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Abstract—This paper proposes an umbrella deployment of
swarm intelligence algorithm such as Stochastic Diffusion Search
for medical imaging applications. After summarising the results of
some previous work which shows how the algorithm assists in the
identification of metastasis in bone scans and microcalcifications
on mammographs, for the first time, the use of the algorithm in
assessing the CT images of aorta is demonstrated along with its
performance in detecting the nasogastric tube in chest X-ray. The
swarm intelligence algorithm presented in this paper is adapted to
address these particular tasks and its functionality is investigated
by running the swarms on sample CT images and X-rays whose
status have been determined by senior radiologists. Additionally,
a hybrid swarm intelligence-Learning Vector Quantisation (LVQ)
approach is proposed in the context of Magnetic Resonance (MR)
brain image segmentation. The Particle Swarm Optimisation
(PSO) is used to train the LVQ which eliminates the iteration-
dependent nature of LVQ. The proposed methodology is used to
detect the tumor regions in the abnormal MR brain images.

I. INTRODUCTION

Among the increasingly emergent fields in medicine is
Computer Aided Diagnosis (CAD). Using the technique pre-

sented in this paper, radiologists are provided with a novel
tool to examine the input images with greater confidence.
Additionally doctors with different backgrounds and varying
disciplines are able to use the tool with improved confidence.
Medical students and junior doctors can utilise the provided
tool to improve their ability in basic diagnostic skills. In this
paper, a new CAD approach is developed using a swarm
intelligence technique – Stochastic Diffusion Search (SDS) [1],
[2] – which is generalised and adapted to be used in the context
of four medical imaging modalities.

Understanding the basics behind the behaviour of the
swarm intelligence algorithm and its connection to nature is
vital. One of the important aspects in swarm intelligence is
communication where information exchange plays a crucial
role in the social interaction of social insects and animals.
The swarm intelligence presented in this paper mimics the
recruitment behaviour of a species of ants called Leptothorax
acervorum.

Varying recruitment modalities are present in social ani-
mals and insects; they change from local to global, one to



many or one to one, and deterministic or stochastic. Depending
on the particular social animals or insects in question and the
environment, information exchange could take a simpler or
a more complex form. What is shared among the entire set
of information exchange strategies is the distribution of key
information within the community of the swarm.

In this paper, which is an extended version of an earlier
work (see [3]), initially, the swarm intelligence algorithm is
introduced, followed by a brief summary to aortic aneurysm
disease and the factors used to assess the disease and help
plan an appropriate intervention. The swarms could provide
the radiologist with extra assistance in identifying the anatomy
in greater detail. Then, a brief explanation is also given on
nasogastric (NG) tube and its use to provide an effective
mechanism through which short-term nutrition can be given
to critically ill patients.

One of the serious complications of NG tube placement is
caused by inadvertent malpositioning. This can lead to severe
harm or death if the patient is fed through it. This could
possibly be prevented by deploying the swarm intelligence
technique, providing extra information about the location of
the tip of the tube, avoiding fatal human error.

After presenting the above-mentioned areas of interest, a
detailed introduction is given on Stochastic Diffusion Search
(SDS) algorithm which is adapted in order to be deployed in
the context of the presented problems. The results are then
detailed for each of the areas stated earlier and an exemplar
analysis is given illustrating the behaviour of the method
presented.

While the paper aims to demonstrate a novel way of
addressing some of the presented medical imaging scenarios,
the authors keep themselves away from the claim that the
presented algorithm is an optimal solution to all medical
imaging problems.

A. Previous Work and Summary of Current Research

In the initial work [4], the goal was to visualise the swarms
behaviour when presented with a two dimensional canvas
(e.g. bone scan). This work was well received as a potential
educational tool for doctors in training and medical students.
This led to the extension of the research in [5], [6] where
the application of this swarm intelligence technique on bone
scan was introduced in further details in different venues for
researchers with medical and computer backgrounds. Later in
[7], the statistical and mathematical models were presented for
bone scans, and the application of the technique was extended
to mammography.

In this work, we attempt to present a unifying and gener-
alised framework of the potential of the algorithm, showing
its capability in addressing various issues related to different
scans and task; after summarising the results of our previous
work, two novel applications of the algorithm are introduced:

• The first one is a two-phase process in which initially
the swarms identify the location of the aorta within
the CT scan. The swarms then set off to detect and
highlight any possible calcifications around the aorta
with the goal of assisting the radiologists to determine
the extent of the calcification. This information can

help determine the best possible management of the
disease. This task is particularly distinctive from the
previous work, as a novel way of guiding the be-
haviour of the swarms is introduced, increasing their
flexibility and functionality.

• The second application introduced in this work is the
identification of the tip of the Nasogastric tube in chest
X-rays. The significance of the accurate localisation
of the tip of the tube is explained with details in this
work.

In addition to the above, a hybrid swarm intelligence-
Learning Vector Quantisation (LVQ) approach is proposed
in the context of Magnetic Resonance (MR) brain image
segmentation. The Particle Swarm Optimisation (PSO) is used
to train the LVQ which eliminates the iteration-dependent
nature of LVQ. The proposed methodology is used to detect
the tumor regions in the abnormal MR brain images.

While an emphasis is given to the fact that this research
does not aim to replace the expertise of the radiologists, all of
the above-mentioned four applications provide the clinicians
with a valuable adjunct to aid with the diagnosis as well as
the management of patient. This method of interpreting images
can also be used as an educational tool for doctors in training
and medical students.

II. STOCHASTIC DIFFUSION SEARCH

This section introduces Stochastic Diffusion Search (SDS)
[1], [2] – a swarm intelligence algorithm – whose performance
is based on simple interaction of agents.

The SDS algorithm commences a search or optimisation
by initialising its population and then iterating through two
phases (see Algorithm 1)

Algorithm 1 SDS Algorithm

01: Initialising agents()
02: While (stopping condition is not met)
03: Testing hypotheses()
04: Determining agents’ activities (active/inactive)
05: Diffusing hypotheses()
06: Exchanging of information
07: End While

In the test phase, SDS checks whether the agent hypothesis
is successful or not by performing a hypothesis evaluation
which returns a boolean value. Later in the iteration, contingent
on the precise recruitment strategy employed (in the diffusion
phase), successful hypotheses diffuse across the population
and in this way information on potentially good solutions
spreads throughout the entire population of agents. In other
words, each agent recruits another agent for interaction and
potential communication of hypothesis. This algorithm has
been used alongside other swarm intelligence algorithms in
several research topics including numerical optimisation and
clustering. In standard SDS (which is used in this paper),
passive recruitment mode is employed. In this mode, if the
agent is inactive, a second agent is randomly selected for
diffusion; if the second agent is active, its hypothesis is
communicated (diffused) to the inactive one. Otherwise there
is no flow of information between agents; instead a completely
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Fig. 1. Agent’s neighbours in test phase. The symbol x represents the position
of the agent and the o’s represent the neighbours used during the test phase.
As shown in the figure, the radius of the test is set to 1.

new hypothesis is generated for the first inactive agent at
random (see Algorithm 2). Therefore, recruitment is not the
responsibility of the active agents. In this work, activity of
each agent is determined when its fitness is compared against
a random agent (which is different from the selecting one);
if the selecting agent has a better fitness (smaller value in
minimisation problems) than the randomly selected agent, it
will be flagged as active, otherwise inactive. Higher rate of
inactivity boosts exploration, whereas a lower rate biases the
performance towards exploitation.

Algorithm 2 Passive Recruitment Mode

01: For ag = 1 to No_of_agents
02: If ( !ag.activity() )
03: r_ag = pick a random agent()
04: If ( r_ag.activity() )
05: ag.setHypothesis( r_ag.getHypothesis() )
06: Else
07: ag.setHypothesis( randomHypothesis() )
08: End If/Else
09: End If
10: End For

A. Algorithm Procedure

SDS is a population based stochastic algorithm, adapted
here to search for areas of metastasis or calcifications in
the feasible solution space. The hypothesis vectors of the
population are defined as follows:

xgi =
[
xgi,1, ..., x

g
i,D

]
, i = 1, 2, ..., NP (1)

where g is the current iteration, D is the dimension of the
problem space (D = 2) and NP is the population size. In the
first generation, (when g = 0), the ith vector’s jth component
could be initialised as:

x0i,j = xmin,j + r (xmax,j − xmin,j) (2)

where r is a random number drawn from a uniform
distribution on the unit interval U (0, 1), and xmin, xmax are
the lower and upper bounds of the jth dimension, respectively.
The initial status of all agents are set to false. In other words,
each agent randomly picks a pixel from the image of the scan.

During the test phase of SDS algorithm, each agent’s status
should be determined. The method used here to set the activity
of the agents is to find the average of the colour intensity1

(avgIn) of each agent and its neighbours (see Fig. 1). If avgIn
is within a specific range (problem dependent), the agent is
flagged active, otherwise inactive.

1 Colour intensity (In) signifies the brightness of pixels, 0 ≤ In ≤ 255.

During the diffusion phase, each inactive agent randomly
selects another agent from the population; if the selected
agent is active, the selecting agent adopts the hypothesis (i.e.
location) of the active agent and the information sharing takes
place. The strategy used for information sharing is to randomly
pick an area surrounding the active agent (see Fig. 2). Active
agents also check their position by continuously picking a
random pixel in the neighbourhood; this way, an area which
does not have a good enough potential is discarded from one
iteration (i.e. cycle of test and diffusion phases) to the next.

List of adjustable parameters for each experiments:

• Population size (S)

• Agent’s activity which is determined using the value
of average intensity avgIn (e.g. if avgIn > α the
agent is set active, otherwise inactive). The value of
α is also problem-dependent and it could be adjusted
to increase or decrease the sensitivity of the system.

• Diffusion radius (dRad)

• Number of iterations (Itr)
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Fig. 2. Diffusion area for (a) bone scans, mammographs and NG-tube; (b)
AAA. The symbol x represents the position of the active agent and the o’s
represent the accessible places during the diffusion phase. The reason behind
the larger area considered for (b) is the greater radius of the area of interest
in AAA (see Fig. 11).

III. X-RAY AND CT SCANS

This section provides an introduction to aortic aneurysm
disease and nasogastric tube. For information about bone scan
metastatic disease, mammography refer to [3].

A. Aortic Aneurysm Disease

The aorta is the main artery that carries the blood away
from the heart to rest of the body giving rising to various
branches for this purpose. Aortic aneurysm (AA) is a disease
commonly found in patients above the age of 65. It is defined
as a permanent localized dilation of the aorta that has at least
a 50% increase in diameter as compared with the expected
normal diameter of the aorta, which may vary according to
age, sex, and body size [8].



Fig. 3. A slide of CT scan showing aortic aneurysm disease

Each year approximately 15,000 people in the United
States die from a ruptured abdominal aneurysm, rendering it
the 15th leading cause of death in this country [9]. Thirty
percent to 75% of patients with a ruptured Abdominal Aortic
Aneurysm (AAA) die before they ever reach a hospital [10].
Even with surgery, an average 48% (95% CI 46% to 50%)
perioperative mortality rate is associated with a ruptured AAA
repair [11]. The overall mortality rate in patients with ruptured
AAA ranges from 67% to 89% [10]. Therefore, detection of
AAAs before rupture and elective repair can prolong survival
and decrease the periprocedural complication rate.

The primary goal in Aortic Aneurysm treatment is to pro-
long survival through the prevention of rupture. The treatment
options include the following [8]:

• Open surgical repair

• Endovascular repair (EVAR)

• Continued surveillance

Endovascular aortic aneurysm repair (EVAR) is considered
a safer alternative to open surgery in selected patients. Its
feasibility depends mainly on anatomic factors that represent
the important predictors of success. Poor anatomic patient
selection is generally associated with a higher risk for pro-
cedural complications and compromised long-term outcomes.
Therefore pretreatment imaging is crucial for evaluating pa-
tient suitability for EVAR as well as appropriate planning to
avoid complications mainly endoleaks. Computed tomographic
angiography represents the current standard imaging used to
evaluate the anatomy of aorta because it provides all the details
needed for selection of patients who are suitable for EVAR.

Exclusion of the aneurysm sac is the main goal of EVAR,
and clinical success is defined by the “total exclusion” of the
aneurysm. However, at times, failure of the stent-graft to totally
exclude blood flow to the aneurysm sac may occur. As a matter
of fact, endoleak is the major cause of complications, and thus
failure EVAR. When an endoleak occurs, it causes continued
pressurisation of the aneurysm sac and may leave the patient
at risk of an AAA rupture.

1) Proximal neck of the aneurysm: The pre-EVAR anatom-
ical evaluation assesses several aspects of the anatomy of the
aortic aneurysm including the proximal neck of aneurysm
anatomy which is the most important predictor factor for a
successful EVAR. The proximal neck is the segment of aorta
above the aneurysm sac. An unfavourable neck anatomy, based
on its diameter, length, angulation, morphology, and presence
of calcification and mural thrombus, is the most frequent cause
of exclusion from EVAR [12].

a) Length: To achieve a good seal and decrease proxi-
mal migration and type I endoleak rates, a length of at least 15-
mm for infrarenal stent-graft fixation or 10-mm for transrenal
stent-graft fixation, with barbs, hooks, or uncovered suprarenal
stents, is recommended [13]. Patients who have a neck shorter
than to 10-mm are unsuitable for EVAR

b) Angulation: A severe neck angulation (> 60◦) seems
to be associated with a potentially higher risk of adverse
events, especially type I endoleaks, as reported by studies [14],
[15].

c) Morphology: The morphology of the proximal neck
can be defined as straight (unchanged diameters), tapered
(proximal diameter superior to distal), or reverse tapered (distal
diameter superior to proximal by >3-mm). A reverse tapered
neck and a neck bulge are associated with a higher proximal
endoleak rate and thus are contraindications for EVAR [16].

d) Presence of calcification: Calcification and mural
thrombus are expressed in degrees of circumference. Mural
thrombus and severe and extensive calcifications that cover
more than 90 of the circumference of the aortic diameter in
the proximal neck are associated with a higher risk for type I
endoleak and stent-graft migration, respectively [13].

Assessing the anatomy of the aortic aneurysm for appro-
priate intervention is a difficult task and the use of the SDS
algorithm helps segment the images and quantify some of the
problems such as the calcification at different levels of the
aorta. In this paper by assessing the level of calcifications at
different parts of the proximal neck aneurysm aorta, the SDS
can help identify suitable candidate for endovascular repair and
potentially reduce the level of complications associated with
mounting the endovascular graft in an unfavourable location.

B. Nasogastric Tube

Nasogastric tubes (tube inserted through the nose to the
stomach) are commonly used for short-term nutrition in criti-
cally ill patients. Complications of nasogastric tubes frequently
include inadvertent malpositioning and aspiration pneumonia
that may cause severe harm or death. The National Patient
Safety Agency (NPSA) in the United Kingdom received re-
ports of 21 deaths and 79 cases of harm due to feeding into
the lungs though misplaced NG tubes between September
2005-March 2011 [17]. The main cause of the harm in the
investigated cases was the misinterpretation of the X-rays that
were done to assess the position of the NG tube (see Fig.
4). X-ray assessment is usually done if the aspirate from the
NG tube does not reflect the natural level of acidity of the
stomach fluid content which is normally between 1-5.5 pH.
It is vital to note that X-rays are used more commonly as
obtaining an aspirate can be difficult in most of patients. The
NPSA guidelines states that when assessing the NG position
the following criteria should be strictly followed:

• The tube path follow the oesophagus/avoid the con-
tours of the bronchi

• Assess that the tube does not bisect the carina or the
bronchi (Airways)

• NG tube should cross the diaphragm in the midline



Fig. 4. Chest X-ray showing a misplaced Nasogastric tube

• The tip should be visible below the left hemi-
diaphragm

The careful interpretation of an X-ray to assess the position
of an NG tube needs a trained eye. This might not be available
at all times. This limitation in resources may lead to either
misinterpretation by a junior doctor leading to a serious clinical
incident or if there is a delay in the interpretation this can
translate itself to a delay in feeding the patient for several
hours. The SDS can help provide a tool to avoid the above
scenarios by detecting the tip of the NG tube.

IV. APPLYING STOCHASTIC DIFFUSION SEARCH

In this paper, we are presenting a unique approach by
deploying SDS to use in assessing medical images. This
approach demonstrates a promising ability to undertake this
task with similar level of sensitivity. Each scan used in this
paper is processed by the SDS agents which are responsible
for locating the desired areas.

The reproducibility and the accuracy of the SDS algorithm
can be utilised in developing a standardised system to help
interpreting medical images and prevent operator errors and
discrepancies. This type of technologies can be employed as an
adjunct to help radiologists assess the various types of images
making the diagnosis more thorough and less time consuming.
Additionally this technique can be effectively used to develop
programs for teaching and training medical students and junior
doctors.

A. Bone Scans

This section presents the results focusing on bone scans;
however the methods used are extendible to other scans
referred to in this work.

Below are the adjustable parameters that are determined
depending on the problem in hand (i.e. identifying metastasis

in bone scan) and the machine used to generate the scans. In
this experiment, they are defined as:

• S = 10, 000

• α = 180.

• dRad = 2

• Itr = 10

Fig. 5. Bone Scans. Typically 2–6 hours after intravenous administration
of technetium-99m–labeled diphosphonates; brighter areas indicate a higher
radiotracer uptake. As assessed by senior radiologists, left: Healthy; middle:
partially affected; right: metastatic disease spread.

Fig. 6. The bone scans are processed using Stochastic Diffusion Search
algorithm. Left: Healthy; middle: partially affected; right: metastatic disease
spread.

As shown in Fig. 5, areas with higher potential of metas-
tasis are identified. In bone scans, other than urinary bladder
activity, faint renal activity, and minimal soft-tissue activity
which are normally present in the scan (Fig. 5 Bottom-
left), the existence of multiple, randomly distributed areas
of increased uptake of varying size, shape, and intensity are
highly suggestive of bone metastases (Fig. 5 Bottom-middle).
Additionally as stated before, when the metastatic process is
distributed, almost all of the radiotracer congregates in the
skeleton, with little or no activity in the soft tissues or urinary
tract (see Fig. 5 Bottom-right).

As shown in Fig. 5 and 9, areas with higher potential
of metastasis and calcifications are identified. In bone scans,
other than urinary bladder activity, faint renal activity, and
minimal soft-tissue activity which are normally present in the
scan (Fig. 5 Bottom-left), the existence of multiple, randomly
distributed areas of increased uptake of varying size, shape,
and intensity are highly suggestive of bone metastases (Fig.
5 Bottom-middle). Additionally as stated before, when the
metastatic process is distributed, almost all of the radiotracer



congregates in the skeleton, with little or no activity in the soft
tissues or urinary tract (see Fig. 5 Bottom-right).

In order to visually present the technique used, Fig. 7
illustrates how agents congregate over the areas of interest over
time (i.e. iterations) when fed with the scans as inputs of the
algorithm. As the figure shows, successful agents diffuse their
positions across the population and this way, information on
potentially good solutions spreads throughout the entire popu-
lation of agents. This process is caused through the recruitment
strategy, where each agent recruits another agent for interaction
and potential communication of the promising areas. Next,
two models are presented to distinctively differentiate between
different types of bone scans (e.g. not affected, affected and
highly affected).

1) Statistical Model: Here, a statistical analysis,
TukeyHSD Test [18], is performed to highlight whether
there is a significant difference between the activity of the
agents when processing the bone scans. Table I (a) shows
the activity rate of the populations over each iteration. Three
different samples are used for this analysis: Samples 1, 2 and
3 refer to the scans in Fig. 5 (left to right). Table I (b) shows
that other than the first iteration where the agents are just
initialised, different bone scans would result in significantly
different activity rates. This could be used as an indicator,
highlighting the difference between various scans and whether
they are healthy, partially affected or the metastasis is spread.

TABLE I. ACTIVITY STATUS OF AGENTS PROCESSING BONE SCANS

(a) Mean ±standard deviation of the number of active agents in each iteration is shown
(rounded to the nearest number).

Itr Sample 1 Sample 2 Sample 3
0 0±0 0±0 0±0
1 5±2 17±4 277±16
2 15±4 47±9 763±37
3 33±8 100±18 1602±76
4 66±18 201±31 2991±137
5 129±33 379±51 4992±188
6 245±62 697±84 7260±198
7 461±110 1250±141 8947±123
8 852±201 2201±230 9583±51
9 1557±351 3650±330 9708±22

(b) Based on TukeyHSD Test, if the difference between each pair of samples is
significant, the pairs are marked (o – X shows that the right sample has significantly

more active agents than the left one). This test uses 95% family-wise confidence level.
The aim is to show that agents dealing with scans which have different levels of

metastasis exhibit significantly different behaviour.

Itr s1 – s2 s1 – s3 s2 – s3
0 – – –
1 o – X o – X o – X
2 o – X o – X o – X
3 o – X o – X o – X
4 o – X o – X o – X
5 o – X o – X o – X
6 o – X o – X o – X
7 o – X o – X o – X
8 o – X o – X o – X
9 o – X o – X o – X

2) Mathematical Model: Visualising the data produced in
Table I (a) could introduce another method of determining
which of the three broad category (healthy, partially af-
fected or the metastasis is spread) the bone scan falls into
(see Fig. 8). This model is proposed here to calculate the first
and the second derivatives using the following formulas:

f ′
s
i = σs

i − σs
i−1 (3)
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Fig. 8. Agents activity. The plots in this figure illustrate the activity of
agents, the standard deviation, first and second derivatives on each iteration in
the three sample bone scans. The ‘stopping point’ in the top plot shows the
iteration number when SDS algorithm could terminate. This occurs when the
value of the second derivative is negative (see Eq. 4).



Fig. 7. SDS algorithm processing the bone scans in 10 iterations. Each row shows the behaviour of the agents when presented with one scan. Each scan
is processed by 10,000 agents (illustrated as black dots) and through communication, agents explore different areas of the scans to identify potential areas of
metastasis. The leftmost figures in each row show the location of the agents on the first iteration (given agents are initialised and randomly distributed in the
search space, they are manifested as small black dots at this stage), and the rightmost ones represent the last iteration.

f ′′
s
i = σs

i − 2× σs
i−1 + σs

i−2 (4)

where f ′ and f ′′ are the first and the second derivatives
of function f respectively, σ represents the number of active
agents, i is the iteration number and s is the bone scan sample
number, s = {1, 2, 3}. The value of the second derivative (f ′′)
can be used as an indicator to stop the algorithm. The rationale
behind stopping the algorithm is that the activity of the agents
has reached a point that allowing further process, would blur
the congregation of the agents around less popular clusters.
This is caused by the diffusion mechanism of the algorithm
where there is higher probability of an inactive agents picking
another one from within the larger clusters than the smaller
ones.

Having discussed the functions of statistical and mathemat-
ical methods, the following three sections extends the use of
SDS to mammographs, AAA’s CT scans and NG-tube’s X-ray.

B. Mammographs

One of the main aims of the CAD systems is to identify
microcalcifications to help the radiologists make the diagnosis.
Microcalcifications are sometimes difficult for the human film
reader to detect because of their small size and low con-
trast, particularly if they are superimposed on dense glandular
tissue. However, of all the signs of abnormality found on
mammograms, microcalcifications are the easiest to detect
automatically. Unlike small ill-defined masses, which may
superficially resemble normal glandular tissue, microcalcifica-
tions have properties namely their very small size and high
attenuation which differ significantly from those of normal
background structures.

Adjustable parameters:

Fig. 9. Mammographs.

Fig. 10. Mammographs. Area with potential microcalcification particles are
detected using the Stochastic Diffusion Search algorithm.

• S = 10, 000

• α = 120. As disucssed earlier, this experiment re-
quires a higher level of sensitivity and thus the thresh-
old of α is set lower than the previous experiment.

• dRad = 2



• Itr = 10

Since smaller clusters are of interest in bone scan and spe-
cially mammographs, a different mechanism for determining
the ‘stopping point’ is proposed. In this method, when f ′′ < 0
the algorithm reaches the stopping point. Fig. 9 shows that
areas with higher potential of calcifications.

C. Aortic Aneurysm Disease

The SDS algorithm is utilised in this experiment to assess
the proximal neck of the aneurysm and detect the level of
calcification above the sac.

The agents are initialised throughout the search space (i.e.
the CT image) in a two-phase mission, the first of which is
to identify the location of the aorta within the scan, and the
second phase highlights the existing calcification within the
marked area. The adjustable parameters are empirically chosen
as follows in each phase.

Phase one:

• S = 1, 000

• α = 100

• β = 140

• dRad = 3

• Itr = 50

Phase Two:

• S = 1, 000

• α = 150

• β = 255

• dRad = 1

• Itr = 100

In the first phase, since the radius of the area of interest
is in one particular area (i.e. aorta, which exists in only one
place in each scan), the diffusion phase is set to explore a
bigger region of the search space around the active agent and
thus the diffusion radius, dRad is set to 3 units (see Fig. 2).
This leads to the identification of the centre of aorta which is
presented in Fig. 11 top.

Fig. 11 middle highlights the region where potential cal-
cifications could be spotted by the swarms (within the bigger
circle in the figure); once this region is located, the second
phase commences where swarms congregate over the area of
interest based on the value of α < avgIn < β, which dictates
the activity of the swarm and thus the convergence behaviour
as shown in Fig. 11-bottom. As indicated above, in the second
phase, the algorithm is allowed a smaller diffusion radius,
dRad, but a larger number of iterations in order to ensure
a total convergence of the swarms to more precise areas with
the required colour intensity.

Once the swarms converge, the suitability of the scan is
evaluated by measuring the activity rate of the swarms; this
activity is directly related to the level of calcification in the
aortic wall in that particular segment of the aorta. This helps

Fig. 11. Top: identifying the location of the diseased aorta within the scan;
Middle: highlighting areas where potential calcifications might exist; Bottom:
identification of calcification on the current slide of CT scan in order to
compare with the others

comparing different parts of the aorta to choose the best
possible location with the least level of calcium in the wall
of the proximal neck to position the EVAR graft.

This can help assess CT angiography images of patients
awaiting the repair of the aortic aneurysm. The SDS can
evaluate all the CT slides that did look at the proximal neck to
identify an optimal location for deploying the graft. This can
reduce the risk of the proximal type I endoleak. This type of
endoleak is the most serious complication of EVAR and it is
a life threatening problem. When this occur the aneurysm sac
is not excluded from the circulation and it can get larger and
rupture causing a vascular catastrophe with 50-75% mortality
rate.

D. Nasogastric Tube

In this experiment the SDS agents are applied to identify
the tip of the NG tube that is the most radiopaque part. This
can help clinicians identify the distal end of the tube and assess
its position to ensure that it is in the stomach and not in the
lungs (see Fig. 12).



Fig. 12. Chest X-ray showing a misplaced Nasogastric tube detected by SDS

The adjustable parameters for this experiment are:

• S = 10, 000

• α = 240

• β = 250

• dRad = 2

• Itr = 10

The last three sections argue for the generalisation of the
swarm intelligence technique presented in this paper. While
the authors strongly keep themselves away from the any claim
that the presented technique could replace human experts, the
sample applications of this technique, shows the usefulness of
the method and its possible potential to reduce human error and
assist the identification of metastasis and micro-calcifications
in various types of scans.

V. MAGNETIC RESONANCE (MR) BRAIN IMAGE
SEGMENTATION USING HYBRID PSO-LVQ APPROACH

Learning Vector Quantisation (LVQ) is one of the primarily
preferred Artificial Neural Network (ANN) for medical imag-
ing applications. However, there are some hidden drawbacks
associated with conventional LVQ which often go unnoticed.
One of the significant drawbacks is the lack of convergence
condition which forces the LVQ to completely depend on
iterations. Any iteration dependent ANN becomes less accurate
since correct fixation of the number of iterations is extremely
difficult. If the number of iterations is not optimal, then the
LVQ may encounter local minima problems. In this work,
this specific problem is tackled by proposing a hybrid swarm
intelligence-LVQ approach in the context of MR brain image

Fig. 13. Block diagram

segmentation. The Particle Swarm Optimization (PSO) is used
to train the LVQ which eliminates the iteration-dependent
nature of LVQ [19]. The proposed methodology is used to
detect the tumour regions in the abnormal MR brain images.

A. Proposed Methodology

The framework of the proposed work is shown in Figure
13.

In this work, MR brain images collected from M/s. Devakai
Scan Centre, Madurai, India is used for the experiments. Ini-
tially, six textural features are extracted from each pixel of the
input image. The features used are mean, standard deviation,
energy, entropy, variance and correlation. These features are
estimated using a 33 window methodology. These features are
further given as input for the PSO-LVQ for segmentation. The
number of clusters used in this work is 4 which correspond
to the Grey Matter (GM), White Matter (WM), Cerebro-spinal
fluid (CSF) and the abnormal tumor region. The tumor portion
is the region of interest in this work.

B. Architecture of PSO-LVQ

The architecture of PSO-LVQ consists of three layers: (a)
the input layer, (b) the competitive layer and (c) the output
layer. The framework is shown in Figure 14. The number of
neurons in the input layer is six which is equal to the features
extracted from each pixel. The number of output layer neurons
is 4 which are equal to the number of pre-defined clusters. The
competitive layer corresponds to the sub-classes and hence the
number of neurons in this layer must be a multiple of the pre-
defined classes. The number of neurons used in this work is 8
(two neurons for each class). Hence, the architecture of LVQ
used is 6-8-4.

In figure 14, T corresponds to the correct category or class
of the training input. The proposed architecture consists of a
single weight matrix W whose values are determined during
the training process. The neurons in the input layer are denoted
by i and the neurons in the competitive layer is denoted by j.

C. Training algorithm of PSO-LVQ

PSO is a subset of swarm intelligence which is normally
used for optimization applications. It is a population based
search algorithm where each individual is referred to as particle
and represents a candidate solution. Each single candidate
solution is assumed to be an individual bird of the flock, i.e,
a particle in the search space. Each particle makes use of its
individual memory and knowledge to find the best solution.
All the particles are given its own fitness values, which are
evaluated by fitness function and have velocities which direct
the movement of the particles. The particles move through the
problem space by following a current of optimum particles.
The initial swarm is generally created in such a way that



Fig. 14. Architecture of PSO-LVQ

the population of the particles is distributed randomly over
the search space. At every iteration, each particle is updated
by following two best values, called pbest and gbest. Each
particle keeps track of its coordinates in the problem space,
which are associated with the best solution (fitness value).
This fitness value is called pbest. When a particle takes the
whole population as its topological neighbor, the best value is
a global best value and is called gbest.

In this work, a different dimension of PSO is explored in
the context of training process of LVQ network. The main
objective of the training process is to estimate the stabilized
weights W. The proposed training algorithm of PSO-LVQ is
given below.

Step 1: Supply the random weight matrix W , input x, c1
and c2 (cognitive and social acceleration factors, p (inertia
factor), two random numbers (r1, r2) and initial velocity vo.

Step 2: Calculate the Euclidean distance between the input
vector and the weight matrix W

Dj = ‖xi −Wij‖ (5)

Step 3: Find the neuron J such that D(J) is a minimum.
The weight values connected with this neuron are taken as the
population for the PSO algorithm.

Step 4: Let the population of the PSO algorithm be taken
as wt(m) where t is the iteration number and m = 0, 1, 2 · · · s.

Step 5: Find the fitness value for each member of the
population using the fitness function. The fitness function used
in this work is classification accuracy.

If ft ≥ fpbest then pbest(m) = wt(m)

If ft ≥ fgbest then gbest = wt(m)

Step 6: Update the particle velocity using the following
equation:

TABLE II. DATASET USED FOR IMPLEMENTATION

Class
Training data Testing data

(pixels/ image) (pixels/image)

White matter 40

65536 (Full image)
Grey matter 40

CSF 40

Tumor 20

vt+1(m) = p× (vt(m))

+ c1r1 × (pbestt(m)− wt(m))

+ c2r2 × (gbestt − wt(m))

(6)

Step 7: Update the weights using the following equations

If T = Cj , where Cj is a category or class represented by
jth unit, then

wt+1(m) = wt(m) + vt+1(m) (7)

If T 6= Cj , then

wt+1(m) = |wt(m) + vt+1(m)| (8)

Step 8: Increment m. If m > s, then increment t and set
m = 1.

Step 9: Repeat steps 2 − 8 till the velocity reaches the
minimum value. In this work, 0.01 is used as the minimum
value. This implies that there will be no further changes in the
weight values.

At the end of the training process, the stabilized set of
weights W is stored and further used for the testing process.
In the testing process, each pixel of the input image is classified
into any one of the four clusters using these stabilized weights.
The testing process is done with the conventional procedure
of LVQ.

D. Experimental Results and Discussions

The software used for the implementation is MATLAB.
The dataset used for the implementation is shown in Table II2.

The table shows the training data and testing data for a
single image. The same level of training data and testing data
is used for all the images. The textural features extracted from
the training data are shown in Table III.

The feature values shown in Table 2 are sufficiently unique
for each category which aid in the successful segmentation by
the proposed approach. The qualitative analysis of the PSO-
LVQ based tumor detection in MR brain images is shown in
Figure 15.

The experiments are conducted on 18 images but only
samples are shown in Figure 15. Figure 15(a), (b) and (c)
are the input images in which the abnormal tumor portion

2The training data are randomly selected.



TABLE III. FEATURE EXTRACTION RESULTS

Features White Gray Cerebro-spinal Tumor

Matter Matter fluid

Energy 27891 256238 71236 124768

Correlation -571 -1107 -74 -1.62E+003

Variance 1.24E+006 2.56E+007 6.20E+006 1.34E+007

Entropy 1.56E+003 7.83E+003 3.79E+003 5.68E+003

Mean 324571 154218 478642 567345

Standard deviation 1.55E+009 6.56E+011 3.84E+010 1.80E+011

Fig. 15. Sample results: (a), (b), (c)- input images, (d), (e), (f) corresponding
output images [red colour-tumor region, blue-white matter, violet-grey matter
and yellow-cerebro spinal fluid]

is seen in white colour. In the segmented output, the red
colour denotes the segmented tumor regions. A visual analysis
reveals that PSO-LVQ has successfully segmented the tumor
portion from the abnormal input image. However, the red
colour portion seen in the outer ring actually corresponds
to the skull tissues which act like abnormal tumor tissues.
These unwanted skull tissues can be removed in the image
pre-processing step to achieve better efficiency. A quantitative
analysis on the segmented output images has been done in
terms of segmentation efficiency which is the ratio of true
positive pixels to the ground truth pixels. The quantitative
analysis on the proposed approach is also performed which
is shown in Table IV.

Sample results of the segmentation process are shown in
Table 3. The same process is repeated for all the images and
the average values are observed. An average segmentation
efficiency of 88.5% has been achieved with the proposed
PSO-LVQ approach. A comparative analysis of the proposed
approach with the state-of-the art methods is shown in Table
V.

From Table V, it is evident that the proposed method
is efficient than other approaches in terms of performance
measures.

VI. CONCLUSION

This paper details the promising results of the novel
application of Stochastic Diffusion Search in detecting areas
of metastasis in bone scans and the identification of the
potential microcalcifications on the mammographs. Statistical
and mathematical models are proposed to further investigate

TABLE IV. SEGMENTATION EFFICIENCY CALCULATION OF THE
PROPOSED APPROACH

Input Ground Truth True positive Segmentation

pixels pixels efficiency (%)

Image 1 WM 11453 10567 92.2

GM 10936 9004 82.3

CSF 7128 6432 90.2

Tumor 5234 4602 87.9

Image 2 WM 11453 10384 90.6

GM 10936 9324 85.3

CSF 7128 6642 93.1

Tumor 8178 7645 93.4

Image 3 WM 11453 10820 94.4

GM 10936 9202 84.1

CSF 7128 6721 94.2

Tumor 6124 5212 85.1

TABLE V. COMPARATIVE ANALYSIS

Techniques/Authors Segmentation efficiency (%)

Self Organizing Map/Inan et.al. [20] 86

LVQ/Jinn-Yi et.al. [21] 86

Self Organizing Map/Merinsky et.al. [22] 70

K-means clustering/Javeed et.al. [23] 85

Fuzzy ANN/ Javeed et.al. [23] 84

Proposed Method (PSO-LVQ) 88.5

the behaviour of the agents in the population and the outcome
demonstrates that the algorithm exhibits a statistically signif-
icant difference when applied to scans of variously affected
individuals.

The swarms intelligence technique was also used in the
two-phase process of the identification of aorta in the CT
images, as well as calcifications in areas around the aorta;
this task could lead to a more accurate localisation of the neck
of the aneurysm.

Additionally, the swarms exhibited promising performance
in detecting the tip of Nasogastric tube inserted through the
nose to the stomach with the goal of providing short-term
nutrition in critically ill patients. The identification of the tip
of the tube by the swarms can in practice lead to reducing the
probability of the complications of nasogastric tubes frequently
caused by inadvertent malpositioning of the tube in the lungs
verses stomach.

Furthermore, this work highlights the application of swarm
intelligence techniques for MR brain segmentation. This work
also portrays the advantages of swarm intelligence approaches
in a different dimension. As a future work, the proposed
approach will be compared with modified approaches such
as adaptive chaotic PSO and hybrid kernel support vector
machine.

At last not least, the authors would like to emphasise that
the presented technique could be effectively utilised as an



adjunct to the expert’s eyes of a specialist.

REFERENCES

[1] J. Bishop, “Stochastic searching networks,” in Proc. 1st IEE Conf. on
Artificial Neural Networks, London, UK, 1989, pp. 329–331.

[2] M. M. al-Rifaie and M. Bishop, “Stochastic diffusion search review,”
in Paladyn, Journal of Behavioral Robotics. Paladyn, Journal of
Behavioral Robotics, 2013, vol. 4(3), pp. 155–173. [Online]. Available:
http://dx.doi.org/10.2478/pjbr-2013-0021

[3] M. M. al Rifaie, A. Aber, R. Sayers, E. Choke, and M. Bown,
“Deploying swarm intelligence in medical imaging,” in Bioinformatics
and Biomedicine (BIBM), 2014 IEEE International Conference on.
IEEE, 2014, pp. 14–21.

[4] M. M. al-Rifaie, A. Aber, and R. Raisys, “Swarming robots and possible
medical applications,” in International Society for the Electronic Arts
(ISEA 2011), Istanbul, Turkey, 2011.

[5] M. M. al-Rifaie, A. Aber, and M. Bishop, “Swarms search for cancerous
lesions: Artificial intelligence use for accurate identification of bone
metastasis on bone scans,” The European Federation of National
Associations of Orthopaedics and Traumatology (EFORT), 13th EFORT
Congress, Berlin, Germany, 2012.

[6] M. M. al-Rifaie and A. Aber, “Identifying metastasis in bone
scans with stochastic diffusion search,” in Information Technology in
Medicine and Education (ITME). IEEE, 2012. [Online]. Available:
http://dx.doi.org/10.1109/ITiME.2012.6291355

[7] M. M. al-Rifaie, A. Aber, and A. M. Oudah, “Utilising
stochastic diffusion search to identify metastasis in bone scans
and microcalcifications on mammographs,” in Bioinformatics and
Biomedicine (BIBM 2012), Multiscale Biomedical Imaging Analysis
(MBIA2012). IEEE, 2012, pp. 280–287. [Online]. Available:
http://dx.doi.org/10.1109/BIBMW.2012.6470317

[8] K. Johnston, R. Rutherford, M. Tilson, D. Shah, L. Hollier, and
J. Stanley, “Suggested standards for reporting on arterial aneurysms,”
Journal of vascular surgery, vol. 13, no. 3, pp. 452–458, 1991.

[9] N. C. for Health Statistics, “Deaths, percent of total deaths and death
rates for the 15 leading causes of death: United states and each state,
2000,” National Center for Health Statistics, 2001.

[10] K. Cassar, D. Godden, and J. Duncan, “Community mortality after
ruptured abdominal aortic aneurysm is unrelated to the distance from
the surgical centre,” British journal of surgery, vol. 88, no. 10, pp.
1341–1343, 2001.

[11] L. Brown, J. Powell et al., “Risk factors for aneurysm rupture in patients
kept under ultrasound surveillance,” Annals of surgery, vol. 230, no. 3,
p. 289, 1999.

[12] F. Arko, K. Filis, S. Seidel, J. Gonzalez, S. Lengle, R. Webb, J. Rhee,
and C. Zarins, “How many patients with infrarenal aneurysms are
candidates for endovascular repair? the northern california experience,”
Journal Information, vol. 11, no. 1, 2004.

[13] M. Armerding, G. Rubin, C. Beaulieu, S. Slonim, E. Olcott, S. Samuels,
M. Jorgensen, C. Semba, R. Jeffrey, and M. Dake, “Aortic aneurysmal
disease: Assessment of stent-graft treatmentct versus conventional an-
giography1,” Radiology, vol. 215, no. 1, pp. 138–146, 2000.

[14] W. Sternbergh, G. Carter, J. York, M. Yoselevitz, and S. Money, “Aortic
neck angulation predicts adverse outcome with endovascular abdominal
aortic aneurysm repair,” Journal of vascular surgery, vol. 35, no. 3, pp.
482–486, 2002.

[15] M. Robbins, B. Kritpracha, H. Beebe, F. Criado, Y. Daoud, and
A. Comerota, “Suprarenal endograft fixation avoids adverse outcomes
associated with aortic neck angulation,” Annals of vascular surgery,
vol. 19, no. 2, pp. 172–177, 2005.

[16] B. Stanley, J. Semmens, Q. Mai, M. Goodman, D. Hartley, C. Wilkin-
son, and M. Lawrence-Brown, “Evaluation of patient selection guide-
lines for endoluminal aaa repair with the zenith stent-graft: the aus-
tralasian experience,” Journal Information, vol. 8, no. 5, 2001.

[17] N. Guidelines, “Reducing the harm caused by misplaced nasogastric
feeding tubes in adults, children and infants,” NHS, 2011.

[18] R. Miller, “Simultaneous statistical inference,” SPRINGER-VERLAG
INC., 175 FIFTH AVE., NEW YORK, NY, 1981, 300, 1981.

[19] Y. Zhang, S. Wang, P. Phillips, and G. Ji, “Binary PSO with mutation
operator for feature selection using decision tree applied to spam
detection,” Knowledge-Based Systems, vol. 64, no. 0, pp. 22 – 31, 2014.
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