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Abstract. The quantitative evaluation of order and complexity con-
forming with human intuitive perception has been at the core of compu-
tational notions of aesthetics. Informational theories of aesthetics have
taken advantage of entropy in measuring order and complexity of stimuli
in relation to their aesthetic value. However entropy fails to discriminate
structurally different patterns in a 2D plane. This paper investigates a
computational measure of complexity, which is then compared to a re-
sults from a previous experimental study on human aesthetic perception
in the visual domain. The model is based on the information gain from
specifying the spacial distribution of pixels and their uniformity and non-
uniformity in an image. The results of the experiments demonstrate the
presence of correlations between a spatial complexity measure and the
way in which humans are believed to aesthetically appreciate asymme-
try. However the experiments failed to provide a significant correlation
between the measure and aesthetic judgements of symmetrical images.

Keywords: human aesthetic judgements, spatial complexity, informa-
tion theory, symmetry, complexity

1 Introduction

The advent of computers and subsequent advances in hardware and software,
especially the development of tools for interactively creating graphical contents,
have turned purely calculating machines into full-fledged artistic tools, as expres-
sive as a brush and canvas. As noted by Michael Noll, one of the early pioneers
of computer art, “in the computer, man has created not just an inanimate tool
but an intellectual and active creative partner that, when fully exploited, could
be used to produce wholly new art forms and possibly new aesthetic experi-
ences” [32, p.89].

Biologically inspired generative tools, especially those utilising evolution-
ary methods, have been contributed to the creation of various computer gen-
erated art with aesthetic qualities. The Biomorphs of Dawkins [12], Mutators of
Latham [24], and Virtual Creatures of Sims [36] are classic examples of evolu-
tionary art.
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An open problem in evolutionary art is to automate aesthetic judgements so
that only images of high aesthetic quality are generated [10]. However there are
a number of challenges when dealing with evolutionary methods [28]. Therefore,
the development of a model of aesthetic judgement model is one of the major
challenges in evolutionary art [29] and an essential step for the creation of an
autonomous system [27] where both of the generation and evaluation process are
integrated.

This paper is organised as follows. In Section 2 the relationship between
aesthetics and complexity is examined. The notion of complexity from the per-
spective of Shannon information theory is analysed and its influence on informa-
tional theories of aesthetics is discussed. In section 3 we discuss the drawback of
entropic approaches for aesthetic evaluation purposes. An in-depth analysis of
entropic measure for 2D patterns with examples is provided. In the framework
of the objectives of this study, a spatial complexity spectrum is formulated and
the potential of information gain as a spatial complexity measure is discussed. In
section 4, we provide details of experiments and their results on the correlation
of a spatial complexity model with human aesthetic judgements. In section 5, a
discussion and a summary of findings is provided.

2 Informational Theories of Aesthetics

Aesthetics has traditionally been a branch of philosophy dealing with the nature
of beauty in its synthetic forms (i.e. artworks) and its natural forms (e.g. the
beauty of a sunset). Computational aesthetics is concerned with the develop-
ment of computational methods to make human-like aesthetic judgements. The
main focus is on developing aesthetic measures as functions which compute the
aesthetic value of an object [13]. There a sizeable body of literature on various
computational approaches to aesthetics [18, 19]. Our review mainly spans models
derived from Birkhoff’s aesthetic measure and information theory.

Aesthetic judgements have long been hypothesised to be influenced by the
degree of order in a stimulus (i.e. symmetry) and the complexity of the stimulus.
Birkhoff proposed a mathematical aesthetic measure by arguing that the measure
of aesthetic quality (M) (Eq. 1) is in direct relation to the degree of order (O)
and in reverse relation to the complexity (C) of an object [9],

M =
O

C
. (1)

The validity of Birkhoff’s model, and his definition of order and complex-
ity, has been challenged by empirical studies [39]. Eysenck conducted a series
of experiments on Birkhoff’s model and suggested that a better expression of
aesthetic evaluation function should consider a direct relation to stimulus com-
plexity rather than an inverse relation ( M = O×C ) [15, 16, 14]. Although the
validity of Birkhoff’s approach in penalising complexity has been challenged by
empirical studies, the notion of order and complexity and objective methods to
quantify them remains a prominent concern in aesthetic evaluation functions.
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Information theory addresses the problem of a reliable communication over
an unreliable channel [35]. Entropy is the core of this theory [11]. Let X be
discrete alphabet, X a discrete random variable, x ∈ X a particular value of X
and P (x) the probability of x. Then the entropy, H(X), is:

H(X) = −
∑
x∈X

P (x) log2 P (x). (2)

The quantity H is the average uncertainty in bits, log2( 1
p ) associated with

X. Entropy can also be interpreted as the average amount of information needed
to describe X. The value of entropy is always non-negative and reaches its max-
imum for the uniform distribution, log2(|X |):

0 6 H 6 log2(|X |). (3)

The lower bound of relation (3) corresponds to a deterministic variable (no
uncertainty) and the upper bound corresponds to a maximum uncertainty as-
sociated with the random variable. Entropy is regarded as a measure of order
and complexity. A low entropy implies low uncertainty so the message is highly
predictable, ordered and less complex. And high entropy implies a high uncer-
tainty, less predictability, highly disordered and complex. These interpretations
of entropy provided quantitative means to measure order and complexity of ob-
jects in relation to their aesthetic value and consequently contributed to the
development informational aesthetics, an information-theoretic interpretation of
aesthetics.

Moles [30], Bense [7, 6, 8] and Arnheim [2, 3, 4] were pioneers of the ap-
plication of entropy to quantify order and complexity in Birkhoff’s formula by
adapting statistical measure of information in aesthetic objects. Bense argued
that aesthetic objects are “vehicles of aesthetical information” where statistical
information can quantify the aesthetical information of objects [7]. His informa-
tional aesthetics has three basic assumptions. (1) Objects are material carriers
of aesthetic state, and such aesthetic states are independent of subjective ob-
servers. (2) A particular kind of information is conveyed by the aesthetic state
of the object (or process) as aesthetic information and (3) objective measure
of aesthetic objects is in relation with degree of order and complexity in an
object [31].

Herbert Franke put forward a cybernetic aesthetics based on aesthetic per-
ception. He made a distinction between the amount of information being stored
and the rate of information flowing through a channel as information flow mea-
sured in bits/sec [17]. His theory is based on psychological experiments which
suggested that conscious working memory can not take more than 16 bits/sec
of visual information. Then he argued that artists should provide a flow of in-
formation of about 16 bits/sec for works of art to be perceived as beautiful and
harmonious.

Staudek in his multi-criteria approach (informational and structural) as exact
aesthetics to Birkhoff’s measure applied information flow I ′ by defining it as a
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measure assessing principal information transmission qualities in time. He used
16 bits/sec reference as channel capacity Cr = 16 bits/sec and a time reference
of 8 seconds (tr = 8s) to argue that artefacts with I > 128 bits will not fit into
the conscious working memory for absorbing the whole aesthetic message [37].

Machado and Cardoso proposed a model based on Birkhoff’s approach as
the ratio of image complexity to processing complexity by arguing that images
with high visual complexity, are processed easily so they have highest aesthetic
value [26]. Adapting Bense’s informational aesthetics to different approaches of
the concepts of order and complexity in an image, three measures based on
Kolmogorov complexity [25], Shannon entropy (for RGB channels) and Zurek’s
physical entropy [40] were introduced. Then the measures were applied to analyse
aesthetic values of several paintings (Mondrian, Pollock, and van Gogh) [34, 33].

3 Spatial Complexity Measure

Despite the dominance of entropy as a measure of order and complexity, it fails
to capture structural characteristics of 2D patterns. The main reason for this
drawback is that entropy is a function of the distribution of the symbols, and
not on their spatial arrangement [23]. Consequently any model derived from
information theory will inherently suffer from this drawback.

Considering our intuitive perception of complexity and structural character-
istics of 2D patterns, a complexity measure must be bounded by two extreme
points of complete order and disorder. It is reasonable to assume that regular
structures, irregular structures and structureless patterns lie along between these
extremes, as illustrated in Fig. 1.

order
regular structure | irregular structure | structureless

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ disorder

Fig. 1: The spectrum of spatial complexity.

A complete regular structure is a pattern of high symmetry, an irregular
structure is a pattern with some sort of structure but not as regular as a fully
symmetrical pattern and finally a structureless pattern is a random arrangement
of elements [22]. A measure introduced in [5, 38, 1] and known as information
gain, has been proposed as a means of characterising the complexity of dynamical
systems and of 2D patterns. It measures the amount of information gained in
bits when specifying the value, x, of a random variable X given knowledge of
the value, y, of another random variable Y ,

Gx,y = − log2 P (x|y). (4)

P (x|y) is the conditional probability of a state x conditioned on the state y. Then
the mean information gain (MIG), GX,Y , is the average amount of information
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gain from the description of the all possible states of Y :

GX,Y =
∑
x,y

P (x, y)Gx,y = −
∑
x,y

P (x, y) log2 P (x|y) (5)

where P (x, y) is the joint probability, prob(X = x, Y = y). G is also known as
the conditional entropy, H(X|Y ) [11]. Conditional entropy is the reduction in
uncertainty of the joint distribution ofX and Y given knowledge of Y ,H(X|Y ) =
H(X,Y )−H(Y ). The lower and upper bounds of GX,Y are

0 6 GX,Y 6 log2 |X |. (6)

The structural characteristics of a 2D image are determined by the spatial
distribution and state (i.e. colour) of individual pixels. In terms of the state of
pixels they can be either with a uniform state relation (same colours) or non-
uniform state relation (different colours) with their neighbouring pixels. In order
to apply G to an image, the following definitions are needed:

– L is a finite lattice of pixels (i, j).
– S = {1, 2, . . . , k} is set of states. Each pixels (i, j) in L has a state s ∈ S.
– N is neighbourhood, as specified by a set of lattice vectors {ea}, a =

1, 2, . . . , N . The neighbourhood of pixel r = (i, j) is {r+e1, r+e2, . . . , r+eN}.
With an economy of notation, the pixels in the neighbourhood of (i, j) can be
numbered from 1 to N ; the neighbourhood states of (i, j) can therefore be de-
noted (s1, s2, . . . , sN ). An eight-cell neighbourhood {(±1, 0), (0,±1), (±1,±1)}
is considered for a pixel’s relation to its neighbouring pixels. The relative
positions for non-edge pixels, since they do not have neighbouring pixels, is
given by matrix M :

M =

 (i−1,j+1) (i,j+1) (i+1,j+1)

(i−1,j) (i,j) (i+1,j)

(i−1,j−1) (i,j−1) (i+1,j−1)

 . (7)

For an image, G can be calculated by considering the distribution of pixel
colours over pairs of pixels r, s,

Gr,s = −
∑
sr,ss

P (sr, ss) log2 P (sr, ss) (8)

where sr, ss are the states at r and s. Since |S| = N , Gr,s is a value in [0, N ]
(details of calculations for a sample pattern are provided in appendix). The verti-
cal, horizontal, primary diagonal (�) and secondary diagonal (�) neighbouring
pairs provide eight Gs; G(i,j),(i−1,j+1), G(i,j),(i,j+1), G(i,j),(i+1,j+1), G(i,j),(i−1,j),

G(i,j),(i+1,j), G(i,j),(i−1,j−1), G(i,j),(i,j−1) and G(i,j),(i+1,j−1). Correlations be-
tween pixels on opposing lattice edges are not considered. The result of this
edge condition is that Gi+1,j is not necessarily equal to Gi−1,j .

Fig. 2 illustrates the advantages of G over H in discriminating structurally
different patterns where the elements are equally probable (P (sr, ss) = 1

108 ).
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Fig. 2a is completely symmetrical, Fig. 2b is partially structured and Fig. 2c
is a structureless and random pattern. The calculations have been performed
for each element of images having a uniform and non-uniform colours in their
relative spatial positions for three possible colours (S = {lightgrey, grey, black})
along with G, and µ(G), the mean of the eight directional G’s. As is evident, H is
identical for these structurally different patterns, however, G and µ(G) reflect the
order and complexity of patterns due to the spatial arrangements of composing
elements. Fig. 2 clearly demonstrates the drawbacks of entropy to discriminate
structurally different 2D patterns. In other words, entropy is invariant to the
spatial arrangement of the composing elements.

(a) (b) (c)
H = 1.58496

Gi,j+1 = 1.32480

Gi,j−1 = 1.32480

Gi−1,j = 1.32480

Gi+1,j = 1.32480

Gi−1,j+1 = 1.45033

Gi+1,j−1 = 1.45033

Gi+1,j+1 = 1.45033

Gi−1,j−1 = 1.45033

µ(G) = 1.38756

H = 1.58496

Gi,j+1 = 1.32515

Gi,j−1 = 1.32703

Gi−1,j = 1.54180

Gi+1,j = 1.54630

Gi−1,j+1 = 1.36769

Gi+1,j−1 = 1.36670

Gi+1,j+1 = 1.38744

Gi−1,j−1 = 1.38962

µ(G) = 1.40646

H = 1.58496

Gi,j+1 = 1.58181

Gi,j−1 = 1.58209

Gi−1,j = 1.57696

Gi+1,j = 1.57668

Gi−1,j+1 = 1.56727

Gi+1,j−1 = 1.56712

Gi+1,j+1 = 1.57688

Gi−1,j−1 = 1.57657

µ(G) = 1.57567

Fig. 2: Measures of H, Gs and µ(G) for structurally different patterns with
equally probable distribution of elements.

4 Analysis

The purpose of this section compare µ(G) for twelve patterns with an empirical
aesthetic ranking.

Twelve experimental stimuli were adapted from an empirical study of hu-
man aesthetic judgement [21]. Jacobsen [21] reports on an empirical trial of
human aesthetic judgement. Fifty-five young adults (15 males) participated in
the experiment for course credit or partial fulfilment of course requirements. All
were first or second year psychology students at the University of Leipzig. None
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of them had received professional training in the fine arts or participated in a
similar experiment before. Participants reported normal or corrected-to-normal
visual acuity. Subjects were asked to evaluate images from two groups; a group
of asymmetrical images and a group of symmetrical images with at least one
axis of reflection symmetry. The images consisted of a solid black circle showing
a centred, quadratic, rhombic cut-out.

Twelve of these images were scaled to 151× 151 pixels (S = {white, black})
and the black circular background was replaced by a square in order to reduce
aliasing errors. The directional information gains, Eq. 8, and the mean gain,
µ(G), were calculated. The results are detailed in Fig. 4 and Fig. 6.

(a)

(b)

Fig. 3: Stimulus examples from [20]. The patterns in (a) are not symmetric,
ranging from not beautiful (as judged in the trials) to beautiful (from top left
for bottom right) and the patterns in (b) are symmetric, ranging also from not

beautiful to beautiful (from top left for bottom right)
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(1) (2) (3)

Gi,j+1 = 0.18216

Gi,j−1 = 0.18216

Gi−1,j = 0.17310

Gi+1,j = 0.17310

Gi−1,j+1 = 0.20089

Gi+1,j−1 = 0.20089

Gi+1,j+1 = 0.21633

Gi−1,j−1 = 0.21633

µ(G) = 0.19312

Gi,j+1 = 0.18034

Gi,j−1 = 0.18034

Gi−1,j = 0.18034

Gi+1,j = 0.18034

Gi−1,j+1 = 0.17402

Gi+1,j−1 = 0.17402

Gi+1,j+1 = 0.24146

Gi−1,j−1 = 0.24146

µ(G) = 0.19404

Gi,j+1 = 0.20431

Gi,j−1 = 0.20431

Gi−1,j = 0.18502

Gi+1,j = 0.18502

Gi−1,j+1 = 0.24456

Gi+1,j−1 = 0.24456

Gi+1,j+1 = 0.22990

Gi−1,j−1 = 0.22990

µ(G) = 0.21595

(4) (5) (6)

Gi,j+1 = 0.20093

Gi,j−1 = 0.20093

Gi−1,j = 0.17433

Gi+1,j = 0.17433

Gi−1,j+1 = 0.25834

Gi+1,j−1 = 0.25834

Gi+1,j+1 = 0.23194

Gi−1,j−1 = 0.23194

µ(G) = 0.21639

Gi,j+1 = 0.20752

Gi,j−1 = 0.20752

Gi−1,j = 0.19412

Gi+1,j = 0.19412

Gi−1,j+1 = 0.27130

Gi+1,j−1 = 0.27130

Gi+1,j+1 = 0.22552

Gi−1,j−1 = 0.22552

µ(G) = 0.22462

Gi,j+1 = 0.24608

Gi,j−1 = 0.24608

Gi−1,j = 0.21380

Gi+1,j = 0.21380

Gi−1,j+1 = 0.28628

Gi+1,j−1 = 0.28628

Gi+1,j+1 = 0.28925

Gi−1,j−1 = 0.28925

µ(G) = 0.25885

Fig. 4: The measurement of Gs for asymmetrical stimuli in bits.

The relationship between aesthetic judgements and µ(G) for asymmetrical
stimuli are shown in Fig. 5. The analysis shows a strong positive correlation
between aesthetic judgements and µ(G) (r = 0.9327, y = 0.012x+ 0.175). This
indicates that information gain can be directly linked to the human aesthetic
judgements of asymmetrical patterns.
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Fig. 5: The measurements of µ(G) for asymmetrical stimuli.

(1) (2) (3)

Gi,j+1 = 0.23315

Gi,j−1 = 0.23315

Gi−1,j = 0.20992

Gi+1,j = 0.20992

Gi−1,j+1 = 0.28055

Gi+1,j−1 = 0.28055

Gi+1,j+1 = 0.28055

Gi−1,j−1 = 0.28055

µ(G) = 0.25104

Gi,j+1 = 0.19365

Gi,j−1 = 0.19365

Gi−1,j = 0.19804

Gi+1,j = 0.19804

Gi−1,j+1 = 0.22226

Gi+1,j−1 = 0.22226

Gi+1,j+1 = 0.22226

Gi−1,j−1 = 0.22226

µ(G) = 0.20905

Gi,j+1 = 0.18736

Gi,j−1 = 0.18736

Gi−1,j = 0.18825

Gi+1,j = 0.18825

Gi−1,j+1 = 0.18882

Gi+1,j−1 = 0.18882

Gi+1,j+1 = 0.18882

Gi−1,j−1 = 0.18882

µ(G) = 0.18831

(4) (5) (6)

Gi,j+1 = 0.24350

Gi,j−1 = 0.24350

Gi−1,j = 0.24746

Gi+1,j = 0.24746

Gi−1,j+1 = 0.30361

Gi+1,j−1 = 0.30361

Gi+1,j+1 = 0.30361

Gi−1,j−1 = 0.30361

µ(G) = 0.27455

Gi,j+1 = 0.19313

Gi,j−1 = 0.19313

Gi−1,j = 0.19313

Gi+1,j = 0.19313

Gi−1,j+1 = 0.22414

Gi+1,j−1 = 0.22414

Gi+1,j+1 = 0.22414

Gi−1,j−1 = 0.22414

µ(G) = 0.20864

Gi,j+1 = 0.21635

Gi,j−1 = 0.21635

Gi−1,j = 0.21635

Gi+1,j = 0.21635

Gi−1,j+1 = 0.24543

Gi+1,j−1 = 0.24543

Gi+1,j+1 = 0.24543

Gi−1,j−1 = 0.24543

µ(G) = 0.23089

Fig. 6: The measurement of Gs for symmetrical stimuli in bits.
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Fig. 7: The measurements of µ(G) for symmetrical stimuli.

The Pearson correlation coefficient (r) and regression analysis for symmetri-
cal stimuli (Fig. 7) shows no significant correlation between aesthetic judgements
and µ(G) (r = −0.0266, y = 0.229). However the images differ in their degree of
reflection symmetry. Images 1, 2 and 3 have two axes of symmetry, image 4 has
a single axes and 5 and 6 have four axes. This mixture of degrees of symmetry
might account for the ambiguous results.

5 Conclusions

One of the major challenges of evolutionary art and computational notions of
aesthetics is the development of a quantitative model which conforms with hu-
man intuitive perception. Informational theories of aesthetics based the mea-
surements of entropy have failed to discriminate structurally different patterns
in a 2D plane.

In this work, we investigated information gain as a spatial complexity mea-
sure. This measure which takes into account correlations between pixels and can
discriminate between structurally different patterns.

This paper reports on the analysis of two different types of stimuli (sym-
metrical and asymmetrical) which were adapted from an experimental study on
human aesthetic perception in the visual domain. The analysis suggest a link
between information gain and aesthetic adjustments, in the case of asymmetri-
cal patterns. However, the analysis did not show and link between information
gain and empirical aesthetic judgement in the case of patterns with reflection
symmetry. It is conjectured that having different orders of reflection symmetry
has contributed to this negative finding.
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Appendix

In this example the pattern is composed of two different colours S = {white, black}
where the set of permutations with repetition is {ww,wb, bb, bw}. Considering
the mean information gain (Eq. 8) and given the matrix M (Eq. 7), the calcu-
lations can be performed as follows:

white− white
P (w,w(i,j+1)) = 5

6

P (w|w(i,j+1)) = 4
5

P (w,w(i,j+1)) = 5
6
× 4

5
= 2

3

G(w,w(i,j+1)) = 2
3

log2 P ( 4
5
)

G(w,w(i,j+1)) = 0.2146 bits
white− black
P (w, b(i,j+1)) = 5

6

P (w|b(j+1)) = 1
5

P (w, b(i,j+1)) = 5
6
× 1

5
= 1

6

G(w, b(i,j+1)) = 1
6

log2 P
1
5

G(w, b(i,j+1)) = 0.3869 bits

black − black
P (b, b(i,j+1)) = 1

6

P (b|b(i,j+1)) = 1
1

P (b, b(i,j+1)) = 1
6
× 1

1
= 1

6

G(b, b(i,j+1)) = 1
6

log2 P (1)
G(b, b(i,j+1)) = 0 bits
black − white
P (b, b(i,j+1)) = 1

6

P (b|w(i,j+1)) = 0
1

P (b, w(i,j+1)) = 1
6
× 0

G(b, w(i,j+1)) = 0 bits

G = G(w,w(i,j+1)) +G(w, b(i,j+1)) +G(b, b(i,j+1)) +G(b, w(i,j+1))

G = 0.6016 bits

In white − white case G measures the uniformity and spatial property where
P (w,w(i,j+1)) is the joint probability that a pixel is white and it has a neighbour-
ing pixel at its (i, j+1) position, P (w|w(i,j+1)) is the conditional probability of a
pixel is white given that it has white neighbouring pixel at its (i, j+ 1) position,
P (w,w(i,j+1)) is the joint probability that a pixel is white and it has neighbour-
ing pixel at its (i, j + 1) position, G(w,w(i,j+1)) is information gain in bits from
specifying a white pixel where it has a white neighbouring pixel at its (i, j + 1)
position. The same calculations are performed for the rest of cases; black-black,
white-black and black-white.



Bibliography

[1] Andrienko, Yu. A., Brilliantov, N. V., Kurths, J.: Complexity of two-
dimensional patterns. Eur. Phys. J. B 15(3), 539–546 (2000)

[2] Arnheim, R.: Art and visual perception: A psychology of the creative eye.
Univ of California Press (1954)

[3] Arnheim, R.: Towards a psychology of art/entropy and art an essay on
disorder and order. The Regents of the University of California (1966)

[4] Arnheim, R.: Visual thinking. Univ of California Press (1969)
[5] Bates, J.E., Shepard, H.K.: Measuring complexity using information fluc-

tuation. Physics Letters A 172(6), 416–425 (1993)
[6] Bense, M., Nee, G.: Computer grafik. In: Bense, M., Walther, E. (eds.)

Edition Rot, vol. 19. Walther, Stuttgart (1965)
[7] Bense, M.: Aestetica: Programmierung des Schönen, allgemeine Texttheorie
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