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Abstract. In the spirit of Searle’s definition of weak and strong
artificial intelligence, this paper presents a discussion on weak com-
putational creativity in swarm intelligence systems. It addresses the
concepts of freedom and constraint and their impact on the creativity
of the underlying systems. An analogy is drawn on mapping these
two ‘prerequisites’ of creativity onto the two well-known phases of
exploration and exploitation in swarm intelligence algorithms, fol-
lowed by the visualisation of the behaviour of the swarms whose
performance are evaluated in the context of arguments presented in
the paper.

1 INTRODUCTION

In recent years, studies of the behaviour of social insects (e.g. ants
and bees) and social animals (e.g. birds and fish) have proposed
several new metaheuristics for use in collective intelligence resulted
from social interaction.

Among the many works in the fields are research on swarm paint-
ing (e.g. [24, 7, 34, 35]), ant colony paintings [19, 23, 31]) and other
multi-agent systems (e.g. RenderBots [29] and the particle-based
non-evolutionary approach of Loose and Sketchy Animation [15]).

In most of the swarm-based work mentioned above (e.g. [24, 7, 34,
35, 19]), the painting process does not re-work an initial drawing,
but rather focuses on presenting “random artistic patterns”, some-
where between order and chaos [35]. Other classes of research (e.g.
by Schlechtweg et al. [29] and Curtis [15]) are based on reworking
an initial drawing. There is a significant number of related papers
in the area of non-photorealistic rendering; particularly, many papers
approach drawing and painting using the optimisation framework.
Furthermore, particles have been used for stippling and other aes-
thetic styles in numerous papers. Turk and Bank’s work [33] is an
early example of optimising particle positions to control a stroke-
based rendering. Hertzmann [21] optimised a global function over
all strokes using a relaxation approach. In one of his works, Col-
lomosse [14] used a global genetic algorithm to define a rendering
algorithm. More recently, Zhao et al. [38] deployed an optimisation-
based approach to study the stroke placement problem in painterly
rendering, and presented a solution named stroke processes, which
enables intuitive and interactive customisation of painting styles.

This work is an extension of ideas first presented at the Comput-
ing and Philosophy symposium at AISB 2011 [1] and subsequently
published in the Cognitive Computation journal [6]. In the work dis-
cussed herein the impact of freedom and constraint on the concept
of ‘creativity’ is discussed, followed by a discussion on the creativity
of swarm intelligence systems. This paper also addresses the issue of
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weak verses strong computational creativity.

2 ON CREATIVITY, FREEDOM AND ART
For many years there has been discussions on the relationship be-
tween art, creativity and freedom; a debate elegantly encapsulated in
the famous German prose by Ludwig Hevesi at the entrance of the
Secession Building in Vienna:

“Der Zeit ihre Kunst
Der Kunst ihre Freiheit”

That is: “To Time its Art; To Art its Freedom”.

Which, centuries after, resonates an earlier observation from Aris-
totle (384-322 BCE) [17] emphasising the importance of freedom
(here, having “a tincture of madness”) in presenting a creative act.

“There was never a genius without a tincture of madness.”

On the other hand Margaret Boden, in [9], more recently argues
that creativity has an ambiguous relationship with freedom:

“A style is a (culturally favoured) space of structural pos-
sibilities: not a painting, but a way of painting. Or a way of
sculpting, or of composing fugues .. [] .. It’s partly because of
these [thinking] styles that creativity has an ambiguous rela-
tionship with freedom.”

Considering the many factors constituting the evaluation of what
is deemed ‘creative’, raises core issues regarding how humans eval-
uate creativity; their aesthetic capacity and potentially that of other
animals (e.g. as exhibited in, say, mate-selection). Galanter [18] sug-
gests that perhaps the ‘computational equivalent’ of a bird or an in-
sect (e.g. in evaluating mate selection) is all that is required for [com-
putational] aesthetic evaluation:

“This provides some hope for those who would follow a
psychological path to computational aesthetic evaluation, be-
cause creatures with simpler brains than man practice mate
selection.”

In this context, as suggested in [16], the tastes of the individual
in male bowerbirds are made visible when they gather collections of
bones, glass, pebbles, shells, fruit, plastic and metal scraps from their
environment, and arrange them to attract females [10]:

“They perform a mating dance within a specially prepared
display court. The characteristics of an individual’s dance or
artefact display are specific to the species, but also to the capa-
bilities and, apparently, the tastes of the individual.”



However the question of whether ‘mate selection behaviour in an-
imals implies making a judgement analogous to aesthetic judgement
in humans’ is perhaps (pace Nagel’s famous discussion ‘What is it
like to be a bat? ’[25]) a fundamentally unanswerable question.

In contrast, the role of education (or training) in recognising
‘good’ and ‘bad’, ‘creative’ and ‘non-creative’ has been experimen-
tally probed. A suggestive study investigating this topic by Watanabe
[36] gathers a set of children’s paintings, and then adult humans are
asked to label the “good” from the “bad”. Pigeons are then trained
through operant conditioning to only peck at good paintings. Af-
ter the training, when pigeons are exposed to a novel set of already
judged children’s paintings, they show their ability in the correct clas-
sification of the paintings.

This emphasises the role of learning training and raises the ques-
tion on whether humans are fundamentally trained (or “biased”) to
distinguish good and/or creative work.

Another tightly related topic to swarm intelligence in this context
is the creativity of social systems. Bown in [11] indicates that our
creative capabilities are contingent on the objects and infrastructure
available to us, which help us achieve individual goals, in two ways:

“One way to look at this is, as Clark does [13], in terms
of the mind being extended to a distributed system with an em-
bodied brain at the centre, and surrounded by various other
tools, from digits to digital computers. Another way is to step
away from the centrality of human brains altogether and con-
sider social complexes as distributed systems involving more or
less cognitive elements.”

Discussion on creativity and the conditions which make a partic-
ular work creative, have generated heated debate amongst scientists
and philosophers for many years [27]; for a theoretical review on
‘conditions of creativity’; the ‘systems’ view of creativity; cognitive
approaches, etc. see also [32]. Although this article does not aim to
resolve any of these issues (or even suggest that the presented work
strongly fits and endorses the category of the ‘computationally cre-
ative realm’), we investigate the performance of a swarm intelligence
sketching system which, we suggest, highlights core issues inherent
in exploring conceptual/artistic space(s).

3 CREATIVITY IN SWARMS
3.1 Freedom vs. Constraint
Both freedom and constraint have always been at the core of several
definitions for creativity. Philip Johnson-Laird in his work on free-
dom and constraint in creativity [22] states:

“... for to be creative is to be free to choose among alterna-
tives .. [] .. for which is not constrained is not creative.”

In swarm intelligence systems, the two phases of exploration and
exploitation introduce the freedom and control the level of constraint.
Pushing the swarms towards exploration, freedom is boosted; and
by encouraging exploitation, constraint is more emphasised. Finding
a balance between exploration and exploitation has been an impor-
tant theoretical challenge in swarm intelligence research and over the
years many hundreds of different approaches have been deployed by
researchers in this field. In the presented work, two swarm intelli-
gence algorithms are deployed: the algorithm which is responsible
for the “intelligent” tracking of the line drawing is Particle Swarm
Optimisation (PSO). This well-known algorithm, which mimics the

behaviour of birds flocking, has an internal mechanism of balanc-
ing off the exploitation and exploration phases. However due to the
weakness of the exploration in this algorithm, our system also de-
ploys another nature inspired algorithm to overcome this weakness,
Stochastic Diffusion Search (SDS), which mimics the behaviour of
one species of ants (Leptothorax acervorum) foraging. Therefore, ex-
ploration is promoted by utilising the SDS algorithm, whose impact
on different swarm intelligence algorithms has been scientifically re-
ported using various measures and statistical analysis in several pub-
lications (e.g. [2, 3, 4, 5]) and the technical information on the inte-
gration of the two algorithms can be found in al-Rifaie et al. [2].

In the visualisation, the swarms are presented with a set of points
(which constitute a line drawing – see Fig. 1) and are set to consider
these points (one at a time) as their global optimum. In other words,
the global optimum is dynamic, moving from one position to another
and the swarms aim to converge over this dynamic optimum (Fig. 2).

As stated in the introduction, there have been several relevant at-
tempts to create creative computer generated artwork using Artificial
Intelligence, Artificial Life and Swarm Intelligence. Irrespective of
whether the swarms are considered genuinely creative or not, their
similar individualistic approach is not totally dissimilar to those of
the “elephant artists” [37]:

“After I have handed the loaded paintbrush to [the ele-
phants], they proceed to paint in their own distinctive style,
with delicate strokes or broad ones, gently dabbing the bristles
on the paper or with a sweeping flourish, vertical lines or arcs
and loops, ponderously or rapidly and so on. No two artists
have the same style.”

Similarly if the same line drawing (see Fig. 1) is repeatedly given
to the swarms, the output sketches (e.g. Fig 2) made by the swarms,
are never the same (see Fig. 4 to compare different sketches). In other
words, even if the swarms process the same input several times, they
will not make two identical sketches; furthermore, the outputs they
produce are not merely randomised variants of the input. In order to
demonstrate this claim qualitatively in an experiment, the output of
the swarm-based system is compared against a simple randomised
tracing algorithm, where each point in the line drawing could be sur-
rounded with lines at a random distance and direction.

In Fig 3, only PSO algorithm is used to producing the sketch. This
experiment is run in order to highlight the exploration (i.e. ‘freedom’)
impact induced by SDS algorithm on the final sketch.

3.2 Swarmic Freedom versus Random Freedom

This part presents an experiment with the goal of contrasting the be-
haviour of the swarms to that of a group of random agents. In this
experiment, the freedom of the swarm (i.e. Swarmic Freedom) is
maintained by the swarm intelligence algorithms used in the system,
whereas the freedom of the agents in the randomised algorithm is
controlled by what we call the Random Freedom. These definitions
are utilised here to highlight the potential of the swarms in exhibiting
computational creativity.

The sketches in Fig. 5 (top and middle) show two outputs from
a simple randomised algorithm when configured to exhibit limited
‘random’ variations in their behaviour (i.e. there is only small ran-
dom distance and direction from the points of the original line draw-
ing); comparing the two sketches, we note a lack of any signifi-
cant difference between them. Furthermore, when more ‘freedom’ is
granted to the randomised algorithm (by increasing the range in the



Figure 1. This figure shows a series of points that make a line drawing;
sample line drawing after one of Picasso’s sketches.

underlying random number generator, which allows the technique to
explore broader areas of the canvas), the algorithm soon begins to de-
viate excessively from the original line drawing. For this reason such
randomisation results in a very poor - low fidelity - interpretation of
the original line drawing (Fig. 5-bottom). In contrast, although the
agents in the swarms are free to access any part of the canvas, the
swarm-control mechanism (i.e. Swarm Freedom) naturally enables
the system to maintain recognisable fidelity to the original input. In
the randomised algorithm, contra the swarms system, it can be seen
that simply by giving the agents more randomised behaviour (Ran-
dom Freedom), they fails to produce more ‘creative sketches’.

The Swarmic Freedom or ‘controlled freedom’ (or the ‘tincture
of madness’) exhibited by the swarm algorithms (induced by the
stochastic side of the algorithms) is crucial to the resultant work and
is the reason why having the same line drawing does not result in the
system producing identical sketches. This freedom emerges, among
other influencing factors, from the stochasticity of SDS algorithm
in picking agents for communication, as well as choosing agents to
diffuse information; the tincture of madness in PSO algorithm is in-
duced via its strategy of spreading the particles throughout the search
space as well as the stochastic elements in deciding the next move of
each particle.

In other words, the reason why the swarm sketches are different
from the simple randomised sketches, is that the underlying PSO
flocking component-algorithm constantly endeavours to accurately
trace the input image whilst the SDS foraging component constantly
endeavours to explore the wider canvas (i.e. together the two swarm
mechanisms ensure high-level fidelity to the input without making an
exact low-level copy of the original line drawing). Although the algo-
rithms (PSO and SDS) are nature-inspired, we do not claim that the
presented work is an accurate model of natural systems. Furthermore,
whilst designing the algorithm there was no explicit ‘Hundertwasser-
like’ attempt [26] by which we mean the stress on using curves in-
stead of straight lines, as Hundertwasser considered straight lines not
nature-like and tried not to use straight lines in his works to bias the
style of the system’s sketches.

Figure 2. A sketch produced by the swarms.

3.3 Weak vs. Strong Computational Creativity
Before approaching the topic of weak or strong computational cre-
ativity, the difference between weak and strong AI is highlighted.
In strong AI, the claim is that machines can think and have genuine
understanding and other cognitive states (e.g. “suitably programmed
machines will be capable of conscious thought” [12]); weak AI, in
contrast, does not usually go beyond expecting the simulation of hu-
man intelligence. I.e. instantiating genuine “understanding” is not the
primary concern in weak AI research.

An analogy could be drawn to computational creativity, extending
the notion of weak AI to weak computational creativity, which does
not go beyond exploring the simulation of human creativity; empha-
sising that genuine understanding is not the main issue in weak com-
putational creativity. In strong computational creativity, the expecta-
tion is that the machine should be creative, have genuine understand-
ing and other cognitive states as well as being capable of conscious
thought.

Having a machine with conscious thought has provoked many crit-
ics, among whom John Searle made the most famous attack against
strong AI in his Chinese Room argument [30]. Bishop [8] sum-
marises Searle’s Chinese Room Argument (CRA) as follows:

“In 1977 Schank and Abelson published information [28]
on a program they created, which could accept a simple story
and then answer questions about it, using a large set of rules,
heuristics and scripts. By script they referred to a detailed de-
scription of a stereotypical event unfolding through time. For
example, a system dealing with restaurant stories would have a
set of scripts about typical events that happen in a restaurant:
entering the restaurant; choosing a table; ordering food; pay-
ing the bill, and so on. In the wake of this and similar work in
computing labs around the world, some of the more excitable



Figure 3. A sketch produced by the swarms without SDS exploration.

proponents of artificial intelligence began to claim that such
programs actually understood the stories they were given, and
hence offered insight into human comprehension.

It was precisely an attempt to expose the flaws in the state-
ments emerging from these proselytising AI-niks, and more
generally to demonstrate the inadequacy of the Turing test3,
which led Searle to formulate the Chinese Room Argument.

The central claim of the CRA is that computations alone
cannot in principle give rise to understanding, and that there-
fore computational theories of mind cannot fully explain hu-
man cognition. More formally, Searle stated that the CRA was
an attempt to prove that syntax (rules for the correct formation
of sentences:programs) is not sufficient for semantics (under-
standing). Combining this claim with those that programs are
formal (syntactical), whereas minds have semantics, led Searle
to conclude that ‘programs are not minds’.

And yet it is clear that Searle believes that there is no barrier
in principle to the notion that a machine can think and under-
stand; indeed in MBP [Minds, Brains and Programs] Searle ex-
plicitly states, in answer to the question ‘Can a machine think?’,
that ‘the answer is, obviously, yes. We are precisely such ma-
chines’. Clearly Searle did not intend the CRA to target ma-
chine intelligence per se, but rather any form of artificial in-
telligence according to which a machine could have genuine
mental states (e.g. understanding Chinese) purely in virtue of
executing an appropriate series of computations: what Searle
termed ‘Strong AI’.

Searle argues that understanding, of say a Chinese story,

3 In what has become known as the ‘standard interpretation’ of the Turing
test a human interrogator, interacting with two respondents via text alone,
has to determine which of the responses is being generated by a suitably
programmed computer and which is being generated by a human; if the
interrogator cannot reliably do this then the computer is deemed to have
‘passed’ the Turing test.

Figure 4. Different sketches of the swarms off a single line drawing.

can never arise purely as a result of following the procedures
prescribed by any computer program, for Searle offers a first-
person tale outlining how he could instantiate such a program,
and act as the Central Processing Unit of a computer, produce
correct internal and external state transitions, pass a Turing test
for understanding Chinese, and yet still not understand a word
of Chinese.

Searle describes a situation whereby he is locked in a room
and presented with a large batch of papers covered with Chi-



Figure 5. The sketches of the swarms with random behaviour: This figure
shows the sketches made with a simple randomised tracing algorithm, using

random distance and direction from the lines of the original line drawing.
The first two sketches (top and middle) use the same random distance (e.g.

d) and the bottom sketch uses the random distance of d× 6 .

nese writing that he does not understand. Indeed, the monoglot
Searle does not even recognise the symbols as being Chinese,
as distinct from say Japanese or simply meaningless patterns.
Later Searle is given a second batch of Chinese symbols, to-
gether with a set of rules (in English) that describe an effective
method (algorithm) for correlating the second batch with the
first, purely by their form or shape. Finally he is given a third
batch of Chinese symbols together with another set of rules (in
English) to enable him to correlate the third batch with the first
two, and these rules instruct him how to return certain sets of
shapes (Chinese symbols) in response to certain symbols given
in the third batch.

Unknown to Searle, the people outside the room call the
first batch of Chinese symbols ‘the script’, the second set ‘the
story’, the third ‘questions about the story’ and the symbols he
returns they call ‘answers to the questions about the story’. The
set of rules he is obeying they call ‘the program’. To complicate
matters further, the people outside the room also give Searle
stories in English and ask him questions about these stories in
English, to which he can reply in English.

After a while Searle gets so good at following the instruc-
tions, and the ‘outsiders’ get so good at supplying the rules he
has to follow, that the answers he gives to the questions in Chi-
nese symbols become indistinguishable from those a true Chi-
nese person might give.

From an external point of view, the answers to the two sets
of questions, one in English the other in Chinese, are equally
good; Searle, in the Chinese room, have passed the Turing
test. Yet in the Chinese language case, Searle behaves ‘like a
computer’ and does not understand either the questions he is
given or the answers he returns, whereas in the English case, ex
hypothesi, he does. Searle contrasts the claim posed by some
members of the AI community - that any machine capable of
following such instructions can genuinely understand the story,
the questions and answers - with his own continuing inability to
understand a word of Chinese; for Searle the Chinese symbols
forever remain ungrounded.”

We suggest that Searle’s famous thought experiment similarly tar-
gets the notion of ‘strong computational creativity’. I.e. Searle us-
ing a similar “room” could gets so good at following the rules that
the strings of symbols he outputs from the room successfully control
a ‘Strong computer creative art’ system producing works judged to
have artistic merit by people outside the room; even though Searle-
in-the-room remains ignorant of art and art practise. Hence, until the
challenge of the Chinese room has been fully met, the authors urge
caution in predicating ‘strong’ notions of creativity to any computa-
tional system.



4 CONCLUSION
In this paper, we have discussed the potential of the swarms in
exhibiting ‘weak computational creativity’. This specific work de-
scribed herein uses swarm intelligence techniques to explore the dif-
ference between using Random Freedom and Swarmic Freedom in
the visualisation of the swarms ‘tracing’ line drawings; this work
highlights the features of swarm-regulated difference versus simple-
random difference in the production of such ‘sketches’ by computer.
We stressed on the significant impact of both freedom and constraint
on the emergent creativity, and presented a discussion on how these
two concepts are mapped onto exploration and exploitation, the two
most infamous phases in the swarm intelligence world. The so de-
scribed computational artist is the result of merging two swarm intel-
ligence algorithms (SDS and PSO), preserving freedom (exploration)
and constraint (exploitation) respectively.

5 CODA
Leit-motif : Although we distance ourselves from claims of strong
computational creativity, in faint homage to Turing’s Imitation Game
and Harre & Wang’s physical implementation of the Chinese room
experiment [20], we asked Chiara Puntil, a human artist from Gold-
smiths, to adopt the ‘style’ of the swarms and to produce some
sketches (Fig 6) based on the ‘style’ of the line drawing in Fig. 2.
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Figure 6. Two of the sketches are produced by the swarms and two are made by a human artist.


