possible gesture control strategies. These strategies are then made
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possible using machine learning techniques. Similar approaches have been described by

Godøy (Godøy (2006)), Van Nort (Van Nort (2009)), Fiebrink (Fiebrink (2011)) and Maes

(Maes (2012)).

Our general methodology is as follows. The first step corresponds to listening to

recorded sounds from different perceptual perspectives as described in the previous

section. This leads to consider scenarios and metaphors where the motion in interaction

is linked to the targeted sounds. Mapping strategies are then designed to implement the

interaction scenarios. In most cases, the mapping is built using machine learning

techniques from examples gathered during a “learning” phase, before the final

“playing” phase.

Interaction Scenarios and Mapping Strategies

Shaking

The action-sound mapping of this scenario emerges from the action metaphor of

shaking associating the performer’s shaking movement to the generation of percussive

sounds. This scenario is meant to be related to the causal mode of listening since the

performer mimics the gesture of shaking. While in music performance this metaphor

may refer to percussion instruments such a shaker or maracas, it can also be associated

to various non-musical actions and sounds. Consequently, the mapping designed for

this scenario can be applied to any sound that is composed of percussive events of

varying intensity and to any movement that resembles shaking or waving (i.e.

movements that are periodic and modulated in intensity).

The mapping is designed to be a direct relationship between the movement energy

and the energy of the sound played. However the sound can be chosen to be any

percussive recorded sound. The mapping relies on a first phase called learning. During

this phase, an offline analysis of a sound database segments the recorded materials into
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percussive events and describes each segment by its perceived intensity. Each segment is

consequently structured according to its intensity level. During the second phase,

playing, the performer’s motion is analyzed in real-time by computing its energy. Sounds

are then selected from the database according to the motion’s level of energy. The

intensity of shaking has a direct relationship to the intensity of the synthesized

percussive sound event whereas the performer does not control the rhythmic pattern.

Figure 2 illustrates the scenario.

Figure 2. Shaking scenario. A recorded rhythmic sound is analyzed and segmented. An incoming
gesture is analyzed and its energy is computed and drives the selection of the segment to be played.

Technically, we use accelerometers to sense the performer’s motion. Concrete

implementations were featured in different performances using the MO (musical object)

interfaces 3(Rasamimanana et al. (2011)). The shaking intensity can be obtained by

integrating the variations of the measured acceleration magnitude. Audio segmentation

is performed by onset detection. A mean loudness measure is computed for ear

segment. Both feature spaces, motion and sound, are normalized so that each sound

3Performances exhibited at the 2011 Guthman Competition of New Musical Instrument, or the perfor-
mance of the TEI’13 conference
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segment can be associated to a corresponding shaking intensity between the lowest and

highest possible intensity. The system used a k-nearest-neighbor (kNN) search algorithm

based on a k-D tree to select a sound event of a given intensity among the available

segments (Schwarz et al. (2009)).

Shaping

Shaping refers to scenarios where performers control sound morphologies by

“tracing” in the air salient sound features they desire to control. It is thus related to

acoustic listening as we defined previously, where the performer pays attention to

perceptual acoustic aspects of the sound, and in particular to its temporal evolution.

The interaction scenario leads the performer to design gestures related to specific

recorded sound morphologies. Rather than using a metaphor, the link between gestures

and sounds is built by analogy, as the design of gestures needs to reflect tightly the

aspects of the sound the performer perceives and intends to affect. The mapping relies

on two distinct phases: learning and playing. The learning phase consists in a prior

construction and analysis of a database of sounds. Each sound is analyzed offline to

compute the feature representation. The playing phase starts with a gesture executed by

a performer. The performer draws gesturally the morphology of a particular sound, and

re-plays the sound in real-time, translating the time variations of the input gestures to

sound variations. The beginning and the end of the gesture must be marked by the

performer (e.g. using buttons on the interface). A sound is selected as soon as the

gesture starts thanks to a realtime shape matching algorithm that finds, at each time

step, the closest audio feature morphology to the gesture morphology and temporally

aligns them. Figure 3 illustrates the scenario.

The implementation is based on machine learning technique is based on Hidden

Markov Model (HMM), called gesture follower, and presented in Appendix. Since the
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Figure 3. Shaping scenario. Multiple sounds are analyzed by computing feature shapes. On the
other hand, the motion shape of a live gesture performance is extracted and used to select and
control the sound whose feature shape is the closest to the gesture.

sound is aligned to the gesture in real-time, it translates the variations in the gesture

morphology, such as the speed of execution, to variation in the playback, re-interpreting

the recorded sound. In the demonstration presented at the Sound and Music Computing

Conference in 2010 (Caramiaux et al. (2010a)), gesture and sound were represented by

unidimensional time series, the energy of a gesture controlling the loudness. The energy

of a gesture was computed as its absolute speed (an infra-red camera motion capture

system was used to capture the gesture). Being of different physical dimensions, the

time series were scaled beforehand into the same range of values.

Fishing

The fishing scenario relies on a metaphor where performer mimics an action in

order to select and play a specific sound. In other words, the performer virtually “fishes”

the sound by mimicking the associated action that supposedly caused the sound.

Therefore, the fishing scenario is meant to be related to the causal aspect of listening

14



where a performer focuses on the event that has produced the sound and tries to mimic

it.

The application is based on the recognition of the performed action and requires a

training phase: a database of actions is built by recording one example of each action to

be recognized. An action is a single unit represented as a multidimensional continuous

time series of its parameters. In addition, each action has an associated sound meant to

illustrate the possible sound produced by the action. During the playing phase, the user

performs a gesture that, if recognized as an action from the database, will trigger the

playback associated sound. Since the system relies on action recognition, both the

performed and the pre-defined actions must have a consistent representation, which

could imply to have been performed with the same device and consequently with the

same set of parameters taking their values into the same range. Figure 4 illustrates the

scenario.

Figure 4. Fishing scenario. A set of recorded sound is loaded together with associated actions that
represent the sound. The incoming live gesture performance tries to “fish" a sound by mimicking
the associated action. If successful, the sound is played.
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The system uses a HMM-based gesture recognition method called gesture follower

presented in Appendix and also used in the shaping scenario. In the installation version

of the system, presented during the SAME project meeting4, the actions were captured

through the use of mobile phones with embedded accelerometers. The training process

is part of the design and not seen by the performer. The playing phase was implemented

with a gaming scenario. A set of two action–sound from the database was presented to

the user in order to be mimicked. The algorithm was set to play the sound associated to

an action as soon as this action is recognized. In addition, the algorithm was set to output

the time progression in the executed action. If the user reaches 90% of the recognized

action, this sound is set to be fished. The user has to do the same with the second action.

Once both sounds are successfully fished, another set of pairs is presented.

Shuffling

The shuffling scenario consists in re-composing and re-interpreting complex sound

sequences gesturally. This is achieved by processing short pieces of recorded sounds put

in relationships with gesture segments. The scenario does not involve pre-established

metaphors as in the previous examples, but defers the design choices to the performers,

allowing them to implement interactively their own metaphors and control strategies.

The mapping is designed by demonstration: the gestures performed by the

performer in conjunction with particular sounds are used to train a machine learning

model encoding their relationships. When performing a new gesture sequence, sounds

are resynthesized and aligned in real-time using phase vocoding. In some aspects, the

present scenario generalizes some of the previous examples by allowing the performer

to mimic sound-producing actions (cf. fishing), to trace sound features (cf. shaping), or to

combine these approaches sequentially.

Designing the mapping by demonstration involves an interaction loop divided into
4Sound And Music For Everyone Everyday Everywhere Everyway http://www.sameproject.eu/
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two distinct phases: learning and playing. During the learning phase, the performer

begins by selecting sounds and defining their segmentation manually using a graphical

editor. Then the performer records one or multiple gestures associated to each sound, for

example by recording a template gesture synchronously while listening to a given

sound. Additionally, one can specify authorized transitions between each gesture and

sound segment. During the playing phase, the performer recomposes the original sounds

by performing arbitrary sequences of gestural segments. The gestures are recognized

and aligned to their reference in real-time to select and replay dynamically the

appropriate sequence of sound segments along with the gesture performance. Figure 5

illustrates the shuffling scenario.

Figure 5. Shuffling scenario. A learning phase allows the performer to select a segmented sound
and to record one gesture associated to it, for example by recording while listening to a given
sound. A playing phase allows the performer to recompose the original sound by performing
arbitrary sequences of gestural segments.

Technically, the mapping is based on a hierarchical model for continuous gesture

recognition and segmentation, called Hierarchical HMM (see Appendix for details). The

model has two levels. The lower level precisely encodes the time structure of the
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segments, while the higher level governs their sequencing, defining the possible

transitions between various points within the gesture. The model can be built from a

single segmented example. The recognition is performed in real-time and the model

estimates the alignment of the new gesture compared with the reference, allowing for

the reinterpretation of the sound with a fine time precision. Thus, the temporal

variations of the live gestural performance are translated to sound variations using a

phase vocoder (superVP in Max/MSP).

A specific implementation was introduced in (Françoise et al. (2012)). Each gesture

and sound morphology is segmented in attack, sustain and release segments, possibly

complemented with a preparation phase anticipating the attack of the sound. This

decomposition is particularly interesting in two aspects. First, the consistency of the

relationships between gesture and sound can be guaranteed by specifying constraints

for the sound synthesis on particular segments, e.g. silence during preparation or

transient conservation on attack phases. In addition, the features extracted from the

performer’s gesture in one action segment can be mapped to sound features of the

following segments. In this way, the silent trajectory of a preparation gesture can define

the features at the beginning of the sound that, in the following, can be shaped by the

performer’s gesture.5 Second, it allows for designing strategies that involve various

gestural descriptions related to listening: preparation and attack can be related to

mimicking, e.g. using a metaphor such as hitting an object, while the sustain and release

phases can implement a tracing gestural description.

5In the design of traditional instruments, similar possibilities are obtained through the instrument’s
geometry allowing the performer to interact – or not – with different parts of the instrument responding to
action in different ways.
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Discussion and Conclusion

We presented four mapping examples illustrating our approach based on a

perceptual analysis of the target sound. All examples use synthesis techniques to

“re-interpret” gesturally the recorded sounds. Each scenario and mapping strategy can

be described by a top-down approach. In particular, each can be linked to particular

listening modes and gesture strategies presented in Section “Describing Sound

Gesturally”.

The Figure 6 summarizes how the examples are related to the different listening

modes and gestural strategies discussed in “Describing Sound Gesturally”. In addition,

we insist on the different strategies of mapping that are used in the different examples.

We distinguish between instantaneous, temporal, and metaphoric aspects that define the

relationship between gesture and sound. Instantaneous mapping strategies refer to the

translation of magnitudes between instantaneous gesture and sound features or

parameters. Temporal mapping strategies refer to the translation and adaptation of

temporal morphologies (i.e. profiles, timing, and event sequences) between the gesture

and sound data streams. Metaphorical mapping strategies refer to relationships

determined by metaphorical or even semantic aspects, that do not necessarily rely on

morphological congruences between gesture and sound.

The shaking scenario makes principally use of an instantaneous mapping strategy

between gesture and sound: the shaking intensity is directly related to the intensity of

each percussive sound event. Interestingly, we have observed how performers

spontaneously synchronize their shaking movements to the tempo generated by the

system. This creates a direct action-perception loop: the sound “feedback” produced is

similar to a shaker sound and encourages the player to pursue a shaking movement. The

listening mode is causal and there is an metaphorical association between the action and

sound. Due to the strong action metaphor the scenario can also use completely
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Figure 6. Classification of the scenarios along three dimensions: the listening mode, related to
listening processes, the gestural strategy which describes how gestures derive from listening, and
the mapping strategies implementing each gestural strategy.

unconventional sounds the performer can shake.

In the shaping scenario the performers mainly focus on “acoustic” properties of the

sound. They must “trace” the temporal profile of a sound feature to be able to select and

modify a sound whose morphology matches the motion shape. Relying on temporal

morphologies, the mapping of this scenario can be seen as the closest mapping example

to previous ideas developed by Godøy (Godøy (2006)) or Van Nort (Van Nort (2009)).

The difference with the shaking resides in the precise control of the sound’s temporal

evolution, supporting a listening mode focussing on acoustic sound features. Our

experiments with this scenario showed us that sonorous profile must be memorized

beforehand in order to consciously target one and, eventually, reproduce it with

temporal variations.

The shaping scenario makes use of a temporal mapping between gesture parameter

and sound feature. This mapping allows the performer to re-shape a sound based on the

temporal morphology of his or her gesture. The general concept of temporal mapping

was previously introduced in (Bevilacqua et al. (2011)) for the cases where temporal

relationships between gesture and sound parameter profiles are established.

20



The fishing scenario makes use of a mapping that can be considered as metaphoric:

unlike in the shaking and shaping scenarios, the morphologies of gesture and sound in

this example can be incongruent in some cases. Nevertheless, the action-sound

relationship is clear from a causal listening perspective. As mentioned previously, this

scenario has been shown as an installation during the EU Project SAME. Feedbacks from

users showed that such a mapping was highly appreciated and characterized as ludic.

Indeed, the sounds chosen were easily identified and the action easily reproducible.

Although the scenario focuses on a causal mode of listening, an extended version

comprising a metaphoric mode of listening can be envisaged and can enrich the scenario.

Finally, the shuffling scenario makes use of a mapping strategy that can be

characterized as both temporal and metaphoric. The temporal characteristic of the

mapping is similar to the shaping scenario while the metaphoric characteristic is enabled

by the implementation of a general algorithm for the recognition of action and action

sequences. The combined mapping consequently offers additional control opportunities

and action-perception loop feedback. It drives performers in both causal and acoustic

listening modes, making them conscious of both the sound morphologies (like in

shaping) and the control of sound segment through iconic gesture segments (like in

fishing). The shuffling example can be seen as an unified approach in the sense that it

can be configured in order to activate several modes of listening and several modes of

gestural description (and can also easily include the shaking scenario).

The temporal aspects of mapping are particularly important when designing

action-sound relationships based on the transformation of recorded sounds. In this case,

temporal mapping strategies allow for adapting the temporal morphologies initially

present in the recorded sounds to the actions of the performer. Nevertheless, we believe

that temporal mapping strategies are equally powerful considering other synthesis

methods. They allow for segmenting the performers actions and for defining different
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action-sound relationships for different segments. A need is for example the distinction

between action segments that actually produce sound or induce sound changes and

those that do not.

One design choice in the presented examples concerns the motion sensing

technology. Any sensing systems provide a partial gesture description, which might

impact on the sound controllability. In the four scenarios presented, we used

accelerometers. Although these sensors have inherent limitations (e.g. unable to sense

spatial information), they are sensitive to small changes in orientations and dynamics.

Moreover, the choice has been motivated by other advantages of this technology:

low-cost, wireless, good understanding of the signals, sufficient precision for most

musical applications.

The scenarios discussed in this article make extensive use of machine learning based

methods (k-NN, HMM, Hierarchical HMM). The role of machine learning is to realize

the top-down approach of our scenarios based on perceptual or metaphoric action and

sound description. All scenarios indeed imply implicit relationships between sound and

gesture features. As discussed by Mitchell (Mitchell (2006)), machine learning

techniques are efficient to model such implicit relationships. Moreover such approach

starts to be implemented and evaluated in different cases in computer music

performance (Fiebrink (2011); Gillian (2011); Caramiaux and Tanaka (2013)). The

ongoing research in this area examines the use of machine learning for automatically

selecting gesture and sound features (Caramiaux et al. (2010b)), for modeling jointly

their interactions over time in order to capture implicitly their correlations and the

expressive variations emerging in different interpretations (Françoise et al. (2013)) or the

use of machine learning as a design tool Fiebrink et al. (2011).

The possibilities arising from the introduction of machine learning techniques into

the interaction loop are twofold. First of all, they allow for the instrument integrating
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notions of recognition and prediction that support the implementation of interactions

based on the performer’s listening. While the performer always adapts – spontaneously

or by strenuous learning – his or her actions to the behaviour of the instrument, these

new instruments for their part adapt themselves to the performer’s behavior,

preferences, and playing style. It is worth noticing that ML techniques are prone to

errors or may require time to converge to the accurate estimation. Latency involved is

inherent. It might be an issue for specific types of control. On the other hand, latency can

be handled by design. For instance, in the fishing scenario we chose to use the

recognition latency, namely the fact that the user has executed 90% of the action, as a

visual progress bar for the user. Interestingly, the latency represented as such,

challenged the user during the interaction, enhancing the game play.

In conclusion we proposed a design approach for mapping based on the concept of

embodied listening. Building on previous works on listening modes and gestural

descriptions we proposed to distinguish three mapping strategies, instantaneous,

temporal, and metaphoric. Our approach considers the processes of listening as the

foundation – and the first step – in the design of action-sound relationships. In this

design process, the relationship between action and sound is derived from actions that

can be perceived in the sound. We believe that the described examples are only

scratching the surface of the possibilities arising from this approach.

Algorithms

Gesture Follower

Gesture Follower (GF) (Bevilacqua et al. (2010)) is a template-based gesture

recognition method based on Hidden Markov Models (HMM). The model is learned

from a single gesture example using its whole time series as a template: the model is

built by assigning a state to each frame, similarly to Dynamic Time Warping (DTW). The

23



time structure is modeled by a left-right transition structure. A causal forward inference

allows for a real-time decoding and returns the currently recognized template as well as

the time progression in the template, performing an alignment of the live gesture to the

template.

Adaptive Extension

The model has been recently extended to quantify and adapt to gesture variations

by using Sequential Monte Carlo inference on the parameters of a non-linear dynamical

system. It allows for the continuous adaptation to variations of gesture characteristics

(Caramiaux (2012)). Indeed, once the gesture template recorded, a similar live gesture

can be performed with variations in speed, scale, rotation, etc. These characteristics can

be taken into account explicitly by the method as invariant for the recognition. To that

extent, the method continuously estimates the relative characteristics of the gesture

variations, which can then be used in continuous interaction scenarios.

Hierarchical Extension

Gesture Follower has been extended to comprehend more complex time structures,

allowing for the representation of gestures as ordered sequences of segments. The

method is based on Hierarchical Hidden Markov Models (HHMM) (Françoise et al.

(2011)) with a two–level structure. The lower level models the fine time structure of a

segment using a template–based approach identical to GF. The higher level governs how

segments can be sequenced by a high–level transition structure, which probabilities

constrain the possible transitions between segments. Thus, the model can be built from a

single demonstration of the gesture complemented by prior annotation defining the

segmentation. The recognition is based on a forward algorithm allowing for the causal

estimation of the performed segment (informed by the high-level transition structure)

and the time position within this segment (as detailed in the the previous section). This
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representation provides both fine–grained and high–level control possibilities, allowing

to reinterpret gestures through a segment-level decomposition which can be authored by

the performer.
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