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Abstract

The notion of curvature of planar curves has emerged as one of the most powerful
for the representation and interpretation of objects in an image. Although curvature
extraction from a digitized object contour would seem to be a rather simple task, few
methods exist that are at the same time easy to implement, fast, and reliable in the
presence of noise. In this paper we first briefly present a scheme for obtaining the dis-
crete curvature function of planar contours based on the chain-code representation of a
boundary. Secondly, we propose a method for extracting important features from the
curvature function such as extrema or peaks, and segments of constant curvature. We
use mathematical morphological operations on functions to achieve this. Finally, on the
basis of these morphological operations, we suggest a new scale-space representation
for curvature named the Morphological Curvature Scale-Space. Advantages over the usual
scale-space approaches are shown.

Index terms: Shape Representation, Curvature Representation and Analysis, Morpho-
logical Operators, Multiscale Description, Multi-Dimensional Scale-Space.
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Sommaire

Le concept de courbure appliqué aux courbes et contours planaires est reconnu comme
un outil des plus utiles pour la représentation et l’interprétation de projections d’objets
dans une image numérique. L’obtention de la fonction de courbure à partir d’un contour
d’objet peut sembler à première vue simple. Pourtant, très peu de méthodes existent qui
soient à la fois aisément programmable, rapide en temps de calculs et robuste en présence
de bruit ou de perturbations. Dans le présent article, nous présentons, dans un premier
temps, une telle méthode, afin d’obtenir une fonction de courbure discrète sous une forme
adéquate, ce sur la base de la représentation dı̂te du code de chaı̂ne (“chain-code”). Par
la suite, nous proposons une méthode pour extraire et identifier les caractéristiques mor-
phologiques de la fonction de courbure, telles que les extrema et segments à courbure con-
stante ou plateaux. Pour ce faire nous utilisons des opérateurs définis dans le cadre de la
Morphologie Mathématique. Finalement, sur la base de ces opérateurs morphologiques,
nous introduisons une nouvelle représentation multi-échelles de la fonction discrète de
courbure. Les avantages de cette représentation sont démontrés.1

1The authors would like to thank B. Kimia, A. Dobbins, G. Godin and J. Lagarde of the McGill Research
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and D. Gauthier for discussions related to the cell shape problem, and M. Dalziel for proof reading. F. Ley-
marie wishes to thank P. Cohen of Ecole Polytechnique de Montreal for introducing him to mathematical mor-
phology and the Natural Science and Engineering Research Council (NSERC) for a postgraduate scholarship
to support his studies. This research was partially supported by the Medical Research Council of Canada,
Grant No. MT-3236. M. D. Levine would like to thank the Canadian Institute for Advanced Research for its
support.
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1 Introduction

Shape representation and analysis is fundamental to computer vision and our interest in
it is an outgrowth of a study of the dynamic changes in cell shape [28, 21]. Of the many
approaches to shape that have been proposed, the notion of curvature of planar curves has
emerged as one of the most powerful for the representation and interpretation of objects
in an image [18]. Curvature is a measure of the rate of change in orientation at each point
along a curve. There is psychophysical, physiological, as well as computational and math-
ematical support in favor of using curvature as a representation for contours. Curvature
extrema seem to be used by the human visual system to segment contours into meaningful
parts [2, 5, 16]. For example, endstopped neurons in the visual cortex can be interpreted as
performing local curvature measurements [12]. Local estimations of curvature and tangent
information are sufficient for the recovery of the trace of a curve in an image [31]. From
differential geometry, the fundamental theorem of the local theory of curves states that any
regular2 planar curve is uniquely defined by its curvature [11]. Non-regular points of a
curve are singular points where the curvature goes to infinity, that is, where the change in
orientation is undefined. They correspond to visually salient points such as corners. There-
fore, given the set of singular points of a contour, which can be represented as extrema of
curvature, as well as the curvature values for all intervening points, a contour is uniquely
defined. This representation by curvature is invariant to rigid motion, that is, with respect
to translation or rotation.

In a typical computer vision system, discrete contours of objects are first extracted from
an image. Curvature of these discretized contours is then approximated and used to de-
tect important features of the boundary of an object. Although curvature extraction from an
object contour would seem to be a rather simple task, few methods exist that are simultane-
ously easy to implement, fast and reliable in the presence of noise. In this communication
we first briefly propose a scheme for obtaining the discrete curvature function of planar
contours (opened or closed) based on the chain-code representation of a boundary [14].
This approach has been previously reported and we mention only our own attempts to
optimize its implementation.

Secondly, we present a way of extracting important features from the curvature func-
tion. We are interested in localizing features such as extrema or peaks of curvature, points
of inflection (i.e., zero-crossings of curvature), and segments of constant curvature that cor-
respond to straight line segments or circular arcs of the boundary. Furthermore, we would
like to be able to differentiate these features by their relative significance, that is, by the
degree of their isolation from nearby features, their relative amplitude, and their scale or
size. Consequently, we seek methods for segmenting the curvature function into its basic
and significant events. To achieve this goal we propose using morphological operations on
functions [36]. These operators permit us to create a representation of curvature, not only in
terms of feature localization and identification, but also in terms of significance and scale.
We will demonstrate that morphological operators can be used to remove details of a sig-
nal, in our case the curvature function. This can be done for a continuum of sizes without

2Regularity implies continuity of a curve and its derivatives.
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blurring the shape of these details and while still retaining the global shape features. This
property of morphological operations permits us to suggest a new scale-space representa-
tion for curvature referred to as the Morphological Curvature Scale-Space. Advantages over
the usual scale-space approaches [40, 1, 27, 23] will become evident from the discussions.
In these references, scale is a function of the amount of blurring or smoothing necessary to
remove and deform details of a signal.

In the following sections we first present how to retrieve the orientation and curva-
ture from the discrete trace of a contour using as a basis the chain-code representation. In
this context, quantization errors and “protrusion-depression definition” problems inherent
to the chain-code representation are discussed. We also indicate how smoothing of dis-
crete orientation data should be performed to extract its derivative and curvature, all the
while reducing the noise amplification as much as possible. Then we present the kind of
morphological operations that are applicable to curvature analysis. Certain morphological
measures are also introduced for the purpose of describing curvature peaks extracted using
these morphological operations. The Morphological Curvature Scale-Space is then defined
and its main advantages demonstrated.

2 From Discrete Contour to “Not Too Smooth” Curvature

Since any visual input to a computer is discrete3 as a result of the digitization mesh, con-
tour extraction must address the issue of synthesizing a continuous representation from a
discrete one [22]. The problem involves going from the discrete trace of image contours
(i.e., edge pixels) to a continuous or linked set of points through which the curve passes.
Essentially, two kinds of encoding and representation schemes of smooth curves have been
proposed in the computational vision literature: curve fitting algorithms [33, 32, 38, 8] and
orientation chaining algorithms [14, 24, 15, 6, 1, 29, 26].

In the first scheme, a set of curves is fit to the contour by minimizing a certain error
measure. The points where curves meet are retained as knot points and are essentially ar-
bitrary. Most such techniques employ polygonal approximations, circular arcs, or splines.
Their main drawback is that the knot points are not always related to our perception of the
salient points of a contour, such as for example the curvature extrema. Furthermore, the
a priori assumption made about the nature of contour segments between knot points, that
is, that they are composed of straight lines, circular arcs, or splines, can often be seen to be
rather rigid.

In the second scheme, an opposite approach is adopted where orientation or curva-
ture along the contour is first approximated and then processed further to extract the knot
points. These points are usually obtained by examining the rate of change of orientation
(curvature function) along the contour. Curve segments can then be fitted between the
knot points. Since this representation seems to be supported at the physiological level and
is also advantageous at the computational level, we have chosen it to encode and represent

3This is also true of the human visual system and of its discrete retinal sampling grid.
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discrete contours.4

2.1 Curvature Function Extraction

Two different approaches have been reported for computing curvature of a discrete curve
from orientation. In the first type of method (hereafter called

���
methods, for Filtering and

Differentiation), smoothed local curvature is evaluated by convolving a discrete orientation
representation of the contour5 with a template. The derivative of a Gaussian of variable size
is often employed as the template in order to extract an approximation of the curvature [1].
Alternatively, the orientation data can be differentiated by computing the first difference
of the angle formed by nearby points and then smoothed with a Gaussian filter to remove
noise. This can yield a multiscale representation if a set of different sized filters is used
[10]. However, this second method usually has a poorer signal-to-noise ratio. This can
be attributed to a specific reason: filtering discrete orientation data with a template that
directly extracts the derivative greatly amplifies noise.

In the second type of method (hereafter called
�����

methods, for Difference Of Slopes),
curvature is estimated at each point by taking the angular difference between slopes (ori-
entation) of two line segments fitted to the data before and after each point [35, 29]. This
can be repeated for line segments of varying length. The extent of data smoothing is gov-
erned in both methods by the size variable: the template size for

���
’s and the line size for�����

’s.
Although

�����
methods give good results in the presence of boundary noise, they do

require more expensive computations than
�	�

methods. They involve fitting straight lines
to the data at each contour pixel. In this paper, we will propose an alternative to extracting
curvature from discrete orientation data which is also an

�	�
method, but which requires

even less complex computations . In the next section, we describe how the discrete orien-
tation representation is obtained.

2.2 From the Trace of the Discrete Contour to a Discrete Orientation Rep-
resentation

Let us consider the discrete trace of a curve6 on a square sampling lattice with integer
coordinates and denote it by 
��������������������������� , where  represents the distance between
the centroids of two neighboring pixels. On a square sampling lattice,  takes the value � for
direct neighbors (i.e., either vertical or horizontal) or the value � � for indirect or diagonal
neighbors. Given a discrete trace of a curve such as 
����� , a common first step is to consider

4Some recent methods proposed in the literature can be seen as a compromise between the two above-
mentioned schemes. For example, Medioni and Yasumoto process cubic � -splines fitted to a contour by
examining their curvature. Extrema of curvature are then extracted and the fitting process is refined [25].

5The discrete orientation representation is usually given by the well-known chain code representation of
Freeman [14]. This representation is considered in more detail in the following section.

6The discrete trace is usually obtained in a previous segmentation step. For example, an edge map may
be derived from an image and from it an object contour is defined by linking pixels.
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Figure 1: Example of chain code generation.

the chain code [14] of the bounding contour. We observe that the chain code is in fact a
discrete representation of the orientation along the contour. It can be stated as a vector of
integers

� ���� , where each entry represents the discrete angle formed by adjacent pixels.
Due to the nature of the square sampling lattice, angles in the chain code are constrained
to a discrete range of eight values (0, ..., 7) representing multiples of ����� . Contour pixels
are traversed in a fixed counterclockwise direction. Therefore, the figure or interior of the
object is defined as being to the left of the traversal direction (see Figure 1).

Two quantization problems inherent to the chain code definition must be solved before
embarking on further processing of the data [24]. First, the angle quantization in such a
narrow range (0,...,7) may introduce angle discontinuities of more than ���	��� (e.g., where a
0 follows a 7). The solution here is to avoid discontinuities by using a modulo 8 operation
that puts a bound of 
 on angle discontinuities. For example, replace 0 by 8, if 0 follows 7.
This modified chain code

��� ���� is generated as follows:

 ��� ��� � =
� ��� � ,

 If � ��� ����� � ��� � ��� ������� then find an integer ��� such that � ��� ����� � ����� � ��� ��� �"!$#%�'&(��)*� ,
set
��� ��� � � � ��� �"�+�,!-#.� ,

 Otherwise,
��� ��� � � � ��� � .

The second quantization error is introduced by the discretization factor  (discrete arc
length unit) which is usually simply incremented by one for each new pixel found while
traversing of the contour. However, a diagonal step is actually � � times longer than a step
along the grid axes. This can be corrected by counting two arc length units for entries of��� ���� with directions along grid axes and three arc length units for entries along diagonal
directions (approximates � � by �	/0� while keeping integers values). We denote by 1 this
normalization of the distance  along the trace of the curve.

In addition to these quantization errors, there is a third source of error which is related
to the definition of the chain code. Very sharp protrusions ending in a line of pixels of
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width one (see Figure 2) could be erroneously defined as a depression, depending on the
preceding values of

���
as one gets closer to the tip of the protrusion. Therefore, protrusion

definition problems occur at angles of
� ����� � or equivalently, where � ��� ��� � � ��� � ��� � � �

� . The same problem can also occur for depressions, depending on how the trace of the
contour is obtained.7 In the general case, a protrusion or depression with an angle of

� �������
that occurs at a contour pixel � ��� � can be checked by examining a neighborhood of � ��� �
to ensure that the interior of the object is still defined to be on the left of the direction of
contour traversal. A simple procedure consists of looking at contour pixels preceding and
following ����� � . A description of the procedure follows:

 If � ��� ���"� � � � � ��� � � � � , then

– Compare the coordinates of the contour pixels � ���"� � � and � ���$��� � adjacent to
����� � until two are found which are located at different spatial positions.

– Check whether or not ����� � � � is to the left of ����� � � � . If it is, then we have a
protrusion. That is,

��� ��� �	� ��� ��� � � � � � . Otherwise,
��� ��� �	� ��� ��� � � � ��� ,

indicating a depression.

In summary, the original chain code
� ���� must be corrected for three types of errors:

discontinuities of more than � ���	����� , arc length normalization, and protrusion-depression
definition problems. These three types of errors can be detected in parallel by applying the
above-mentioned procedures. The steps which follow address the problem of obtaining
smoother orientation data and then deriving the curvature.

2.3 From Discrete Orientation to Smoothed Curvature Representation

If we define � ��1 � as the modified chain code after both quantization and protrusion-depression
errors have been corrected, we now must process it to obtain the curvature measurements.
By definition, for a parameterization of the curve by arc length 1 , the curvature � ��1 � is given
by ��� 1 � ������� 1 � .

Noise amplification problems occur when differentiating a discrete signal such as � � 1 �
because it is very coarsely quantized in ���	� steps. For example, a straight line at an angle
between ��� and ����� is represented by a succession of ��� and ����� orientations, a very noisy
signal indeed. This aliasing phenomenon cannot be alleviated unless the original sampling
grid is refined or the orientation sampling is done over a larger neighborhood. Still, the
effect of aliasing can be reduced by the application of low-pass or band-pass filtering to the
signal � � 1 � . Therefore, it is common to filter � ��1 � with a Gaussian template ��� [6, 10], with
standard deviation 	 , defined as:

7A simple object contour following algorithm used to extract the chain code from a segmented edge map
would not usually tolerate, as part of the contour, depressions made of a string of pixels of width one. A more
“intelligent” contour following algorithm would extract contour pixels in two passes. It would turn around
the object (interior on the left) as well as “around” the background (exterior on the left) thereby generating
sharp protrusions as well as sharp depressions.
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(a) Protrusion. (b) Depression.

Figure 2: Protrusion-depression definition problems. A protrusion is shown in
�����

where
an angle of ���	��
� occurs at the contour pixel ��� . The right choice for the chain code value
is 12. If the usual chain code definition were used, a value of 4 would be obtained, leading
to an inconsistent definition of the tip as being part of a depression, as shown in

�����
. Using

our proposed procedure, since pixel � ��������� lies to the left of pixel � ��������� , a protrusion
is recognized. In

�����
, since pixel � ����� ��� lies to the right of pixel � �������!� , a depression is

recognized.
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� � � 1 � � �
	 � ��


������� �,1��
� 	 �

	 / (1)

Furthermore, the convolution theorem [30] can be used to differentiate the filtered signal:

� � ��1 ��
 � � � � ��� � 1 ��
 � � � / (2)

This is the approach usually followed to obtain � ��1 � , whereby the smoothing and differen-
tiation of � � 1 � with a band-pass filter � � � is performed at the same time [6, 1]. However, in
terms of computational complexity, there is an advantage to using Gaussian templates in
an initial smoothing step instead of computing the derivatives of the Gaussian directly, as
is done in other

���
methods. Gaussian filtering can be very efficiently implemented by

combining Hierarchical Discrete Correlation (  � � ) techniques [7] with cascaded convolution
[9, 39, 19]. Burt’s  � � algorithm permits very fast computation for Gaussian smoothing at
variable scale, while the cascaded convolution property can be combined with  � � tech-
niques to obtain a broader range of scaling (smoothing) than by solely employing  � �
techniques. Reusing the convolution theorem and the cascaded convolution property of
Gaussian templates we obtain a smoothed curvature signal � � as follows:

� � � 1 � � � � ��1 ��
 � � � � � � � � 1 ��
 � ����
 � ��� � � ��� � 1 ��
 � ����
 � � ��� � (3)

where 	�� and 	 � are the standard deviations for the two Gaussian functions � ��� and � ��� ,
respectively, and

	 � ��	 �� � 	 �� / (4)

Therefore, in the first step we filter � ��1 � with a low-pass filter using an  � � -like algorithm
and denote this operation by:

� ��� � 1 � ��� � 1 ��
 � ��� / (5)

Then, in a second step, we filter � ��� ��1 � with a band-pass filter to obtain its smoothed deriva-
tive:

� � ��1 � ��� ��� � 1 ��
 � � � � / (6)

The first step involving � ��� is performed very quickly due to the  � � implementation.
The second step is performed for a derivative of a Gaussian template � � ��� over a much
smaller neighborhood than for � � � in equation (2). Our complete procedure for extracting
curvature from discrete orientation data is illustrated in Figure 3.8

Although Gaussian filtering is necessary to reduce noise effects and to evaluate the
derivative of � � 1 � with a numerically stable procedure, this smoothing process must be
performed in a conservative way. By “conservative smoothing” we imply that we wish to
retain as far as possible the relevant details of � � � � 1 � and � � ��1 � . However, Gaussian filtering

8The object shown in Figure 3 will be used throughout this paper to illustrate the complete curvature
morphology approach.
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Figure 3: From the trace of the discrete contour to smoothed orientation and curvature
representations.
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considers noise and peaks of � � ��1 � without distinguishing between them on the basis of size
[29]. We would also like to describe the features of � � ��1 � by detecting them without having
to significantly modify � � � 1 � . Gaussian filtering cannot be used for this second purpose
since peaks corresponding to features would be attenuated and blurred. In summary, linear
filtering using Gaussian templates and their derivatives is ineffective because the scope
of the filtering is too global, that is, indiscriminate with respect to significant curvature
features [4, 34, 29].

We seek a description of curvature features in terms of their annihilation, as proposed in
the so-called scale-space approaches [40, 6, 17]. However, instead of using Gaussian smooth-
ing to generate a scale-space, which has an undesirable global effect, we propose the use
of morphological operators [36]. These permit the removal of details from a signal such
as � � ��1 � without modifying its global “morphology” or shape. Since they exert only lo-
cal influence, morphological operators have the desirable property of generating uniform
scale-spaces that are unambiguous and therefore easily interpreted. Morphology for cur-
vature is the subject of the next section.

3 Curvature Analysis

Although the curvature at each point along a curve uniquely defines its behavior, it is the
morphology of curvature that permits the retrieval of useful visual information. We would
like a description of � � ��1 � in terms of its singularities and any well identified regions or
arcs.

As mentioned earlier, peaks in curvature are known to correspond to the critical points
of a contour and are useful for visual perception, as well as mathematical and computa-
tional representation. Constant regions are defined by straight lines ( � � � 1 ��� � ) and arcs
of constant curvature ( � � � 1 �	� constant). They can be used to compress information and
reduce the complexity of the interpretation process. Such constant regions, along with their
associated peaks of curvature, can also be used to compute region-based representations
of an object. Examples are the so-called skeleton (symmetric-axis transform) [10, 21] and
local rotational symmetries [13]. Zero crossings of � � ��1 � map to inflection points of a con-
tour. Since they are a natural way of segmenting the contour into convex and concave
regions, we hereafter separate � � ��1 � into two functions, � � � 1 � for convex regions and ��� � 1 �
for concave regions (see Figure 4).

In addition to localizing the curvature features, we wish to be able to quantify their
significance. This includes their relative importance (e.g., relative amplitude of peaks), as
well as their extent and isolation from one another along the contour. This concept of fea-
ture significance leads naturally to a multiscale representation in which irrelevant details
of � � ��1 � can be removed before its interpretation.

All of these notions relating to feature shape, localization, size, isolation and scale are
associated and can be treated using the mathematical technique known as mathematical
morphology [36].
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Figure 4: Curvature function � � ��1 � as the sum of two functions, � � ��1 � and � ����1 � .

3.1 Curvature Morphology

Mathematical morphology applied to functions such as � � ��1 � provides us with useful tools
for the extraction of primitives or dominant shapes found in such functions.9 Two dual
operations, erosion and dilation, are the keystones of this approach. As their names indi-
cate, erosion is a shrinking operation while dilation is an expanding one. These operations
are performed locally by observing the structure of the neighborhood at each point of the
function. The neighborhood over which local computations are performed is defined by a
structural element defined by a set of resolution cells constituting a specific shape such as a
line or square.10 In our application to curvature, only flat structural elements, that is, lines
of increasing width are considered.11 These are sufficient for the extraction of peaks and
flat regions of � � ��1 � . Eroding a function by a segment of size

�
is equivalent to replacing

the function values at every point by the minimum of all the points in a neighborhood of
radius

�
. Likewise, dilating a function by a segment of size

�
is equivalent to a maximum

transformation over a neighborhood of radius
�

. Examples of dilation and erosion applied
9See Appendix A for mathematical definitions and properties of morphological operations on functions.

For further mathematical details about this subject, the reader is referred to chapter twelve of Serra’s book
[36]. For applications to grey level images, see the paper by Sternberg on grayscale morphology [37].

10This is analogous to the concept of a two-dimensional window that we can slide over an image to perform
convolution-like computations.

11We employ symmetric flat structural elements centered on a function point in the examples given through-
out this paper. Therefore, we use only widths of odd values for these structural elements. Furthermore, the
minimal width is fixed to three arc length units (see � B).

10



(a) Dilation operation.

(b) Erosion operation.

Figure 5: Examples of dilation and erosion applied to � � ��1 � (positive curvature function of
object shown in Figure 3). The structural element shown in � � � and � � � defines the neigh-
borhood over which local min-max computations are performed (here 21 arc length units
wide). In � � � , a dilation is performed by using a maximum operation. In � � � , an erosion is
performed by using a minimum operation.

to � � � 1 � are given in Figure 5 (similar results are obtained for � ����1 � ).
By combining dilation and erosion two new operations can be defined: opening and clos-

ing. Opening is the dilation of an eroded function, while closing is the erosion of a dilated
function. In both cases, by combining the two dual operations of dilation and erosion, the
original function is only partially recovered since some details are segmented from it. In
the case of opening, convexities or “bumps” of increasing size are removed with the use of
different sized structural elements. Closing, on the other hand, is used to fill-in concavities
or holes. These concepts are shown in Figure 6. A dilation (erosion) will remove from the
top (bottom) of the function all details that are smaller than the structural element size. The
result is a new function which is more regular (smoother) than the original one.

We observe that mathematical morphology provides us with a method for removing
from the signal � � ��1 � details of increasing size. This is indicated in Figure 7. � � � where

11



(a) Closing operation.

(b) Opening operation.

Figure 6: Examples of closing and opening operations on a positive curvature function for
a structural element of fixed width (21 arc length units wide).

12



we compare the function � � � 1 � to its “opened” version � � � ����� ��1 � and thereby isolate the
peaks and bumps. Thus the residual � � ��1 �-� � � � ����� � 1 � is defined as the top-hat transform
of � � � 1 � . We can also define its dual, the bottom-hat transform in which � � ��1 � is compared
to its “closed” version � ���	� � 
�� � 1 � according to the residual � � � 1 � � � ���	� � 
�� ��1 � . These two
residuals are similarly defined for the negative curvature function as � ��� 1 � � � � � ����� ��1 � and
� ����1 � �*� � �	� � 
�� � 1 � respectively. The bottom-hat transform applied to � ��� 1 � is illustrated in
Figure 7. � � � . Both these operators will be used as the basic morphological operations for
curvature. Hat-transforms are so named because they can be visualized as a covering of
peaks with a hat of fixed size.

3.2 Peak Description

Peaks with bases of different size can be extracted by varying the size of the flat structural
element. Thus, by increasing the width of the structural element details of greater and
greater extent can be extracted from � � � 1 � (similarly for � ��� 1 � ). Once a peak has been
isolated from the curvature signal, its morphology or shape can be analyzed. We define
four morphological measures to describe an isolated peak:

1. The extent of the peak,
� 
 which is equal to the width of the flat structural element.

2. The maximal peak amplitude or maximal relative curvature, � ���� .
3. The average relative curvature � ����� , given by the area under the curve defined by the

peak ( �-� ) divided by
� 
 .

4. The shape factor � , given by the ratio of � ���� to � ����� ( ��� � ).
The peak features � ����� , � 
 and �-� are illustrated in Figure 8. Each of the four mor-

phological measures derived from them can be used to describe the nature of the peak.
Peak significance can be determined not only by large values of � ����� with respect to

� 
 but
also by the shape factor � . Values of � greater than one may indicate a very narrow and
well-defined peak. On the other hand, a value close to one indicates a region of constant
curvature (see Figure 9. � � � ). By examining its extent

� 
 , this constant curvature region could
be retained as being significant or be disregarded. The different possible kinds of shapes of
peaks described by the shape factor � are illustrated in Figure 9. Stable curvature peaks are
represented by the range ����� ) � (see Figure 9. � � � and ��� � ). By “stable” we mean that if� 
 is increased, � ����� of the given peak will substantially increase. On the other hand, when
������� � 
 , the peak tends to flatten for increasing

� 
 (see Figure 9. ��� � ). The case of ��� � 

corresponds to noise in the curvature data (see Figure 9. �� � ).

An example of peak description using the four morphological measures for peaks ex-
tracted using the top-hat transform is given in Figure 10.

Although these shape measures seem to be useful, the scale or size at which they should
be sought is variable and unknown a priori. Therefore, curvature morphology analysis
should be performed at different scales, where scale is defined as the variable size of the
structural element. This leads to a multiscale representation of curvature which is devel-
oped in the next section.

13



(a) Top-hat transform.

(b) Bottom-hat transform.

Figure 7: Examples of hat-transforms for a structural element of fixed width (21 arc length
units wide). In

�����
the top-hat transform is applied to ��� �	�
�

to extract its peaks. In the
top-right hand corner is shown the effect of removing the extracted peaks from ��� ����

. This
is equivalent to ����������� �	�
� . In

�����
the bottom-hat transform is applied to ��� �	�
�

to extract
its valleys. In the bottom-right hand corner is shown the effect of removing the extracted
valleys from ��� ���
�

. This is equivalent to ������������� �	�
� .
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Figure 8: The features used to describe an isolated peak of curvature.

Figure 9: The five possible types of peak shapes described by the shape factor � for given
������� and

� � . In
��� � ���
	
�� �����
� . In

�����
,
��� �

and
��� �

are shown the three most common types
of curvature peaks. In

������ ��� ������� .
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Figure 10: Examples of peak description using the four morphological measures:
� 
 , � ���� ,

� ����� and � . The structural element size is fixed at 21 arc length units as before.
� �����

stands
for the position of � ����� in arc length units. �-� values are given for the sake of completeness.
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3.3 Morphological Curvature Scale-Space

We generate the multiscale representation of � � ��1 � (similarly for ������1 � ) by uniformly in-
creasing the size of the structural element. A sequence of peaks is generated using the
hat-transforms. A scale history can then be associated with each peak, starting with the
scale at which it appears and terminating with the scale at which it ceases to increase in
height. As soon as a peak stops increasing it no longer needs to be considered as part of
� � ��1 � . Once a peak has been removed from � � � 1 � , no other peak is permitted to grow over
the extent of the former. This is simply because only one curvature feature can be associ-
ated with a given contour segment. An example of the scale-space generated in this way is
given in Figure 11. Here, the position of an event, that is of a peak of � � ��1 � , is given by the
position

� �����
of the maximal relative curvature value � ����� associated with the peak.

Our scale-space representation for curvature (hereafter referred to as the Morphological
Curvature Scale-Space or

� � �
) possesses certain desirable advantages over previous ap-

proaches such as the “Curvature Primal Sketch” [1]. For example, each branch in the scale-
space diagram remains isolated whereas in the usual scale-space approaches reported in
the literature instabilities occur because of branch merges [40, 1, 27]. The

� � �
bears some

similarity to the kind of scale-space generated under the weak-continuity constraints scheme
of Blake and Zisserman [4, 3], although in their representation, only discontinuities in cur-
vature are tracked explicitly. Furthermore, the

� � �
satisfies the three criteria proposed by

Perona and Malik [34], that any candidate paradigm for generating multiscale representa-
tions should satisfy.12 These criteria are:

Causality: No spurious details should be generated when the scale (
� 
 ) is increased.

Immediate Localization: At each scale, feature boundaries should be sharp (unblurred)
and correspond to meaningful boundaries at that scale.

Piecewise Smoothing: At all scales it is preferable that intra-feature smoothing occur rather
than inter-feature smoothing.

The
� � �

is an elegant way of removing noise from � � ��1 � while preserving its significant
features. Noisy elements of � � � 1 � which exhibit a short history at small scales in the

� � �
can be eliminated. Note that both the top-hat and the down-hat transforms can be used
here to remove small convex bumps and to fill-in small concave depression of � � ��1 � , re-
spectively. An example of filtering � � � 1 � in this fashion is shown in Figure 12, where the
threshold on

� 
 for removing bumps and valleys was set at 12 in Figure 11. A second thresh-
old, this time on the minimal acceptable � ���� ��1 � value, is also used for peak significance.
This threshold was set at 0.20 in Figure 11. The same filtering process is also applied to
� ����1 � . The combined results are shown in Figure 13. This ability of the

� � �
to deal with

noise justifies our previous conservative attitude toward Gaussian smoothing (see � 2.3).
The

� � �
can also be used to build a hierarchy of significant peaks. Peaks with long his-

tories starting at a small scale are classified as prominent. Peaks starting at higher scales,
12Scale-space representations based on the usual Gaussian blurring approach only satisfy the causality

criterion.
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Figure 11: Example of the morphological curvature scale-space.
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Figure 12: Removing noise from � � � 1 � . At each one of the three passes, the
� � �

is used to
extract small bumps and depressions.
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(a) Original signal.

(b) Filtered signal.

Figure 13: Example of removing noise from � � � 1 � using the hat transforms and the
� � �

.
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on the other hand, can be classified as corresponding to constant curvature regions be-
cause their initial larger extent

� 
 maps to a constant curvature arc. Once these peaks are
extracted, they can be subtracted from the curvature signal. The resultant signal can then
be further processed to isolate other constant curvature arcs. An example of this segmen-
tation process applied to both positive and negative curvature signals is shown in Figures
14 and 15.

Once the main features of the curvature signal have been segmented, that is when both
positive and negative peaks and constant curvature arcs have been extracted, the contour
of the object itself can be segmented. Peaks of curvature map to knot points of the object
contour, while constant curvature arcs map to their respective contour arcs. This is shown
in Figure 16. All knot points are extracted and precisely localized.13 Constant curvature arcs
are also well identified. Gaps between identified arcs and knot points which are caused by
filtering can be filled-in by extrapolation, while unidentified arcs can be approximated by
fitting splines or circular arcs between the bounding knots [20]. The average curvature of
these unidentified arcs, obtained by integrating the curvature signal between the knots, can
be used to impose a constraint on the fitting curve segment [20].

3.4 Multidimensional Morphological Curvature Scale-Space

Aside from the history of peaks of � � ��1 � in the
� � �

defined in the previous section, we
can define other measures to be tracked in scale-space. Specifically, we propose using the
morphological measures defined in � 3.3. For example, the shape factor � could be useful
for tracking in scale-space a curvature peak that has widened at its base. We might also
observe the rate of growth of � ����� and � ����� . We are currently conducting experiments with
the tracking of these measures in

� � �
. A multidimensional approach is then produced by

combining these various morphological measures. We believe that this multidimensional� � �
is a more powerful tool for the interpretation of curvature than previous scale-space

approaches. There are four reasons: first,
� � �

is uniform and unambiguous; second,� � �
satisfies the three criteria of causality, immediate localization and piecewise smooth-

ing; third, morphological measures can be combined in
� � �

to strengthen the analysis
and interpretation of curvature primitives; and fourth,

� � �
is strictly a local representa-

tion. Because of this last point we are able to extract local features without modifying the
global shape of the curvature function. Only those regions having details smaller than or
equal in size to the width of the structural element are modified.

Another important aspect of curvature morphology that compares favorably with other
analysis approaches is its low computational complexity (see Appendix B). The computa-
tions are simple and hierarchical, and lend themselves to applications where fast computa-
tions are imperative. This is the case when sequences of images are being analyzed [28, 19].

13Note that no knot point is identified between arcs 2 and 3 because there is no discontinuity in orientation
between these two arcs. Therefore, there is no peak in curvature where these two arcs join. In such cases a
smooth join can be identified [20].
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Figure 14: Segmentation of the positive curvature signal.
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Figure 15: Segmentation of the negative curvature signal.
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Figure 16: Contour segmentation based on the previously extracted curvature features.
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4 Conclusions

In this paper we have proposed efficient ways of representing curvature and its features
for object contours found in noisy images. We have discussed how the curvature function
should be retrieved from the discrete trace of a contour using a modified chain code rep-
resentation. Special care has been taken with quantization errors, “protrusion-depression
definition” problems, and implementation issues. We have also presented a new method
for extracting features from the curvature function employing morphological operations.

Unlike linear transformations of functions such as Gaussian filtering, morphological
operations are characterized by their local effect. They remove information of increasing
extent as the size of the structural element increases without blurring the remaining im-
portant features. Signal processing through iterative morphological transformations can
therefore be thought of as a process of selective information removal, where irrelevant de-
tails are subtracted from the signal, enhancing the contrast of essential features. We have
proposed such an iterative scheme by defining a new scale-space representation referred
to as the Morphological Curvature Scale-Space. This representation for curvature satisfies
the essential criteria of causality, immediate localization and piecewise smoothing.
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A Morphological Operations for Functions

Let
�

be a function representing a signal, such as � � 1 � , the curvature along a contour. This
function is defined in Euclidean 2-D space as a set of points ��1 � � � 1 ��� . Let � be a (2-D)
structural element indexed by a single parameter � . The superscript � in

� �
stands for the

complement of
�

such that
� � � � � constant; � stands for the reflection of � , that is� � � ��� � ����� 	

.

A.1 The Four Principal Operations

A.1.1 Erosion

An erosion is computed by taking the minimum of a set of differences. Its form is similar to
correlation, with the summation of correlation replaced by the minimum operation and the
product replaced by a subtraction operation. The erosion of

�
by � is defined as follows:

���
	�� �� � �������� � � ��1 � � � � � ��� ��� /
A.1.2 Dilation

Dilation can be performed by taking the maximum of a set of sums. Its complexity is
the same as erosion and is related to convolution, where instead of doing summation of
products, a maximum of sums is computed. Using the same notation as for erosion, the
dilation of

�
by � is defined as:

���
	�� �� � ����� �� � � ��1 � � �"��� ��� � & /
Significance of the Erosion and Dilation Operations Erosion and dilation are dual oper-
ations but are not, in general, the inverse operation of each other. This is expressed below:

�� � � � � �
���� ��� � � � � �
� �� �

Furthermore, in general

�
���� � � /

This is true whenever the function
�

is not too smooth or regular. A dilation (erosion) will
remove from the top (underneath) of

�
all those details that are smaller than the structural

element � which is of fixed size. The result is a new function
� � which is more regular or

smoother than the original function
�

.
When the protrusions of

�
are not covered by the structural element � , then the com-

bination of an erosion and a dilation becomes be a reversible operation (i.e.,
�
� � �

� �
�

).
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Therefore, a combination of an erosion and a dilation can give some information about the
regularity of a function. Combinations of this type give rise to two new operations, which
are defined next.

A.1.3 Opening

Opening is defined as the dilation of an eroded function. It is given by the following rela-
tion:

� 	�� � � � � ��� ��� � � �� � � � � ����� �
	 ����� � � �� � �������� & � � � � ����/ (7)

At the point � , � � � � � � ��� has the highest value of the infinima of
�

taken over all the � ’s
containing � . This means that the opening of

�
is a new function defined by the highest

points reached by any part of the 2-D (reflected) structural element as it slides under the
whole extent of

�
[36].

A.1.4 Closing

Closing is defined by the following relation:

� 	 � � �  � ��� ��� � � �� � � � � ��� ��� � ��� � � � �� � ������� & � � � � � 	 / (8)

The closing of a function can be interpreted as a new function defined by the lowest points
reached by any part of the 2-D structural element as it slides over

�
[36].

A.2 Properties of the Four Operations

The principal properties of the operations discussed above are briefly discussed in this sec-
tion. These properties are important in order to understand the effects of erosion, dilation,
opening and closing on functions.

A.2.1 Increasing

Let
�

be a function smaller than another function
�

, that is
� � 1 ��) � � 1 � , for all 1 . Then:

�� � ) � � ��� � ) � � �� � � ) � � ��  � ) �  �
The size of a function implies the size of the eroded or dilated function for a given structural
element � . Erosion and dilation are said to be increasing operations. Since erosion and
dilation are increasing operations, opening and closing are also increasing.
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A.2.2 Expansivity

�� � ) �
�� � � �
� � � ) �
�  � � �

Erosion is antiexpansive, while dilation is expansive. The terms “erosion” and “dilation”
have their origins in this property of expansivity. Opening is antiexpansive, as is its first
constituent operation, erosion. Closing is expansive, as is dilation.

A.2.3 Duality

�� � �
� � � � ��� ��� � �
� � � � ��� �� � � �
� � �  ��� ��  � �
� � � � ��� �

Dilation is the dual of erosion. Thus dilation (erosion) is the erosion (dilation) of the com-
plemented function. Opening and closing are also dual operations. Closing of

�
corre-

sponds to the opening of the complemented function.

A.2.4 Chain Rule

� ��� � � � � � � � � � � � � � � � �
� ��� � � � � � � � � � � � � � � � �

This implies that the erosion or dilation of a function
�

by a wide or complex structural
element � � � � � � � can be performed using the basic components of � , namely � � and� � . An image processor can then be built using only basic components to perform any kind
of dilation or erosion.

A.2.5 Idempotency

� � � � � � � � � � �
� �  � �  � � �  �

Opening and closing operations are performed only once for a specific structural element.
Their is no equivalence to the chain rules of erosion and dilation. As discussed previously,
opening and closing are two ways to compute a “smooth” approximation of a function

�
by

removing details of a given size. Applying these operations again with the same structural
element � does not further modify the filtered function.
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Figure 17: Examples of the four morphological operations and of the Top-Hat transform
(adapted from [36]).

A.3 Significance of the Morphological Operations

Unlike linear transformations of functions, morphological operations are characterized by
being non-invertible. They remove information of greater and greater extent as the size of
the structural element increases.

Signal processing through iterative morphological transformations can therefore be con-
ceived as a process of selective information removal where irrelevant details are irrecover-
ably destroyed, thereby enhancing the contrast of essential function features [37].

A.4 Application to Curvature: Flat Structural Element

For the morphological analysis of a signal such as curvature where we are interested in the
extraction of peaks and constant regions, flat structural elements (1-D) are used. Eroding a
function by a segment of size

�
��� is equivalent to replacing the function values at every

point by the minimum of all the points in a neighborhood of radius � . Likewise, dilating
a function by a segment of size

�
��� is equivalent to a maximum transformation over a

neighborhood of radius � . Openings and closings by flat structural elements maintain the
vertical boundaries of the function they transform.

Hat-transforms, so named because they can be visualized as a covering of peaks with
a hat of fixed size, can be used to extract sharp peaks and ridges. The residual �����	�
(where �
� is the opened version of � as defined in equation 7) is known as the Top-Hat
transform and presents the possibility of extracting peaks. Its complement, the residual
����� � (where � � is the closed version of � as defined in equation 8), is known as the Bottom-
Hat transform and provides a way to extract valleys. Examples of the four morphological
operations and of the residual ������ with a flat structural element, are given in Figure 17.

Morphological analysis of the residuals ������� and ����� � , and of the filtered signals
��� and � � , can then be performed to extract and classify peaks, valleys and the resultant
flattened regions.
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B Issues of Computational Complexity

Morphological operations for a function such as � � 1 � , using a flat structural element �
are simple and easy to implement as ��� � - ��� � operations. Erosion is equivalent to taking
the minimum of � ��1 � over the neighborhood defined by the width of � , while dilation
is equivalent to taking the maximum of ��� 1 � over the same neighborhood (see previous
appendix).

Both erosion and dilation can be implemented as iterative processes by using the chain
rule property (see � A.2). This property implies that an erosion or dilation with a relatively
wide structural element (e.g., 5 pixels wide) can be performed sequentially with smaller
structural elements (e.g., two structural elements 3 pixels wide), giving a more efficient
way to perform ��� � - ��� � operations. However, the chain rule property does not apply
directly to the opening and closing operations. These two are said to be idempotent (see

� A.2). That is, their application to a given function with the same structural element does
not further modify the filtered function. Thus we can only take advantage of the chain
rule property for the first operation of an opening or a closing, that is, an erosion or a
dilation, respectively. Using the latter for the first constitutive operation of closing and
opening operation a hierarchical-like scheme can be implemented. For example, consider
the hierarchical implementation of an opening operation. Let the basis of the hierarchy be
the positive curvature function � � � 1 � . Subsequent levels are build-up of eroded and opened
versions of � � � 1 � : � � ��� � � � 1 �

� � and � � � ����� � 1 �
� � , where

�
corresponds to the hierarchical level

and � � � � ��� � 1 �
� � is obtained by dilating � � ��� � � � 1 �

� � . Therefore, an eroded version of � � � 1 � at
a particular level in the hierarchy, that is, � � ��� � � � 1 �

� � , can be obtained efficiently (i.e., with a
small structural element) by eroding an eroded version of � � � 1 � at a precedent level, that
is, by the erosion of � � ��� � � � 1 �

� � � � . Such a hierarchical scheme gives an efficient way of
building the

� � �
, where each level in the hierarchy corresponds to an increasing

� 
 .
Morphological measures are also simple to implement. Furthermore, due to the uni-

formity of
� � �

features, morphological measures are more rapidly computed for existing
peaks, that is, for peaks that were detected in a precedent level in the hierarchy or at a
smaller scale

� 
 , since their localization is already known. Finally, this property of unifor-
mity permits simple and easy interpretation, a major advantage in terms of computations
over traditional scale-space approaches.

In summary, three aspects of curvature morphology lead to a low computational com-
plexity figure. Firstly, only simple computations for both morphological operations and
measures are necessary. Secondly a hierarchical implementation using the chain rule prop-
erty is easily obtained. Finally, the uniformity of the

� � �
and its simplicity of interpreta-

tion yields low computational complexity for the Curvature Morphology representation.
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