
Cognitive Bare Bones Particle Swarm Optimisation
with Jumps

Mohammad Majid al-Rifaie, Tim Blackwell
Department of Computing

Goldsmiths University of London
London SE14 6NW, United Kingdom

Email: m.majid, t.blackwell @ gold.ac.uk

Abstract—The ‘bare bones’ (BB) formulation of particle swarm
optimisation (PSO) was originally advanced as a model of
PSO dynamics. The idea was to model the forces between
particles with sampling from a probability distribution in the
hope of understanding swarm behaviour with a conceptually
simpler particle update rule. ‘Bare bones with jumps’ (BBJ)
proposes three significant extensions to the BB algorithm: (i)
two social neighbourhoods, (ii) a tuneable parameter that can
advantageously bring the swarm to the ‘edge of collapse’ and
(iii) a component-by-component probabilistic jump to anywhere
in the search space. The purpose of this paper is to investigate
the role of jumping within a specific BBJ algorithm, cognitive
BBJ (cBBJ). After confirming the effectiveness of cBBJ, this
paper finds that: jumping in one component only is optimal
over the 30 dimensional benchmarks of this study; that a small
per particle jump probability of 1/30 works well for these
benchmarks; jumps are chiefly beneficial during the early stages
of optimisation and finally this work supplies evidence that
jumping provides escape from regions surrounding sub-optimal
minima.

I. INTRODUCTION

PARTICLE swarm optimisation (PSO) is a population
based optimisation technique developed by Kennedy and

Eberhard[1]. The particle swarms of optimisation algorithms,
in distinction to the swarms in models of animal flocking,
swarming and herding, communicate via a social information
network rather than on rules dependent on spatial proximity.
Each particle remembers its best achieved position, as deter-
mined by an objective function, and shares this information
with social neighbours who use this knowledge to inform their
own exploration.

There have been many attempts to understand the behaviour
of the particles in PSO; the studies mainly concentrating on
single particle trajectories and formal convergence to a stable
point in the absence of particular-particle interaction [2], [3],
[4], [5], [6], [7], [8], [9]. However an understanding of the
dynamics of the interacting particles is elusive. This is due to
the complexity of the stochastic particle update [10] and the
relationship between particle memory, network topology and
objective function.

In 2003, Kennedy [10] advanced a model of PSO dynamics
(‘bare bones’) where the velocity and position update is
replaced by Gaussian sampling around the average of the

neighbourhood and personal best positions. This provided an
arguably simpler model of particle motion.

The original bare bones formulation is not competitive
to standard PSO [11], [12], but the original idea has been
extended. A version based on a broader distribution tail has
been proposed [11] with the aim of improving exploration.
Krohling considered a version with particle re-initialisation
in which all components of particle position are randomised
within the search space if a particle has not improved itself
over a given number of iterations [13]. A bare bones with
component-wise jumps and two social neighbourhoods, BBJ,
has also been advanced [14]. The jumps of BBJ are applied
probabilistically and independently of particle performance.
The effect is to broaden distribution tails and promote escape
from local optima [14].

The consequence of these studies is that bare bones swarms
can be regarded as effective optimisers in their own right, and
are not merely as a model of PSO dynamics.

BBJ, has, by virtue of its dual neighbourhoods and choice of
jumping mechanism, a rich set of possible formulations. The
particular instances studied here will be termed social (sBBJ)
and cognitive BBJ (cBBJ).

Current particle position x in sBBJ does not influence
search unless this position coincides with the historical best
position achieved. In a sense, one could say that the search
is governed by social rather than personal information. The
search is focused on the best position, g, of any neighbour
within a particular neighbourhood (the µ-neighbourhood) and
the search spread is determined by the separation of neighbour
best positions in a second social neighbourhood (the σ-
neighbourhood). The two neighbourhoods coincide in other
bare bones formulations. Good results are obtained by taking
a global (the entire swarm) µ-neighbourhood and a small
local σ-neighbourhood [14]. Figuratively speaking, a particle
attempts to better itself by copying a public leader (global
µ-neighbourhood), yet it also distinguishes itself by imitating
the observed degree of non-conformity within a more intimate
group (the local σ-neighbourhood).

However current particle position does play a role in cBBJ;
the standard deviation of the Gaussian sampling is proportional
to the distance (in each component) between x and g [15].
This introduces a cognitive element into the search criteria;



the degree of non-conformity is specified by the how much
the particle itself differs from the leader. The search however,
is still focused on the µ-neighbourhood leader.

Particle jumps in [14] and [15] are applied probabilistically
on a component by component basis (per-component). The
result is that the total number of component jumps per particle
is not fixed. Although this is not necessarily problematic,
and indeed when viewed as a tail broadening mechanism,
probabilistic component jumps are entirely consistent with
the general PSO update scheme, namely a component-by-
component update, whether according to a velocity mediated
rule, or by sampling. This is not the only possible rule; the
total number of component jumps could be fixed by selecting a
particle for jumping according to a fixed probability, and then
instigating a set number of component jumps (per-particle).
The jumping mechanism considered in this paper is the per-
particle version.

The findings of this paper are:
1) Social and cognitive BBJ are valid optimisers in their

own right, and not just models of PSO behaviour.
2) The main conclusion in terms of performance on the

30 dimensional set of benchmarks is that cognitive BBJ
with a global search focus and with a per particle jump
probability of 1/30 in a single dimension is preferred
for a fifty particle swarm, providing performance that is
equivalent to some state-of-the-art PSOs on a standard
test set.

3) The investigations reveal that (i) the dimensionality of
the jump subspace is optimally set to one, (ii) jumps are
most successful at the early stages of the optimisation,
and (iii) there is evidence that the majority of jumps
provide an escape from a local optimum.

The paper is organised as follows: section II presents a
general formulation of PSO that emphasises the role of particle
histories and memories. The paper continues with an account
of bare bones PSO, with and without jumps. Section IV analy-
ses the BBJ algorithms at stagnation, and when converging on
a local optimum. A bound to α, the parameter that controls
the variance of gaussian sampling is derived, as well as an
estimate of the jumping probability for cBBJ.

Section V and VI report on the empirical investigations of
particle jumps, and on the efficacy of the c/sBBJ algorithms
on a standard benchmark. The paper ends with a summary of
the main findings.

II. PARTICLE SWARM OPTIMISATION

A particle swarm consists of an interacting collection of
particles that move through a search space Ω. Each particle
is specified by its state at any given update step; the state
is a collection of dynamic values that are associated with
the particle’s position in Ω. Particles move according to a
stochastic rule that depends on their own state history and
the history of neighbouring particle states in a social network.
The rule balances the influence of individual history (the
‘cognitive’ influence) with the influence of neighbours’ history

(the ‘social’ component). Particles interact via the social com-
ponent and in doing so attempt to better themselves by finding
higher quality solutions to some problem, as determined by an
objective function, f : Ω→ R.

More formally, suppose that particle i has a state si(t)
where t ∈ N+ counts the number of applications of the
stochastic particle update rule. A swarm of N particles at
update t is then specified by the collection of states s(t) =
(s1(t), s2(t), . . . , sN (t)).

A particle is usually a very simple object; its state is
essentially a vector xi(t) within the search space Ω at update t.
However, for computational purposes, particle state si(t) can
be expanded to include a memory pi(t) ∈ Ω of previously
visited positions, a velocity vi(t) ∈ Ω, and a function value
fi(t) = f(xi(t)), but these quantities are not independent and
can be derived from the position (see below).

For simplicity we suppose that the search space is a
parallelepiped (box) in D-dimensional real space, Ω =
(Ω1,Ω2, . . . ,ΩD) ∈ RD. Then xi, vi and pi are D dimen-
sional real vectors (xi1, xi2, . . . , xiD) etc.

Memories and histories

For the purposes of economy, a sequence of objects
a(1), a(2), . . . , a(t) will be notated [a(t)]. The sequence of
all states acquired by particle i at update t i.e. the history of
particle i, is then represented by [si(t)]. In principle, the total
information available to any algorithm at update t is the entire
history of the swarm, [s(t)].

The swarm evolves according to individual particle update
rules and hence generates a trajectory [xi(t)] for each particle.
Each position has an objective value f(xi(t)); this value will
occasionally be abbreviated by fi(t). The trajectory has an
associated function value history [f(xi(t))].

The particle ‘memory’, pi(t), is usually defined as the
optimal position in [xi(t)] with respect to f . In the case of
minimisation,

pi(t) = arg∗min [f(xi(t))] (1)

where the starred arg operator indicates the argument of an
arbitrary member of min [f ] if indeed min [f ] is not unique.
This might happen if the particle does not move, or if it moves
to a position with identical function value to a previous and
different position. One possible rule is to select the most recent
member of min[f(xi(t))].

According to this definition, pi(1) = xi(1), and the mem-
ory history [pi(t)] ≡ pi(1) . . . pi(t) is ordered according to
function value: fi(1) ≥ fi(2) ≥ . . . fi(t).

A particle velocity vi(t) ∈ Ω can be defined as vi(t) ≡
xi(t) − xi(t − 1), t > 1 whenever this difference lies in Ω;
otherwise a further rule must specify how to obtain vi(t) from
xi(t) and xi(t− 1). vi(1) is an arbitrary point in Ω.

For computational purposes, it may be more efficient
to define a particle state as the collection si(t) =
(xi(t), pi(t), fi(t), vi(t)). However pi(t), fi(t) and vi(t), t >
1, are derivable from the position history [xi(t)].



Memory update rule

A memory update rule can be inferred from the definition
of pi(t). One rule is1

pi(1) = xi(1)

pi(t > 1) =

{
xi(t) if f(xi(t)) ≤ f(pi(t− 1))

pi(t− 1) otherwise.

We also note that the collection of memories at step t,
(p1(t), p2(t), . . . , pN (t)), may not include the N best positions
ever attained by the swarm since memory update depends on
personal and not group performance. However schemes could
be devised to ensure that (for example) the N best positions
are shared amongst the N particles at all steps; in that case Eq.
1 would be replaced by a function of the swarm as a whole,
and not just on personal history.

The social network

Each particle participates in a social network or neigh-
bourhood, Ni(t), consisting of a subset of the swarm. The
term social means that neighbours are defined by a graph of
relationships, and not by spatial locality or by function value.

A neighbourhood that includes all the swarm is global; oth-
erwise it is local. The social neighbourhood of a particle may
exclude the particle itself (an open neighbourhood; otherwise
it is a closed neighbourhood).

A static network is not subject to change during the course
of the optimisation, Ni(t) = Ni. Otherwise, the network is
dynamic. A collection of social networks is symmetric if the
relationship between neighbours is the same for each particle,
as in the case of the ring network NR

i = {i 	 1, i ⊕ 1}2, or
the global network NG

i = {1, 2, . . . , N}.
For the interests of notational simplicity we shall assume

static and symmetric neighbourhoods in the remainder of this
section.

We imagine that potentially particles have access to all the
information carried by its neighbours at step t. The information
carried by particle i is its state history [si(t)]. Hence particle
i at step t has access to [si(t− 1)] and to [sj(t− 1)] for each
neighbour j in Ni3.

The neighbourhood best memory, gi(t) of particle i at time
t is defined as

gi(t) = arg∗min (f(pj(t)), j ∈ Ni, (2)

where, once more, one of arg min is returned if arg min is
not unique.

1An alternative is

pi(1) = xi(1)

pi(t) =

{
xi(t) if f(xi(t)) < f(pi(t− 1))

pi(t− 1) otherwise.

but the rule with ≤ is usually preferred since it enforces movement even if
there is no improvement.

2The symbols ⊕,	 stand for arithmetic mod N .
3This is for synchronous updating; in asynchronous versions, particle i has

access to Sj<i(t) and Sj>i(t− 1).

Position update rule

In principle the particle position update rule is a function of
its entire history [si(t)] (the ‘cognitive’ component) and the
entire history of particles in its neighbourhood, [sj∈Ni

(t)] (the
‘social’ component). The movement rule might also depend on
random variables ξi(t), real parameters αi(t) and on details of
the function domain Ω (the update rule must specify a valid
point within the search space Ω.

For synchronous updating and t > 1, the general rule Rt is

xi(t) = Rt([si(t− 1)], [sj∈Ni
(t− 1)], ξi(t), αi(t),Ω).

An increasing amount of information is available at each
step and in consequence the number of arguments of Rt grows,
giving rise to a family of rules, Rt, where each rule is indexed
by t. It is also possible to implement a different type of rule
at different stages of the optimisation.

This is a very general formulation, but it encapsulates the
essential elements of PSO: a procedure for generating new
trial positions for a population of searchers participating in
overlapping information-sharing networks.

In ‘standard’ formulations, as exemplified by the Clerc-
Kennedy (CK) PSO [2], the particle update rule depends on (i)
particle velocity, vi(t−1), (ii) the best current memory gi(t−1)
of particles in its neighbourhood and (iii) pi(t− 1). The real
parameters αi(t) = α(t) are the same for each particle and
are constant4. Hence, for t > 0:

xi(t) = RCK(vi(t− 1), pi(t− 1), gi(t− 1), ξ(t), α,Ω)

The specific form of RCK is a second order difference
equation with multiplicative stochasticity:

yi(t) = α0(xi(t− 1)− xi(t− 2))

+ α1ξ1(t− 1)(pi(t− 1)− xi(t− 1))

+ α2ξ1(t− 1)(gi(t− 1)− xi(t− 1)) (3)

xi(t) =

{
yi(t) if yi(t) ∈ Ω

∂̂Ω(xi(t− 1), yi(t)) otherwise
(4)

where ξ1,2(t− 1) are D-dimensional vectors of random num-
bers with the uniform distribution U(0, 1) and the Hadamard
product is understood for products of vectors of equal size
(as occurs in products such as ξ1pi). The update rule is
applied to each component xid of xi. The boundary operator
∂̂Ω(xi(t− 1), yi(t)) maps y /∈ Ω to Ω5.

It is possible that pi(t − 1) = gi(t − 1) (this can happen
for open or closed neighbourhoods). A further rule might be
applied in this case. In synchronous updating, xi is computed
for every particle in turn, and then the memory updates are
performed. In asynchronous updating, the memory updates
occur immediately after each position update.

4The parameters are fixed in some versions of standard PSO α(t) = α;
they might however have an explicit time dependence in order to promote
convergence by restricting the range of probable trials (as in the linearly
decreasing inertia weight PSO’s [16] ).

5For example, ∂̂Ω(x, y) projects y to the nearest point x on the boundary
∂Ω



III. BARE BONES

A. The original bare bones

It is known that particle positions in a stagnant PSO swarm
(one in which the memories do not change) will converge to
a weighted average of their personal best and neighbourhood
best positions for certain parameter values [17], [3]. However,
apart from the behaviour at stagnation, further analysis is
difficult due to the nature of the coupled stochastic difference
equation, Eq. 3. In particular, the effective particle distribution
is unknown for any function (although it is known that bursts
are typical [7]).

In an attempt to understand the particle distribution, a mod-
ified first order algorithm was proposed [10]. This algorithm,
BB, defines a search focus, µ and a search spread, σ:

µid =
1

2
(gid + pid) (5)

σid = |gid − pid| (6)

and draws a trial position xid from the normal distribution
N(µid, σid). Kennedy experimented with applying Eqs 5 and
6 with probability 1/2 and otherwise xid = pid. He also added
probabilistic bursts of outliers in an attempt to model the bursts
that are known to occur in conventional PSO. Note that the BB
algorithm does not use particle position xi unless the particle
is at its personal best, xi = pi. In a sense, one could say
that the particle tries a position xi, and if it is not successful,
returns to it personal best, pi. The algorithm, at least formally,
balances cognitive (p) and social elements (g).

B. The general idea

The key idea behind bare bones PSO is to exchange the
stochastic second-order difference particle update with distri-
bution sampling based on first-order quantities6.

The basic philosophy behind the bare bones approach is to
pick a monomodal distribution such that the focus, µ, and the
spread or dispersion, σ, of the distribution are given by the
parameters, α, and first order quantities xi(t − 1), pi(t − 1)
and gi(t− 1). (The more general terms focus and spread are
used rather than mean and variance since some distributions
(e.g. the α-stable family) do not have defined or finite means
and/or variances.)

For simplicity the bare bones PSO particle update rule
with a truncated normal distribution (although heavy tailed
distributions such as the Cauchy and Lévy distributions have
also been used), will be described.

The truncated normal distribution N(µ, σ2, L,R) has den-
sity

φµ,σ2,L,R(x) =
φµ,σ2(x)

Φµ,σ2(R)− Φµ,σ2(L)
.

where Ωd = [L,R] and φµ,σ2(x),Φµ,σ2(x) =∫ x
−∞ φµ,σ2(x′)dx′ are the density and cumulative distribution

respectively.

6In fact both formulations can be written as stochastic difference equations
or as distribution sampling; there is only a difference in emphasis.

The bare bones particle update rule is simply

xi(t) ∼ N(µi(t− 1), σ2
i (t− 1), L,R) (7)

where xi, N, µi and σ2
i are D-dimensional vectors and

N(µ, σ, L,R) denotes the truncated normal distribution. In
common with the standard PSO approach, each component
of x is updated separately. There is some flexibility in how µ
and σ are determined and indeed the choice of these functions
effectively specifies a particular bare bones algorithm.

The bare bones particle update can be written as a stochastic
difference equation:

xi(t) = µi(t− 1) + σi(t− 1)nL,R(t− 1) (8)

where nL,R is a D-dimensional vector of random numbers
from the truncated standard normal distribution N(0, 1, L,R).
The standard PSO update, as a stochastic difference equation
is given by Eq. 3. Bare bones PSO derives its simplicity from
imposing that µ, σ are first order functions of xi(t−1), pi(t−1)
and gi(t− 1).

Alternatively, the update rule for standard PSO can be
written as distribution sampling. The PSO update rule, Eq.
3, can be simplified:

yi(t) ∼ a0(t− 1)− a0(t− 2)

+ U(0, a1(t− 1)) + U(0, a2(t− 1))

with, for t > 2,
a0(t− 1) = α0xi(t− 1)

a0(t− 2) = α0xi(t− 2)

a1(t− 1) = α1(pi(t− 1)− xi(t− 1))

a2(t− 1) = α2(gi(t− 1)− xi(t− 1)).

The distribution of the random variable Z = U(0, a1) +
U(0, a2) is trapezoidal. If X,Y are independent random
variables then the density of the summed distribution X + Y
is

fZ =

∫ ∞
−∞

fX(y)fX(z − y)dy.

Putting X = U(0, a1) and Y = U(0, a2) and, without loss of
generality, defining a1 ≤ a2, gives the density:

fZ =

∫ ∞
−∞

fX(y)fX(z − y)dy

=


z

a1a2
0 ≤ z ≤ a1

1
a2

a1 < z ≤ a2

1
a1

+ 1
a2
− z

a1a2
a2 < z ≤ a1 + a2.

Writing the distribution with the above density as T (a1, a2)
and its truncated counterpart as T (a1, a2, L,R), the standard
PSO particle update rule in distribution sampling form is

xi(t) ∼ a0(t− 1)− a0(t− 2) + T (a1(t− 1), a2(t− 1), L,R).

and second order effects enter via the shift a0(t−1)−a0(t−2).
This can be compared with the bare bones sampling rule, Eq.
7.



C. Social bare bones with jumps

The original bare bones algorithm is generalised and ex-
tended in [14]. The search focus µ and spread σ are chosen
from separate neighbourhoods which might each be local or
global. In principle a particle may participate in two neigh-
bourhoods, one for the determination of its search focus (the
µ-neighbourhood) and one for the determination of the search
spread around this focus (the σ-neighbourhood)7. Furthermore,
it is pointed out in this paper that Eq. 6 contains a hidden
positive scaling parameter α

σid = α |gid − pid| , (9)

implicitly set to unity in BB. In the same study, a critical
value, αc = 0.65, was found such that for α > αc the
swarm resists collapse when optimising the sphere function,
or indeed when optimising any local symmetric optimum.
Fastest convergence occurs at the critical value, but larger
values promote exploration. The swarm collapses for smaller
values and optimisation ceases. Open σ-neighbourhoods (i.e.
a neighbourhood without self) should be used in order to
mitigate against a zero variance when pi = gi [14] (but note
that any two members of any neighbourhood might share the
same position).

The global σ-neighbourhood offers no particular advantage
on a standard test set of 30 dimensional problems and the open
ring neighbourhood was recommended: σi = α |pi	1 − pi⊕1|.
The search focus is determined by a global or local µ-
neighbourhood, µi = gi where the neighbourhood best gi is
given by Eq. 2. The resulting update rule is, for local ring
neighbourhoods,

µi = gi (NG
i or NR

i ) (10)

σi = α |pj − pk| (NR
i ) (11)

Finally, the algorithm of [14] provided component jumping.
A particle may jump in any component with probability pJ .
This can be viewed as a partial re-initialisation (since in
general not every component undergoes a jump) or, alterna-
tively, as a tail broadening mechanism (i.e. the tails of the
Gaussian distribution), allowing further search in areas where
the Gaussian distribution tails are thin. As reported in [14],
investigations with a standard test set of 30D problems propose
that the jump probability pJ should be set to 0.01.
µi and σi, as determined by Eqs. 10 and 11 will only

involve a particle’s own memory, pi, in the case of a global
and closed µ-neighbourhood and if the particle happens to be
the best particle in this µ-neighbourhood. The update rule is
predominantly socially determined and hence the algorithm
will be termed ‘social BBJ’ (sBBJ) in this paper.

D. Cognitive bare bones with jumps

An unsuccessful particle position (i.e. one that does not
better pi), plays no part in the update equations of BB

7Particles might be connected by more than one network and these networks
might be mutually exclusive. For example, in the human domain, consider a
network of friends and a network of work colleagues.

and social BBJ. However the role of all (even unsuccessful)
particle positions was re-introduced in a subsequent extension
of the social BBJ algorithm [15]. In this study, the difference
between the neighbourhood best and the current position is
utilised:

σi = α |gi − xi| . (12)

The underlying assumption of this approach is that this alter-
ation might offer a wider search capability since unsuccessful
trial positions x lying far from the focus µ will increase the
sampling variance of following trials. If the swarm diversity
is indeed increased by this measure, we might expect that a
smaller jump probability will be needed and indeed in [15]
a jump probability of only 0.001 was found to give good
performance and to outperform social BBJ and the Clerc-
Kennedy PSO for a modest test set in 30D.

In contradistinction to the social BBJ σ-update, Eq. 11, Eq.
12 has a cognitive element as manifest by the presence of the
individual position x. This particular version of the jumping
bare bones is therefore referred to as ‘cognitive BBJ’ (cBBJ).

The abbreviation BBJ will refer to the general bare bones
scheme (separate µ and σ neighbourhoods and component-
wise position jumps). sBBJ and cBBJ are then specific in-
stances of BBJ.

E. Formal comparison of the algorithms

The cBBJ algorithm in the global µ and σ neighbourhoods
is formally very simple; it can be summarised as

xi(t) ∼ U(Ω) or g + α|g − xi(t− 1)|N(0, 1)

g = BETTER(xi(t), g)).

Each particle searches around the global or local best position
g with a search spread determined by the separation between
that particle and g. If a particle finds a better position than g
then that position becomes the new neighbourhood best and
this information is instantly communicated to all particles in
the neighbourhood. cBBJ particles are forgetful: individual
history, as manifest in the pi’s, plays no role. This is in
contrast to the more complicated CK, BB and sBBJ algorithms
in which particles retain a memory of past positions and
communicate this knowledge via a social network.

BB and social BBJ algorithms, unlike standard PSO’s, are
distinguished by the absence of particle position information
in the update rule. Search is focussed on the neighbourhood
best position gi, and the extent of the search is determined by
informer separation, |gid − pid| or |pi−1,d − pi+1,d|. A trial
position is ignored if an informer pi is not bettered. The
particle, figuratively speaking, returns to pi after a single trial
at search centre gi. On the other hand, cognitive BBJ retains
information of an unsuccessful attempt since search spread is
determined by the difference between xi and gi and in this
sense is reminiscent of the dynamics of standard PSO.



Algorithm 1 Social BBJ, k = 1, local σ-neighbourhood

dJ = −1
if (u ∈ U(0, 1) < pP)

dJ ∼ U({1, 2, . . . , D})
for d = 1 to D

if (d = dJ)
xid ∼ U(Ωd)

else
σid = α|pi⊕1d − pi	1d| (NR

i )
xid ∼ gµid + σidN (0, 1, L,R) (NG

i or NR
i )

F. Fixed number of jumps

The probability P = P (k,D, pJ) that a BBJ particle jumps
in k components in D dimensions is given by the binomial
theorem,

P (k,D, pJ) =

(
D

k

)
pkJ × (1− pJ)D−k. (13)

The one jump probabilities in 30 dimensions for pJ =
0.01 and pJ = 0.001 are P (1, 30, 0.01) = 0.224 and
P (1, 30, 0.001) = 0.029 and the probability that a particle
jumps in two or more components8 in 30D is approximately
0.036 or 0.0004 for the same single component probabilities
pJ . A particle, therefore, if it jumps at all, will likely jump in
one component only.

It is not clear that this component-by-component probabilis-
tic jump represents the correct scaling with dimensionality.
Although the probability pP that a particle jumps at all is a
function of D and pJ (pP = 1 − P (0, D, pJ)) and so can
be controlled, the relative proportion of single component,
two component, three component jumps etc. is fixed by the
binomial theorem and changes with dimension.

This paper proposes a more direct scheme: a particles is
given a fixed probability pP of jumping and a fixed number
of jumped components k. If it decides to jump, then it does
so in k components chosen uniformly at random from the
available D components. This fixed-jumps scheme frees the
dependency between the particle-wise jump probability (pP )
and the number of jumping components (k).

Possible algorithms for the case k = 1 are outlined in
Algorithms 1 and 2. Here, gµ,σi , the µ, σ neighbourhood best
is obtained from Eq. 2 either synchronously (at the start of
the iteration over the swarm), or asynchronously (before each
particle update). The specification describes a local ring σ-
neighbourhood and either type of µ-neighbourhood for the gi
determination; the type of network is placed in parentheses
after the σ and µ update step. U({1, 2, . . . , D}) indicates a
uniform random choice of index and U(Ωd) is the uniform
distribution on the interval Ωd.

8From the binomial theorem, the required probability is 1−P (0, D, pJ )−
P (1, D, pJ ) = 1− (1− pJ )D −DpJ (1− pJ )D−1.

Algorithm 2 Cognitive BBJ, k = 1

dJ = −1
if (u ∈ U(0, 1) < pP)

dJ = U({1, 2, . . . , D})
for d = 1 to D

if (d = dJ)
xid ∼ U(Ωd)

else
σid = α|gσid − xid| (NG

i or NR
i )

xid ∼ gµid + σidN (0, 1, L,R) (NG
i or NR

i )

IV. ANALYSIS

The main purpose of this section is to provide a bound to α,
the parameter that controls the variance of gaussian sampling,
for cBBJ from a stagnation analysis, and to produce an
estimate of the jumping probability for cBBJ based on the idea
that jumps, which are primarily exploratory, should not hinder
local optimisation. The section begins with a demonstration
of tail broadening as a consequence of the hybrid truncated
normal with jumps probability distribution.

A. Tail broadening
The hybrid distribution for x ∈ Ω = [L,R] is

φµ,σ2,pJ (x, L,R) ≡

pJ
1

R− L
+ (1− pJ)φµ,σ2(x, L,R)

where

φµ,σ2(x, L,R) ≡
φµ,σ2(x)

Φµ,σ2(R)− Φµ,σ2(L)
.

and φµ,σ2(x) and Φµ,σ2(x) are respectively the density and
cumulative distribution of the normal distribution N(µ, σ2).
Figure 1 shows the tail probability

prob(|x| > y) = 2

∫ 1

y

φ0,0.12,pJ (x′,−1, 1)dx′

≡ TpJ (y)

for µ = 0 and σ = 0.1 at pJ = 0.1, 0.01 and 0.001.
For comparison, the tail probability for pJ = 0 i.e. for the
truncated normal without jumps, and the pure jumps case,
pJ = 1 are also depicted. Jumping permits uniform exploration
through a k-dimensional subspace and leads to broadening of
the gaussian tails (see also [14]).

B. Stagnation
1) Stagnation analysis of cBBJ: The update rule per com-

ponent is

x(t+ 1) = g + α|g − x(t)|η(t)

= α| − x(t)|η(t) (g = 0)

≡ αx(t)η(t)
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Fig. 1. Tail probabilities of the normal-with-jumps distribution for various
jump probabilities. The curves depict the probability of selecting a point in
the distribution tails, defined here as |x| > y, for µ = 0 and σ = 0.1. The
case pJ = 0 is pure truncated normal, and at pJ = 1 the distribution is
uniform within Ω. For intermediate pJ , and for x > 3σ, the contribution
from the normal is negligible and T follows a linear relationship.

where we have placed g at 0, η is a Gaussian random variable,
η ∼ N(0, 1), and in the last line, the symmetry of N(0, 1) has
been employed to remove the absolute value. For simplicity,
the effects of truncation to Ω have been ignored and assume a
jump-free period. The rule is simply iterated at stagnation (g
does not change):

x(t+ 1)

x(1)
= αt

t∏
s=1

η(s) ≡ y(t+ 1).

The expected value of y (and therefore of x) at any update
is zero since

Ey(t+ 1) = αtE
t∏

s=1

η(s) = 0.

is 0 (= g). However, convergence requires that the variance
shrinks to zero, var x→ 0. Since

var y(t+ 1) = var (αη)t

= α2t,

convergence requires that |α| < 1.
The speed of convergence is exponential. This can be

demonstrated by considering the statistics of the separation
|x| of x from g. Since

|y(t+ 1)| = αt|η(t)||η(t− 1)| . . . |η(1)|

and
E|η| = 2

∫ ∞
0

xe−
x2

2
dx√
2π

=
√

2/π,

the expectation of |y(t+ 1)| is

E|y(t+ 1)| = αt(E|η|)t

=
(
α
√

2/π
)t
.

With α set to the critical value 0.65,

E|x(t+ 1)| ≈ 0.52t|x(1)|

which demonstrates the very fast (exponential) convergence to
g in the case of no jumps.

However an eventual jump will occur (if pJ > 0), and
breaks the jump-free period. Suppose a jump happens at t.
Then x(t) ∼ U(Ω) and the exponentially converging search
starts anew from a uniform random position on Ω. This pattern
– exponential convergence punctuated by restarts – persists at
stagnation.

2) Stagnation analysis of sBBJ: Stagnation corresponds to
|pleft − pright| = const ≡ δ, so again for g = 0, x(t) =
αδη(t): sBBJ continues to sample, in each component, around
the focus with a constant variance, α2δ2. Component jumps
do not change the fixed variance normal sampling around g
since, by definition, the memory cannot change at stagnation.

C. Jump probability

Consider the following scenario: a swarm with all best
memories and positions constrained to a small region δΩ and
optimising a local optimum in δΩ. Suppose that |δΩ| � |Ω|. A
sBBJ particle jumps with probability pj to a position x that is
very likely outside δΩ. If x does not better the current search
focus g, the trial has been wasted, but gaussian sampling
around g with σ ∼ |δΩ| resumes on the next iteration. So
at the worst, one iteration in every 1/psBBjJ is redundant.

On the other hand, suppose that a cBBJ particle jumps
to a position x ∼ U(Ω). Then, with high probability, σ ≡
α|x − g| = O(|Ω|). Subsequent gaussian updates will, in the
absence of further jumps, bring x back to δΩ, with the variance
decreasing by a factor of α

√
2/π at each step. Suppose it takes

T trials to bring x back to δΩ. In the worst case, optimisation
resumes when x re-enters δΩ. If cBBJ and sBBJ swarms are
comparable optimisers of a local optimum, and since 1/psBBJJ

trials can be wasted without prejudice, then psBBJJ ≈ TpcBBJJ .
This analysis therefore suggest the following estimate:

|δΩ|
|Ω|

=

(
α

√
2

π

)max

(
psBBJ
J

pcBBJ
J

, 0

)

and taking α
√

2
π ≈ 0.5, pcBBJJ is given by

pcBBJJ =
psBBJJ

1− log2
|δΩ|
|Ω|

. (14)

Although |δΩ| is a dynamic quantity, we can estimate an upper
bound for pcBBJJ by an upper bound for |δΩ/Ω|. Since |δΩ|
is a small region around a local optimum, it is reasonable to
suppose that |δΩ| is smaller than the distance between optima,



a quantity that will depend on the specific objective function
and on the coordinate axis. In the case of the Rastrigin func-
tion, f(x) = x2−10 cos(2πx), Ω = [−5.12, 5.12] and optima
are separated by approximately 1 unit, so by this reasoning,
|δΩ|/|Ω| < 0.1. Two other popular functions, Ackley and
Griewank, also, by this criterion, satisfy |δΩ|/|Ω| < 0.1. Eq.
14 provides an upper estimate, with psBBJJ = 0.01,

pcBBJj < 2.3× 10−3.

We can find a lower bound on pJ , for either BBJ version,
from the following argument. At stagnation, var y(t) =
α2(t−1). No further sampling is possible when var y = 0,
or with finite precision arithmetic when var y is equal to the
smallest floating point number on the machine. The smallest
IEEE floating point number is 2−1074. Solving α2t ≥ 2−1074

for α = 0.65 gives t ≤ 864. Jumping should, at the least,
break arithmetic stagnation, so

pJ >
1

864
≈ 1.2× 10−3.

Therefore, if jumps should indeed not hinder local opti-
misation, this analysis suggests that pcBBJJ should be placed
in the range 1 − 2 × 10−3 for comparable performance to
sBBJ when sBBJ is running at psBBJJ = 0.01. However the
analysis depends on an upper bound estimate to the dynamic
and function dependent quantity |δΩ|/|Ω| and the upper bound
on pcBBJJ might be underestimated.

The smaller value of pJ for cBBJ can also be understood
in terms of tail broadening. The outliers resulting from a
cBBJ particle jump lead to a broader search at subsequent
iterations since search spread is determined by α|gid − xid|.
The availability of this mechanism might be compensated by a
decreased amount of tail broadening (i.e. smaller pJ ) in cBBJ
as compared to sBBJ.

V. INVESTIGATION OF JUMPS

A. Methodology

The experiments detailed here use a set of test functions
designed for the Special Session on Real Parameter Optimiza-
tion organised in the 2005 IEEE Congress on Evolutionary
Computation (CEC 2005), reported in [18], where a complete
description of these benchmarks and details of the various ini-
tialisation conditions for each function is given. The functions
are:

• Unimodal Functions (5):
– F1: Shifted Sphere Function
– F2: Shifted Schwefel’s Problem 1.2
– F3: Shifted Rotated High Conditioned Elliptic Function
– F4: Shifted Schwefel’s Problem 1.2 with Noise in Fitness
– F5: Schwefel’s Problem 2.6 with Global Optimum on

Bounds
• Multimodal Functions (9):

– Basic Functions (7):
∗ F6: Shifted Rosenbrock’s Function
∗ F7: Shifted Rotated Griewank’s Function without

Bounds
∗ F8: Shifted Rotated Ackley’s Function with Global

Optimum on Bounds

∗ F9: Shifted Rastrigin’s Function
∗ F10: Shifted Rotated Rastrigin’s Function
∗ F11: Shifted Rotated Weierstrass Function
∗ F12: Schwefel’s Problem 2.13

– Expanded Functions (2):
∗ F13: Expanded Extended Griewank’s plus Rosenbrock’s

Function (F8F2)
∗ F14: Shifted Rotated Expanded Scaffer’s F6

All benchmarks have been shifted in order to ensure there
are no optima in the centre of the search space. This study
omits the unusual CEC2005 hybrid composition functions but
includes unimodal, multimodal, separable, non-separable and
highly conditioned functions, as well as functions with noise
and with the global optimum on the boundary.

The dimensionality of the problems is 30 and the termi-
nation criterion for this experiment was either to reach the
optimum (with function errors less than 10−9) or to exceed
300, 000 function evaluations (FEs). There were 50 Monte
Carlo trials for each test and the results were averaged over
these independent trials. A particle that moved outside the
search space was not evaluated on that iteration9.

Parameter settings. There are no adjustable parameters
(apart from swarm size) in Kennedy’s Bare Bones. The
constriction coefficient and acceleration constants of the CK
PSO were set to χ = 0.72984 and c′1 = c′2 = 2.05, as
recommended by [2]. The scaling parameter α was fixed at
the critical value, 0.65 as derived by [14]. The default particle
jump probability pP was P (1, 30, 0.01) = 0.224 for sBBJ and
P (1, 30, 0.001) = 0.029 for cBBJ.

Following [14], the local ring σ-neighbourhood was used
for both sBBJ µ-neighbourhoods because there is no particular
advantage in a global σ-neighbourhood. However the global
and local µ-neighbourhoods were paired with global and local
σ-neighbourhoods in the cognitive BBJ trials in order to agree
with the models studied in [15].

In order to conduct the statistical analysis measuring the
presence of any significant difference in the performance of
the algorithms, Wilcoxon 1× 1 non-parametric statistical test
is deployed. The performance measures used in this paper are
error, efficiency and reliability.

Error is the absolute difference between the best solution
found during a run and the known global optimum. Since the
runs are terminated if the error falls below 10−9, a mean error
of 10−9 or less indicates that all runs converged.

Reliability is the percentage of trials reaching a specified
error and Efficiency is the number of function evaluations
before that error. These performance measures are defined:

ERROR =
1

n

n∑
i=1

|f (g)− f (xopt)| (15)

9A review of bounds handling for standard PSO has been carried out by the
authors of [19]. Here we adopt the commonly used infinity method: there is,
however, an inherent danger with infinity, especially in high dimensions, that
stray particles may never return. The BBJ search focus, however, is always
inside the bounds and hence the probability of sampling within the search
space, which may be quite small, is, however, always finite.



EFFICIENCY =
1

n′

n
′∑

i=1

FEs (16)

RELIABILITY =
n
′

n
× 100 (17)

where g is the best position found during a run and f(xopt)
is the value at the global minimiser(s) xopt; n is the number
of runs in the experiment, n

′
is the number of successful runs

and FEs is the number of function evaluations before reaching
the specified error.

B. Impact of jumping in more than one component

As stated earlier, one of the main motivations behind the
fixed jump versions of bare bones with jumps is to study the
impact of jumps when applied to one or more components of
each particle.

cBBJ in local and global µ-neighbourhoods was tested for
numbers of component jumps k = {0, 1, 5, 10, 15, 20, 25, 30}
according to the experimental methodology of subsection V-A.
The per-particle jump probability was 0.027. The results are
shown in Tables I and II and Fig. 2.

The tables indicate that global cBBJ is a better optimiser
over the test set and that the algorithms are, in the main, fairly
insensitive to k. Since about one particle in the swarm of 50
particles jumps per iteration (pP = 0.027), the k insensitivity
shows that in the main (i.e. for the majority of the test
functions) the swarm is not disrupted by a single jumping
particle. However, Fig 2 shows dips for a few functions at
k = 1. In particular, global-µ cBBJ performs much better on
Rosenbrock (f6) and Rastrigin (f9) when just one component
is randomised.

C. Sensitivity of jump probability on cBBJ performance

Given the relative insensitivity to number of jumped com-
ponents at a low per-particle jump probability, it might be
wondered if more frequent jumping might boost or diminish
performance.

An investigation on the impact of pP on the performance
of sBBJ and cBBJ at k = 1 (chosen because it imparts a
small advantage on this test set) in both global and local
neighbourhoods was undertaken. In order to cover a large
spectrum of the possibilities, sixteen different probabilities
in a geometric progression (Table III) were considered. The
probabilities were chosen logarithmically according to


P00 = 0 (no jumps at all)
P15 = 1 (a jump is certain)
Pn = 0.9

214−n for 1 ≤ n ≤ 14

As before, 50 Monte Carlo simulations for each benchmark
function over each pP value were performed. The generated
plots in Figs 3 and 4 show the performance of the sBBJ and
cBBJ algorithms averaged over each of the pP values in both
global and local neighbourhoods.

The sBBJ plots (in both global and specially local neigh-
bourhood) do not show great variation with regard to pP in the

TABLE III
APPROXIMATE pP VALUES

This table shows approximate pP values from P01 – P14 and the expected
number of jumps per iteration of a 50 particle swarm.

pP × 10−3 No. of Jumps In Each Iteration
P00 0 0
P01 0.11 0.0055
P02 0.22 0.011
P03 0.44 0.022
P04 0.9 0.044
P05 1.8 0.088
P06 3.5 0.18
P07 7 0.35
P08 14 0.70
P09 28 1.4
P10 56 2.8
P11 113 5.6
P12 225 11
P13 450 22
P14 900 45
P15 1 50

majority of the benchmarks. In some cases, the performance is
not diminished even if every particle jumps in one component.

On the other hand, the cBBJ plots show more sensitivity
towards various pP in local and especially global neighbour-
hoods, with the optimum value of pP , if such an optimum
exists, mostly in the interval p7 − p11 (i.e. 7 − 113 × 10−3).
Although the optimum jump probability changes from problem
to problem, the value of 0.029 reported in [15] is confirmed
to be a good compromise10 and supports the hypothesis (Sec.
IV-A) that a smaller probability of jumping is balanced by
the increased exploration offered by the cBBJ update rule.
The results also support the analysis of Sec. IV-C which, after
conversion from pJ to pP at k = 1 by Eq. 13, placed pcBBJP

in the range 0.035− 0.065.
An sBBJ swarm can tolerate jumping fairly well, often

not minding if every particle jumps in one component. This
might be explained by the lack of any knock-on effect.
Unsuccessful particle trials do not disrupt the sBBJ swarm
since the algorithm is only sensitive to successful positions
(i.e. those that better a personal best). But all trials do affect
cBBJ performance and hence it is reasonable to assume that
it would be more sensitive to jumping, and this hypothesis is
supported by these results.

D. Immediate effects of jumping during the optimisation

In order to investigate the immediate effects of one-
component jumps on cBBJ, all jumps are counted during a
set of trials (on an exemplary number of uni-modal and multi-
modal benchmarks) and the ratio of the jumps immediately
improving the personal and neighbourhood best is detailed in
Table IV.

The plots in Fig. 5 depict the occurrence of successful
jumps. The improving jumps occur mainly at the earlier stages
of the optimisation. Once a potentially good area of the search

10However this study has been at constant k and there is a possibility
that optimal pP has a k-dependence. However, any k-dependence might be
expected, on the grounds of the previous variable k experiments, to be weak.



TABLE I
IMPACT OF VARYING THE NUMBER OF COMPONENT JUMPS, k, IN GLOBAL CBBJ.

Top: Mean error; bottom: Function evaluations (FEs) at termination.

Fn k = 0 1 5 10 15 20 25 30
f1 1.13E-04 5.85E-10 7.26E-10 7.32E-10 7.22E-10 7.76E-10 8.11E-10 7.95E-10
f2 7.07E+03 9.79E-10 9.72E-10 9.85E-10 9.78E-10 9.76E-10 9.80E-10 9.80E-10
f3 1.08E+06 2.45E+05 2.51E+05 2.14E+05 2.07E+05 2.44E+05 2.06E+05 1.87E+05
f4 1.23E+05 4.64E+04 1.66E+04 1.63E+04 1.57E+04 1.56E+04 1.46E+04 1.30E+04
f5 2.01E+04 1.11E+04 1.04E+04 1.10E+04 1.15E+04 1.11E+04 1.07E+04 1.04E+04

f6 9.79E+01 5.46E-03 3.52E-01 4.28E-01 4.56E-01 5.71E-01 6.83E-01 5.79E-01
f7 2.56E-01 2.62E-02 2.21E-02 2.52E-02 2.38E-02 2.34E-02 1.83E-02 1.90E-02
f8 2.01E+01 2.00E+01 2.00E+01 2.00E+01 2.00E+01 2.00E+01 2.00E+01 2.00E+01
f9 3.02E+02 5.48E-10 1.49E+00 3.64E+00 5.14E+00 5.37E+00 7.88E+00 7.22E+00
f10 6.01E+02 5.19E+02 4.12E+02 3.57E+02 3.80E+02 4.07E+02 3.98E+02 4.23E+02
f11 3.58E+01 3.65E+01 3.44E+01 3.40E+01 3.49E+01 3.43E+01 3.45E+01 3.48E+01
f12 2.50E+03 2.33E+03 2.14E+03 2.17E+03 2.03E+03 1.77E+03 2.63E+03 2.28E+03

f13 3.87E+01 1.42E+00 3.13E+00 3.70E+00 4.45E+00 4.62E+00 5.63E+00 5.42E+00
f14 1.40E+01 1.36E+01 1.34E+01 1.33E+01 1.33E+01 1.33E+01 1.33E+01 1.33E+01

Fn k = 0 1 5 10 15 20 25 30
f1 179452 12606 11561 11464 11171 11081 10894 10946
f2 - 95252 85582 83425 83024 82352 81129 82351
f6 - 298629 - - - - - -
f7 295698 272167 275554 265873 265621 265760 260440 280477
f9 - 60874 287547 - 299080 - - -

TABLE II
IMPACT OF VARYING k FOR LOCAL CBBJ.

Top: Mean error; bottom: Function evaluations (FEs) at termination.

Fn k = 0 1 5 10 15 20 25 30
f1 9.40E-10 9.37E-10 9.63E-10 9.54E-10 9.43E-10 9.51E-10 9.48E-10 9.49E-10
f2 7.64E-04 4.42E-03 6.88E-03 7.60E-03 6.30E-03 6.30E-03 5.36E-03 5.29E-03
f3 1.75E+06 1.98E+06 2.21E+06 2.20E+06 2.23E+06 2.19E+06 2.24E+06 2.18E+06
f4 5.19E+04 2.96E+04 1.59E+04 1.09E+04 1.20E+04 1.06E+04 9.61E+03 8.63E+03
f5 8.33E+03 8.50E+03 7.88E+03 7.83E+03 7.60E+03 8.00E+03 8.16E+03 8.33E+03

f6 2.99E+01 2.39E+01 5.39E+01 6.42E+01 8.01E+01 4.36E+01 4.87E+01 5.08E+01
f7 2.49E-02 2.93E-02 2.71E-02 3.69E-02 2.80E-02 2.99E-02 3.29E-02 3.78E-02
f8 2.01E+01 2.01E+01 2.01E+01 2.01E+01 2.01E+01 2.01E+01 2.01E+01 2.01E+01
f9 1.75E+02 8.57E-10 1.89E+00 4.30E+00 6.77E+00 6.91E+00 7.49E+00 9.20E+00
f10 3.41E+01 3.28E+01 3.16E+01 3.17E+01 3.23E+01 3.21E+01 3.27E+01 3.25E+01
f11 4.94E+02 4.54E+02 3.29E+02 3.50E+02 3.29E+02 3.49E+02 3.46E+02 3.26E+02
f12 7.46E+03 6.44E+03 7.35E+03 6.31E+03 6.23E+03 5.12E+03 7.72E+03 6.09E+03

f13 1.40E+01 1.25E+00 2.80E+00 3.49E+00 3.96E+00 4.24E+00 4.79E+00 4.16E+00
f14 1.39E+01 1.34E+01 1.33E+01 1.32E+01 1.31E+01 1.32E+01 1.33E+01 1.32E+01

Fn k = 0 1 5 10 15 20 25 30
f1 43833 53787 58381 58997 58813 59638 60277 60730
f7 - 299881 - - - - - -
f9 - 122226 297828 - - - - -

TABLE IV
IMPROVING JUMPS

This table shows the mean ± standard deviation number of jumps improving
the neighbourhood (personal) best in three exemplary benchmarks, f1,9,13,
along with the total number of jumps in the aforementioned benchmarks, and
the ratios of successful jumps.

No. improving jumps All Jumps Rel. fraction
f1 4± 2 (28± 5) 402± 47 1.0% (7.0%)

f9 15± 3 (44± 8) 2023± 843 0.74% (2.2%)

f13 9± 3 (32± 6) 8744± 101 0.10% (0.37%)

space is discovered by the swarm, the number of immediately
improving jumps decreases. The jump mechanism apparently

enhances the exploration phase of the optimisation. Note
that only the immediate improvement of jumps is studied in
this section; non-improving jumps may lead to wider search
spreads at later iteration.

E. Escape from sub-optimal minima

Another experiment was conducted to observe if jumps
enable a particle to escape to a local minimum of the Ras-
trigin function, f9. It was found that 75% (±10%) of the
immediately improving jumps moved the best position by a
distance greater than one unit, indicating a jump to a new
local optimum since this function has an oscillatory period of
one unit (see Fig. 6). This provides evidence that only 1 out
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Fig. 2. Impact of varying k for global (top) and local (bottom) cBBJ.

of 4 improving jumps move the particle from one position
to a better one within the current optimum, while 3 out of
4 jumps either discover better optima (or possibly discover a
better position on a worse or equivalent optimum).

F. Summary

The results of the experiments conducted within this section
are summarised below:

1) Fixed jumping in one component only (k = 1) appears
to be optimal for s/cBBJ at pP = 0.224/0.029

2) Although the optimal value of pP in cBBJ is problem
dependent, a value in the range 0.007− 0.113 at k = 1
works well and pP ≈ 0.03 represents a good compro-
mise

a line segment length of 1

Fig. 6. 2D illustration of Rastrigin’s hills.

3) Immediately successful jumps, defined to be those jumps
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Fig. 3. The plots show the impact of jumps probability (from pP = 0 to pP = 1) on sBBJ and cBBJ in both global and local neighbourhoods. For details
on P00 – P15 refer to Table III.
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Fig. 4. Box and whisker plots of error versus jump probability for global cBBJ.

that improve a personal best, occur mainly at the early
stages of the optimisation; however unsuccessful jumps
may still play a role in cBBJ at later stages since a far-

flung position will lead to a greater search spread at the
subsequent iteration

4) A study on the Rastrigin function suggests that the
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Fig. 5. Jumps of improvement in three exemplary benchmarks (f1,9,13). The bar charts in this figure show the behaviour of a randomly chosen trial in either
of the aforementioned benchmarks and illustrate the distribution of successful jumps throughout the course of the optimisation. For details on the numeric
figures, refer to Table IV.

majority of jumps move a personal best out of the
basin of attraction of a local minimum; this confirms
the intuition that jumping primarily enhances diversity
rather than convergence.

VI. EMPIRICAL COMPARISONS

The aim of this set of experiments was to compare the
performance of bare bones with fixed jumps, sBBJ and cBBJ,
with a canonical PSO (CK), standard bare bones PSO (BB)
and with a number of PSO variants. A version of cBBJ without
jumps (cBBNJ) was also tested as a control.The experimental
set-up follows Sec. V-A.

A. Comparison of sBBJ and cBBJ in global and local µ
neighbourhoods with standard bare bones and a standard PSO

The results of the comparative studies are recorded in Tables
V and VI. Table V shows the results for global neighbour-
hoods. sBBJ and cBBJ offer comparable performance to a
standard PSO, CK, in the global neighbourhood. cBBJ is
noticeably better than the base line bare bones algorithm (BB).
The dramatic ameliorating effect of jumps is clear from the
comparison between cBBJ and cBBNJ. cBBJ seems to offer
a clear advantage to sBBJ in the global µ-neighbourhood.

The performance of either BBJ algorithm relative to local
CK falls off in the local µ-neighbourhood (Table VI). This is
in accordance with the results of [15]. Local-µ cBBJ again
proves better than BB and local-µ sBBJ, and the good effects
of jumps are again verified.

The results suggest that cBBJ with per-particle jumps
is a better optimiser of the test set than sBBJ with per-
particle jumps, and that it performs better in the local µ-
neighbourhood. These results are in broad agreement with the
per-component trials reported in [15].

B. A comparison of cBBJ and CK in their preferred topologies
The global µ-neighbourhood in standard PSO is not gen-

erally favoured because of premature convergence [20]. A
comparison was therefore made between local CK and the best
BBJ version, global-µ cBBJ. The results, Table VII, for both
best error and Wilcoxon testing provide evidence that cBBJ
is at least the equal of CK on this test set. Note however
that the results reported here have been obtained with 50
particles. It is possible that different swarm sizes are optimal
for different algorithms, and that these optimal swarm sizes
are a function of dimensionality. Indeed, a version of standard
PSO (SPSO 2007) downloadable from Clerc’s website [21]
uses 20 particles in 30D.

In summary, the comparative study suggests that, for 50
particle swarms on the 14 function CEC 2005 test set,
• jumping and dual neighbourhoods significantly enhance

bare bones performance,
• the cognitive version of the per-particle BBJ algorithm

has the edge on the social version and
• the best BBJ algorithm (local-µ cBBJ) is more than just

a model of PSO behaviour; it is a good optimiser in its
own right.



TABLE V
MEAN ERROR IN GLOBAL µ-NEIGHBOURHOOD.

Top: Mean error is shown with two decimal places after 50 trials of 300,000 function evaluations; bottom: based on Wilcoxon 1×1 Non-Parametric Statistical
Test, if the difference between each pair of algorithms is significant at the 5% level, the pairs are marked. X← o shows that the left algorithm is significantly
better than the right one; and o → X shows that the right one is significantly better than the left algorithm. n – m in the row labeled Σ is a count of the
number of X’s in the column above.

Fn CK BB sBBJ cBBJ cBBNJ
f1 9.08E-10 8.01E-10 6.59E-10 5.36E-10 4.70E-03
f2 9.74E-10 1.60E+03 2.50E-04 9.66E-10 8.38E+03
f3 6.94E+05 6.52E+06 5.41E+05 2.41E+05 1.08E+06
f4 9.72E+01 5.42E+03 8.50E+03 5.04E+04 1.30E+05
f5 4.97E+03 7.94E+03 1.02E+04 1.08E+04 2.09E+04

f6 1.53E+01 2.51E+02 9.75E+00 1.22E-02 7.55E+01
f7 1.70E-02 1.32E+01 8.67E-02 1.97E-02 1.09E-01
f8 2.09E+01 2.10E+01 2.07E+01 2.00E+01 2.01E+01
f9 8.17E+01 3.67E+01 5.40E-04 5.31E-10 2.96E+02
f10 1.89E+02 1.24E+02 3.21E+02 5.21E+02 6.01E+02
f11 2.87E+01 2.85E+01 3.55E+01 3.61E+01 3.60E+01
f12 3.94E+03 9.19E+04 1.91E+04 1.76E+03 2.93E+03

f13 4.99E+00 3.01E+00 1.53E+00 1.38E+00 3.28E+01
f14 1.28E+01 1.22E+01 1.33E+01 1.37E+01 1.41E+01

Fn CK-sBBJ CK-cBBJ BB-cBBJ sBBJ-cBBJ cBBNJ-cBBJ
f1 o → X o → X o → X - o → X
f2 X ← o - o → X o → X o → X
f3 o → X o → X o → X o → X o → X
f4 X ← o X ← o X ← o X ← o o → X
f5 X ← o X ← o X ← o - o → X

f6 o → X o → X o → X o → X o → X
f7 X ← o - o → X o → X o → X
f8 o → X o → X o → X o → X o → X
f9 o → X o → X o → X o → X o → X
f10 X ← o X ← o X ← o X ← o o → X
f11 X ← o X ← o X ← o - -
f12 X ← o o → X o → X o → X o → X

f13 o → X o → X o → X o → X o → X
f14 X ← o X ← o X ← o X ← o o → X∑

8 - 6 5 - 7 5 - 9 3 - 8 0 - 13

C. Comparing cBBJ with other PSO’s

This section presents a comparison between cBBJ and four
competitive PSO variants, namely:

• CLPSO or comprehensive learning particle swarm opti-
miser [22]. This algorithm uses a novel learning scheme
based on {~pi} to update each particle’s velocity. The
diversity of the swarm as a whole mitigates against
premature convergence. CLPSO has been shown to be
more effective than a range of contemporary PSO variants
multi modal problems (including rotated test functions).

• DMSPSO or dynamic multi-swarm particle swarm opti-
miser [23] creates multiple small swarms and a random
regrouping strategy with the aim of introducing a dynam-
ically changing neighbourhood structure.

• UPSO or unified PSO [24], [25]. The main aim is to
propose a unified scheme via an update equation that
combines the features of the canonical local and global
PSO’s. The result is reportedly a very competitive PSO.

• FIPS or fully informed particle swarm [26] updates the
position of each particle using the weighted sum of all its
neighbours; therefore all the neighbouring particles and
the topology of the network play an even more influential
role.

With the exception of cBBJ, the error information of
the aforementioned algorithms used in this comparison are
borrowed from a recent paper [27]. Table VIII shows that
cBBJ is indeed a competitive PSO on the test set. In terms
of convergence, cBBJ outperforms all other algorithms in the
survey.

VII. CONCLUSION

This paper describes a family of bare bones swarm optimi-
sation which was originally proposed to provide a better un-
derstanding of the behaviour of the particle swarm algorithm.
The key features of this family are: the distinction between
search focus and search spread as implemented in two separate
informing networks (µ and σ), the use of a subspace jumping
mechanism and the interaction between particle position and
neighbourhood best position for the search spread (variance of
the normal sampling) determination.

Although the intention was not to enhance the optimisation
capability of standard PSO, in fact the fixed jump models
introduced here (social and cognitive BBJ) offer promising
results. In social BBJ, the distribution variance is determined
by the separation of two neighbouring informers, scaled by
a fixed parameter, α; in cognitive BBJ, the same quantity is



TABLE VI
MEAN ERROR IN LOCAL µ-NEIGHBOURHOOD.

Top: Mean error is shown with two decimal places after 50 trials of 300,000 function evaluations; bottom: based on Wilcoxon 1×1 Non-Parametric Statistical
Test, if the difference between each pair of algorithms is significant, the pairs are marked. X ← o shows that the left algorithm is significantly better than the
right one; and o → X shows that the right one is significantly better than the left algorithm.

Fn CK BB sBBJ cBBJ cBBNJ
f1 9.48E-10 9.41E-10 9.47E-10 9.50E-10 9.49E-10
f2 1.34E-01 1.54E+02 4.39E+00 3.36E-03 9.03E+01
f3 1.22E+06 2.00E+07 1.42E+07 1.81E+06 1.49E+06
f4 7.32E+03 7.14E+03 1.25E+04 2.61E+04 9.44E+04
f5 5.05E+03 4.92E+03 7.81E+03 8.87E+03 9.86E+03

f6 2.25E+01 9.22E+01 4.34E+01 4.71E+01 1.41E+02
f7 1.26E-02 4.51E-02 7.70E-01 2.21E-02 2.63E-02
f8 2.09E+01 2.10E+01 2.09E+01 2.01E+01 2.01E+01
f9 9.04E+01 1.57E+01 2.53E-01 8.65E-10 2.21E+02
f10 1.22E+02 1.89E+02 1.63E+02 4.46E+02 4.77E+02
f11 3.04E+01 3.37E+01 3.03E+01 3.29E+01 3.40E+01
f12 1.04E+04 1.44E+05 2.49E+04 4.30E+03 6.18E+03

f13 5.80E+00 4.55E+00 1.89E+00 1.35E+00 2.11E+01
f14 1.27E+01 1.27E+01 1.29E+01 1.33E+01 1.42E+01

Fn CK-sBBJ CK-cBBJ BB-cBBJ sBBJ-cBBJ cBBNJ-cBBJ
f1 - - - - -
f2 X ← o o → X o → X o → X o → X
f3 X ← o X ← o o → X o → X X ← o
f4 X ← o X ← o X ← o X ← o o → X
f5 X ← o X ← o X ← o - o → X

f6 X ← o X ← o o → X - o → X
f7 X ← o X ← o o → X o → X o → X
f8 X ← o o → X o → X o → X -
f9 o → X o → X o → X o → X o → X
f10 X ← o X ← o X ← o X ← o o → X
f11 - X ← o o → X X ← o -
f12 X ← o o → X o → X o → X -

f13 o → X o → X o → X o → X o → X
f14 X ← o X ← o X ← o X ← o o → X∑

10 - 2 8 - 5 4 - 9 4 - 7 1 - 9

given by the separation between the neighbourhood best and
the particle position, again scaled by α.

Empirical tests over a challenging test set show that cBBJ
in global µ and σ neighbourhoods performs significantly
better than other bare bones algorithms and at least as well
as the Clerc-Kennedy PSO when mean error is considered;
nonetheless, cBBJ has the edge in terms of efficiency and reli-
ability measures in all instances where there is convergence. A
comparative study of current state-of-the-art PSO’s and cBBJ
also shows performance parity.

In some sense, cBBJ which retains particle position but
lacks velocity, extrapolates between the pure bare bones idea
and the particle dynamics of PSO, and this might be the key
for its success. The global cBBJ algorithm is reminiscent of a
swarm simulation with particles swarming around a leader, or
around a marker left by the leader. Particles have no memory,
but interact stigmergetically via the marker. It is remarkable
therefore that the good optimisation performance emanates
from such a simple algorithm; global cBBJ is perhaps the
simplest interaction between particles that we can imagine.

Cognitive BBJ has some interesting features that distinguish
it from other bare bones optimisers. The search variance
is in general greater than in social BBJ by virtue of the
retention of particle position. Outlying trial positions will lead

immediately to a large variance at the next sampling and this
effect will persist in subsequent trials. Particle interaction, as
implemented by the communication strategy of social BBJ
might have some advantage on very difficult problems such
as the rotated Rastrigin, but more work is necessary for
clarification of the issue.

Jumping plays a crucial role. Experiments show that a
single jump component is optimal in 30D and that jumps
that immediately improve a personal best tend to occur in
the early phases of the optimisation. The recommended jump
probability for cBBJ is 0.03 in this dimensionality; this means
that one or two particles jump in a single component in each
iteration of the swarm.

The fixed jump scheme proposed here, namely that a particle
jumps with a probability pP in a subspace of k dimensions,
facilitates the scalability of the jump probability with dimen-
sion, albeit at the expense of introducing a further parameter
(i.e. k) to the model. The scalability of bare bones swarms to
higher dimensions remains, as yet, unexplored.

One of the curious features of the bare bones with jumps
algorithms is there two global information sharing networks in
contradistinction to the single local topology that is advocated
for standard PSO. This feature too requires further study since
the replacement of a local topology with a global one is



TABLE VII
A COMPARISON BETWEEN CK AND CBBJ IN THEIR PREFERRED TOPOLOGIES (I.E. CK: LOCAL, CBBJ: GLOBAL µ, σ-NEIGHBOURHOOD).

X–o shows that the left algorithm is better than the right one; and o–X shows that the right algorithm performs better than the left one. Table (a) summarises
the performance based on errors (using two different criteria: best found error value, and Wilcoxon statistical test). Table (b) summarises the details based on
the efficiency (number of function evaluations needed to reach the specified error of 10−10) and, in parentheses, reliability (the number of trials in which the
specified error is reached). The last row reports the reliability of each algorithm in percentage as well the number of times cBBJ significantly outperforms
CK in terms of efficiency).

(a) (b)
Fn CK-cBBJ CK-cBBJ

Best Err Wilcoxon Test
f1 o → X o → X
f2 o → X o → X
f3 o → X o → X
f4 X ← o X ← o
f5 X ← o X ← o

f6 o → X o → X
f7 o → X X ← o
f8 o → X o → X
f9 o → X o → X
f10 X ← o X ← o
f11 o → X X ← o
f12 o → X o → X

f13 o → X o → X
f14 X ← o X ← o∑

4 - 10 6 - 8

Fn CK cBBJ CK-cBBJ
Wilcoxon

f1 69,634 (50) 12,822 (50) o → X
f2 - 95,699 (50) o → X
f3 - - -
f4 - - -
f5 - - -

f6 - 294,109 (2) o → X
f7 268,929 (1) 66,879 (6) o → X
f8 - - -
f9 - 59,414 (50) o → X
f10 - - -
f11 - - -
f12 - - -

f13 - - -
f14 - - -∑

7.29% (51) 22.57% (158) 0 - 5

TABLE VIII
COMPARING CBBJ WITH COMPETITIVE PSOS.

Top: mean error of cBBJ is shown with two decimal places after 50 trials of 300,000 function evaluations with standard deviation in parentheses. 0.0(0)
indicates convergence at 1e-8. Bottom: this table shows the outperformance of cBBJ algorithm in the majority of cases compared with other PSO varieties.

Fn cBBJ CLPSO DMSPSO UPSO FIPS
f1 0.0(0) 0.0(0) 3.14(4.15)E+02 1.31(0.73)E+03 5.25(5.57)E+02
f2 0.0(0) 3.83(1.06)E+02 7.80(0.21)E+02 7.60(5.29)E+03 1.47(0.23)E+04
f3 2.41(1.20)E+05 1.19(0.31)E+07 5.62(6.23)E+06 5.30(3.86)E+07 1.95(1.11)E+07
f4 5.04(1.07)E+04 5.40(1.25)E+03 8.56(12.9)E+02 1.88(0.61)E+04 2.07(0.31)E+04
f5 1.08(0.28)E+04 4.00(0.43)E+03 4.26(1.87)E+03 1.28(0.23)E+04 1.17(0.14)E+04

f6 1.22(5.79)E-02 1.78(2.29)E+01 2.72(7.29)E+07 1.19(1.36)E+07 2.46(3.49)E+07
f7 1.97(1.65)E-02 4.70(0)E+03 4.34(0.22)E+03 7.52(0.34)E+03 7.48(0.22)E+03
f8 2.00(0)E+01 2.07(0)E+01 2.09(0)E+01 2.10(0)E+01 2.09(0)E+01
f9 0.0(0) 0.0(0) 4.85(1.51)E+01 7.84(1.69)E+01 5.40(1.10)E+01
f10 5.21(1.69)E+02 8.02(1.50)E+01 8.00(2.00)E+01 1.59(0.55)E+02 1.53(0.25)E+02
f11 3.61(0.39)E+01 2.53(0.19)E+01 2.90(0.23)E+01 3.14(0.47)E+01 2.69(0.26)E+01
f12 1.76(2.16)E+03 1.32(0.42)E+04 7.84(6.84)E+04 8.98(5.43)E+04 5.19(3.21)E+04

f13 1.38(0.37)E+00 1.89(0.40)E+00 1.13(0.56)E+01 9.23(4.56)E+00 9.64(1.73)E+00
f14 1.37(0.4)E+01 1.25(0.03)E+01 1.21(0.07)E+01 1.28(0.04)E+01 1.23(0.03)E+01

Fn cBBJ-CLPSO cBBJ-DMSPSO cBBJ-UPSO cBBJ-FIPS
f1 - X ← o X ← o X ← o
f2 X ← o X ← o X ← o X ← o
f3 X ← o X ← o X ← o X ← o
f4 X ← o o → X o → X o → X
f5 o → X o → X X ← o X ← o

f6 X ← o X ← o X ← o X ← o
f7 X ← o X ← o X ← o X ← o
f8 X ← o X ← o X ← o X ← o
f9 - X ← o X ← o X ← o
f10 o → X o → X o → X o → X
f11 o → X o → X o → X o → X
f12 X ← o X ← o X ← o X ← o

f13 X ← o X ← o X ← o X ← o
f14 o → X o → X o → X o → X∑

8 - 4 9 - 5 10 - 4 10 - 4

surprising, given the known superiority of the local topology
for canonical PSO on multi-modal functions.

Excessive jumping, which amounts to subspace re-

initialisation, arguably slows convergence. On the other hand
too little jumping also weakens performance. The fact that
jumping appears to be less necessary in cBBJ than in sBBJ



is perhaps attributable to the greater search diversity inherent
in the computation of the search spread parameter σ. These
heuristic arguments need to be rigorously explored.
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