
Deploying Swarm Intelligence in Medical Imaging

Mohammad Majid al-Rifaie∗, Ahmed Aber†, Robert Sayers†, Edward Choke† and Mathew Bown†
∗Department of Computing

Goldsmiths, University of London
London SE14 6NW, United Kingdom

Email: m.majid@gold.ac.uk
†Department of Cardiovascular Sciences

University of Leicester Royal Infirmary, Leicester, LE2 7LX, United Kingdom
Email: aa721, rs152, ec172, m.bown@le.ac.uk

Abstract—This paper introduces a novel approach in using
a swarm intelligence algorithm – Stochastic Diffusion Search
– in medical imaging. After summarising the results of some
previous work – showing how the algorithm assists the identifi-
cation of metastasis in bone scans and microcalcifications on the
mammographs – for the first time, the use of the algorithm in
assessing the CT images of aorta is demonstrated along with its
performance in detecting the nasogastric tube in chest X-ray. The
swarm intelligence algorithm presented in this paper is adapted to
address these particular tasks and its functionality is investigated
by running the swarms on sample CT images and X-rays whose
status have been determined by two senior radiologists.

I. INTRODUCTION

Computer aided diagnosis (CAD) is an emerging field in
medicine. The technique introduced in this paper can help
radiologists examine the image in greater depth and has the
potential to help doctors from different medical disciplines
to interpret medical imaging with greater confidence. Fur-
thermore CAD is a promising learning tool for both medical
students and junior doctors to develop basic diagnostic skills.
This paper presents a new CAD approach in which a swarm
intelligence algorithm – Stochastic Diffusion Search (SDS) [1]
– is applied to four medical imaging modalities.

Understanding the basics behind the behaviour of the
swarm intelligence algorithm and its connection to nature
is vital. Communication – social interaction or information
exchange – observed in social insects is important in all swarm
intelligence algorithms, including Stochastic Diffusion Search
(SDS), which mimics the recruitment behaviour of one species
of ants, Leptothorax acervorum.

There are different forms of recruitment in social insects:
it may take the form of local or global, one-to-one or one-
to-many, and stochastic or deterministic mode. The nature of
information exchange also varies in different environments
and with different types of social insects. Sometimes, the
information exchange is more complex where, for example,
it might carry data about the direction, suitability of the
target and the distance; sometimes the information sharing is
simply a stimulation forcing a certain triggered action. What all
these recruitment and information exchange strategies have in
common is distributing useful information in their community.

This paper starts by describing the standard Stochastic
Diffusion Search, followed by an introduction to bone scintig-
raphy, explaining metastatic disease and a brief explanation on

how to detect metastasis in bone scans. Next, a brief summary
of X-ray mammography and its use is presented, emphasising
on mammographic film reading as a particularly demanding
visual task, which could be facilitated using the technique
presented in this paper.

This is followed by an introduction to aortic aneurysm
disease and the factors used to assess the disease and help
plan an appropriate intervention. The swarms could provide
the radiologist with extra assistance in identifying the anatomy
in greater detail. Then, a brief explanation is also given on
nasogastric (NG) tube and its use to provide an effective
mechanism through which short-term nutrition can be given
to critically ill patients.

One of the serious complications of NG tube placement is
caused by inadvertent malpositioning. This can lead to severe
harm or death if the patient is fed through it. This could
possibly be prevented by deploying the swarm intelligence
technique, providing extra information about the location of
the tip of the tube, avoiding fatal human error.

After presenting the above-mentioned areas of interest,
a detailed introduction is given on the swarm intelligence
algorithm adapted for the purpose of this research. The results
are then reported for each of the areas stated earlier and
an exemplar statistical analysis is given demonstrating the
performance of the approach.

While the paper aims to demonstrate a novel way of
addressing some of the presented medical imaging scenarios,
the authors keep themselves away from the claim that the
presented algorithm is an optimal solution to all medical
imaging problems.

A. Previous Work and Summary of Current Research

In the initial work [2], the goal was to visualise the swarms
behaviour when presented with a two dimensional canvas
(e.g. bone scan). This work was well received as a potential
educational tool for doctors in training and medical students.
This led to the extension of the research in [3], [4] where
the application of this swarm intelligence technique on bone
scan was introduced in further details in different venues for
researchers with medical and computer backgrounds. Later in
[5], the statistical and mathematical models were presented for
bone scans, and the application of the technique was extended
to mammography.



In this work, we attempt to present a unifying and gener-
alised framework of the potential of the algorithm, showing
its capability in addressing various issues related to different
scans and task; after summarising the results of our previous
work, two novel applications of the algorithm are introduced:

• The first one is a two-phase process in which initially
the swarms identify the location of the aorta within
the CT scan. The swarms then set off to detect and
highlight any possible calcifications around the aorta
with the goal of assisting the radiologists to determine
the extent of the calcification. This information can
help determine the best possible management of the
disease. This task is particularly distinctive from the
previous work, as a novel way of guiding the be-
haviour of the swarms is introduced, increasing their
flexibility and functionality.

• The second application introduced in this work is the
identification of the tip of the Nasogastric tube in chest
X-rays. The significance of the accurate localisation
of the tip of the tube is explained with details in this
work.

It is vital to note that the presented approach does not
attempt to replace the experts’ eyes of radiologists, however
in all of the above-mentioned four applications it provides the
clinicians with a valuable adjunct to aid with the diagnosis as
well as the management of patient. This method of interpreting
images can also be used as an educational tool for doctors in
training and medical students.

II. STOCHASTIC DIFFUSION SEARCH

This section introduces Stochastic Diffusion Search (SDS)
[1] – a swarm intelligence algorithm – whose performance is
based on simple interaction of agents.

The SDS algorithm commences a search or optimisation
by initialising its population and then iterating through two
phases (see Algorithm 1)

Algorithm 1 SDS Algorithm

01: Initialising agents()
02: While (stopping condition is not met)
03: Testing hypotheses()
04: Determining agents’ activities (active/inactive)
05: Diffusing hypotheses()
06: Exchanging of information
07: End While

In the test phase, SDS checks whether the agent hypothesis
is successful or not by performing a hypothesis evaluation
which returns a boolean value. Later in the iteration, contingent
on the precise recruitment strategy employed (in the diffusion
phase), successful hypotheses diffuse across the population
and in this way information on potentially good solutions
spreads throughout the entire population of agents. In other
words, each agent recruits another agent for interaction and
potential communication of hypothesis. This algorithm has
been used alongside other swarm intelligence algorithms in
several research topics including numerical optimisation and
clustering.

A. Standard SDS and Passive Recruitment

In standard SDS (which is used in this paper), passive
recruitment mode is employed. In this mode, if the agent is
inactive, a second agent is randomly selected for diffusion;
if the second agent is active, its hypothesis is communi-
cated (diffused) to the inactive one. Otherwise there is no
flow of information between agents; instead a completely
new hypothesis is generated for the first inactive agent at
random (see Algorithm 2). Therefore, recruitment is not the
responsibility of the active agents. In this work, activity of
each agent is determined when its fitness is compared against
a random agent (which is different from the selecting one);
if the selecting agent has a better fitness (smaller value in
minimisation problems) than the randomly selected agent, it
will be flagged as active, otherwise inactive. Higher rate of
inactivity boosts exploration, whereas a lower rate biases the
performance towards exploitation.

Algorithm 2 Passive Recruitment Mode

01: For ag = 1 to No_of_agents
02: If ( !ag.activity() )
03: r_ag = pick a random agent()
04: If ( r_ag.activity() )
05: ag.setHypothesis( r_ag.getHypothesis() )
06: Else
07: ag.setHypothesis( randomHypothesis() )
08: End If/Else
09: End If
10: End For

III. BONE SCINTIGRAPHY

Bone scan or Bone scintigraphy is one of the most fre-
quently performed of all radionuclide procedures. Radionu-
clide bone imaging is quick, relatively inexpensive, widely
available, exquisitely sensitive and is invaluable in the di-
agnostic evaluation of numerous pathologic conditions. Al-
though protocols vary among institutions, imaging is typi-
cally performed 2–6 hours after intravenous administration of
technetium-99m–labeled diphosphonates. The delay between
injection and imaging allows clearance of the radiotracer from
the soft tissues, resulting in a higher target-to-background ratio
and improved visualization of bone. The degree of radiotracer
uptake depends primarily on two factors: blood flow and,
perhaps more importantly, the rate of new bone formation [6].

Fig. 1. Bone Scans. Typically 2–6 hours after intravenous administration
of technetium-99m–labeled diphosphonates; brighter areas indicate a higher
radiotracer uptake. As assessed by senior radiologists, left: Healthy; middle:
partially affected; right: metastatic disease spread.



A. Normal Scintigraphic Findings

There is symmetric distribution of activity throughout the
skeletal system in healthy adults. Urinary bladder activity,
faint renal activity, and minimal soft-tissue activity are also
normally present (see Fig. 1 Top-left).

The accumulation of radiotracer in bone generally de-
creases with age. However, there are sites of persistently
increased symmetric uptake, such as the acromial and coracoid
processes of the scapulae, the medial ends of the clavicles, the
junction of the body and manubrium of the sternum (angle of
Louis), and the sacral alae. Increased radiotracer accumulation
in the jaw may be due to dental disease or to malocclusion of
dentures.

Symmetric areas of increased calvarial activity occurs in
hyperostosis frontalis. In the neck, activity in calcified thyroid
cartilage and in the apophyseal joints of the cervical vertebrae
in patients with asymptomatic degenerative changes can also
be seen.

B. Metastatic Disease

Metastasis is the process by which the cancer spread from
the original site at which it started as a primary tumour to
other tissues in the body i.e. Prostate cancer metastasising to
the bone tissue.

Many if not most bone scans are performed in patients
with a diagnosis of cancer, especially carcinoma of the breast,
prostate gland, and lung. Radionuclide bone imaging plays
an imporant part in tumor staging and management. This
imaging technique is extremely sensitive for detecting skeletal
abnormalities, and numerous studies have confirmed that it is
considerably more sensitive than conventional radiography for
this purpose [7]. About 75% of patients with malignancy and
pain have abnormal bone scintigraphic findings. The usual pat-
tern consists of increased radiotracer deposition in areas of new
bone tissue formation in response to the damaging effect of
cancer on the bone [7], [8]. The presence of multiple, randomly
distributed areas of increased uptake of varying size, shape, and
intensity are highly suggestive of bone metastases (see Fig.
1 Top-middle). Although multiple foci of increased activity
may be encountered in other pathologic conditions, it is often
possible to distinguish metastatic disease from other entities
by analyzing the pattern of distribution of the abnormalities.
Traumatic injury, in contrast to metastatic disease, generally
manifests as discrete focal abnormalities of similar intensity.
In older patients, osteoarthritis and degenerative changes may
manifest as areas of intense activity on radionuclide bone
images. These changes can be distinguished from metastatic
disease by virtue of their characteristic location (e.g. knees,
hands and wrists). Involvement of both sides of the joint is
common in arthritis but unusual in malignant conditions [9].

When the metastatic process is diffuse, virtually all of the
radiotracer is concentrated in the skeleton, with little or no
activity in the soft tissues or urinary tract. The resulting pattern,
which is characterized by excellent bone detail, is frequently
referred to as a superscan (see Fig. 1 Top-right) [8], [9], [10].

Bone scintigraphy is a popular and important imaging
modality and is likely to remain so for the foreseeable fu-
ture. Although bone scintigraphy is not specific, its exquisite

sensitivity makes it a useful screening procedure for many
pathologic conditions, especially for the detection of prostate,
breast and lung cancer metastasis.

IV. MAMMOGRAPHY

X-ray mammography has been shown to be effective as
a method for detecting early breast cancer, but the success
of mass screening depends critically on the availability of
highly skilled film readers to interpret the images. The majority
of film readers in the UK are consultant radiologists and in
order to maintain a sufficiently high standard of interpretation,
readers are required to undergo training, to keep in practice
and to evaluate their performance at regular intervals [11].

Fig. 2. Mammographs.

Mammographic film reading is a particularly demanding
visual task. In screening programmes, the film reader must
search for extremely infrequent and often very subtle signs of
cancer superimposed on complex and variable backgrounds.
Early breast cancer may appear in a variety of forms: a few
particles of microcalcification; a small ill-defined or speculated
mass; abnormal asymmetry between right and left breast
images, or subtle distortion of the underlying structure of
the breast. These abnormalities vary in size, shape, structure,
brightness and location and may share a great deal of similarity
with normal mammographic appearances.

False negative cases, in which signs of cancer are missed
by a reader, sometimes occur. Retrospective evaluation of the
previous screening films of cancers detected between screening
rounds (interval cancers) and screen-detected cancers show
evidence of abnormality in between 16% and 27% of cases.
Some of these signs are very subtle, and may have been seen by
the readers but dismissed as being insignificant, but others are
clear signs of malignancy [12], [13], [14]. However, different
readers miss different cancers, as is evidenced by the success
of double reading in which two readers independently read
the films [15]. The most accurate method of interpretation is
double reading with arbitration, where a third reader reviews
cases about which the two readers disagree [15], [16].

In the UK particularly with the National Health Service
Breast Screening Programme (NHSBSP) there is an increased
demand for skilled manpower to effectively interpret mammo-
graphs and double or triple reading of the mammograph is
not viable option due to the increased workload. A novel and
different method of coping with this is the use of computer-
based aids.



Researchers have been developing algorithms to detect
mammographic abnormalities for more than 30 years with
the aim of either automating mammographic interpretation or,
more realistically, providing a tool which will enhance human
film-reading performance.

There are two basic approaches to the problem of detecting
abnormalities in mammograms: either to search the images for
specific appearances suggestive of cancer, or to characterize
normal mammographic appearance to the extent that it is pos-
sible to detect anything that fails to conform to the generated
model of normality.

The purpose of the current study is to apply for the
first time an swarm intelligence algorithm namely Stochastic
diffusion search to perform the task of identifying the micro-
calcifications on the mammographs.

V. AORTIC ANEURYSM DISEASE

The aorta is the main artery that carries the blood away
from the heart to rest of the body giving rising to various
branches for this purpose. Aortic aneurysm (AA) is a disease
commonly found in patients above the age of 65. It is defined
as a permanent localized dilation of the aorta that has at least
a 50% increase in diameter as compared with the expected
normal diameter of the aorta, which may vary according to
age, sex, and body size [17].

Each year approximately 15,000 people in the United
States die from a ruptured abdominal aneurysm, rendering it
the 15th leading cause of death in this country [18]. Thirty
percent to 75% of patients with a ruptured Abdominal Aortic
Aneurysm (AAA) die before they ever reach a hospital [19].
Even with surgery, an average 48% (95% CI 46% to 50%)
perioperative mortality rate is associated with a ruptured AAA
repair [20]. The overall mortality rate in patients with ruptured
AAA ranges from 67% to 89% [19]. Therefore, detection of
AAAs before rupture and elective repair can prolong survival
and decrease the periprocedural complication rate.

The primary goal in Aortic Aneurysm treatment is to pro-
long survival through the prevention of rupture. The treatment
options include the following [17]:

• Open surgical repair

• Endovascular repair (EVAR)

• Continued surveillance

Endovascular aortic aneurysm repair (EVAR) is considered
a safer alternative to open surgery in selected patients. Its
feasibility depends mainly on anatomic factors that represent
the important predictors of success. Poor anatomic patient
selection is generally associated with a higher risk for pro-
cedural complications and compromised long-term outcomes.
Therefore pretreatment imaging is crucial for evaluating pa-
tient suitability for EVAR as well as appropriate planning to
avoid complications mainly endoleaks. Computed tomographic
angiography represents the current standard imaging used to
evaluate the anatomy of aorta because it provides all the details
needed for selection of patients who are suitable for EVAR.

Exclusion of the aneurysm sac is the main goal of EVAR,
and clinical success is defined by the “total exclusion” of the

Fig. 3. A slide of CT scan showing aortic aneurysm disease

aneurysm. However, at times, failure of the stent-graft to totally
exclude blood flow to the aneurysm sac may occur. As a matter
of fact, endoleak is the major cause of complications, and thus
failure EVAR. When an endoleak occurs, it causes continued
pressurisation of the aneurysm sac and may leave the patient
at risk of an AAA rupture.

A. Proximal neck of the aneurysm

The pre-EVAR anatomical evaluation assesses several as-
pects of the anatomy of the aortic aneurysm including the
proximal neck of aneurysm anatomy which is the most im-
portant predictor factor for a successful EVAR. The proximal
neck is the segment of aorta above the aneurysm sac. An
unfavourable neck anatomy, based on its diameter, length,
angulation, morphology, and presence of calcification and
mural thrombus, is the most frequent cause of exclusion from
EVAR [21].

1) Length: To achieve a good seal and decrease proximal
migration and type I endoleak rates, a length of at least 15-
mm for infrarenal stent-graft fixation or 10-mm for transrenal
stent-graft fixation, with barbs, hooks, or uncovered suprarenal
stents, is recommended [22]. Patients who have a neck shorter
than to 10-mm are unsuitable for EVAR

2) Angulation: A severe neck angulation (> 60◦) seems to
be associated with a potentially higher risk of adverse events,
especially type I endoleaks, as reported by studies [23], [24].

3) Morphology: The morphology of the proximal neck
can be defined as straight (unchanged diameters), tapered
(proximal diameter superior to distal), or reverse tapered (distal
diameter superior to proximal by >3-mm). A reverse tapered
neck and a neck bulge are associated with a higher proximal
endoleak rate and thus are contraindications for EVAR [25].

4) Presence of calcification: Calcification and mural
thrombus are expressed in degrees of circumference. Mural
thrombus and severe and extensive calcifications that cover
more than 90 of the circumference of the aortic diameter in
the proximal neck are associated with a higher risk for type I
endoleak and stent-graft migration, respectively [22].

Assessing the anatomy of the aortic aneurysm for appro-
priate intervention is a difficult task and the use of the SDS
algorithm helps segment the images and quantify some of the
problems such as the calcification at different levels of the
aorta. In this paper by assessing the level of calcifications at



Fig. 4. Chest X-ray showing a misplaced Nasogastric tube

different parts of the proximal neck aneurysm aorta, the SDS
can help identify suitable candidate for endovascular repair and
potentially reduce the level of complications associated with
mounting the endovascular graft in an unfavourable location.

VI. NASOGASTRIC TUBE

Nasogastric tubes (tube inserted through the nose to the
stomach) are commonly used for short-term nutrition in criti-
cally ill patients. Complications of nasogastric tubes frequently
include inadvertent malpositioning and aspiration pneumonia
that may cause severe harm or death. The National Patient
Safety Agency (NPSA) in the United Kingdom received re-
ports of 21 deaths and 79 cases of harm due to feeding into
the lungs though misplaced NG tubes between September
2005-March 2011 [26]. The main cause of the harm in the
investigated cases was the misinterpretation of the X-rays that
were done to assess the position of the NG tube (see Fig.
4). X-ray assessment is usually done if the aspirate from the
NG tube does not reflect the natural level of acidity of the
stomach fluid content which is normally between 1-5.5 pH.
It is vital to note that X-rays are used more commonly as
obtaining an aspirate can be difficult in most of patients. The
NPSA guidelines states that when assessing the NG position
the following criteria should be strictly followed:

• The tube path follow the oesophagus/avoid the con-
tours of the bronchi

• Assess that the tube does not bisect the carina or the
bronchi (Airways)

• NG tube should cross the diaphragm in the midline

• The tip should be visible below the left hemi-
diaphragm

The careful interpretation of an X-ray to assess the position
of an NG tube needs a trained eye. This might not be available
at all times. This limitation in resources may lead to either
misinterpretation by a junior doctor leading to a serious clinical
incident or if there is a delay in the interpretation this can
translate itself to a delay in feeding the patient for several
hours. The SDS can help provide a tool to avoid the above
scenarios by detecting the tip of the NG tube.

o o o
o x o
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Fig. 5. Agent’s neighbours in test phase. The symbol x represents the position
of the agent and the o’s represent the neighbours used during the test phase.
As shown in the figure, the radius of the test is set to 1.

VII. APPLYING STOCHASTIC DIFFUSION SEARCH

In this paper, we are presenting a unique approach by
deploying SDS to use in assessing medical images. This
approach demonstrates a promising ability to undertake this
task with similar level of sensitivity. Each scan used in this
paper is processed by the SDS agents which are responsible
for locating the desired areas.

The reproducibility and the accuracy of the SDS algorithm
can be utilised in developing a standardised system to help
interpreting medical images and prevent operator errors and
discrepancies. This type of technologies can be employed as an
adjunct to help radiologists assess the various types of images
making the diagnosis more thorough and less time consuming.
Additionally this technique can be effectively used to develop
programs for teaching and training medical students and junior
doctors.

A. Algorithm Procedure

SDS is a population based stochastic algorithm, adapted
here to search for areas of metastasis or calcifications in
the feasible solution space. The hypothesis vectors of the
population are defined as follows:

xgi =
[
xgi,1, ..., x

g
i,D

]
, i = 1, 2, ..., NP (1)

where g is the current iteration, D is the dimension of the
problem space (D = 2) and NP is the population size. In the
first generation, (when g = 0), the ith vector’s jth component
could be initialised as:

x0i,j = xmin,j + r (xmax,j − xmin,j) (2)

where r is a random number drawn from a uniform
distribution on the unit interval U (0, 1), and xmin, xmax are
the lower and upper bounds of the jth dimension, respectively.
The initial status of all agents are set to false. In other words,
each agent randomly picks a pixel from the image of the scan.

During the test phase of SDS algorithm, each agent’s status
should be determined. The method used here to set the activity
of the agents is to find the average of the colour intensity1

(avgIn) of each agent and its neighbours (see Fig. 5). If avgIn
is within a specific range (problem dependent), the agent is
flagged active, otherwise inactive.

During the diffusion phase, each inactive agent randomly
selects another agent from the population; if the selected
agent is active, the selecting agent adopts the hypothesis (i.e.
location) of the active agent and the information sharing takes
place. The strategy used for information sharing is to randomly

1 Colour intensity (In) signifies the brightness of pixels, 0 ≤ In ≤ 255.



pick an area surrounding the active agent (see Fig. 6). Active
agents also check their position by continuously picking a
random pixel in the neighbourhood; this way, an area which
does not have a good enough potential is discarded from one
iteration (i.e. cycle of test and diffusion phases) to the next.

List of adjustable parameters for each experiments:

• Population size (S)

• Agent’s activity which is determined using the value
of average intensity avgIn (e.g. if avgIn > α the
agent is set active, otherwise inactive). The value of
α is also problem-dependent and it could be adjusted
to increase or decrease the sensitivity of the system.

• Diffusion radius (dRad)

• Number of iterations (Itr)

o o o o o
o o o o o
o o x o o
o o o o o
o o o o o

(a)

o o o o o o o
o o o o o o o
o o o o o o o
o o o x o o o
o o o o o o o
o o o o o o o
o o o o o o o

(b)

Fig. 6. Diffusion area for (a) bone scans, mammographs and NG-tube; (b)
AAA. The symbol x represents the position of the active agent and the o’s
represent the accessible places during the diffusion phase. The reason behind
the larger area considered for (b) is the greater radius of the area of interest
in AAA (see Fig. 11).

B. Bone Scans

This section presents the results focusing on bone scans;
however the methods used are extendible to other scans
referred to in this work.

Below are the adjustable parameters that are determined
depending on the problem in hand (i.e. identifying metastasis
in bone scan) and the machine used to generate the scans. In
this experiment, they are defined as:

• S = 10, 000

• α = 180.

• dRad = 2

• Itr = 10

As shown in Fig. 1, areas with higher potential of metas-
tasis are identified. In bone scans, other than urinary bladder
activity, faint renal activity, and minimal soft-tissue activity
which are normally present in the scan (Fig. 1 Bottom-
left), the existence of multiple, randomly distributed areas

Fig. 7. The bone scans are processed using Stochastic Diffusion Search
algorithm. Left: Healthy; middle: partially affected; right: metastatic disease
spread.

of increased uptake of varying size, shape, and intensity are
highly suggestive of bone metastases (Fig. 1 Bottom-middle).
Additionally as stated before, when the metastatic process is
distributed, almost all of the radiotracer congregates in the
skeleton, with little or no activity in the soft tissues or urinary
tract (see Fig. 1 Bottom-right).

As shown in Fig. 1 and 2, areas with higher potential
of metastasis and calcifications are identified. In bone scans,
other than urinary bladder activity, faint renal activity, and
minimal soft-tissue activity which are normally present in the
scan (Fig. 1 Bottom-left), the existence of multiple, randomly
distributed areas of increased uptake of varying size, shape,
and intensity are highly suggestive of bone metastases (Fig.
1 Bottom-middle). Additionally as stated before, when the
metastatic process is distributed, almost all of the radiotracer
congregates in the skeleton, with little or no activity in the soft
tissues or urinary tract (see Fig. 1 Bottom-right).

In order to visually present the technique used, Fig. 8
illustrates how agents congregate over the areas of interest over
time (i.e. iterations) when fed with the scans as inputs of the
algorithm. As the figure shows, successful agents diffuse their
positions across the population and this way, information on
potentially good solutions spreads throughout the entire popu-
lation of agents. This process is caused through the recruitment
strategy, where each agent recruits another agent for interaction
and potential communication of the promising areas. Next,
two models are presented to distinctively differentiate between
different types of bone scans (e.g. not affected, affected and
highly affected).

1) Statistical Model: Here, a statistical analysis,
TukeyHSD Test [27], is performed to highlight whether
there is a significant difference between the activity of the
agents when processing the bone scans. Table I (a) shows
the activity rate of the populations over each iteration. Three
different samples are used for this analysis: Samples 1, 2 and
3 refer to the scans in Fig. 1 (left to right). Table I (b) shows
that other than the first iteration where the agents are just
initialised, different bone scans would result in significantly
different activity rates. This could be used as an indicator,
highlighting the difference between various scans and whether
they are healthy, partially affected or the metastasis is spread.

2) Mathematical Model: Visualising the data produced in
Table I (a) could introduce another method of determining



Fig. 8. SDS algorithm processing the bone scans in 10 iterations. Each row shows the behaviour of the agents when presented with one scan. Each scan
is processed by 10,000 agents (illustrated as black dots) and through communication, agents explore different areas of the scans to identify potential areas of
metastasis. The leftmost figures in each row show the location of the agents on the first iteration, and the rightmost ones represent the last iteration.

TABLE I. ACTIVITY STATUS OF AGENTS PROCESSING BONE SCANS

(a) Mean ±standard deviation of the number of active agents in each iteration is shown
(rounded to the nearest number).

Itr Sample 1 Sample 2 Sample 3
0 0±0 0±0 0±0
1 5±2 17±4 277±16
2 15±4 47±9 763±37
3 33±8 100±18 1602±76
4 66±18 201±31 2991±137
5 129±33 379±51 4992±188
6 245±62 697±84 7260±198
7 461±110 1250±141 8947±123
8 852±201 2201±230 9583±51
9 1557±351 3650±330 9708±22

(b) Based on TukeyHSD Test, if the difference between each pair of samples is
significant, the pairs are marked (o – X shows that the right sample has significantly

more active agents than the left one). This test uses 95% family-wise confidence level.
The aim is to show that agents dealing with scans which have different levels of

metastasis exhibit significantly different behaviour.

Itr s1 – s2 s1 – s3 s2 – s3
0 – – –
1 o – X o – X o – X
2 o – X o – X o – X
3 o – X o – X o – X
4 o – X o – X o – X
5 o – X o – X o – X
6 o – X o – X o – X
7 o – X o – X o – X
8 o – X o – X o – X
9 o – X o – X o – X

which of the three broad category (healthy, partially af-
fected or the metastasis is spread) the bone scan falls into
(see Fig. 9). This model is proposed here to calculate the first
and the second derivatives using the following formulas:

f ′
s
i = σs

i − σs
i−1 (3)

f ′′
s
i = σs

i − 2× σs
i−1 + σs

i−2 (4)

where f ′ and f ′′ are the first and the second derivatives

respectively, σ represents the number of active agents, i is
the iteration number and s is the bone scan sample number,
s = {1, 2, 3}. The value of the second derivative (f ′′) can
be used as an indicator to stop the algorithm. The rationale
behind stopping the algorithm is that the activity of the agents
has reached a point that allowing further process, would blur
the congregation of the agents around less popular clusters.
This is caused by the diffusion mechanism of the algorithm
where there is higher probability of an inactive agents picking
another one from within the larger clusters than the smaller
ones.

Having discussed the functions of statistical and mathemat-
ical methods, the following three sections extends the use of
SDS to mammographs, AAA’s CT scans and NG-tube’s X-ray.

C. Mammographs

One of the main aims of the CAD systems is to identify
microcalcifications to help the radiologists make the diagnosis.
Microcalcifications are sometimes difficult for the human film
reader to detect because of their small size and low con-
trast, particularly if they are superimposed on dense glandular
tissue. However, of all the signs of abnormality found on
mammograms, microcalcifications are the easiest to detect
automatically. Unlike small ill-defined masses, which may
superficially resemble normal glandular tissue, microcalcifica-
tions have properties namely their very small size and high
attenuation which differ significantly from those of normal
background structures.

Adjustable parameters:

• S = 10, 000

• α = 120. As disucssed earlier, this experiment re-
quires a higher level of sensitivity and thus the thresh-
old of α is set lower than the previous experiment.
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Fig. 9. Agents activity. The plots in this figure illustrate the activity of
agents, the standard deviation, first and second derivatives on each iteration in
the three sample bone scans. The ‘stopping point’ in the top plot shows the
iteration number when SDS algorithm could terminate. This occurs when the
value of the second derivative is negative (see Eq. 4).

• dRad = 2

Fig. 10. Mammographs. Area with potential microcalcification particles are
detected using the Stochastic Diffusion Search algorithm.

• Itr = 10

Since smaller clusters are of interest in bone scan and spe-
cially mammographs, a different mechanism for determining
the ‘stopping point’ is proposed. In this method, when f ′′ < 0
the algorithm reaches the stopping point. Fig. 2 shows that
areas with higher potential of calcifications.

D. Aortic Aneurysm Disease

The SDS algorithm is utilised in this experiment to assess
the proximal neck of the aneurysm and detect the level of
calcification above the sac.

The agents are initialised throughout the search space (i.e.
the CT image) in a two-phase mission, the first of which is
to identify the location of the aorta within the scan, and the
second phase highlights the existing calcification within the
marked area. The adjustable parameters are empirically chosen
as follows in each phase.

Phase one:

• S = 1, 000

• α = 100

• β = 140

• dRad = 3

• Itr = 50

Phase Two:

• S = 1, 000

• α = 150

• β = 255

• dRad = 1

• Itr = 100

In the first phase, since the radius of the area of interest
is in one particular area (i.e. aorta, which exists in only one
place in each scan), the diffusion phase is set to explore a
bigger region of the search space around the active agent and
thus the diffusion radius, dRad is set to 3 units (see Fig. 6).
This leads to the identification of the centre of aorta which is
presented in Fig. 11 top.



Fig. 11 middle highlights the region where potential cal-
cifications could be spotted by the swarms (within the bigger
circle in the figure); once this region is located, the second
phase commences where swarms congregate over the area of
interest based on the value of α < avgIn < β, which dictates
the activity of the swarm and thus the convergence behaviour
as shown in Fig. 11-bottom. As indicated above, in the second
phase, the algorithm is allowed a smaller diffusion radius,
dRad, but a larger number of iterations in order to ensure
a total convergence of the swarms to more precise areas with
the required colour intensity.

Once the swarms converge, the suitability of the scan is
evaluated by measuring the activity rate of the swarms; this
activity is directly related to the level of calcification in the
aortic wall in that particular segment of the aorta. This helps
comparing different parts of the aorta to choose the best
possible location with the least level of calcium in the wall
of the proximal neck to position the EVAR graft.

This can help assess CT angiography images of patients
awaiting the repair of the aortic aneurysm. The SDS can
evaluate all the CT slides that did look at the proximal neck to
identify an optimal location for deploying the graft. This can
reduce the risk of the proximal type I endoleak. This type of
endoleak is the most serious complication of EVAR and it is
a life threatening problem. When this occur the aneurysm sac
is not excluded from the circulation and it can get larger and
rupture causing a vascular catastrophe with 50-75% mortality
rate.

E. Nasogastric Tube

In this experiment the SDS agents are applied to identify
the tip of the NG tube that is the most radiopaque part. This
can help clinicians identify the distal end of the tube and assess
its position to ensure that it is in the stomach and not in the
lungs (see Fig. 12).

The adjustable parameters for this experiment are:

• S = 10, 000

• α = 240

• β = 250

• dRad = 2

• Itr = 10

The last three sections argue for the generalisation of the
swarm intelligence technique presented in this paper. While
the authors strongly keep themselves away from the any claim
that the presented technique could replace human experts, the
sample applications of this technique, shows the usefulness of
the method and its possible potential to reduce human error and
assist the identification of metastasis and micro-calcifications
in various types of scans.

VIII. CONCLUSION

This paper details the promising results of the novel
application of Stochastic Diffusion Search in detecting areas
of metastasis in bone scans and the identification of the
potential microcalcifications on the mammographs. Statistical

Fig. 11. Top: identifying the location of the diseased aorta within the scan;
Middle: highlighting areas where potential calcifications might exist; Bottom:
identification of calcification on the current slide of CT scan in order to
compare with the others

and mathematical models are proposed to further investigate
the behaviour of the agents in the population and the outcome
demonstrates that the algorithm exhibits a statistically signif-
icant difference when applied to scans of variously affected
individuals.

The swarms intelligence technique was also used in the
two-phase process of the identification of aorta in the CT
images, as well as calcifications in areas around the aorta;
this task could lead to a more accurate localisation of the neck
of the aneurysm.

Additionally, the swarms exhibited promising performance
in detecting the tip of Nasogastric tube inserted through the
nose to the stomach with the goal of providing short-term
nutrition in critically ill patients. The identification of the tip
of the tube by the swarms can in practice lead to reducing the
probability of the complications of nasogastric tubes frequently
caused by inadvertent malpositioning of the tube in the lungs
verses stomach.



Fig. 12. Chest X-ray showing a misplaced Nasogastric tube detected by SDS

At last not least, the authors would like to emphasise that
the presented technique could be effectively utilised as an
adjunct to the expert’s eyes of a specialist.
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