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In recent years great progress has been made in the

computational modeling of interval timing. A wide range of

models capturing different aspects of interval timing now exist.

These models can be seen as constituting four, sometimes

overlapping, general classes of models: pacemaker–

accumulator models, multiple–oscillator models, memory–

trace models, and drift–diffusion (or random-process) models.

We suggest that computational models should be judged

based on their performance on a number of criteria — namely,

the scalar property, their ability to reproduce retrospective and

prospective timing effects, and their sensitivity to attentional

and neurochemical manipulations. Future challenges will

involve building integrated models and sharing model code to

allow direct comparisons against a battery of empirical data.
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Although there are numerous ways in which computational

models of interval timing can be classified, we have chosen

to group these models into four major, although sometimes

overlapping, classes: firstly, pacemaker–accumulator mod-

els (PA models), secondly, multiple–oscillator-coincidence

detection models (also sometimes called timestamp mod-

els), thirdly, memory or neural process models and, finally,

fourthly random-process (or drift–diffusion) models. For

alternative classification schemes, see, for example [1,2��].

In what follows we will suggest that computational mod-

els of interval timing be judged on the basis of the

following criteria: the scalar property, prospective and retro-
spective timing, and the effects of attention and neuropharma-
cological manipulations.

Extensive empirical evidence [3–6] suggests that time-

estimation errors in interval timing grow approximately
Please cite this article in press as: Addyman C, et al.: Computational models of interval timing, C

www.sciencedirect.com 
linearly with the size of the estimate. Known as the scalar
property of time estimation, this fact sets a hard constraint

on the nature of the underlying processes involved in time

estimation [7]. This effect has been widely replicated in

humans, pigeons, and rodents (see [8–10]. Similar behav-

ioral responses to time scales can even be found in rate-

dependent habituation in Caenorhabditis elegans [11]. Even

though the scalar property has not been found to hold

under all conditions [12], modeling it has proved to be a

significant challenge for a number of existing models of

interval-time judgments [7,13]. In a recent paper, Hass

and Hermann [7] use information theoretic arguments to

show how the scalar property places several important

restrictions on the nature of any interval timing mecha-

nism. Crucially, they argue that, in order to display scalar

error profiles, the neural process underlying time percep-

tion must be based on a measure of growing variance in

the system.

Secondly, it has been established that the perceived

passage of time by human adults differs according to

whether they are forewarned that they will need to make

a timing judgment, and are therefore actively attending to

its passage ( prospective time estimation), or whether they

are required to make an unexpected, after-the-fact judg-

ment of the passage of time (retrospective time estimation).

Models should be judged on how well they account for

both of these regimes.

And thirdly, there are various systematic effects on the

lengths of estimates caused by levels of attention [14] and

neurochemistry, such as endogenous levels of dopamine

or the effects of dopaminergic drugs [15–17].

We avoided the criterion of ‘neurobiological plausibility’

because it is notoriously difficult to pin down exactly what

is meant by this expression. So, for example, how realistic

do computational neurons have to be before the model

that uses them can be said to be biologically plausible?

Pacemaker–accumulator models
The pacemaker–accumulator models (PAM) [18,19�]
have had a great influence on the way that experiments

on timing are conceived and interpreted. Many of the

recent models of timing still utilize the pacemaker and

accumulator processes described by Treisman [20].

These models currently constitute the most popular

computational approaches to interval timing. In the pace-

maker–accumulator model, the arrival of a stimulus starts

a clock which generates pulses that are counted by an

accumulator. Time judgments are then made by a com-

parison of what is stored in the accumulator and what is
urr Opin Behav Sci (2016), http://dx.doi.org/10.1016/j.cobeha.2016.01.004
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Table 1

Reference Model type/Name What keeps the time? What tells the time? Scalar property? Neurochemical

or attention

effects?

Prospective

or

retrospective?

Comment

[18] Pacemaker–accumulator:

ScalarQ6 Expectancy Theory

(SET)

Poisson process

pacemaker and error free

accumulator

Comparing estimates to

those retrieved from

memory.

Via memory

comparison

not via clock

No Prospective The first Pacemaker model to

address the Scalar property.

[21] Pacemaker–accumulator Poisson pacemaker Unreliable/stochastic

multistage accumulator

Under special

circumstances

No Prospective An unreliable counter

mechanism can give rise to

scalar property under very

narrow circumstances.

[19�,62] Pacemaker–accumulator Pacemaker with

geometrically increasing

tick length and Gaussian

noise

Accumulator built into

larger ACT-R model.

Via implausible

pacemaker

assumptions

Attention

effects

Prospective A classical PAM embedded in

an ACT-R framework models

attention effects as a result of

resource competition.

[63] Pacemaker–accumulator Constant rate pacemaker ACT-R model with time

stored in working memory

No Some

attention

effects

Prospective Simplistic PAM model built in

ACT-R.

[22] Pacemaker–accumulator Poisson pacemaker Accumulator and memory Via ad hoc

Gaussian

error

mechanism

No Prospective Notable for allowing direct

quantitative test of SET by

implementing it in Framsticks

simulation environment.

[23] Multiple–oscillator: beat

frequency

Set of cortical oscillators of

different phase

Time measured by

selecting subset that will

be in phase at correct

interval

No No Prospective Original multiple–oscillator

model.

[25��] Multiple–oscillator: striatal

Beat Frequency (SBF)

Set of cortical oscillators of

different phases

Coincidence detectors

based on striatal spiny

neurons

Only under

assumption

of globally

correlated

phase

variations

Several

neurochemical

effects

Prospective A modern oscillator model

that takes good account of

neuroscience evidence.

[26��,27] Multiple–oscillator: SBF

with realistic noisy neurons

Set of cortical oscillators

with different phases and

uncorrelated noise

Neural network

‘coincidence detector’

Yes Yes–numerous

pharmacological

effects.

Prospective A nice reinvention of SBF

where scalar property

emerges naturally from

network noise.

[11,34] Memory decay: multiple

time scales (MTS)

Chain of decaying

activations

Reading off absolute level

of decay

By assuming

fixed Gaussian

error threshold

No Prospective First memory decay model

was actually model of

habituation in C. elegans. Only

models prospective timing

because requires dedicated

mechanism.

[36��] Memory decay: Gaussian

Activation Model (GAMIT)

Spreading cortical

activation from event to be

timed and rate of change of

activation.

Comparison of activation

to learned reference curve

Yes Cognitive load

effects via

attentional

resource

competition

Both Retrospective case a single

estimate is made at end of

interval. In prospective case

multiple estimates during

interval contribute.

[37] Memory decay: GAMIT-

Net

Spreading cortical

activation

Neural network learns to

estimate time

Yes Attention effects

via resource

competition

Both Neural network version of

GAMIT model.
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[35�,53] Memory decay: temporal

context model (TCM)

Set of leaky integrators that

stores stimulus event plus

‘context’ from previous

events

Feedforward connections

permit reconstruction of

sequences of events

Due to choice

of

reconstruction

algorithm

No Both Adapts model of serial

memory performance to more

general task of interval timing.

Estimation method is

relatively complex

approximate inverse Laplace

Transform.

[64�] Memory decay: coupled

leaky integrators

Decay in activation in a two

neuron systems acts like a

simple oscillator.

Network has wait or

respond states.

No No Prospective A very simple neural system

model animal learning data.

Noise plays important role in

stabilizing network behavior.

[38] Climbing activation Firing rate adaptation in

inhibitory neurons leads to

increasing activity in

excitatory neurons.

When active population

crosses fixed threshold.

Changes to adaptation rate

change interval

Yes No Prospective Detailed neural model inspired

by recordings from macaque

inferotemporal cortex.

[65] Climbing activation: Dual

klepsydra model

Leaky integrator Comparing one integrator

to another

No No Prospective Unclear why integrator values

cannot be accessed directly.

[42�,43] Climbing activation:

evolved, embodied neural

net model.

An evolved continuous

time recurrent neural

network

Networks seemed to work

via climbing activation.

No No Prospective Evolved neural network with

standard leaky-integrator

neurons tells time without

clock-like control a robot in a

simulated environment.

[45] Random process:

population of bistable units

Population of independent

bistable units transitioning

from off to on

When number of ON

neurons crosses threshold

Yes No Prospective Different intervals measured

by different global transition

probabilities. Not clear how

this would be implemented.

[46,47��] Random process: drift–

diffusion model of interval

timing & decision making

Random walk by

competing random

inhibitory and excitatory

processes.

When total crosses

particular threshold.

Yes No Prospective An probabilistic model than

accounts for decision making

and interval production in

same framework.

[66] Contextual change Estimates derived from

amount of activity, number

of actions and ACT-R

system time.

ACT-R model No Some

attention

effects

Retrospective Underspecified mechanism

but embedding model in ACT-

R framework allowed testing

of attention effects.
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4 Timing behavior
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C

ored in memory. Gibbon’s Scalar Expectancy Theory

ET) model emphasized the importance of reproducing

e property of scale invariance observed in interval

ming [3,18]. Scalar error in this model arises not from

e clock itself but rather from noise in the comparison

rocess. Several variants on this original pacemaker–
ccumulator design have been produced. For example,

illeen and Taylor [21] use a different approach to the

alar property by using a noisy accumulator process

ther than a noisy comparator (Table 1).

ecent models have taken the pacemaker–accumulator

rocess and incorporated it into a larger cognitive system.

or example, Taatgen et al. [19�] place a timekeeping

odule in the context of a general ACT-R architecture to

apture the effects of attention and resource competition

n interval timing. This model incorporates an attentional

ate which modulates the rate of pulse accumulation

ence leading to changes in the perception of intervals.

nother example is Komosinski and Kups [22] who build

 classical PAM in a neural simulator environment to

odel time-judgment errors in successively presented

me intervals.

ne difficulty with these models is that errors in sequen-

al processes grow too slowly (as the square root of length

f the interval). Any timer based on direct accumulation

f ticks would be too accurate. In order to account for the

alar property of time, pacemaker–accumulator models

ave to introduce a secondary source of multiplicative

rror in the comparison process [7].

ultiple–oscillator models
ultiple–oscillator models [23,24] refer to models of

terval timing in which intervals are represented as a

t of activities of several oscillators. An early form of the

odel was developed by Miall [23]. In this model, re-

rred to as the beat frequency (BF) model, timing is

arried out by the activation of several oscillators, each of

hich oscillates at its own particular frequency. The

rrival of a stimulus resets the oscillators so that they

egin to fire together. The time elapsed since the arrival

f the stimulus would then depend on the oscillatory

hases of the entire set of oscillators. However the

istribution of firing was not normally distributed, having

 sharp peak at the target time and smaller peaks at the

ajor harmonics of the fundamental interval. In addition,

e width of the peak was not proportional to the length of

e interval. For this reason, and because the model did

ot contain any noise, it was unable to account for the

roperty of scalar invariance.

he Striatal Beat-Frequency (SBF) model tried to ad-

ress these problems [25��]. They modified the BF to

duce the scalar property. The SBF model took into

ccount experimental findings that interval timing was

ot exclusively the result of activity in the basal ganglia
Please cite this article in press as: Addyman C, et al.: Computational models of interval timing,

urrent Opinion in Behavioral Sciences 2016, 8:x–x 
but also of activity in a thalamo-cortico-striatal circuit. In

this model, oscillations are generated by cortical neurons

and timing is indicated by the coincidental activation of

spiny neurons in the striatum of the basal ganglia by the

cortical oscillators. Oscillator speeds and neuronal firing

thresholds were adjusted on a trial by trail basis in order to

reproduce the Gaussian shaped response profiles seen in

timing experiments that use the peak procedure experi-

mental method and thereby produce scalar invariance.

However, these adjustments had to be globally coherent,

otherwise the coincidence-detections mechanisms would

not operate appropriately. This tends to make the SBF

model oversensitive to small amounts of noise.

Improvements to the SBF model have been made by

[26��,27]. This model retained the separation of cortical

and striatal roles used in the SBF models. The neurons in

the new models however, were far more realistic. The

simpler neuronal models were replaced by more detailed

Morris–Lecar neurons and neural activity was now the

result of the dynamics in several ionic channels. This

model succeeded in replicating several experimental

findings on the effects of dopamine and cholinergic

agents on timekeeping. In a more generalized version

of the model in which a perceptron replaced the striatum

and its coincidence detection, scalar errors were an emer-

gent property of the network without the need for global

coherence [26��]. The SBF model has also been extended

to include a unified account of duration-based and beat-

based timing mechanisms [28,29].

Memory-based models
A third class of models relies on memory decay and falling

(or rising) neural activation. These neural processes are

relatively well understood and provide evidence that

timing and memory use the same cognitive resources

[30], recruiting neurons in the dorso-lateral prefrontal

cortex [31–33]. Once again, the scalar property does

not always arise from these models in a straightforward

manner. For example, the Multiple Time Scales model

(MTS, [11,34]) relies on a series of leaky integrators with

power law decay and these integrators must be carefully

linked to approximate the required logarithmic decay

function. The Temporal Context Model (TCM, [35�])
relies on many leaky integrators and far more complex

dynamics than the MTS model.

Computational memory models have been introduced

which take into account not only the amount of activation

decay of a memory trace but also the rate at which

activation decays (GAMIT: [36��,37]). In this model,

there is a mechanism of attentional-resource sharing that

allows GAMIT to model both retrospective and prospec-

tive timing.

By contrast with these falling activation-trace models,

Reutimann et al. [38] use a single climbing neuronal trace
 Curr Opin Behav Sci (2016), http://dx.doi.org/10.1016/j.cobeha.2016.01.004

www.sciencedirect.com
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that attains a threshold at the expected end of an

interval. This model [38] is built on a single mechanism

using well-understood principles of synaptic plasticity

and the decision rule is built into the model itself.

Single cell recordings in the inferotemporal cortex of

monkeys have, in fact, found neurons with the appro-

priate time-dependent firing rates [39,40]. This inter-

pretation of climbing activation remains controversial,

however, see [41].

An interesting recent addition to this class is [42�,43], in

which neural networks with standard leaky-integrator neu-

rons were evolved to control a robot in a simulated envi-

ronment in order to perform a temporal comparison task.

When network activity was examined timing appeared

to be due to a climbing activation mechanism.

Random process models
Models discussed so far have been broadly deterministic

or based on probabilistic processes (e.g. counting random

ticks) that produce time estimates that have less than

scalar error. The models in this section are based on

probabilistic processes with linear or greater than linear

error. The simplest approach [44] replaces a single Pois-

son process with a group of 100 independent Poisson

process and a leaky integrate-and-fire neuron that fires

and resets every time it crosses a threshold. With a fixed

threshold this model underestimates intervals but

improves with the incorporation of a dynamic threshold

that is inhibited by recent firings. However, the actual fit

to empirical data remains poor. A better fit to data is

obtained by [45] in which a timer starts by setting 50 bis-

table units to ‘off’. Thereafter, each bistable unit transi-

tions to ‘on’ independently with probability p (adjusted

by learning) and the timer stops when a total of 40 units

are active.

If excitatory and inhibitory processes both contribute to

the same integrator then, unless the processes are pre-

cisely balanced, the resulting random walk will drift in

one direction. Adjusting the balance adjusts the rate of

drift allowing different intervals to be learned [46,47��].
The learning process is simpler than in [45] because it

does not rely on fine tuning a group of probabilities. The

approach has additional advantages that the same frame-

work can model decision making and that it makes

several quite precise predictions about skew and coeffi-

cients of variation of responses in temporal reproduction

tasks.

Finally, it should be noted that in subsecond timing

most successful models are random-process models,

based on stochastically connected chains of noisy neurons

[48,49�,50]. However, most authors do not think that these

models can be extended to the multi-second domain

of interval timing [51]. This inability to scale up to

multi-second timing applies only to these random-process
Please cite this article in press as: Addyman C, et al.: Computational models of interval timing, C

www.sciencedirect.com 
models. It remains an open question as to whether other

classes of models can account for both subsecond and

multi-second timing.

Difficulties with the models
As currently implemented pacemaker–accumulator and

multiple–oscillator models rely on a dedicated timing

mechanism which needs to be started when a particular

event occurs. This is problematic for retrospective timing

because all perceived events are potential candidates for

retrospective time judgments and, therefore, each event

would require a separate timer.

Staddon [52] suggested that memory–trace models could

overcome this reset problem because all perceived events

encoded by the cognitive system automatically result in

representations that are governed by the same trace

dynamics. However, most activation-trace models posit

a specialist timing mechanism that is only recruited when

timing is required (e.g. [34,38]) and models of this type

can only address prospective timing. The Temporal

Context Model (TCM) [35�] developed from a model

of episodic memory, can potentially perform both retro-

spective and prospective timing. To the best of our

knowledge, TCM is the first attempt to use features of

memory directly as a mechanism for interval timing.

GAMIT [36��] has similar motivations but is much sim-

pler than TCM.

Our estimates of time passing can also be affected by

whether or not we are actively attending to the passage of

time and by cognitive load. Block et al. [14] found that

high cognitive load increases retrospective time estimates

and decreases prospective time estimates. Modeling this

surprising effect is a challenge for all existing models of

interval timing. French et al. [36��] suggest an attentional

resource-sharing mechanism that allows prospective and

retrospective timing to be accounted for in a single

model. Moreover, this model, GAMIT [36��], is currently

the only computational model to account for this inter-

action.

Most models simply do not consider attentional effects on

interval time perception [34,38,53]. One simple proposal

is that attention might modulate clock speed directly

[25��]. If decreased attention to timing causes the organ-

ism’s internal clock to beat slower, then it will tend to

underestimate the length of intervals. This idea is devel-

oped further in the time-sharing model [54]. Working

memory, timing and attention all depend on dopaminer-

gic pathways [32,55,56]. The changes observed in interval

timing estimates following pharmacological interventions

that modulate clock speed [16,57] have been modeled by

letting dopamine levels affect oscillator frequency (e.g.

[26��,27,58]). Nevertheless, none of these models can

account for the increase in retrospective estimates under

high cognitive load.
urr Opin Behav Sci (2016), http://dx.doi.org/10.1016/j.cobeha.2016.01.004
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C

ar fewer models attempt to explain retrospective timing,

 part because retrospective timing does not have an

quivalent in animal behavior. A common theme behind

ll approaches to retrospective timing is that intervals are

stimated by reconstructing a sequence of remembered

vents. Cognitive load could affect this by changing the

emorability or numerosity of events [59,60].

uture challenges
 conclusion, computational models of interval timing

ave come a long way but are still faced with many

hallenges. Besides the difficulties already discussed, a

enuinely mature model needs to:

 fit individual not just group data

 give a coherent account of relationship between

retrospective and prospective timing,

 apply to the full range of timing tasks and their

associated attentional and pharmacological modula-

tions,

 explain commonalities and differences between animal

and human time perception.

e have argued elsewhere [61] that modelers need to

ake their code available and user accessible so that their

odels can be directly compared and developed. The

urrent variety of modeling approaches is a strength.

ringing the successes of these varied models into a

omprehensive framework is the long term goal for the

eld.
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