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Phenome-wide analysis of genome-wide polygenic scores
E Krapohl1, J Euesden1, D Zabaneh1, J-B Pingault1,2, K Rimfeld1, S von Stumm3, PS Dale4, G Breen1, PF O’Reilly1 and R Plomin1

Genome-wide polygenic scores (GPS), which aggregate the effects of thousands of DNA variants from genome-wide association
studies (GWAS), have the potential to make genetic predictions for individuals. We conducted a systematic investigation of
associations between GPS and many behavioral traits, the behavioral phenome. For 3152 unrelated 16-year-old individuals
representative of the United Kingdom, we created 13 GPS from the largest GWAS for psychiatric disorders (for example,
schizophrenia, depression and dementia) and cognitive traits (for example, intelligence, educational attainment and intracranial
volume). The behavioral phenome included 50 traits from the domains of psychopathology, personality, cognitive abilities and
educational achievement. We examined phenome-wide profiles of associations for the entire distribution of each GPS and for the
extremes of the GPS distributions. The cognitive GPS yielded stronger predictive power than the psychiatric GPS in our
UK-representative sample of adolescents. For example, education GPS explained variation in adolescents’ behavior problems
(~0.6%) and in educational achievement (~2%) but psychiatric GPS were associated with neither. Despite the modest effect sizes of
current GPS, quantile analyses illustrate the ability to stratify individuals by GPS and opportunities for research. For example, the
highest and lowest septiles for the education GPS yielded a 0.5 s.d. difference in mean math grade and a 0.25 s.d. difference in
mean behavior problems. We discuss the usefulness and limitations of GPS based on adult GWAS to predict genetic propensities
earlier in development.
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INTRODUCTION
One of the most striking findings emerging from genome-wide
association studies (GWAS) of complex traits is the scarcity of
common single nucleotide polymorphism (SNP) associations that
account for more than 1% of trait variation in the population.1,2

Although GWAS have been successful in discovering and replicating
SNP associations for many traits and disorders,3 the dearth of larger
SNP associations in well-powered GWAS demonstrates that the
ubiquitous heritability of complex dimensions and common
disorders is caused by thousands of common DNA variants of small
effect.1,4 Because their effects are miniscule, a single common SNP is
of little use for prediction. For this reason, the future of genetic
prediction lies with polygenic scores that aggregate the effects of
thousands of SNPs discovered by GWAS, including variants that do
not achieve genome-wide significance.5 Unlike quantitative genetic
designs that estimate the net effect of DNA differences in a
population—such as twin and adoption studies and SNP-based
heritability6—polygenic scores provide individual-specific estimates
of genetic propensities for specific SNPs.
Here we refer to polygenic scores as genome-wide polygenic

scores (GPS) for two reasons. First, the acronym GPS excludes the
term ‘risk’, in contrast to the previous labels, which imply that
genetic influences are inevitably associated with negative
outcomes. Second, the acronym GPS in its original use as global
positioning system is an apt metaphor for the use of DNA
differences across the genome to guide research on genetic
influence.

Association statistics for dozens of large meta-analytic GWAS
are now available, including GWAS for psychiatric and cognitive
traits. The GPS based on these GWAS results are limited by the
‘hidden heritability’ ceiling and, as yet, they account for only a few
percent of the variance or liability of their target trait.2 In addition,
most GWAS are based on comparisons between diagnosed cases
versus controls using a liability model that assumes continuous
liability throughout the population, but the extent to which these
case/control results generalize to prediction of continuous traits in
the population needs to be established empirically.
Multivariate quantitative genetic analyses using the twin method

as well as well as SNP heritability methods have shown that genetic
effects are to a substantial extent pleiotropic across complex traits in
general7 and in particular across cognitive abilities and disabilities8,9

and across psychopathologies.10–13 This pleiotropy suggests the
usefulness of going beyond ‘candidate-phenotype’ analyses of a
single GPS-trait pairing to consider the multivariate profile of GPS
associations across many behavioral traits, the behavioral phenome.
Here, we report the first phenome-wide analysis of GPS derived

from 13 published major psychiatric, cognitive and biometric
GWAS. We applied effect size and significance estimates from
GWAS summary statistics to create GPS from raw genotype data
for individuals in our target sample. The phenome included 50
traits from the domains of psychopathology, personality, cognitive
abilities, and educational achievement, assessed in a representa-
tive sample of over 3000 16-year-old individuals in the United
Kingdom.
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The main focus of this paper is to explore the profile of GPS
associations across the behavioral phenome for the entire
distribution of each GPS and for the extremes of the GPS
distributions. One use of polygenic scores is to predict genetic
propensities early in development in order to facilitate interventions
that promote potential and prevent problems. As a step in this
direction, the present sample consists of adolescents as they finish
compulsory schooling at age 16. We test whether GPS, based on
current GWAS, predict phenotypic variation in the adolescent
population, and we discuss the usefulness and limitations of GPS
based on adult GWAS to predict genetic propensities earlier in
development.

MATERIALS AND METHODS
We used genome-wide genotype and phenome-wide behavioral data from
3152 unrelated adolescents drawn from the UK-representative Twins Early
Development Study14–16 (Supplementary Table 1). We processed the 3152
genotypes using standard quality control procedures followed by imputation
of SNPs using the 1000 Genomes Project reference panel17 (Supplementary
Methods 1). After quality control, we included around 4.3 million variants
into the polygenic score analyses (Supplementary Methods 1). Association
analyses were conducted using imputed markers and principal components
to control for population stratification. Individuals were assessed on a wide
range of phenotypes at the age of 16. The present analyses included 50 traits
from the domains of psychopathology, personality, cognitive abilities and
educational achievement (Supplementary Methods 2). All measures were
age- and sex-regressed and the z-scores were used in the analyses.
We created 13 GPS for each of the over 3000 individuals in our sample

using summary statistics from 13 published GWAS18–28 (Supplementary
Table 2). Here we present results using a P=0.30 threshold for including
SNPs from the published GWAS (Figure 1 and Supplementary Table 3);
results for GPS based on the P-value thresholds of 0.10 and 0.05 are included
in the Supplementary material (Supplementary Figures 1a and b and
Supplementary Table 3). The selection of the relatively lenient P=0.30
threshold was based on the evidence that many associated markers lie
within the ensemble of individually non-significant SNPs, with power of the

GPS increasing with number of SNP included.5 We also report results
(Supplementary Figure 2 and Supplementary Table 4) from a high-resolution
polygenic scoring approach, implemented in the software PRSice (London,
UK), that identifies the most predictive GPS for each phenotype.29

We describe two types of main results: (i) associations between GPS and
the behavioral phenome for the entire sample, which demonstrate the
usefulness of cross-trait prediction, and (ii) quantile analyses showing the
association between selected GPS and behavior by septile, which
illustrates the ability to stratify individuals by GPS and the potential of
polygenic score for phenotype prediction.
To inform these analyses, we demonstrate that GPS are normally

distributed and discuss the implications for considering both ends—
resilience as well as risk—of GPS distributions. We also examine three
types of correlations: (i) genetic correlations between the GWAS summary
statistics (ii) correlations between the GPS, and (iii) phenotypic correlations
between the target phenotypes. These correlations support the usefulness
of a phenome-wide analysis of GPS.

RESULTS
GPS are normally distributed
The quantitative genetic model assumes that many genetic variants
of small effect drive the heritability of complex traits and common
disorders,30 even though each marker is inherited in the discrete
manner hypothesized by Mendel.31 Therefore, the central limit
theorem implies that the distribution of polygenic scores in the
population will approach normality. Specifically, the normal
distribution is to be expected whenever trait variation is polygenic
and produced by the addition of a large number of small effects.
Nonetheless, the normality of GPS (Supplementary Figures 3a

and c) merits emphasis because it illustrates that common
disorders can be considered as extremes of the common polygenic
liability spectrum, which has far-reaching implications for diagnosis,
treatment and prevention.32 It also implies that GPS can be
operationalized in terms of ‘resilience’ as well as ‘risk’ predictors.
There is untapped research potential for operationalizing the
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Correlations:  Genome−wide Polygenic Scores (pT = 0.3) and phenotypes 

Figure 1. Correlations between 13 genome-wide polygenic scores and 50 traits from the behavioral phenome. These results are based on GPS
constructed using a GWAS P-value threshold (PT)= 0.30; results for PT = 0.10 and 0.05 (Supplementary Figures 1a and b and Supplementary
Table 3). P-values that pass Nyholt–Sidak correction (see Supplementary Methods 1) are indicated with two asterisks, whereas those reaching
nominal significance (thus suggestive evidence) are shown with a single asterisk.
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negative tail of GPS for disorders as ‘resilience’ and the negative end
of cognitive or education GPS as ‘risk’ factors. This ‘other end’ of the
normal distribution of GPS is uncharted territory. From an
evolutionary perspective, averageness might be an adaptive trade-
off against the mishmash of costs and benefits of more extreme
GPS, especially given the fluctuating nature of selection.32

Intercorrelations between GWAS, GPS and phenotypic traits
As depicted in Supplementary Figure 4 the phenotypic correla-
tions between the target phenotypes in our sample of adolescents
show substantial intercorrelations, with a ‘cognitive’ and a
‘psychopathology’ cluster.
We estimate the genetic correlation between the discovery

GWAS using a new technique based on LD score regression,33,34

which uses only GWAS summary statistics and linkage disequilib-
rium information to decompose true polygenic variance/
covariance from confounding (see Supplementary Methods for
details). Supplementary Figure 5 depicts the genetic correlations
between the 13 GWAS, which provide evidence for significant and
substantial pleiotropy. In addition to the genetic correlations
reported previously,34 we add correlations for the summary
statistics of the child IQ GWAS,19 adult IQ35 and intracranial
volume.20 The observed genetic correlations replicate and extend
previous research. We confirm genetic overlap between the major
psychoses13,25,34,36,37 and between cognitive phenotypes includ-
ing intracranial volume,18,20,38–40 respectively. We further find
correlations between these two clusters—for example, strong
negative associations between the cognitive phenotypes and
Alzheimer’s and positive associations between educational attain-
ment and autism spectrum disorder as well as bipolar disorder.
We also examined correlations between the GPS created for our

sample (Supplementary Figures 6a and c and Supplementary
Table 3). We find similar correlation patterns but weaker overall
correlations.
These genetic correlations provide evidence that polygenic

effects are to a substantial degree pleiotropic across traits.
Together with finding substantial correlations between the target
phenotypes, this multivariate genetic architecture suggests the
usefulness of a phenome-wide approach to investigate the links
between GPS and behavior, which is the focus of the next and final
section of results.

GPS correlate with the behavioral phenome
Figure 1 summarizes correlations between the 50 traits of the
behavioral phenome and the 13 GPS for PT = 0.30. Correlation
coefficients, s.e., P-value thresholds (PT), and number of SNPs
included are shown in Supplementary Table 3 for the fixed
PT (0.30; 0.10; 0.05). Very similar patterns of association emerged
from both the conventional fixed PT analyses and the high-
resolution analyses that estimate the PT flexibly for the ‘best-fit’
GPS (Supplementary Figure 2 and Supplementary Table 4). Both
methods yielded statistically significant phenomic associations
only for the GPS for College and Child IQ.

College GPS. College GPS, which was based on the binary
measure of attending college or not, showed the strongest
phenomic profile at age 16, which might reflect the fact that
its meta-analytic GWAS sample size was one of the largest
(N= 120 000; Rietveld et al.18). College GPS correlated significantly
with academic performance at age 16: General Certificate of
Secondary Examination (GCSE) English (r =0.15), GCSE mathematics
(r = 0.15, s.e. 0.02) and GCSE science (r = 0.14, s.e. 0.02).39 College
GPS also correlated significantly with general cognitive ability (‘g’)
(r= 0.14, s.e. 0.03) as well as its subscales Ravens Matrices (r= 0.12,
s.e. 0.03) and with Mill Hill Vocabulary (r= 0.09, s.e. 0.03), which
confirms a similar finding for adults.40 College GPS also correlated
positively with PISA math interest (r= 0.10, s.e. 0.03) and math

self-efficacy (r= 0.12, s.e. 0.03). Negative associations for College
GPS emerged for SDQ total behavior problems (r=− 0.07, s.e. 0.02)
and SDQ Conduct (r=− 0.08, s.e. 0.02).

Child IQ GPS. The GPS for Child IQ yielded a similar but
diluted phenomic profile as compared with College GPS. Child
IQ GPS correlated significantly with GCSE English (r= 0.09, s.e.
0.02), GCSE Math (r= 0.10, s.e. 0.02) and GCSE Science (r= 0.09,
s.e. 0.02).

Psychiatric GPS. In contrast, the five psychiatric GPS yielded no
significant correlations that passed multiple comparisons corrections
across the behavioral phenome. Nominally significant associations
included a positive correlation between Alzheimer’s GPS and
Conner’s Impulsivity; and positive associations between Autism
Spectrum Disorder GPS and Autism Quotient: Attention Switching.
Autism Spectrum Disorder GPS yielded nominally significant
negative associations with Chaos at home, Attachment and
Height. Schizophrenia GPS correlated positively with GCSE English
and negatively with Autism Quotient: Attention to Detail. Bipolar
disorder GPS correlated negatively with Autism Quotient: Attention
to Detail.
One likely explanation for the lower phenomic profile of

psychiatric GPS compared with that of College GPS is the
difference in sample sizes for the discovery samples. However,
Child IQ GPS yielded significant associations despite the relatively
smaller sample size of the GWAS (N= 9616). This might point to
the importance of developmental proximity or similarity of the
phenotypes in discovery and target sample. It also emphasizes
that predictive power is not only a function of sample size of the
discovery sample.5 Phenotypic similarity between the traits in the
discovery sample and the target sample is a proxy for the
magnitude of genetic covariance between the traits.
The underlying premise of GWAS is that the polygenic

architecture of complex traits and common disorders requires a
genome-wide approach despite the multiple testing burden.
Similarly, based on strong evidence for the ubiquitous pleiotropy
of complex traits,7,9–13,34 the advantage of the phenome-wide
approach outweighs the resulting multiple testing burden.
Specifically, while testing a large number of highly unlikely
hypotheses with little or no prior support should be avoided, in
this case we have collated a well-defined set of psychological and
behavioral traits for which there is good reason to suspect causal
associations with the available discovery GWAS phenotypes. In
this way, the only 'multiple testing problem' relates to setting an
appropriate significance threshold given the number and correla-
tion of tests performed (see Supplementary Methods for multiple
testing correction method used).
Therefore, the absence of phenome-wide significant associations

(that is, after correcting for multiple testing across the 50 traits and
13 GPS) for all psychiatric GPS does not imply the absence of
polygenic effects. However, the scarcity of nominally significant
associations between the psychiatric GPS and the 50 traits suggests
that the genetic covariance between psychiatric adult case/control
samples and our adolescent population sample might be relatively
small. For instance, under certain assumptions about polygenic
architecture (for example, ⩽ 5% of tested SNPs associated with
schizophrenia in the discovery GWAS), we had ⩾80% power with
α=0.05 to detect associations between the Schizophrenia GPS and
a phenotype given ⩾0.06 genetic covariance between schizophre-
nia and the target trait, with ⩾ 0.5% of phenotypic variation in the
target trait explained by schizophrenia5,41,42 (see Supplementary
Methods for more detail).
One possible reason for the lower observed phenomic profile

of the psychiatric GPS might be that the current sample is UK
representative and therefore not enriched for psychiatric symptoms.
The psychiatric GPS were based on case–control comparisons, often
with extreme cases. This emphasizes the limitations of using GPS for

Phenome-wide polygenic score analysis
E Krapohl et al

3

© 2015 Macmillan Publishers Limited Molecular Psychiatry (2015), 1 – 6



the prediction of trait variation in the general population from
GWAS based on selected samples. Importantly, the GPS College did
predict children’s behavior problems in our UK-representative
sample, whereas the psychiatric GPS did not. This points to the
usefulness of cross-trait prediction in general and the value of
cognitive GWAS/GPS as prediction instruments for psychiatric
symptoms in the population.

Other GPS. Adult body mass index (BMI) GPS correlate positively
with the measure of BMI at age 16 (r= 0.18, s.e. 0.03); and adult
Height GPS correlate with height at age 16 (r= 0.33, s.e. 0.03).
There was suggestive evidence for a negative association between
Ever smoked GPS and conscientiousness (r=− 0.06, s.e. 0.03) and a
positive association with BMI (r= 0.09, s.e. 0.03).

Quantile analyses
To illustrate the ability to stratify individuals by GPS and the
potential of polygenic score for phenotype prediction, we
grouped individuals into GPS septiles and estimated the mean
phenotypic value for each quantile. We provide three examples:
Figure 2a shows that mean standardized height increased with

more adult height-associated alleles in our UK-representative sample
of children aged 16, with the largest difference between the lowest
and highest septile (Hedges g: −1.01 with 95% confidence interval
(CI): − 1.26 to − 0.77; difference in means: 0.97 s.d., with P-value
o0.01). Figure 2b shows that mean math grade on the standardized
UK-national examinations at age 16 increased with more College-
associated alleles (Figure 2b), with the largest difference between
the lowest and highest septile (Hedges g: − 0.52 with 95% CI: − 0.67
to − 0.37; difference in means: 0.49 s.d., with P-value o0.01).

Figure 2c illustrates the utility of the phenome-wide approach for
cross-trait prediction: the mean for total parent-reported behavior
problems at age 16 decreased slightly but significantly with higher
College GPS, with a maximum effect size between the lowest and
highest quantile (Hedges g: 0.20 with 95% CI: 0.04–0.34; difference in
means: 0.19, with P-value 0.01).
These results (Figure 2) illustrate the ability to stratify individuals

by GPS, which suggests opportunities for research, for example,
selecting high and low GPS extreme individuals for intensive
research such as neuroimaging that is unable to test large
representative samples. However, we emphasize that the current
predictive power and accuracy of GPS do not allow for their use as
predictive tests.

DISCUSSION
These results highlight the usefulness of a phenome-wide
approach to examine behavioral profiles of associations with
GPS even though current GPS account for only a few percent of
variance or liability of their target trait. An interesting finding is
that phenome-wide associations for cognitive GPS are stronger
than for psychiatric GPS in our UK-representative sample of
adolescents. For example, we found that GPS College, but none of
the psychiatric GPS, predicted adolescent behavior problems,
which demonstrates the usefulness of cross-trait predictions and
the multivariate phenome-wide approach in general. However,
this finding could be explained by differences in sample sizes,
sampling methods (population versus case/control), and genetic
architecture (for example, extent of covariance between discovery
and target trait).
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Figure 2. (a) Mean for height at age 16 by adult Height genome-wide polygenic score (GPS) septile. The threshold for selecting trait-associated
alleles was PT o 0.30. The GPS were converted to quantiles (1= lowest, 7=highest GPS). Mean phenotypic values and 95% confidence
intervals (CIs) for the quantile groups (bars) were estimated using general linear regression with ancestrally informative principal components,
sex and age of measurement as covariates. (b) Mean for children’s mathematics educational achievement at age 16 (compulsory subject on
the General Certificate of Secondary Examination (GCSE), see Materials and Methods for details) by College GPS septile. The threshold for
selecting trait-associated alleles was PT o 0.30. The GPS were converted to quantiles (1= lowest, 7=highest GPS). Mean phenotypic values
and 95% CI for the quantile groups (bars) were estimated using general linear regression with ancestrally informative principal components,
sex and age of measurement as covariates. (c) Mean for total parent-reported behavior problems at age 16 by adult College GPS septile. The
threshold for selecting trait-associated alleles was PT o 0.30 (the best-fit GPS as estimated by PRSice software, see Materials and Methods).
The GPS were converted to quantiles (1= lowest, 7=highest GPS). Mean phenotypic values and 95% CI for the quantile groups (bars) were
estimated using general linear regression with ancestrally informative principal components, sex and age of measurement as covariates.
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Finding significant associations for the Child IQ GPS, which is
based on a small discovery sample, is a reminder that predictive
power of GPS is not merely a function of sample size but also of
the developmental proximity of the GWAS sample and the target
GPS sample. As explained in the Introduction, we were interested
in the extent to which GWAS in adult samples yield GPS that can
predict genetic propensities—strengths as well as weaknesses—
earlier in development, in this case in adolescence. However, GPS
College is a trait assessed closer in age to the adolescents in our
sample. In contrast, the psychiatric GPS were derived from GWAS
studies of adults.
A larger issue is that extant GPS account for only a few percent

of the phenomic variance in the target trait. However, we illustrate
the research potential of polygenic stratification by quantile.
Power and accuracy of GPS will improve as GWAS sample sizes
increase. GPS that narrow the ‘hidden heritability’ gap is what is
needed most for phenome-wide analyses—and for all research
harvesting the fruits of GWAS.
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