
Investigating Stochastic Diffusion Search
in DNA sequence assembly problem

Fatimah Majid al-Rifaie
Department of Computing

Goldsmiths, University of London
International Programme

New Cross, London SE14 6NW
Email: fmar2@student.london.ac.uk

Mohammad Majid al-Rifaie
Department of Computing

Goldsmiths, University of London
New Cross, London SE14 6NW

Fax: +44 (0)20 7919 7853
Email: m.majid@gold.ac.uk

Abstract—This paper introduces a novel study on the perfor-
mance of Stochastic Diffusion Search (SDS) – swarm intelligence
algorithm – to address DNA sequence assembly problem. This
is an NP-hard problem and one of the primary problems
in computational molecular biology that requires optimisation
methodologies to reconstruct the original DNA sequence. In this
work, SDS algorithm is adapted for this purpose and several
experiments are run in order to evaluate the performance of the
presented technique over several frequently used benchmarks.
Given the promising results of the newly proposed algorithm and
its success in assembling the input fragments, its behaviour is fur-
ther analysed, thus shedding light on the process through which
the algorithm conducts the task. Additionally the performance
of the algorithm is compared against several other techniques,
demonstrating its weaknesses and strength in the experiments
presented in the paper.

Keywords—DNA sequence assembly; Stochastic Diffusion
Search; Multi-agent algorithm; Swarm intelligence

I. INTRODUCTION

Every single cell in the body has a complete copy of about
3.2 billion1 DNA base pairs or letters which build the human
genome [1]. DNA has all the information necessary to build
the whole living organism. Although the letters of the genetic
alphabet Adenine (A), Thymine (T), Cytosine (C) and Guanine
(G) are meaningless on their own, they are joined into useful
instructions in genes. It is interesting to note that more than
99 percent of human’s structure is genetically identical [2].

Imagine having several copies of the same book written in
a language you cannot understand. Every page of each copy
has been randomly cut into horizontal strip and a piece from
one copy may overlap a piece from another copy. Assuming
that some of strips are missing and some are splashed with ink,
and maybe some of the books have random typos and error
throughout, in different places. Try to arrange all the strips and
assemble a single copy of the original book without any typos
or errors. This process is similar to the important task of DNA
sequencing.

In this work, a novel application of a swarm intelligence
technique is introduced as a proof of principle. The swarm
intelligence algorithm used is Stochastic Diffusion Search
(SDS) which has a good potential to work in large search

1In American English, 1 billion is equated to a thousand million (i.e.
1, 000, 000, 000).

spaces and noisy environments. This algorithm is explained in
the paper and its application to the problem is detailed.

This paper starts by presenting the swarm intelligence
algorithm along with a simple example demonstrating its
use. Then a brief introduction is given to the DNA assem-
bly problem and the solutions offered so far using swarm
intelligence techniques. Subsequently, some experiments are
designed and the performance of SDS is investigated using
various benchmarks and then its performance is contrasted
against several other techniques. Finally, the reason behind
using SDS is further elaborated and the difference between
utilising SDS and Smith-Waterman algorithm is discussed,
followed by a conclusion and directions for future research.

II. SWARM INTELLIGENCE

The paper is based on swarm intelligence which is one of
the categories of artificial intelligence. Swarm intelligence is
based on the study of behaviour of simple individuals (e.g. ant
colonies, bird flocking, and honey bees, animal herding) that
mimics the behaviour of swarms of social insects or animals
[3]. More and more researches are interested in this field as
swarm intelligence offers new ways of designing intelligence
systems.

Among the successful examples of optimisation techniques
inspired by swarm intelligence are: ant colony optimisation
(inspired by foraging behaviour of real ant colonies) and
particle swarm optimisation (inspired by bird flocking) [3]. In
this work, Stochastic Diffusion Search (SDS) [4], [5] algorithm
is used. This algorithm also belongs to the category of swarm
intelligence and is based on mimicking the foraging behaviour
of one type of ants Leptothorax acervorum. More details about
SDS are provided in Algorithm 1 and a simple example is
presented next.

A. Search example with SDS

In the following example the aim is to find a 4-letter model
(Table I) in a 32-letter search space (Table II).

There are four agents; and a hypothesis identifies four
adjacent letters in the search space (e.g. hypothesis ‘6’ refers
to D-N-A-F; hypothesis ‘17’ refers to A-S-S-E, etc.). In the
first step, each agent initially picks a random hypothesis from
the search space (see Table III). Assume that:



SAI Intelligent Systems Conference 2015
November 10-11, 2015 | London, UK

TABLE I: MODEL

Index: 0 1 2 3

Model: D N A F

TABLE II: Search Space

Index: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Search space T H I S I S D N A F R A G M E N

Index: 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Search space T A S S E M B L Y P R O B L E M

Algorithm 1 SDS algorithm

Initialisation phase: Allocate agents to random hypotheses in the search space
Until (all agents congregate on the best hypothesis)

• Test phase
◦ Each agent evaluates its hypothesis
◦ Each agent is classified into active or inactive

• Diffusion phase
◦ Each inactive agent randomly chooses another agent to

communicate with. If the inactive agent selects another
inactive agent, no information will be transferred between
the agents. Therefore the selecting agent should choose
another hypothesis randomly. If the selected agent is active,
the active agent communicate its hypothesis to the selecting
agent

End

• The first agent points to the 27th entry of the search
space and randomly picks one of the letters (e.g. the
fourth one, (B): O B L E

• The second agent points to the 14th entry and ran-
domly picks the first letter (E): E N T A

• The third agent refers to the 8th entry in the search
space and randomly picks the second letter (F):

A F R A

• The fourth agent goes the 20th entry and randomly
picks the third letter (B): E M B L

• The fifth agent refers to the 4th entry in the search
space and randomly picks the second letter (S):

I S D N

The letters picked are compared to the corresponding letters
in the model that is D-N-A-F (see Table I). In this case:

• The fourth letter from the first agent (E) is compared
against the fourth letter from the model (F) and
because they are not the same, the agent is set inactive.

• For the second agent, the first letter (E) is compared
with the first letter from the model (D) and because
they are not the same, the agent is set inactive.

TABLE III: INITIALISATION AND ITERATION 1

Agent No: 1 2 3 4 5

Hypothesis position 27 14 8 20 4

OBLE ENTA AFRA EMBL ISDN

Letter picked: 4th 1st 2nd 3rd 2nd

Status: × × × × ×

• For the third, fourth and fifth agents, letters ‘F’, ‘B’
and ‘S’ are compared against ‘N’, ‘A’ and ‘N’ from
the model. Since none of the letters correspond to the
letters in the model, the status of the agents are set
inactive.

In the next step, each inactive agent chooses another agent
and gets the same hypothesis if the selected agent is active. If
the selected agent is inactive, the choosing agent generates a
random hypothesis. Assume that the first agent selects the third
one; since the third agent is inactive, the first agent chooses a
new random hypothesis from the search space (e.g. 6). Fig.1
shows communication between agents.

Fig. 1: Agent Communication 1.

The process is repeated for the other four agents. When the
agents are inactive, they all choose new random hypotheses
(see Table IV).

TABLE IV: ITERATION 2

Agent No: 1 2 3 4 5

Hypothesis position 1 6 22 12 17

HISI DNAF BLYP GMEN ASSE

Letter picked: 1st 2nd 4th 3rd 3rd

Status: ×
√

× × ×

www.conference.thesai.org 2 | P a g e



SAI Intelligent Systems Conference 2015
November 10-11, 2015 | London, UK

Fig. 2: Agents Communication 2.

In Table IV, the first, third, fourth and fifth agents do
not refer to their corresponding letter in the model, therefore
they become inactive. The second agent, with hypothesis ‘6’,
chooses the second letter (N) and compares it with the second
letter of the model (N). Since the letters are the same, the agent
becomes active.

In this case, consider the following communication be-
tween the agents: (see Fig. 2)

• The third and fourth agents choose the second one

• The first agent chooses the third one

• The fifth agent chooses the fourth one

At this stage, the first and fifth agents, which chose the
inactive third and fourth agents, have to choose other random
hypotheses from the search space. However, agents three and
four use the hypothesis of the active agent, two.

This process is repeated until all agents are active pointing
to the location of the model inside the search. Depending on
the problem, there are alternative termination strategies; for
instance, in some cases, SDS algorithm is set to terminates
only if all agents are active and refer to the same hypothesis.

The next section, provides a brief introduction to DNA
assembly problem, stating the main phases and the major
challenges faced by researchers in this field. This is followed
by an overview of some of the algorithms that aimed to
address the problem. Afterwards the experiments and results
are reported.

III. UNDERSTANDING DNA ASSEMBLY

There is no single solution available for NP-hard problems
[1] and it is often not possible to find an extremely good
algorithm that solves such problems [6].

In DNA assembly, a process is required to join the relevant
fragments together. In other words, the overlapping fragments
are to be assembled back into the original DNA sequence.
Therefore, the goal of genome projects is to reconstruct the
original genome sequence of an organism. To achieve the goal,
DNA fragment assembly process is divided into three phases
[7], [8]:

1) Overlap Phase is tasked to find the common se-
quence among the prefix of one sequence and suffix
of another.

2) Layout Phase uses alignment strategies to determine
the order of fragments based on high overlap scores
and according to the level of similarity.

3) Consensus Phase assembles all fragments into the
consensus sequence and omits the similar parts.

The quality of a consensus sequence is measured by the
term coverage [9], [7]. Coverage is evaluated according to the
following equation:

Coverge =

∑n
i=1 length of fragment i
target sequence length

(1)

where n is the number of fragments.

The higher the coverage, the higher the probability of
covering original genome, the higher the correctness of the
assembled parts, the fewer the number of the gaps, and the
better the result [7], [10].

The Layout Phase is the most complex step due to the
difficulty of finding the best overlap. This difficulty is caused
by the following challenges [10], [7]:

• Unknown orientation: After the original sequence
is divided into many fragments, the direction may
change.

• Base call errors: substitution, insertion, and deletion
errors are types of base call error. The errors happen
because of experimental errors in the electrophoresis
procedure that affects the finding of fragment overlaps.

• Incomplete coverage: It occurs when the algorithm
cannot assemble a given fragments into one contig.

• Repeated regions: the problem occurs when some
sequences are repeated two or more times in the DNA.
None of the current assembly programs can solve the
problem without an error [6].

• Chimeras and contamination: Chimeras arise when
two fragments that are not adjacent, or overlapping on
the target molecule, join together into one fragment.
Contamination occurs due to the incomplete purifica-
tion of the fragment from the vector DNA.

A. DNA Sequence Assembly and Swarm Intelligence

DNA Assembly problem is still open to a large extent
because of the principal issue of “scaling up to real organism”.
Some of the swarm intelligence and evolutionary algorithms,
such as genetic algorithms and ant colony optimisation have
been used for the fragment assembly problem focusing on the
overlap, layout and consensus approach [11].

In 1995, Rebecca Parsons and Johnson created performance
improvements for a genetic algorithm applied to the DNA se-
quence assembly problem [12]. In 2003 Kim and Mohan used
a new parallel hierarchical adaptive genetic algorithm. The
method is reported as accurate and noise-tolerant compared
to previous methods [13]. In the same year, Meksangsouy
and Chaiyaratana proposed ant colony optimisation. The goal
of the search was to find the right order and orientation of
each fragment to create a consensus sequence [14]. In 2005
Fang proposed approach speeded up the searching process and
maximised the similarity or overlaps between given fragments
[15]. Alba and Luque presented several methods, including
genetic algorithm, a CHC method, scatter search algorithm,
and simulated annealing to solve accurately DNA Assembly
problem in 2005 [16]. They also proposed a local search

www.conference.thesai.org 3 | P a g e



SAI Intelligent Systems Conference 2015
November 10-11, 2015 | London, UK

method named PALS in 2007 [17]. In 2008, Luque and Alba
studied the behaviour of a hybrid heuristic algorithm that
combines a heuristic, PALS, with a meta-heuristic, a genetic
algorithm, achieving an assembler to find optimal solutions for
large instances of this DNA assembly problem [18]. In 2010
Kubalik presented a method called Prototype Optimisation
with Evolved Improvement Steps (POEMS). Also in the same
year Minetti and Alba presented a paper about how noiseless
and noisy instances of this problem are handled by three
algorithms: problem aware local search, simulated annealing
and genetic algorithms [19].

There are some other solutions that are proposed in 2011
for DNA sequence assembly problem using Particle Swarm
Optimisation (PSO) with Shortest Position Value (SPV) rule
[1]. In 2012 Firoz analysed and discussed the performance
of two swarm intelligence based algorithms namely Artificial
Bee Colony (ABC), and Queen Bee Evolution Based on
Genetic Algorithm (QEGA) to solve the fragment assembly
problem [20]. In 2013 Fernandez-Anaya et al. designed a na-
ture inspired algorithm (PPSO+DE) based on Particle Swarm
Optimisation and Differential Evolution [21].

The next section, presents the experiments designed for
this paper, demonstrating the performance of the proposed al-
gorithm. Then the results are reported along with comparisons
against other techniques.

IV. EXPERIMENTS AND RESULTS

In order to understand the process through which SDS is
adopted and adapted for DNA sequence assembly problem,
a number of fragments are used in the experiments. The
fragments are the input of the program and the program is
responsible to assemble the fragments and create one long
sequence. This is achieved by taking a fixed number of
characters from the end of the first fragments and trying to find
those characters in the other fragments using SDS algorithm.
Once the other fragment is found, the two fragments are joined
and the repeated part is deleted from one of the fragments. This
will create a longer fragment. This process is repeated until all
fragments are joined. The steps required for SDS to assemble
a set of fragments are detailed in Algorithm 2.

Algorithm 2 DNA sequence assembly using SDS
Choose a model from the end of 1st fragment in the search space
While (true)

• Use SDS to search the model in the fragments
◦ If no matching fragment is found

Choose the model from the beginning of the first
fragment
Use SDS to search the model in the fragments
If no matching fragment is found

Break
• Compile a list of fragments where the model is found
• Pick the fragment (jth) with the maximum similarity (based on

agents activity)
◦ assemble fragments i and j.
◦ Delete the jth fragment
◦ Choose a new model from the end of assembled fragment

End While

In the experiments reported in this paper the agent size is
empirically set to 100 and the model size for SDS is set to 50.

TABLE V: Benchmark datasets

Mean Number Original

Benchmark Coverage fragment of sequence

length fragments length

x60189 4 4 395 39

3,835
x60189 5 5 286 48

x60189 6 6 343 66

x60189 7 7 387 68

m15421 5 5 398 127

10,089m15421 6 6 350 173

m15421 7 7 383 177

j02459 7 7 405 352 20,000

bx842596 7 7 703 773 77,292

Table V, as proposed by Mallén-Fullerton et al. [11], shows
the benchmarks used by SDS for DNA assembly.

Using the benchmarks provided, SDS algorithm assembles
the entire sequences correctly. Table VI shows the performance
of SDS when assembling the nine aforementioned benchmarks.
Each benchmark is assembled 50 times. As the table shows, the
larger the coverage, the more SDS iterations it takes to fully
assemble the datasets. While the number of overall algorithm
cycles needed follow the same structure, there are some
exception caused by the order of the fragments. Observing the
sum of active agents over all the iterations and their consistent
proximity (check the negligible difference between the median
and the mean, as well as the value of the standard deviation)
shows the robustness of the technique.

The results shown in Table VI indicate that three of the
benchmarks (m15421 6, m15421 7 and bx842596 7) are not
assembled fully into one sequence. SDS has been able to
assemble two large, accurate sequences from the fragments
of each of these datasets which make up the whole dataset.
However up to this point, given there were no similarities
between the two resulting sequences, they are returned sep-
arately. Therefore, caution is taken and they are reported as
not completely assembled.

Next, one of the benchmarks is chosen (x60189 4) and
the analysis are reported based on this benchmark. The results
are compatible with the ones generated from the other bench-
marks. Fig. 3-left shows the level of agents activity at various
stages of SDS assembling process, including both when a
match is found and when a match is not found in any given
fragment. The activity of the agents is in the range [0, 100],
however if less than the entire agent population (i.e. 100) are
active, the agents’ hypotheses are not taken into account for
the assembling purpose; this ensures the presence of a full
match. Reducing the 100% accuracy would cater for a noisy
environment which is one of the strengths of SDS algorithm.

To provide a better understanding, the histogram of the
agents’ activity is presented in Fig. 3-middle. This graph
clearly shows that in most cases there is no high similarity
between fragments (note that the similarity between fragments
is evaluated by comparing the model to the fragments). How-

www.conference.thesai.org 4 | P a g e



SAI Intelligent Systems Conference 2015
November 10-11, 2015 | London, UK

TABLE VI: Summary of Assembling Four Datasets

Sum of active agents

Cycles SDS Itrs Median Mean Stdev Max Min

x60189 4 23 46,899 384,075 384,746 4,007 392,361 374,717

x60189 5 17 53,649 418,777 418,744 4,119 430,935 409,683

x60189 6 28 114,799 752,539 752,176 4,382 763,060 740,365

x60189 7 26 124,249 1,095,673 1,096,029 5,928 1,109,507 1,083,767

m15421 5 57 476,149 2,175,028 2,176,785 9,722 2,220,938 2,150,915

m15421 6 – – – – – – –

m15421 7 – – – – – – –

j02459 7 129 3,174,449 12,092,968 12,087,911 21,613 12,127,170 12,021,776

bx842596 7 – – – – – – –

ever when there is a match (i.e. 100% activity), the fragments
are joined on the fly.

Fig. 3-right provides a close-up view of the graph on its
left and demonstrates that when there are no exact matches,
some of the SDS agents could be activated; however if there
are no full match, the activated agents eventually lose their
active status in the consequent iterations when they choose a
different micro-feature. This feature is particularly useful in a
noisy environment whose complete analysis will be provided
in an expanded future publication.

In a similar experiment and in order to analyse the
behaviour of the agents when some of the fragments are
contaminated with noise, some noise (i.e. of type substitution)
is added to all the fragments. Fig. 4-left shows the activity of
the agents and Fig. 4-middle and right illustrate the frequency
of activity level at various iterations. Note that there are fewer
number of iterations needed before SDS terminates (as at some
point during the process, no match is found from either end
of the growing sequence). However the proportion of agents
activity between 0 and 100 is increasing with the presence of
noise. Despite the fact that the entire fragment is contaminated
with noise, SDS is able to produce more than half the length
of the target sequence. Further research is required to improve
this rate.

In order to illustrate the activity of the agents at each SDS
iterations, the graphs in Fig. 5 are presented. In Fig. 5-left the
activity of SDS agents are displayed when there is no match.
As shown, most of the agents are inactive and very a few
flicker from being active and then back to being inactive.

However, on the contrary to the lack of a match, when there
is a full match, as shown in Fig. 5-right, soon after the start
of the SDS iteration and through agents’ communication and
information exchange, the entire population becomes active
and points to the right position, which is the position of the
model within the fragment.

A. Comparison with other techniques

In another analysis, the performance of SDS is compared
against a few other algorithms tasked with assembling the
benchmarks. These algorithms, which are used in this context

TABLE VII: Comparison with other techniques

SDS PALS GA PMA CAPS Phrap

x60189 4 1 1 1 1 1 1

x60189 5 1 1 1 1 1 1

x60189 6 1 1 – 1 1 1

x60189 7 1 1 1 1 1 1

m15421 5 1 1 6 1 2 1

m15421 6 2 NA NA NA NA NA

m15421 7 2 1 1 2 2 2

j02459 7 1 1 13 1 1 1

bx8425696 7 2 2 – 2 2 2

in the literature, are genetic algorithm (GA), a pattern match-
ing algorithm (PMA), Problem Aware Local Search (PALS)
and commercially available packages: CAP3 and Phrap. The
algorithms are compared in terms of the final number of
contigs assembled. Despite being in the early stages of its
application in DNA assembly problem, SDS shows a com-
petitive performance (see Table VII2). Other than an isolated
case (m15421 7), where PALS and GA outperform SDS, in
the rest of the cases (89%), SDS either presents similar or
better outcome. SDS is also tried on a benchmark (m15421
6) that is not attempted by the rest of the techniques. The
accuracy of the assembled sequences is 100%; in other words,
whenever the accuracy is less than 100%, the results are
considered unsuccessful. In these experiments, SDS deals with
various issues common in DNA sequence assembly3, including
but not limited to fragments with varying lengths, unknown
orientation, incomplete coverage, repeated regions, chimeras
and contamination, etc.

B. SDS vs. Smith-Waterman algorithm

Many DNA sequence assembly techniques use Smith-
Waterman algorithm [23], which is a pairwise alignment
method to create a similarity matrix between the fragments,
therefore generating a complete picture of the entire available

2The results of these algorithms, other than SDS, are borrowed from [22].
3These issues are explained in section III.

www.conference.thesai.org 5 | P a g e



SAI Intelligent Systems Conference 2015
November 10-11, 2015 | London, UK

Agents activity

A
ct

iv
e 

ag
en

ts

−20

0

20

40

60

80

100

120

 

−20

0

20

40

60

80

100

120

SDS iterations
−10,000 0 10,000 20,000 30,000 40,000 50,000

−10,000 0 10,000 20,000 30,000 40,000 50,000

Activity

Histogram of the agents activity

Le
ve

l o
f 

ac
ti

vi
ty

0

10,000

20,000

30,000

40,000

 

0

10,000

20,000

30,000

40,000

Number of active agents
0 20 40 60 80 100

0 20 40 60 80 100

Level of activity

Histogram of the agents activity

Le
ve

l o
f 

ac
ti

vi
ty

0

200

400

600

800

1,000

 

0

200

400

600

800

1,000

Number of active agents
0 20 40 60 80 100

0 20 40 60 80 100

Level of activity

Fig. 3: Left: activity of the agents in the fragments of x60189 4; middle: the histogram of the activity of the agents; right:
zooming to show the activity of agents between 0 and 100.

Agents activity

A
ct

iv
e 

ag
en

ts

−20

0

20

40

60

80

100

120

 

−20

0

20

40

60

80

100

120

SDS iterations
−10,000 0 10,000 20,000 30,000 40,000 50,000

−10,000 0 10,000 20,000 30,000 40,000 50,000

Activity

Histogram of the agents activity

Le
ve

l o
f 

ac
ti

vi
ty

0

10,000

20,000

30,000

40,000

 

0

10,000

20,000

30,000

40,000

Number of active agents
0 20 40 60 80 100

0 20 40 60 80 100

Level of activity

Histogram of the agents activity

Le
ve

l o
f 

ac
ti

vi
ty

0

200

400

600

800

1,000

 

0

200

400

600

800

1,000

Number of active agents
0 20 40 60 80 100

0 20 40 60 80 100

Level of activity

Fig. 4: Left: activity of the agents in noisy set of fragments; middle: histogram of the activity of the agents in noisy set of
fragments; right: zooming to show the activity of agents between 0 and 100.

data before setting off to the overlapping and assembling
stage. While Smith-Waterman algorithm provides a precise and
detailed account of the input data, it comes at the expense of
being time consuming and computationally expensive [24].

Assuming there are n fragments, once the similarity be-
tween each pair is calculated using Smith-Waterman algorithm,
an n × n matrix is created. The matrix is then used by other
optimising algorithm to conduct the overlapping phase. The
results of many of these algorithms are reported in [11].

In the experiments reported earlier in the paper, instead of
using Smith-Waterman algorithm to calculate the similarities
between fragments, SDS picks a model from a given fragment
and aims to find the model in the rest of the fragments.
Among the fragments containing the model, the one with the
highest similarity is picked and assembled on the fly and then
removed from the search space, thus reducing the subsequent
computational cost.

On the contrary to many other swarm intelligence and
evolutionary computation, SDS has been successful in as-
sembling the benchmarks without using Smith-Waterman al-
gorithm, therefore avoiding its time consuming and compu-
tational expensive nature. To understand the full picture of
the process, further analysis is needed, among other things,
to verify the impact left on the assembling process without
accessing the very detailed information provided by Smith-
Waterman algorithm.

V. CONCLUSIONS

Since DNA fragment assembly problem is NP-hard, it is
difficult to find optimal solutions. The increasing presence of
biological data and the requirements to study and understand
them closely lead us to use computational approaches. In
addition to a brief literature review given in this work, it is
shown that DNA fragment assembly problem can be attempted
with meta-heuristics.

For the first time, this paper presents Stochastic Diffu-
sion Search (SDS), which belongs to the extended family of
swarm intelligence algorithms, in the context of DNA fragment
assembly problem. An initial study into the behaviour of
SDS is provided, offering an analysis into the agents’ activity
using several benchmarks. The results are promising as they
demonstrate how the activity of the agents shed light into
the way agents interact and eventually finalise the assembling
process. Additionally it is shown that the level of agents’
activity provides a measure of similarity between fragments,
thus allowing more similar fragments to be joined in the
assembling process.

As part of the future research, this algorithm will be
compared against other evolutionary computation techniques
used in this field; also larger datasets with more complex
features are to be used, and more research is needed in order
to theoretically determine the two values (population size and
model size) of the SDS parameters. Additionally, CPU time
and RAM memory usage will be taken into account for all the

www.conference.thesai.org 6 | P a g e



SAI Intelligent Systems Conference 2015
November 10-11, 2015 | London, UK

No match

A
g

en
ts

 a
ct

iv
it

y

0

20

40

60

80

100

0

20

40

60

80

100

SDS Iterations
0 10 20 30 40 50

0 10 20 30 40 50

Inactive
Active

Full match

A
g

en
ts

 a
ct

iv
it

y

0

20

40

60

80

100

0

20

40

60

80

100

SDS Iterations
0 10 20 30 40 50

0 10 20 30 40 50

Inactive
Active

Fig. 5: Left: absence of a match; right: presence of a full match.

comparisons to provide a more comprehensive account on the
performance of the proposed algorithm.

REFERENCES

[1] R. S. Verma, V. Singh, and S. Kumar, “Dna sequence assembly
using particle swarm optimization.” International Journal of Computer
Applications, vol. 28, 2011.

[2] U.S. National Library of Medicine, “Cells and dna. what is dna?”
http://ghr.nlm.nih.gov/handbook/basics/dna, accessed: 06/01/2015.

[3] C. Blum and X. Li, Swarm intelligence in optimization. Springer,
2008.

[4] M. M. al-Rifaie and M. Bishop, “Stochastic diffusion search review,”
in Paladyn, Journal of Behavioral Robotics. Paladyn, Journal of
Behavioral Robotics, 2013, vol. 4(3), pp. 155–173.

[5] J. Bishop, “Stochastic searching networks,” in Proc. 1st IEE Conf. on
Artificial Neural Networks, London, UK, 1989, pp. 329–331.

[6] P. Pevzner, Computational molecular biology: an algorithmic approach.
MIT press, 2000.

[7] C. Cotta, A. Fernández, J. Gallardo, G. Luque, and E. Alba, “Meta-
heuristics in bioinformatics: Dna sequencing and reconstruction,” Opti-
mization Techniques for Solving Complex Problems, pp. 265–286, 2009.

[8] K.-W. Huang, J.-L. Chen, C.-S. Yang, and C.-W. Tsai, “A memetic
particle swarm optimization algorithm for solving the dna fragment
assembly problem,” Neural Computing and Applications, pp. 1–12,
2014.

[9] J. C. Setubal, J. Meidanis, and . . Setubal-Meidanis, Introduction to
computational molecular biology. PWS Pub., 1997.

[10] L. Li and S. Khuri, “A comparison of dna fragment assembly algo-
rithms.” in METMBS, vol. 4, 2004, pp. 329–335.

[11] G. M. Mallén-Fullerton, J. A. Hughes, S. Houghten, and G. Fernández-
Anaya, “Benchmark datasets for the dna fragment assembly problem,”
International Journal of Bio-Inspired Computation, vol. 5, no. 6, pp.
384–394, 2013.

[12] R. Parsons and M. E. Johnson, “Dna sequence assembly and genetic
algorithms-new results and puzzling insights.” in ISMB, 1995, pp. 277–
284.

[13] K. Kim and C. K. Mohan, “Parallel hierarchical adaptive genetic
algorithm for fragment assembly,” in Evolutionary Computation, 2003.
CEC’03. The 2003 Congress on, vol. 1. IEEE, 2003, pp. 600–607.

[14] P. Meksangsouy and N. Chaiyaratana, “Dna fragment assembly using
an ant colony system algorithm,” in Evolutionary Computation, 2003.
CEC’03. The 2003 Congress on, vol. 3. IEEE, 2003, pp. 1756–1763.

[15] S.-C. Fang, Y. Wang, and J. Zhong, “A genetic algorithm approach
to solving dna fragment assembly problem,” Journal of Computational
and Theoretical Nanoscience, vol. 2, no. 4, pp. 499–505, 2005.

[16] G. Luque and E. Alba, “Metaheuristics for the dna fragment as-
sembly problem,” International Journal of Computational Intelligence
Research, vol. 1, 2005.

[17] E. Alba and G. Luque, “A new local search algorithm for the dna
fragment assembly problem,” in Evolutionary Computation in Combi-
natorial Optimization. Springer, 2007, pp. 1–12.

[18] ——, “A hybrid genetic algorithm for the dna fragment assembly
problem,” in Recent Advances in Evolutionary Computation for Com-
binatorial Optimization. Springer, 2008, pp. 101–112.

[19] G. Minetti and E. Alba, “Metaheuristic assemblers of dna strands:
Noiseless and noisy cases,” in Evolutionary Computation (CEC), 2010
IEEE Congress on. IEEE, 2010, pp. 1–8.

[20] J. S. Firoz, M. S. Rahman, and T. K. Saha, “Bee algorithms for solving
dna fragment assembly problem with noisy and noiseless data,” in
Proceedings of the fourteenth international conference on Genetic and
evolutionary computation conference. ACM, 2012, pp. 201–208.

[21] G. M. Mallén-Fullerton and G. Fernández-Anaya, “Dna fragment as-
sembly using optimization,” in Evolutionary Computation (CEC), 2013
IEEE Congress on. IEEE, 2013, pp. 1570–1577.

[22] E. Alba and G. Luque, “A new local search algorithm for the dna
fragment assembly problem,” in Evolutionary Computation in Combi-
natorial Optimization. Springer, 2007, pp. 1–12.

[23] T. F. Smith and M. S. Waterman, “Identification of common molecular
subsequences,” Journal of molecular biology, vol. 147, no. 1, pp. 195–
197, 1981.

[24] G. Wieds, “Bioinformatics explained: Blast versus smith-waterman,”
CLCBio. http://www. clcbio. com/index. php, 2007.

www.conference.thesai.org 7 | P a g e


