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Abstract 

Hass and Hermann (2012) have shown that only variance-based processes will lead to the scalar growth of error that is 
characteristic of human time judgments. Secondly, a major meta-review of over one hundred studies (Block et al., 2010) reveals a 
striking interaction between the way in which temporal judgments are queried and cognitive load on participants’ judgments of 
interval duration. For retrospective time judgments, estimates under high cognitive load are longer than under low cognitive load. 
For prospective judgments, the reverse pattern holds, with increased cognitive load leading to shorter estimates. We describe 
GAMIT, a Gaussian spreading-activation model, in which the sampling rate of an activation trace is differentially affected by 
cognitive load. The model unifies prospective and retrospective time estimation, normally considered separately, by relating them 
to the same underlying process. The scalar property of time estimation arises naturally from the model dynamics and the model 
shows the appropriate interaction between mode of query and cognitive load.  
© 2014 The Authors. Published by Elsevier Ltd. 
Selection and peer-review under responsibility of the Organizing Committee of the International Conference on Timing and Time 
Perception. 
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1. Introduction 
Extensive empirical evidence (Gibbon, 1977; Gibbon & Allan, 1984; Matell & Meck, 2000; Meck, 2005) suggests 

that time-estimation errors in interval times grow approximately linearly with the size of the estimate. Known as the 
scalar property of time estimation, this sets a hard constraint on the nature of the underlying processes involved in 
time estimation (Hass & Herrmann, 2012) and remains the sine qua non of time-estimation models.  
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Secondly, in a careful meta-analysis of well over one hundred studies, Block et al. (2010) established that human 
adults’ perception of the passage of time differs according to whether they are forewarned that they will need to 
make a timing judgment, and are therefore actively attending to its passage (prospective time estimation), or whether 
they are required to make an unexpected, after-the-fact judgment of the passage of time (retrospective time 
estimation). And finally, this difference is heavily modulated by cognitive load, showing a classic cross-over 
interaction in which either prospective or retrospective judgments are longer depending on whether the participant 
experiences high or low cognitive load (Figure 1).  

We will show that a model of time perception based on the idea of sampling a fading-Gaussian activation trace, 
GAMIT, naturally captures all three of these critical properties of interval time estimations by considering not only 
the amount of activation decay of the Gaussian, but also the rate at which decay is occurring. 

  
1.1 An overview of existing models of interval timing 

There are three major paradigms for interval-time judgments: (1) pacemaker-accumulator models, (2) multiple 
oscillator-coincidence detector models (also sometimes called timestamp models), and (3) memory or neural process 
models. The first class of models relies on an internal pacemaker that emits regular, short pulses that are counted by 
an accumulator. The number of pulses stored in the accumulator gives the measure of the time that has passed 
(Church, 1984; Gibbon et al., 1984; Wearden, 1991, 2001; Taatgen et al., 2007). A second class of models relies on 
multiple neuronal oscillators with coincidence detectors associating particular patterns of firing with given time 
intervals, effectively time-stamping when an event occurs (Church & Broadbent, 1990; Matell & Meck, 2000; Miall, 
1989). An alternative type of oscillator-based timing model (e.g., Brown et al., 2000) assumes that some 
representation of the state of an already-running set of oscillators (started, say, at the birth of the individual), is 
associated with each event in memory, in essence, as one of the features of the event. The third class of models 
involves recovering the passage of time from a neural process that is decaying (Lewis & Miall, 2006; Staddon & 
Higa, 1999) or increasing (Reutimann et al., 2004). Here, the current state or change in state of the activation trace 
allows the system to recover the passage of time.   
 
1.2 Interval timing and the scalar property 

Interval timing operates in the range from half a second to several minutes. Here humans and other animals show 
very similar abilities. The scalar property or time-scale invariance (Gibbon, 1977) states that the width of this 
distribution is directly proportional to the length of the interval. So, for example, the standard deviation for a 
distribution of estimates of an interval of 2X seconds will be (approximately) twice that for an interval of X seconds. 
This effect is very widely replicated with humans, rats and pigeons (see Gibbon & Allan, 1984; Gibbon et al., 1997; 
Matell & Meck, 2000; Meck, 2005). Although some studies report a greater than linear increase of the timing errors 
(reviewed in Hass et al., 2008; Gibbon et al., 1997; Grondin, 2001). 

No model that we are aware of accounts for the scalar property as an unavoidable consequence of the way the 
timing mechanism works (Hass & Hermann, 2012; Hass et al., 2008). For example, models based on repetitive 
clock-like processes have less intrinsic variability than predicted by the scalar property and must introduce 
assumptions as to why the cognitive system cannot use these more precise quantities. Hass and Hermann use 
information theoretic arguments to show how the scalar property places several important restrictions on the nature 
of any interval timing mechanism. In particular, they show that, in order to display scalar error profiles, the neural 
process underlying time perception must be based on a measure of growing variance in the system. Power law decay 
functions found in memory-decay models would give rise to more than linear growth in error while the errors in 
accumulators and oscillators grow too slowly. Accumulator models base their estimates on mean number of 
accumulated ticks or oscillations. However, according to the Central Limit Theorem, such estimates have errors that 
grow with the square root of the total. Only with logarithmic decay does a constant error around activation values 
convert to a scalar error in magnitude.  

Accumulator models cannot account for the scalar property of time without positing a secondary process that 
modifies the shape of the error distribution (Hass & Herrmann, 2012). Gibbon (1977) acknowledges this problem 
for the original Scalar Expectancy Theory (SET) pacemaker-accumulator model. In SET, the pacemaker is a Poisson 
process and variance in a cumulative Poisson process grows according to the square root. Gibbon et al. (1997) get 
around this by attributing the error primarily to a multiplicative factor associated with the comparison of 
accumulated estimates and their counterparts in memory, relying on a mathematical argument by Gibbon (1992). 
Decisions as to whether the clock has reached a given value are performed by seeing if the ratio of the accumulated 
value and the valued stored in memory is within a certain threshold. This ratio induces the scalar property and is 
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central to permitting SET to fit the empirical data. However, no justification is given for why this calculation has to 
be done using a ratio when comparisons of the absolute accumulator magnitudes are clearly possible and would 
permit the cognitive system to make temporal judgments of greater accuracy. As Staddon and Higa (1999) observe, 
the assumptions behind SET are far from parsimonious and the neural mechanisms that could support it are unclear.  

In multiple oscillator models (Church & Broadbent, 1990; Miall, 1989) timing is measured by a large array of 
neuronal oscillators of different frequencies. An event starts all the oscillators simultaneously and at the end of the 
interval a coincidence detection mechanism learns which oscillators are in phase with each other. On future trials 
this same subset of the oscillators will also be in phase after the same amount of time has passed, allowing this 
signal to be used as timing mechanism. However, in general, this signal does not show the necessary scalar 
properties. In Miall’s Beat Frequency model, the distribution of firing was not normally distributed, having a sharp 
peak at the target time and smaller peaks at the major harmonics of the fundamental interval. In addition, the width 
of the peak was not proportional to the length of the interval. Matell and Meck’s (2000) Striatal Beat Frequency 
model tried to address these problems. They made a sequence of modifications to Miall’s model that induced the 
scalar property. This required globally varying oscillators to remain perfectly correlated with each other. 

A third class of model is based on memory decay and neural activation. Activation decay and growth processes are 
ubiquitous and well understood and can account for evidence that timing and memory use the same cognitive 
resources (Fortin, 1999; Fortin & Rousseau, 1997) and both recruit the dorso-lateral prefrontal cortex (Genovesio et 
al., 2006; Wager & Smith, 2003). However, derivation of the scalar property is not always straightforward in these 
models. In the Multiple Time Scales model (MTS; Staddon & Higa, 1999), a series of leaky integrators with power 
law decay must be carefully chained together to approximate the required logarithmic function. The Temporal 
Context Model (TCM; Shankar & Howard, 2010) is built from many leaky integrators using complex dynamics.  

By contrast, Reutimann et al. (2004) use a single climbing neuronal trace that reaches a threshold at the expected 
end of an interval. Single cell recordings in the inferotemporal cortex of monkeys have found neurons with the 
appropriate time-dependent firing rates (Kojima & Goldman-Rakic, 1982; Komura et al., 2001; Leon & Shadlen, 
2003). Learning of new intervals occurs via Hebbian learning within the adaptation process, such that neuronal 
firing reaches threshold at an earlier or later time. This threshold varies according to a normal distribution around a 
constant level. The interaction of the linearly increasing trace and the threshold gives rise to the scalar property. 
Advantages of this are that it is built on a single mechanism using well-understood principles of synaptic plasticity 
and the decision rule is built into the model itself.  But the scalar property derives primarily from the gaussian nature 
of the threshold, which appears to be an arbitrary choice to fit the data. Recent work by Simen et al. (2011) extends 
this idea. 

 
1.3 Retrospective and prospective time estimation 

Time judgments can be made with or without prior notice. In retrospective time estimation an individual is asked 
to estimate how long ago an event occurred without prior warning that they would have to do so. By contrast, in 
prospective time estimation the individual knows in advance that they will be asked to estimate the time that has 
elapsed from a particular event. Historically, these have been studied as separate phenomena. We believe that 
prospective and retrospective time estimation are intimately related and should not be considered as distinct 
phenomena. 

 
1.4 Cognitive load in existing models. 

Our estimates of time passing can be affected by whether or not we are actively attending to the passage of time 
and by the amount of additional cognitive load we face. Block et al. (2010) analyzed the results from over one 
hundred interval-timing studies and summarized their results in the graph shown in Figure 1. They found a striking 
interaction between the type of time judgment requested and cognitive load. High cognitive load increases your 
estimates in the case of retrospective timing, whereas high cognitive load decreases your estimates in the case of 
prospective timing. This strong interaction is puzzling for two reasons. First, as discussed above, the mere fact that 
there is a difference between prospective and retrospective time is a challenge to clock and timestamp models. There 
is no a priori reason to expect a difference between these two conditions. Secondly, the interaction with cognitive 
load suggests that cognitive load is not just an additive factor (e.g., damping responses across the board). This is a 
challenge for all existing models of interval timing. 
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Figure 1. The effects of cognitive load on interval timing based on a meta-analysis of 82 prospective and 31 retrospective tasks (Block et al., 
2010). Duration judgment ratio is the ratio between subjective estimates of time and the actual objective time that has passed. Error bars show 
standard errors.  
 
2. GAMIT: A fading-Gaussian activation-trace model of interval-timing 

GAMIT is built on the assumption that our sense of time is learned through our experience of changes in the world 
around us. Small changes in the activation trace mean little time has passed; large changes mean a lot of time has 
passed. These changes allow us to interpret a fading-Gaussian activation trace associated with a particular event as 
the passage of time. In addition, we assume that the original activation trace generated by an event fades over time 
in a statistically predictable manner and that the rate of this decay is affected by cognitive load.  

To implement the GAMIT model, we begin with a cluster of cortical columns. The activation in the central 
column corresponds to an event in the world that is registered in memory. Activation then spreads across the cortical 
columns as follows. If we designate the activation of the ith column at time step t by Ai(t), its activation at time t+1 
is determined by the following equation: 

      

where α is the fraction of activation that remains in column i on each time step (i.e., α = 1-leakage); β is the fraction 
of activation spread from each immediate neighbor of i on each time step; ξ is a noise parameter. The values of α 
and β must be chosen so that the total activity over time of the system neither rapidly decreases to zero nor increases 
exponentially. Unless otherwise stated, we used values of α = 0.7, β = 0.14952 and ξ = 0.000025. Initially, only the 
central column is activated and activation spreads over time as shown in Figure 2. 

 

 
Figure 2. The activation of the initial Gaussian above the central column fades and spreads with time. 
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Figure 3. One thousand individual activation-decay curves (in red) are averaged to create the Reference Activation-Decay Curve (white). 

 
There is ample neurobiological evidence for this type of spreading-activation mechanism (e.g., Amari, 1980; 

Capaday et al., 2011; Grinvald et al., 1994; Grossberg, 1980; Herman et al., 1993; Koch & Segev, 1998). We argue 
that the cognitive system is sensitive to both H(t), the maximum height of the fading Gaussian at time t and A(t), the 
total activation of the fading Gaussian at time t. The spreading-activation values on which time estimates are based 
S(t)=H(t)+A(t), is the sum of these two values and provides a stable estimate of the long-term average of the 
underlying stochastic diffusion process.  
 
3. Time estimates and the scalar property 

Time in GAMIT is estimated by determining how much a stochastic activation trace has faded compared to a 
Reference Activation-Decay Curve built from a lifetime of experience. Central to our explanation of both 
retrospective and prospective time estimation is the assumption that, over time, we have learned a typical or 
“average” activation-decay curve for events and that this curve serves as a reference curve for time estimation 
(Figure 3;  cf. Addyman et al., 2011). Errors associated with the decay of individual traces and introduced during the 
comparison process give rise to scalar property.   

To test the scalar property, we assume that the current activation curve is decaying as shown by the red curve in 
the Figure 4. This curve differs slightly from the (white) Reference Activation-Decay curve. At t = 800, the “actual 
elapsed time,” a time judgment is requested. This time corresponds to an activation level of the current activation 
curve of S = 0.652. We sample from the Gaussian error distribution around S and get a value of S = 0.656, for which  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. Two sources of time-estimation errors, one from the difference between the current activation-decay curve, the other from the 
spreading-activation sampling process. 
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Figure 5. Time-estimation error grows linearly with the time estimated based on the duration of the interval. Results were averaged over 
250 runs.  
 
the corresponding time value on the Reference Activation-Decay Curve is t = 1075 (“perceived elapsed time”). The 
time-estimation error is the difference between the perceived and actual elapsed time, i.e., 275 time units. 

We consider all time values, t, between t = 1 and t = 750 and calculate the error, E, for each of these time values as 
described above. Averaged over 250 runs of the program, we obtain a linear fit (E=0.23t) to the data with an r of 
0.99 (Figure 5). In other words, the spreading-activation decay mechanism in GAMIT naturally satisfies Hass and 
Herrmann’s (2012) variance requirements for scalar growth in time-estimation error and does not require the 
positing of any further secondary mechanisms. 
 

 
4. Modeling retrospective and prospective time judgments under cognitive load 

A key feature of our model is that the activation and sampling profiles are differentially affected by cognitive 
loads. To begin with, we assume that greater cognitive load causes more rapid decay of the trace activation, due 
primarily to global inhibition from other tasks that require encoding and storing information in memory (Figure 6). 
This alone allows us to explain differences in retrospective time estimation under cognitive load (Figure 7). 
However, in the case of prospective time estimation, when it is known ahead of time that a time judgment will be 
required, we further propose that the state of the spreading-activation trace will be repeatedly sampled. Sampling  

 
 

 
Figure 6. The typical activation-decay curve, S(t), learned by experience is shown in blue. Under high cognitive load, spreading-activation falls 
off more quickly than under typical cognitive load. Under (very) low cognitive load (in pink) spreading-activation falls off more slowly than 
typical load conditions. 
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can be thought of in our model as “attentional saccades” to the event trace. Just as visual saccades involve a switch 
of visual attention, we suggest that mental saccades involve a switch of focus of attention to the trace. Just as the 
rate of visual saccading is interfered with by increased cognitive load (Halliday & Carpenter, 2010; Stuyven et al., 
2000), we suggest that the same is true of attentional saccading. In other words, attentional resources are limited and 
must be distributed among the currently active tasks in working memory. Similarly, as cognitive load increases and 
more tasks must be processed with limited attentional resources, fewer resources (attentional saccades) are allocated 
to attending to the activation trace of the event whose time is to be judged (see the time-sharing hypothesis; Buhusi 
& Meck, 2006).  

Over time the cognitive system learns a very simple association -- namely, the more the activation of a trace has 
changed since it was last sampled, the more time that has elapsed. In other words, small changes in activation 
correspond to small changes in time; large changes in activation correspond to large changes in time. This is one of 
the key insights to understanding the fading-Gaussian model of interval-time estimation. 
 
4.1 Retrospective time estimation 

In retrospective time judgment there is no prior announcement that a time judgment will have to be made. This 
means that there is no sampling of the activation trace prior to the moment when the time judgment must be made, 
and corresponds to what Zakay and Block (2004) refer to as “remembered duration,” since there is no on-going 
experience of the time interval between the moment of the stimulus event and the time when a time judgment must 
be made. Thus, the only cue to the amount of time that has passed is the total activation of the memory trace. 

We assume that under high (low) cognitive load the spreading-activation curve falls more(less) rapidly because 
there is more(less) inhibition from the other concurrent tasks in working memory (Figure 6). This means that under 
high cognitive load there will generally be less activation in the trace than normal, which causes over-estimates of 
the interval length when reading from the Reference Curve (Figure 7).  

Suppose that under high cognitive load, at the moment of a time judgment (e.g., t = 600), the activation value is 
approximately 0.66. But, in memory, there is only a stored representation of the activation curve under typical 
cognitive load. Based on this reference activation-decay curve (i.e., the blue curve in Figures 3, 4, and 6), an 
activation level of 0.66 occurs, not at t = 600, but rather, at t = 710. Thus, when asked for a (retrospective) time 
judgment at t = 600, we reply 710. In other words, we overestimate the amount of time that has passed under high 
cognitive load. This concurs with Block et al.’s (2010) finding.  

 

 
Figure 7. A run of GAMIT retrospectively estimating time under high cognitive load. Under high cognitive load a retrospective interval-time 
judgment is judged to be longer than its actual duration. 

 
4.2 Prospective time estimation 

In prospective time estimation the participant knows ahead of time that a time judgment will be required about a 
particular stimulus event at some point in the future. This implies an on-going monitoring of the activation trace, a 
process that engenders what Zakay and Block (2004) refer to as “experiencing time”. In other words, the activation 
trace associated with that event will be sampled more or less frequently until the time estimation has been made. The 
frequency of this sampling -- what we refer to as “attentional saccading” -- depends on cognitive load. In GAMIT, 
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this attentional sampling is what provides information about the rate-of-change of total activation of the trace. 
Crucially, we assume that there is a “typical” sampling profile that defines when and how often sampling of the 
activation trace occurs under typical cognitive load in the context of prospective time estimation. We assume that, 
under high cognitive load this “attentional saccading” to the activation trace occurs less frequently because sampling 
requires cognitive resources and part of those resources are being diverted to additional mental activities (Figure 8).  

We argue that our perception of the passage of time is intimately related to the rate of this sampling of the 
activation trace. An analogy is helpful here. Consider some event that unfolds over approximately 30 seconds, say, a 
woman walking down a street. Now, assume that we have two cameras at the scene: the first films this event at a 
“typical” speed of 20 frames/sec.; the second camera must film, not only this event, but simultaneously, some other 
event nearby. The latter camera shoots one frame of the walking woman, followed by one frame of the other event, 
then one frame of the woman, etc. The film of the woman walking is put together in the cutting room and, of course, 
contains only 10 frames/second of the woman walking. When shown both films, people will say that the flow of 
time is faster in 10 frames-per-second film (Eagleman, 2004). We suggest that the reason is because between each 
image in the 20 frames/sec case very little changes, whereas there is a much greater change between each image in 
the 10 frames/sec case. This observation is the key to GAMIT’s prospective time judgments under load. 
 
4.2.1 Prospective time estimation under high cognitive load 

We claim that prospective time estimations rely on, not only the amount of activation decay, but also the rate at 
which the activation is decaying, as measured by activation change between attentional saccades To calculate the 
approximate rate of change of the decreasing activation function, a small number of recent activation changes 
between successive samplings of the activation curve are kept in memory. The average of these values provides an 
estimate of the rate at which the activation curve is falling. Over time, the cognitive system under normal cognitive 
load learns how much the activation trace associated with an event typically changes between attentional saccades. 
This value, stored in memory, we call ΔTYPICAL-LOAD. Under high cognitive load we sample the curve less often 
because some of the resources devoted to attention saccading are devoted to the other tasks (Figure 8).  Thus, the 
amount of activation change between each attentional saccade, ΔHIGH-LOAD, is greater. (For low cognitive load, ΔLOW-

LOAD is calculated in the same way, except there is more than average sampling of the activation trace.) This is the 
intuition behind the definition of a time-compression (or time-dilation) factor TYPICAL LOAD

CURRENT LOAD

−

−

Δ
Φ =

Δ
 for prospective time 

judgments. A prospective time estimate, P, is the retrospective time estimate, R, adjusted by the multiplicative time-
compression/dilation factor, Φ. In other words, P=RΦ. 

 

 
Figure 8. The blue curve shows the evolution of activation under typical cognitive load. For prospective time estimation under typical cognitive 

load the frequency of sampling of this curve is shown by the blue square markers. 
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neighboring columns, thereby causing the activation curve to fall more or less rapidly. To simulate high cognitive 
load conditions we decreased the value of β to 0.14946. For lower-than-typical cognitive load, the value of β was 
increased to 0.14955. The other parameters remained unchanged. 

Cognitive sampling was decreased by 50% in the High Cognitive Load condition and increased by 10% in the 
Low Cognitive Load condition. (This asymmetry reflects the fact that cognitive load can only be decreased slightly 
with respect to the typical cognitive load condition, whereas it can be increased essentially without bound.) The 
results are shown in Figure 9. As in Block et al. (2010), an ANOVA showed that there is no significant main effect 
of either Cognitive Load or Retrospective-Prospective time estimation. However, again, as in Block et al., there was 
a highly significant interaction between the two main variables [F(1,76) = 19.3, p < .0001, η2 = 0.2]. In short, 
GAMIT qualitatively reproduces the interaction between cognitive load and mean time-judgment duration ratio 
reported in Block et al. (2010). 

 
 

Figure 9. Performance of GAMIT on prospective/retrospective time judgments under high and low cognitive load. Results averaged over 20 runs 
of the program. (SEM error bars) 
 
5. General Discussion and Conclusion 

We have described a "fading-Gaussian" model of interval-time estimation, GAMIT, which is based on the classic 
equation of spreading activation as an approximation to the underlying stochastic processes involved in the spread of 
information in a distributed cognitive system.  

A first contribution of the model is that it takes seriously recent analyses of the scalar property of time showing 
that mechanisms underlying time estimation should be noisy, stochastic and based on the spread of information 
(Buhusi & Oprisan, 2013; Hass & Hermann, 2012).  

A second contribution is that it provides a unified account of retrospective and prospective time judgments. These 
have traditionally been studied as separate phenomena (Block et al., 2010; Zakay & Block, 2004; but see Brown & 
Stubbs, 1992). Our model suggests that the same underlying mechanisms (namely, decay and sampling) operate in 
both contexts. What varies is the amount of sampling that occurs between the two contexts: no sampling occurs on 
retrospective time estimates, whereas repeated sampling occurs in the prospective time estimates. The effect of 
cognitive load on interval-time perception is explained by how cognitive load affects the rate of sampling of the 
activation trace. Thus, the GAMIT model provides a parsimonious account of interval-time judgments and places 
the onus on other theoretical accounts to say why two distinct timing mechanisms are necessary.  

In summary, we have described a parsimonious model of interval timing that is based on ubiquitous neural and 
cognitive processes. It provides a unifying account of retrospective and prospective timing, captures the modulating 
effects of cognitive load on both prospective and retrospective timing, and in contrast to other models, intrinsically 
captures the scalar property of time judgments. 
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