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Abstract

Preference formation is a complex problem as it is subjective, involves emotion, is led by implicit processes, and changes
depending on the context even within the same individual. Thus, scientific attempts to predict preference are challenging,
yet quite important for basic understanding of human decision making mechanisms, but prediction in a group-average
sense has only a limited significance. In this study, we predicted preferential decisions on a trial by trial basis based on brain
responses occurring before the individuals made their decisions explicit. Participants made a binary preference decision of
approachability based on faces while their electrophysiological responses were recorded. An artificial neural network based
pattern-classifier was used with time-frequency resolved patterns of a functional connectivity measure as features for the
classifier. We were able to predict preference decisions with a mean accuracy of 74.362.79% at participant-independent
level and of 91.463.8% at participant-dependent level. Further, we revealed a causal role of the first impression on final
decision and demonstrated the temporal trajectory of preference decision formation.

Citation: Bhushan V, Saha G, Lindsen J, Shimojo S, Bhattacharya J (2012) How We Choose One over Another: Predicting Trial-by-Trial Preference Decision. PLoS
ONE 7(8): e43351. doi:10.1371/journal.pone.0043351

Editor: Sam Gilbert, University College London, United Kingdom

Received February 2, 2011; Accepted July 23, 2012; Published August 17, 2012

Copyright: � 2012 Bhushan et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The research has been partially supported by JST.ERATO (SS, JB) and DST, Government of India (JB, GS). The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: j.bhattacharya@gold.ac.uk

Introduction

Unable to choose between a bale of hay and a pail of water,

Buridan’s hungry and thirsty ass, when placed in the middle of two

options, starved to death as a victim of its inability to make a

rational decision of choosing one over the other. But we, human

being, are ‘born to choose’, and the desire to make choices, even at

the cost of rationality, is crucial for our well-being [1]. For

example, most consumers, when asked to choose one out of two

identical food samples express a preference for one, rather than

choosing a no preference option [2]; this effect is found to be

robust against personal expectations, explicit instructions and

personal traits [3].

Preference is a fundamental component of the processes of

internal evaluation of choices or alternatives which underlies

general decision making [4]. Preference is one of the most

challenging topics in the research field of decision making, partly

because it is subjective (i.e. there is no externally defined correct

answer and it can vary across individuals), involves emotion, led by

implicit processes, and changes depending on the context within

the same individual (i.e. a decision in one trial may differ from

another). Therefore, scientific attempts to predict preference are

crucial for basic understanding of decision making, as well as for

real-world applications. Further, preference decisions are often

made intuitively without explicit reasoning and almost instinctive-

ly. Thus, prediction at a group-averaged level has only a limited

significance, and therefore, it is important to predict preference

decision on trial-by-trial basis based on implicit measures. A recent

attempt has been made to predict subjective preference for drinks,

out of two possible choices, from single-trial brain responses [5]

but is fraught with difficulties [6,7]; the achieved average

prediction accuracy (53.57%) was only marginally better than

chance (50%). This highlights the important challenge in decoding

preference decisions from implicit brain responses on trial-by-trial

basis.

Faces play a very important role in our social life, and we make

complex social decisions, from mate-selection in our lives to

candidate-selection in a political election, based on mere facial

appearance and/or attractiveness [8]. Extensive research has been

made to identify a set of facial features which make a face

attractive [9]. Possibly no research is needed to predict which face

a heterosexual male would prefer when asked to choose between

Megan Fox (voted as one of the most desirable women) and

Jocelyn Wildenstein (voted as one of the ugliest celebrities).

But we know little about how one makes a preference decision

when the two faces are closely matched (e.g., age, race, gender,

gaze, facial attributes, facial emotion), i.e. under decision conflict

[10]. Does first impression contribute to the final preference

decision? Are decision patterns specific to individual or common

across individuals? What is the temporal trajectory of the

formation of a preference decision? Most importantly, can one

predict such preference decision under conflict on trial-by-trial

basis even before the individuals make their decisions explicit?

In the current study, we addressed these challenging mind-

reading problems by applying machine learning techniques [11]

to electrical brain responses recorded from human participants

while they were making preference decisions, based on

approachability of faces, in a two-alternative forced choice task

paradigm.
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Materials and Methods

Participants
Eighteen adult healthy human participants (14 women, age

range of 18–35 years) took part in the study. They received a fixed

amount of cash (£ 20) for their participation. All participants gave

their written informed consent before the beginning of the

experiment. Experimental protocols, set according to the Helsinki

declaration, were approved by the Local Ethics Committee of the

Department of Psychology, Goldsmiths, University of London.

Stimuli
The stimuli were human faces which were generated by a

computer software (www.facegen.com), which was used in

previous studies on face perception [12,13]. All faces were

emotionally neutral, and contained no hair. Faces were subse-

quently paired in terms of gender, race, age, and independently

obtained ratings of approachability. The approachability construct

is regularly used in the literature concerning social judgements

[14–17]. For example, Adolphs et al. [18] argue in favouring this

construct because (1) it is a clear measure of real-life social

judgement, (2) it is easy to understand, and (3) it has a relative low

variability across participants.

Procedure
The participants performed a simple preference decision task in

which they had to choose, from a pair of two closely matched

faces, the face that they would most like to approach and to talk to.

Each trial started with a fixation cross presented for 500 ms,

followed by the onset of a face. The participants viewed this first

face as long as they wanted. When the participants pressed a key,

the first face was replaced by another fixation cross for 500 ms and

followed by a second face. Within a trial, the first and second faces

were closely matched as mentioned earlier. There was also no

restriction on the viewing time of the second face. However, the

participants were instructed to make a response as soon as they

reached a decision, and they indicated their preferred face by

making a left or right hand response (counterbalanced across

participants) corresponding to the two faces (see Figure S1 for a

trial outline). Each participant performed 39 trials.

Data Acquisition and Pre-processing
EEG signals were recorded from 64 electrodes by using a

BioSemi ActiveTwo(R) amplifier. The vertical and horizontal eye

movements were recorded by four additional electrodes. The

sampling frequency was 512 Hz. The signals were filtered with a

3rd order sinc low pass filter with a 23 dB cut-off at

approximately 128 Hz. EEG signals were referenced to the

average of two mastoid electrodes. Trials with artefacts were

discarded after visual inspection, and eye-blinks artefacts were

corrected by ICA based EEGLAB [19]. EEG data from one

participant was removed due to excessive artefacts; however,

behavioural data from all participants were used in statistical

analysis.

Data Analysis
In terms of decisions, there are two possibilities: the first face

chosen or the second face chosen. As we were interested in early

components only, we considered the first 1 s period starting from

the onset of each face for our analysis, and termed them as F1X

for the first face, and F2X for the second face. Note that explicit

decisions were made a considerable time after F2X, so these brain

responses during F2X supposedly reflect the implicit components

of preference decision formation. In this study classification for

F1X and F2X was done separately as F1C-F1NC and F2C-F2NC.

If the first face (F1) was chosen at the end of a trial then the specific

trial was termed as F2NC (face-2 Not Chosen). Otherwise if face-2

was chosen, the trial was termed as F2C (Face-2 Chosen).

Correspondingly goes for F1C and F1NC.

For the classification of neural signals, we needed to extract

those features which would capture the neuronal mechanisms

underlying the preference decision. Synchronization between near

and distant brain regions is often considered as the substrate for

complex cognitive tasks including decision making [20,21]. Since

synchronization could be frequency-specific [22,23], we computed

the Time-Frequency resolved Synchronization Likelihood (TFSL)

[24], which is a modified concept of synchronization likelihood

(SL) [25]. SL is based on the concept of generalized synchroni-

zation [26], and is sensitive to both linear and non-linear

couplings. Briefly, the calculation of TFSL involves five steps as

follows:

(i) Definition of the frequency band of interest followed by

band-pass filtering.

(ii) Construction of time-delay embedding vectors that repre-

sent dynamical states of the underlying multidimensional

system supposedly generating the signals under study.

(iii) Localization of the times of recurrent dynamical states in

both systems.

(iv) Computation of the synchronization likelihood (SL) that

the recurrence of a state in one system is accompanied by a

recurrent state in the other system.

(v) Repetition of steps (iii) and (iv) at different time points in

order to obtain a time series of SL values.

EEG data were filtered using 10th order Butterworth band-pass

filter for six frequency bands: delta (1–4 Hz), theta (4–8 Hz), alpha

(8–12 Hz), beta (12–30 Hz), gamma-1 (30–40 Hz) and gamma-2

(40–60 Hz). TFSL was calculated in these six frequency bands for

all electrode pairs. The synchronization likelihood (SL) parameters

which are common across frequency bands are (the symbols have

their usual meaning followed in [24]: Pref = 0.1, shift in state

embedded vector = 1, shift in reference embedded vector = 25,

and number of reference embedded vectors = 20. Other SL

parameters are specific to individual frequency bands, and they

are shown in the Table 1.

TFSL at each frequency band was calculated for every 20

intervals of 50 ms each after the onset of the face (both for F1X

and F2X). Features are named as BiEjTk where 1# i #6; 1# j

#64; 1# k #20; and i corresponds to each of 6 frequency Bands, j

correspond to each of 64 Electrodes and k corresponds to each of

20 Time intervals. Hence the total number of features become

[freq band (6) 6 electrode (64) 6 time windows (20)] = 7680 for

one trial of one participant.

From this a set of features was selected which were used in

classification by using artificial neural network (ANN) [27] based

classifier. Two-layered feed-forward back-propagating ANN with

16 neurons in hidden layer and 4 neurons in output level was used

for the analysis. Tan-Sigmoid Transfer Function was used in

hidden layer while Linear Transfer function in output layer. The

neural network was trained using a Levenberg-Marquardt back-

propagation algorithm. Maximum number of epochs was set as

100 and the performance goal (MSE) as 10e25.

In order to keep the computational cost low and to reduce the

redundancy among the features, features were shortlisted based on

their ability to classify the pattern and their ranks. The ranking of

features was done using F-Ratio [28], which is defined as the ratio

of variance of means between the classes (two classes: ‘‘face chosen

Predicting Trial-by-Trial Preference
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(FC)’’ and ‘‘face not chosen (FNC)’’) and average variance within

the classes for the same feature.

The optimum number of features was selected by the Sequential

forward selection (SFS) method [11], which is a popular feature

selection method to reduce the dimension of the extracted

features. The SFS consists of the following steps. (i) Calculate

the F-ratio for all the features and rank them in descending order.

(ii) Train the ANN based classifier (as described afterwards) to

differential between the trial cases only with rank-1 feature; let the

classification accuracy achieved from test data with this selected

feature be Ck = 1%. (iii) Repeat the step 2 with rank-1 and rank-2

features. Let the classification accuracy be Ck = 2% which is greater

or equal to Ck = 1%. (iii) Continue adding lower ranked features

and repeat the earlier steps till the classification accuracy does not

increase with increasing number of features. In this way we get

different classification accuracy as Ck = 1%, Ck = 2%, …, Ck = n%. (v)

From the above steps we get the final set of features (total number

of features = n) that optimally represents the data set and the

associated classification accuracy is Ck = n%.

For each subject, 60% of the trials were randomly selected and

used for training the feed-forward back-propagation type network

with 2 layers. Another set of 20% was used for validating the

trained network. Predictability of the network was tested on the

remaining 20% of the data and accuracy was recorded. The whole

procedure was repeated 10 times with a different set of training,

validation and test data. The final accuracy was averaged across

these ten runs.

In order to strengthen the notion of unbiased estimation, k-fold

cross validation technique [29] (for k = 5 and 10) was also used for

comparing the results (for results see Table S2). The classification

accuracy achieved through these methods varies within 61%.

The analysis was made on two models: (i) combined global

model (CGM), reflecting participant-independent factors where

data of all the participants were pooled together, and (ii)

personalized average model (PAM) where data from each

participants were treated individually reflecting participant-

dependent factors (see Ref. [30] for a similar attempt on evaluating

within-participant or participant-dependent and cross-participant

or participant-independent classifiers). In CGM analysis, all trials

across participants were analyzed together in a single classifier.

However, in PAM analysis, trial cases of individual participants

were analyzed separately in individual classifiers.

Next, we studied the time profile of the feature discrimination

characteristics as expressed by F-ratios, and performed two broad

types of analysis. The first one used increasing length of data

segment from the face onset (i.e. evaluating the gradual decision

process as the information is accumulated) and consists of the

following steps. (i) Calculate TFSL for time window 0–50 ms (k = 1

where k is the number of time points). (ii) Calculate F-ratio, which

is a measure of discrimination ability (FRijk, as in Ref. [28]) for

each feature BiEjTk (total number of features for 0–50 ms time

window is 646661 = 384). (iii) Rank the F-ratio in descending

order. (iv) Take the average F-ratio of top 300 features. (v) Repeat

steps (i)–(iv) for longer time windows in steps of 50 ms, i.e.,

02k*50 ms (k = 2, 3, …, 20) and estimate the temporal profile of

F-ratio. The second analysis was similar to the above except we

analysed data in non-onverlapping 50 ms time windows, 0–50 ms,

50–100 ms, 100–150 ms, …, 950–1000 ms.

Results and Discussion

While analysing the behavioural data, we observed that

sequential presentation of faces does not lead to any order related

preference: the mean likelihood of first face being chosen

(0.5160.08) did not differ significantly from the chance level, 0.5

(one-sample t-test: t(17) = 0.43, p = 0.673, n.s.). Neither any

systematic preference towards any particular face was observed

nor the average image of all preferred faces was very similar to the

average image of all non-preferred faces (see Figure S2). Further,

the subjective exposure to faces did not influence preference

formation as the mean viewing time for preferred faces

(15186260 ms) was not significantly different (paired t-test:

t(17) = 0.42, p = 0.681, n.s.) from the mean viewing time for non-

preferred faces (15356260 ms). Based on these results, it could be

suggested that the order effect (i.e. presentation sequence) and the

exposure effect (i.e. the viewing time for individual faces) did not

significantly influence preference decisions as studied here.

In the classification analysis, first, we applied our classification

technique using the first 1 s of brain responses from the onset of

second faces (F2X). The average classifier accuracy for CGM was

74.362.79%, which was higher than chance level of 50% in a

binary decision task. This CGM accuracy reflects the common

decision making pattern (global tendency towards decision) across

all participants. Interestingly, the average classifier accuracy for

PAM analysis rose to 91.3963.8% (Fig. 1a). Though there are

some variations in the classifier performance among the partici-

pants (range: 86–100%), the overall accuracy is significantly higher

(one sample t-test: t(16) = 15.75, p,.001) than the chance-

performance (50%) of PAM classifier, suggesting that idiosyncratic

mechanisms of preference decision making were successfully

captured by our classifier. This was also reflected by the fact that

the number of features that optimally predict individual’s

preference decisions widely varied across participants (See Table

S1). These distinctions between CGM and PAM models are not

too surprising as sharp differences were also reported between

within- and cross-participant classifiers of reward related fMRI

responses [30].

Next we asked whether our classifier could predict the decision

based on initial (1 s) brain responses to first face only (F1X). Note

that the second face was not explored yet, so any prediction based

on these brain responses would indicate the first impression effect

[31]. The prediction accuracy for CGM was 61.262.94%,

(Fig. 1a), still above the chance level at 50%, but lower than the

accuracy for F2X as expected, since most of the decision processes

were supposed to be made after the onset of second face. The

average prediction accuracy for PAM was considerably high at

82.9463.21% (range of 80–90%, see Fig. 1a and Table S1),

suggesting systematic idiosyncratic mechanisms of formation of

first impression. This is consistent with fMRI study by Kim et al.

(2007) on the first impression of facial attractiveness. Note that

Table 1. The synchronization likelihood parameters for six frequency bands which were used for calculating the TFSL.

Embedding Parameters Delta Theta Alpha Beta Gamma-1 Gamma-2

L (lag of embedding vector)
m (dimension of embedding vector)

25
8

21
7

14
6

6
8

5
5

3
6

doi:10.1371/journal.pone.0043351.t001
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prediction accuracy was systematically higher for F2X than for

F1X, i.e. TFSL obtained from EEG activity has higher predictive

power after presentation of the second face as compared to the first

face. neural responses to the second face had higher predictive

power.

We further investigated the time profile of preference decision

formation. The classifier performance was evaluated by gradually

incorporating longer time windows from the onset of two faces (see

Methods for details). The classifier performance for CGM for F1X

increased monotonically till 450 ms and afterwards reached a

plateau of 60% (Fig. 1b). This suggests that the first impression

process common across participants occurred within half a second

of the presentation of a facial stimulus. On the other hand, the

classifier performance for PAM for F1X reached a plateau around

700 ms, showing the temporal trajectory of first impression

formation process within participants. The classifier performance

for CGM for F2X also reached a plateau at 700 ms, but

performance for participant dependent model for F2X kept

increasing till the end of analysed period. This suggests that

participants deliberated over the second faces a bit longer than the

first faces. Note that the classifier performance was better for F2X

than for F1X for the entire duration, as expected.

We also studied the separation in feature space at different time

windows in terms of averaged F-ratio over top 300 features (See

Methods). First we calculated F-ratio over increasing time period

started from the face onset, which would indicate the accumulated

progression of separability in feature space. We observed that the

discrimination ability was considerably better for F2X than for

F1X for time periods later than 200 ms (Fig. 2a). Next we

calculated F-ratio at sequential non-overlapping time windows,

which would indicate the separation specificity of any time window

in feature space. The average F-ratio was highest during time

window 250–300 ms for F2X (CGM model) while it was relatively

low for F1X over the same time window (Fig. 2b). Almost a similar

trend is observed for PAM model (Fig. 2d) during 400–500 ms.

Consistent with our earlier result (Fig. 1b), the feature space for

CGM lacked discrimination power after 700 ms indicating

saturation, while for PAM it continued to increase till the end of

the analysed time window (Fig. 2c).

As there was no clear discernible local maximum in the

temporal profiles of the predictive power of TFSL, these results

altogether suggest that the preference decision was possibly not

made at a specific moment in time that was consistent across trials,

but rather spreading over time (or trial) as a process of dynamically

evolving bias with discretionary stages in this case.

We did not find any frequency band showing consistently higher

discrimination power, therefore, results were averaged across

frequency bands, and the spatial maps of averaged F-ratio were

shown in Fig. 3 (see Methods S1). For CGM, the frontal electrode

regions had higher separation for F1X while right temporal

electrode regions had higher separation for F2X. The similar

analysis for PAM shows that frontal and left temporal electrode

regions showed maximum separation for F1X (see Figure S3). The

left frontal and right temporal electrode regions (same as CGM)

showed maximum separation for F2X, and for both cases, other

electrode regions got involved as time progressed (see Figure S3).

Let us offer a few practical remarks. First, our reported mean

accuracy of 74.3% for participant-independent classifier was

considerably higher than that (53.25%) reported by Chau and

Damouras [7] in a similar task involving subjective preference

decision. They recorded near-infrared spectroscopy (NIRS) signals

from the prefrontal cortex while the participants were asked to

Figure 1. Classification accuracy at individual and combined level. (a) Prediction performance of the classifier at individual level (PAM; Pi
indicates i-th Participant) and at combined level (CGM). Blue and green bars represent classifier accuracy based on brain responses related to the first
face (F1X) and second face (F2X), respectively. Prediction accuracy was higher at individual level than at combined level, and also higher for F2X than
F1X. Chance level is at 50% (black horizontal line). (b) Classifier performance for PAM and CGM analysis for both F1X and F2X with respect to time. The
classifier performance gradually increased till 700 ms especially for CGM.
doi:10.1371/journal.pone.0043351.g001

Predicting Trial-by-Trial Preference
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Figure 2. Time dependency of average F-ratio distribution at individual and combined level. (a) Temporal profiles of average F-ratio for
data available (from the face onset) till that time for CGM for F1X (in red) and for F2X (in black). (b) Temporal profiles of average F-ratio for successive
50 ms time window for CGM for F1X (in red) and for F2X (in black). (c) Temporal profiles of average F-ratio for data available (from the face onset) till
that time for PAM for F1X (in green) and for F2X (in blue). (d) Temporal profiles of average F-ratio for successive 50 ms time window for PAM for F1X
(in green) and for F2X (in blue).
doi:10.1371/journal.pone.0043351.g002

Figure 3. Scalp maps of average F-ratio distribution for CGM analysis at different time periods. (a), (b) Analysis for F1X and F2X,
respectively. Note that the frontal electrode region has higher F-ratio in case of F1X while right temporal electrode region has higher F-ratio for F2X.
doi:10.1371/journal.pone.0043351.g003

Predicting Trial-by-Trial Preference
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decide which one of the two sequentially presented drinks they

preferred and used Fisher’s linear discriminant analysis as the

classifier to decode subjective preference. We suggest that a

combination of factors including the comprehensive coverage of

EEG frequency bands, the adopted measure of functional

connectivity, a broader sampling of brain regions (as compared

to NIRS), and an excellent temporal resolution of EEG signals

have contributed to this much higher prediction accuracy. Second,

the chance level of our classifier is set at 50%, which is

theoretically the case for a two-alternative choice task. However,

actual chance probability does not always converge to theoretical

chance probability due to several factors/features in the dataset.

Therefore, we further attempted a quasi-randomization procedure

by considering 50% correct and 50% incorrect target for the

training dataset; the selection of these 50% was made at random

and the prediction accuracy was subsequently averaged across

runs. The mean (SD) classification chance accuracy for the F1X

and F2X was 49.8% (3.2) and 47.8% (3.7), respectively. Therefore,

our obtained classification accuracy was indeed found to be higher

than at chance level. Third, some of the F-maps (Fig. 3a) are

similar in distribution to eye-movements, but our results are

unlikely due to ocular artefacts as we found, on close inspection,

that the frontal effects in these F-maps were not produced by the

low frequency oscillatory components, the major component of

eye movements. Further, note that we did not observe any

frequency band showing consistently higher discrimination power,

therefore, results were averaged across frequency bands. Fourth,

since the mapping of response hand to preference for either face 1

or face 2 was counterbalanced across participants, the high

classification accuracy as observed by the individualized PAM

analysis might partly reflect decoding of preparatory motor

responses rather than decoding decision processes related to face

preference. However, the distinction between the onset of an

intention to respond and the moment of decision is rather diffuse,

and we believe that decoding preparatory motor responses does

not fully explain our accuracy in predicting preference decisions.

Regarding our analysis of F1C vs F1NC, the motor response

occurring at the end of F1 was not related to the final decision

made after viewing F2. Although the participants were free to

press either with the left or the right hand to progress to viewing

F2, 15 out of 18 participants consistently used one hand to do so.

For the participants that did use both hands at the end of F1, the

correlation between the choice of key after F1 and F2 did not

exceed 60.22. However, this still leaves the possibility that our

analyses of F1C vs F1NC might decode a planned subsequent

response to F2. Further, planning of an one-handed response is

characterized by contra-lateralized neuronal activity patterns with

distinct signatures on time, electrode or brain regions, and EEG

frequency domains [32–35]. If decoding of preparatory motor

responses was driving the prediction accuracies as reported in this

study, maximum discriminatory power should be observed in these

lateralized patterns [36], yet such specificity was clearly not

observed in our studied feature spaces (see earlier). Nevertheless,

one could not rule out a contribution of planned motor responses,

especially at the later stages of studied epochs that were temporally

close (i.e. within ,1 s) to the response; future research on

predicting decision should aim first to separate the decision related

responses from motor related ones. It is important here to note

that since response mapping to preference was counterbalanced

over participants this issue is mostly relevant for the individualized

PAM results but not for the group-based CGM results. Finally,

instead of adopting regions of interest-based prediction techniques,

which are often used in fMRI-based brain decoding [30,37–39],

we adopted a mechanistic machine learning approach where one

searches for the best set of features which yield the best

classification in a validating dataset. We treated sites of brain

activity and the nature of brain oscillations agnostically - that is,

without any reference to prior hypotheses. Our primary assump-

tion was that, regardless of how an individual’s brain represents

the information relevant for preference decision, it does so

consistently. The representations may be dispersed over space,

time, frequency, network patterns, and also over individuals, but

they could still be reliably detected through the machine learning

techniques. Because such data driven analysis techniques are not

reliant on the activation patterns of a small subset of brain regions

or frequency band, they have substantially increased sensitivity to

detect the patterns specific to decisions. Further, such techniques

involve statistical associations of complex activation patterns that

occur when an individual preference decision is being made, ‘‘it

does not depend on the vagaries of an experimenter interpreting

the meaning of an activation map’’ [40]. Although this mecha-

nistic approach limits the scope of neurophysiological interpreta-

tions, it amplifies the possibility of being adapted for real-world

applications of brain decoding.

In summary, we presented the mind-reading result of a complex

social judgement task. Earlier mind-reading evidence was related

to tasks with predominant sensory components [16,38,41] or

based on activations of pre-selected brain regions [42–44]. Here,

we showed that it is possible to predict subjective decision of

approachability of faces with high accuracy based on synchroni-

zation between multiple brain regions without any prior hypoth-

esis. The classification process is entirely adaptive and data-driven.

Our results also identified idiosyncratic and common brain

responses of preference decision. Finally, the analysed brain

responses were most likely implicit and pre-conscious, yet we

showed that they possessed significant ability to predict explicit

preference decision. Altogether, we suggest that our proposed

approach of trial-by-trial prediction (with relatively small dataset

from a particular individual), together with the high range of

predictability, offers promising potential as real-world applications

such as neuromarketing, social networking, and neural lie

detection.

Supporting Information

Figure S1 Timing sequence of each trial. F1/2 and RT1/2

indicate onset and reaction times of the first/second face,

respectively. The reaction (viewing) times, RT1 and RT2, varied

across trials as the viewing time was unrestricted for both faces.

Note that the explicit decision of each trial was made after viewing

the second face.

(TIF)

Figure S2 Mean preferred (left) and non-preferred
(right) face.

(TIF)

Figure S3 Scalp maps of average F-ratio distribution for
PAM analysis at different time periods. (a) Analysis for

F1X. (b) Analysis for F2X. Note that the frontal and left temporal

regions have higher average F-ratio for F1X while right temporal

and left anterior regions have higher average F-ratio for F2X.

(TIFF)

Table S1 Mean classification accuracy and standard
deviation (SD) for different models. Prediction performance

of the artificial neural network based classifier at user-dependent

level (personalized average model, PAM) and at user-independent

level (CGM). First column represents the participant number;

second column represents the number of features selected after
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implementing sequential feature selection method; third column

represents the prediction accuracy (in percentage) by analysing

brain responses to first face (F1X); fourth column represents the

prediction accuracy (in percentage) by analysing responses to

second face (F2X). The first and last row represents the mean

prediction accuracy and standard deviation for CGM and

averaged PAM, respectively. The Standard deviation for CGM

model and individual participants are calculated across repetitions

while the standard deviation of PAM model is across participants.

(DOC)

Table S2 The classification accuracy for different
models.

(DOC)

Methods S1 Spatial map profile analysis based on F-
ratio.
(DOC)
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