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Abstract. Probabilistic record linkage is a well established topic in the
literature. Fellegi-Sunter probabilistic record linkage and its enhanced
versions are commonly used methods, which calculate match and non-
match weights for each pair of records. Bayesian network classifiers –
naive Bayes classifier and TAN have also been successfully used here.
Recently, an extended version of TAN (called ETAN) has been devel-
oped and proved superior in classification accuracy to conventional TAN.
However, no previous work has applied ETAN to record linkage and in-
vestigated the benefits of using naturally existing hierarchical feature
level information and parsed fields of the datasets. In this work, we ex-
tend the naive Bayes classifier with such hierarchical feature level infor-
mation. Finally we illustrate the benefits of our method over previously
proposed methods on 4 datasets in terms of the linkage performance (F1

score). We also show the results can be further improved by evaluating
the benefit provided by additionally parsing the fields of these datasets.

Keywords: Probabilistic record linkage; Naive Bayes classifier; TAN
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1 Introduction

Record linkage (RL) [1] proposed by Halbert L. Dunn (1946) refers to the task of
finding records that refer to the same entity across different data sources. These
records contain identifying fields (e.g. name, address, time, postcode etc.). The
simplest kind of record linkage, called deterministic or rules-based record linkage,
requires all or some identifiers are identical giving a deterministic record linkage
procedure. This method works well when there exists a common key identifier
within the datasets. However, in real world applications, deterministic record
linkage is problematic because of the incompleteness and privacy protection [2]
of a key identifier field.
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To mitigate this problem, probabilistic record linkage (also called fuzzy match-
ing) was developed, which takes a different approach to record linkage by taking
into account a wider range of potential identifiers. This method computes weights
for each identifier based on its estimated ability to correctly identify a match or
a non-match, and uses these weights to calculate a score (usually log-likelihood
ratio) that two given records refer to the same entity.

Record-pairs with scores above a certain threshold are considered to be
matches, while pairs with scores below another (lower) threshold are considered
to be non-matches; pairs that fall between these two thresholds are considered to
be “possible matches” and can be dealt with accordingly (e.g., human reviewed,
linked, or not linked, depending on the requirements). Whereas deterministic
record linkage requires a series of potentially complex rules to be programmed
ahead of time, probabilistic record linkage can be trained to perform well with
much less human intervention.

Good results from probabilistic record linkage may be best achieved where
field structure is well defined and more specific. For example, patient addresses in
medical records could be better compared where addresses are represented with
a fine grained structure (i.e., premises, street number, street name, town name,
city name, and postcode). This field structure could be achieved by splitting
unstructured/semi-structured addresses with address parsing. Moreover, there
are hierarchical restrictions between these fields, which are useful to avoid un-
necessary computation of field comparison [3, 4]. These hierarchical restrictions
can be mined from the semantic relationships between fields, which widely exist
in real world record matching problems. An example of this occurs especially
in address matching. For example, two restaurants with the same name located
in the two cities should be more likely identified as two different restaurants,
because they are probably two different branches in two cities. In this case, the
city locations have higher importance than the restaurant names.

In this paper we investigate how to use these hierarchical restrictions and
standardized record-pairs to improve record linkage accuracy. Also we propose an
extended naive Bayes classifier to model the record linkage problem. The paper
is organized as follows. In Section 2 we discuss related work in record linkage.
In Section 3 we discuss the framework of a general record linkage process. In
Section 4 we discuss the data cleaning method and address parser used in this
paper. In Section 5 we discuss the standard probabilistic record linkage model. In
Section 6 we propose our improved record linkage model with elicited hierarchical
restrictions. In Section 7 we report on the experiments of 4 different real-world
datasets. Our conclusions are in Section 8.

2 Related Work

Fellegi-Sunter probabilistic record linkage (PRL-FS) [5] is one of the most com-
monly used methods. It assigns a match/non-match weight for each correspond-
ing field of record-pairs based on log-likelihood ratios. For each record-pair, a
composite weight is computed by summing each field’s match or non-match



weight (as summarised in Section 5). The resulting composite weight is then
compared to the aforementioned thresholds to determine whether the record-pair
is classified as a match, possible match (hold for human review) or non-match.
Determining where to set the match/non-match thresholds is a balancing act
between obtaining an acceptable sensitivity (or recall, the proportion of truly
matching records that are classified match by the algorithm) and positive pre-
dictive value (or precision, the proportion of records classified match by the
algorithm that truly do match).

In PRL-FS method, a match weight will only be used when two strings
exactly agree in the field. However, in many real world problems, two strings
describing the same field may not exactly (character-by-character) agree with
each other because of multiple representations and typographical error (mis-
spelling). For example, Andy and Andrew could be two representations of a
person’s first name. Moreover, Andy could be misspelled as Andi. However, the
field (first name) comparisons (Andy, Andrew) and (Andy, Andi) are both treated
as non-match in PRL-FS.

The US Census Bureau reports [6] that, because of multiple representa-
tions and mis-spellings, 25% of first names did not agree character-by-character
among medical record-pairs that were from the same person. To obtain bet-
ter performance in real world usage, Winkler proposed an enhanced PRL-FS
method (PRL-W) [7] that takes into account field similarity (of two strings for
a field within a record-pair) in the calculation of field weights, and showed bet-
ter performance of PRL-W compared to PRL-FS [8]. In this paper, we also use
Jaro-Winkler similarity to measure the differences between fields of two records.
These field difference values and known record linkage labels are used to train
the record linkage model.

Probabilistic graphical models for classification such as naive Bayes (NBC)
and tree augmented naive Bayes (TAN) are also used for record linkage [9], where
the single class variable contains two states: match and non-match. These models
can be easily improved with domain knowledge. For example, monotonicity con-
straints (i.e. a higher field similarity value indicating a higher degree of ‘match’)
can be incorporated to help reduce overfitting in classification [10]. Recently, a
state-of-the-art Bayesian network classifier called ETAN [11, 12] has been pro-
posed and shown to outperform NBC and TAN in many cases. ETAN relaxes
the assumption about independence of features, and does not require features
to be connected to the class.

As discussed in our previous work [13], we have applied ETAN to probabilistic
record linkage, and extended naive Bayes classifier (referred to as HR-NBC) by
introducing hierarchical restrictions between features. The results have shown
the benefits of using hierarchical restrictions under some settings. In this paper,
we introduce a standard framework for the general record linkage problem. Then,
we discuss the address parsing method. Finally, we investigate if the record
linkage performance could be further improved by using the address parser on 2
datasets.



3 Framework

Köpcke and Rahm [14] reviewed numerous studies of record linkage which were
mainly concerned with structured and often relational data, while semi-structured
and unstructured data received much less attention. It has to be noted that the
difference between fully structured and semi-structured data is not strictly de-
fined and can vary across different domains and data representations. In this
paper, we focus on relational structured and semi-structured data which are
defined below.

Structured data: Fully structured data is considered to be relational data
where each field has a designated value if applicable. For example, if a field
is designated for the first part of address such as a house number and street
name, then the corresponding field in each record should contains this part of
the address.

Semi-structured data: Semi-structured data implies imperfect field alignment
where the data items might appear in any field which is not necessarily desig-
nated to these data items. For example, the whole address may be stored textu-
ally in a single field or may be assigned to multiple fields without any particular
designation of purpose; so that, the postal town may appear in any one of them.
Hence, this imperfection in data structure poses a challenge to link the records
according to those fields. Non-relational data such as XML documents, may also
be considered as semi-structured [15], but this becomes arguable when there is
a well defined consistent schema.

Data of any structure might have noise consisting of misspellings, invalid
data (e.g. (000)000 − 000 for telephone number), missing data, abbreviations
and so on [16]. This ‘noise’ introduces more uncertainty into the matching of
records. These challenges may be solved by data cleaning [16] such as filling in
missing values, parsing fields with unstructured and ambiguous data and so on.
In particular, field parsing may resolve ambiguous field alignment or split fields
into constituent parts such as house number and street name.

Figure 1 shows a process of record linkage which is modelled in this paper.
The input data from two sources can be either structured or semi-structured and
it requires pre-processing in the case of ambiguous address fields as discussed
above. In our work, a pre-processing step only resolves address fields in order
to identify specific address components such as house number and street name,
which might appear together in a single field. The next step is to check if there
exists hierarchical restrictions (as discussed in Section 1) within the dataset,
which determines a choice of model. Finally, we match two records by applying
one of the discussed probabilistic models or Bayes classifiers; that is, PRL-W,
TAN, ETAN, NBC or HR-NBC. Record-pairs are classified into either match or
non-match classes as discussed in the remainder.
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Fig. 1. The framework of linking record-pairs in this paper.

4 HMM-based Address Parser

Field comparison is a fundamental process for probabilistic record linkage meth-
ods and Bayes classifiers. However, raw data from the web or real-world databases
are noisy and sometimes do not have a well-defined structure for carrying out
these comparisons. Therefore, data cleaning and standardisation are usually ap-
plied before record linkage. For instance, address is a commonly used field for
records containing information about people and organisations, but often ex-
hibits variations (“roman street” vs. “roman st.”). Proper segmentation of raw
addresses into a set of meaningful fields (street name, street type) would be an
important step for the subsequent comparison task.

In this work, we use a Hidden Markov Model (HMM) for parsing addresses
as described in [17, 18]. Each address input string is firstly tokenised into a set
of words and then each word is assigned with an observation label by using a
number of look-up tables. The reference tables contain information about postal
codes, city names or county names from postal authorities or governments. The
assignments follow a greedy matching algorithm, which prefers assigning labels
over a sequence of words than individual word. For example, even though “stoke”
and “trent” are in a “sub-locality” table, “stoke on trent ” is observed as “city”
because the whole sequence of words can be found in a “city” table. Automati-



Fig. 2. An example of using HMM for parsing addresses.

cally generated observation labels are not good enough for parsing an arbitrary
address because the greedy assignment algorithm is deterministic so that each
word is always given a particular label. An illustrated example is presented in
Figure 2. “London” is observed as “City” while in this case it is more likely to
be a street name in Glasgow. A hidden Markov model is able to recover from
this incorrect observation by considering an underlying state sequence.

The discrete-time HMM consists of observation sequences {xit}Ti
t=1 and corre-

sponding hidden state sequence {zit}Ti
t=1 for each data item i. Ti is the length of

ith address. The transition probabilities between states are given by πjk, where
πjk = P (zt+1 = k | zt = j) is the probability of transitioning to state k given
the current state j. The probability of generating observations given states is
governed by an observation matrix O, where Ojm = P (x = m | z = j). Training
is done by filling the matrices from labelled addresses and the best sequence of
states given a test address can be generated by the standard Viterbi algorithm.
Back to the example in Figure 2, if we see more examples containing transition
from street name to street type than city to street type in the training data, the
most likely state for “London” might be correctly marked as street name.

5 Probabilistic Record Linkage

5.1 PRL-FS and PRL-W

Let us assume that there are two datasets A and B of n-tuples of elements from
some set F . (In practice F will normally be a set of a strings.) Given an n-tuple
a we write ai for the i-th component (or field) of a.

Matching If an element of a ∈ A is the representation of the the same object
as represented by an element of b ∈ B we say a matches b and write a ∼ b. Some
elements of A and B match and others do not. If a and b do not match we write
a � b. We write M = {(a, b) ∈ A × B|a ∼ b} and U = {(a, b) ∈ A × B|a � b}.
The problem is then, given an element x in A × B to define an algorithm for
deciding whether x ∈M or x ∈ U .

Comparison Functions on Fields We assume the existence of a function:



cf : F × F → [0, 1].

With the property that ∀h ∈ F , cf(h, h) = 1. We think of cf as a measure of how
similar two elements of F are. Many such functions exist on strings including
the normalised Levenshtein distance or Jaro-Winkler. In conventional PRL-FS
method, its output is either 0 (non-match) or 1 (match). In PRL-W method, a
field similarity score (Jaro-Winkler distance [7, 19]) is calculated, and normalized
between from 0 and 1 to show the degree of match.

Discretisation of Comparison Function As in previous work [8], rather than
concern ourselves with the exact value of cf(ai, bi) we consider a set of I1, · · · Is
of disjoint intervals exactly partitioning the closed interval [0, 1]. These intervals
are called states. We say cf(ai, bi) is in state k to mean cf(ai, bi) ∈ Ik.

Given an interval Ik and a record-pair (a, b) we define two values1:

– mk,i is the probability that cf(ai, bi) ∈ Ik given that a ∼ b.
– uk,i is the probability that cf(ai, bi) ∈ Ik given that a � b.

Given a pair (a, b), the weight wi(a, b) of their i-th field is defined as:

wi(a, b) =

s∑
k=1

wk,i(a, b)

where

wk,i(a, b) =

{
ln(

mk,i

uk,i
) if cf(ai, bi) ∈ Ik

ln(
1−mk,i

1−uk,i
) otherwise.

The composite weight w(a, b) for a given pair (a, b) is then defined as

w(a, b) =

n∑
i=1

wi(a, b).

5.2 The EM Estimation of Parameters

In practice, the set M , the set of matched pairs, is unknown. Therefore, the
values mk,i, and uk,i, defined above, are also unknown. To accurately estimate
these parameters, we apply the expectation maximization (EM) algorithm with
randomly sampled initial values for all these parameters.

1 Note in conventional PRL-FS method [5], two fields are either matched or un-
matched. Thus the k of mk,i can be omitted in this case.



The Algorithm

1. Choose a value for p, the probability that an arbitrary pair in A × B is a
match.

2. Choose values for each of the mk,i and uk,i, defined above.
3. E-step: For each pair (a, b) in A×B compute

g(a, b) =

p
∏

(a,b)∈A×B

s∏
k=1

m′k,i(a, b)

p
∏

(a,b)∈A×B

s∏
k=1

m′k,i(a, b) + (1− p)
∏

(a,b)∈A×B

s∏
k=1

u′k,i(a, b)

(1)

where

m′k,i(a, b) =

{
mk,i if cf(ai, bi) ∈ Ik
1 otherwise.

and

u′k,i(a, b) =

{
uk,i if cf(ai, bi) ∈ Ik
1 otherwise.

4. M-step: Then recompute mk,i, uk,i, and p as follows:

mk,i =

∑
(a,b)∈A×B

g′k,i(a, b)∑
(a,b)∈A×B

g(a, b)
, uk,i =

∑
(a,b)∈A×B

g̃′k,i(a, b)∑
(a,b)∈A×B

1− g(a, b)
, p =

∑
(a,b)∈A×B

g(a, b)

|A×B|

(2)
where

g′k,i(a, b) =

{
g(a, b) if cf(ai, bi) ∈ Ik
0 otherwise.

and

g̃′k,i(a, b) =

{
1− g(a, b) if cf(ai, bi) ∈ Ik
0 otherwise.

In usage, we iteratively run the E-step and M-step until a convergence cri-
terion is satisfied: say

∑
(|∆mk,i|) ≤ 1 × 10−8,

∑
(|∆uk,i|) ≤ 1 × 10−8, and

|∆p| ≤ 1×10−8. Having obtained values for mk,i and uk,i, we can then compute
the composite weight (the natural logarithm of g(a, b)) for each pair defined
earlier.

In our implementation, we set the decision threshold as 0.5, and do not
consider possible matches. Because using a domain expert to manually examine
these possible matches is expensive. Thus, the record-pair (a, b) is recognized as
a match when g(a, b) > 0.5; otherwise it is a non-match.



6 Bayesian Network Classifiers for Record Linkage

In this section we discuss different Bayesian network classifiers (NBC, TAN and
ETAN) for record linkage. After that, we discuss the hierarchical structure be-
tween features, and the proposed hierarchical restricted naive Bayes classifier
(HR-NBC).

6.1 The Naive Bayes Classifier

For each pair of records, (a, b), we let f denote the feature vector (fi)
n
k=1 and C

be a binary class variable. Moreover, fi = k where cf(ai, bi) ∈ Ik, and C = u,m
denoting non-match, match respectively.

Fig. 3. The graphical representation of NBC, HR-NBC, TAN, ETAN. The bold arrow
represents the dependency introduced by hierarchical feature level information.

The model calculates the probabilities P (C = u) of P (C = m), given the fea-
ture values (discretised distance for each field-value pair). This can be formulated
as:

P (C|f) = P (C)× P (f |C)

P (f)
(3)



In the naive Bayes classifier (Figure 3(a)), we assume conditional indepen-

dence of features, where P (f |C) can be decomposed as P (f |C) =

n∏
i=1

P (fi|C).

Thus, equation (3) becomes:

P (C|f) = P (C)×

n∏
i=1

P (fi|C)

P (f)
(4)

With this equation, we can calculate P (C|f) to classify f into the class
(match/non-match) with the highest P (C|f). This approach is one of the base-
line methods we compare our model to.

Like the probabilistic record linkage, one of the often-admitted weaknesses
of this approach is that it depends upon the assumption that each of its fields
is independent from the others. The tree augmented naive Bayes classier (TAN)
and its improved version ETAN relax this assumption by allowing interactions
between feature fields.

6.2 The Tree Augmented Naive Bayes Classifier

TAN [20] can be seen as an extension of the naive Bayes classifier by allowing a
feature as a parent (Figure 3(c)). In NBC, the network structure is naive, where
each feature has the class as the only parent. In TAN, the dependencies between
features are learnt from the data. Given a complete data set D = {D1, ..., DL}
with L labelled instances, where each instance is an instantiation of all the
variables. Conventional score-based algorithms for structure learning make use
of certain heuristics to find the optimal DAG that best describes the observed
data D over the entire space. We define:

Ĝ = arg max
G∈Ω

`(G,D) (5)

where `(G,D) is the log-likelihood score, which is the logarithm of the likelihood
function of the data that measures the fitness of a DAG G to the data D. Ω is
the set of all DAGs scoring candidate structures based on the data.

Assume that the score (i.e. BDeu score [21]) is decomposable and respects
likelihood equivalence, we can devise an efficient structure learning algorithm for
TAN. Because every feature fi has C as a parent, the structure (fi has fj and
C as parents, i 6= j) has the same score with the structure, where fj has fi and
C as parents:

`(fi, {fj , C}, D) + `(fj , C,D) = `(fj , {fi, C}, D) + `(fi, C,D) (6)

In addition to the naive Bayes structure, in TAN, features are only allowed
to have at most one other feature as a parent. Thus, we have a tree structure
between the features. Based on the symmetry property (equation (6)), there is an
efficient algorithm to find the optimal TAN structure by converting the original



problem (equation (5)) into a minimum spanning tree construction. More details
can be found in [11].

6.3 The Extended TAN Classifier

As discussed in the previous section, TAN encodes a tree structure over all the
features. And it has been shown to outperform naive Bayes classifier in a range
of experiments [20]. However, when the training data are scarce or a feature and
the class are conditionally independent given another feature, a TAN structure
may not be best. Therefore, people have proposed the Extended TAN (ETAN)
classifier [11, 12] to allow more structure flexibility.

ETAN is a generalization of TAN and NBC. It does not force a tree to cover
all the attributes, and a feature to connect with the class. As shown in Figure
3(d), ETAN could disconnect a feature if such a feature is not important to
predict C. Thus, ETAN’s search space of structures includes that of TAN and
NBC, and we have:

`(ĜETAN , D) ≥ `(ĜTAN , D) and `(ĜTAN , D) ≥ `(ĜNBC , D) (7)

which means the score of the optimal ETAN structure is superior or equal to
that of the optimal TAN and NBC (Lemma 2 in [11]).

In ETAN, the symmetry property (equation (6)) does not hold, because a
feature (e.g. f2 in Figure 3(d)) is allowed to be disconnected from the class.
Thus, the undirected version of the minimum spanning tree algorithm cannot
be directly applied here. Based on Edmonds’ algorithm for finding minimum
spanning trees in directed graphs, the structure learning algorithm of ETAN
was developed, which has a computational complexity that is quadratic in the
number of features (as is TAN). For detailed discussions we direct the reader to
the papers [11, 12].

6.4 Hierarchical Restrictions Between Features

To utilize the benefits of existing domain knowledge, we extend the NBC method
by allowing hierarchical restrictions between features (HR-NBC). These restric-
tions are modelled as dependencies between features in HR-NBC.

Hierarchy restrictions between features commonly occur in real world prob-
lems. For example, Table 1 shows four address records, which refer to two restau-
rants (there are two duplicates). The correct linkage for these four records is:
record 1 and 2 refer to one restaurant in Southwark, and record 3 and 4 refer
to another restaurant in Blackheath. As we can see, even record 1 and 3 exactly
match with each other in the field of restaurant name, they cannot be linked
with each other because they are located in a different localities.

Based on the description of the example given in Table 1, we can see there is
a hierarchical restriction between the name and locality fields, where the locality
field has a higher feature level than the name field. Thus, intuitively, it is rec-
ommended to compare the locality field first to filter record linkage pairs. To let



Table 1. Four restaurant records with name, address, locality and type information.

Index Name (f1) Address (f2) Locality (f3) Type (f4)

1 Strada Unit 6, RFH Belvedere Rd Southwark Roman
2 Strada at Belvedere Royal Festival Hall Southwark Italian
3 Strada 5 Lee Rd Blackheath Italian
4 Strada at BH 5 Lee Road BLACKHEATH Italian

our classifier capture such hierarchical restriction, we introduce a dependency
between these two fields (f3 → f1) to form our HR-NBC model (Figure 3(b)).
Thus, equation (4) now becomes:

P (C|f) = P (C)×
P (f1|f3, C)

n∏
i=2

P (fi|C)

P (f)
(8)

Parameter estimation Let θ denote the parameters that need to be learned
in the classifier and let r be a set of fully observable record-pairs. The classi-
cal Maximum Likelihood Estimation (MLE) finds the set of parameters that
maximize the data log-likelihood `(θ|r) = logP (r|θ).

However, for several cases in the unified model, a certain parent-child state
combination would seldom appear, and the MLE learning fails in this situation.
Hence, Maximum a Posteriori (MAP) algorithm is used to mediate this problem

via the Dirichlet prior: θ̂ = arg maxθ logP (r|θ)P (θ). Because there is no infor-
mative prior, in this work we use the BDeu prior [21] with equivalent sample
size (ESS) equal to 1.

7 Experiments

This section compares PRL-W to different Bayesian network classifiers. The goal
of the experiments is to do an empirical comparison of the different methods,
and show the advantages/disadvantages of using them in different settings. Also,
it is of interest to investigate how such hierarchical feature level information and
parsed addresses could improve the classifier’s performance.

7.1 Settings

Our experiments are performed on four different datasets2, two synthetic datasets
[4] (Country and Company) with sampled spelling errors and two real datasets
(Restaurant and Tungsten). The Country and Company datasets contain 9 and
11 fields respectively. All the field similarities are calculated by the Jaro-Winkler
similarity function.

2 These datasets can be found at http://yzhou.github.io/.

http://yzhou.github.io/


Restaurant is a standard dataset for record linkage study [10]. It was cre-
ated by merging the information of some restaurants from two websites. In this
dataset, each record contains 5 fields: name, address, city, phone and restaurant-
type 3.

Tungsten is a commercial dataset from an e-invoicing company named Tung-
sten Corporation. In this dataset, there are 2744 duplicates introduced by user
entry errors. Each record contains 5 fields: company name, country code, address
line 1, address line 4 and address line 6.

The details of these 4 datasets and statistical results are summarized in Table
2.

Table 2. The details of the experimental datasets.

Dataset Number of
fields

Number of
instances

Null value
percentages

Country 9 520 31.8%
Company 11 4000 16.7%
Restaurant 4 2176 0.0%
Tungsten 5 1238 27.1%

The experimental platform is based on the Weka system [22]. Since TAN
and ETAN can not deal with continuous field similarity values, these values are
discretised with the same routine as described in PRL-W. To simulate real world
situations, we use an affordable number (10, 50 and 100) of labelled records
as our training data. The reason is clear that it would be very expensive to
manually label hundreds of records. The experiments are repeated 100 times in
each setting, and the results are reported with the mean.

To evaluate the performance of different methods, we compare their ability
to reduce the number of false decisions. False decisions include false matches
(the record-pair classified as a match for two different records) and false non-
matches (the record-pair classified as a non-match for two records that are
originally same). Thus these methods are expected to get high precision and
recall, where precision is the number of correct matches divided by the number
of all classified matches, and recall is the number of correct matches divided by
the number of all original matches.

To consider both the precision and recall of the test, in this experiment, we
use F1 score as our evaluation criteria. This score reaches its best value at 1 and
worst at 0, and is computed as follows:

F1 = 2× precision× recall
precision+ recall

(9)

3 Because the phone number is unique for each restaurant, it, on its own, can be
used to identify duplicates without the need to resort to probabilistic record linkage
techniques. Thus, this field is not used in our experiments.



7.2 Results

The F1 score of all five methods in different scenarios are shown in Table 3,
where the highest average score in each setting is marked in bold. Results of
competitors to the best score are marked with an asterisk * where there is a
statistically significant difference (p = 0.05).

Table 3. The F1 score of five record linkage methods in different datasets.

Dataset L PRL-W TAN ETAN NBC HR-NBC

Country
10 0.974 0.920* 0.899* 0.938* 0.941*
50 0.971* 0.970* 0.967* 0.976 0.976
100 0.967* 0.977* 0.978 0.980 0.981

Company
10 0.999 0.969* 0.965* 0.987* 0.988*
50 0.999 0.995* 0.992* 0.997* 0.997*
100 0.999 0.997* 0.996* 0.998 0.999

Restaurant
10 0.996 0.874* 0.863* 0.884* 0.897*
50 0.996 0.950* 0.952* 0.957* 0.958*
100 0.995 0.957* 0.958* 0.959* 0.960*

Tungsten
10 0.990 0.919* 0.908* 0.916* 0.916*
50 0.990 0.970* 0.967* 0.972* 0.972*
100 0.990 0.970* 0.969* 0.972* 0.972*

Average N/A 0.989 0.956* 0.951* 0.961* 0.963*

As we can see, the PRL-W gets the best result in Company, Restaurant and
Tungsten datasets. And its performance does not depends on the number of
labelled training record-pairs. The reason is that the record linkage weights were
computed with an EM-algorithm as described in equation (1) and (2) over the
whole dataset (labelled and unlabelled data). As we can see from Table 2, all
these three datasets have more than 1000 record-pairs. When two classes are easy
to distinguish, it is not surprising that the PRL-W can attain good performance
with limited labelled data.

Because of the scarcity of labelled data and the large number of features,
TAN and the state-of-the-art ETAN methods have a relatively bad performance
in all these four datasets. The average F1 score of TAN and ETAN are 0.956
and 0.951, which are both smaller than the scores of NBC (0.961) and HR-NBC
(0.963). In addition, although it is proven that ETAN provides a better fit to
the data (equation (7)) than TAN, it receives lower classification accuracies in
these settings, presumably, due to overfitting.

According to the results, both NBC and HR-NBC have high F1 score in
all settings. This demonstrates the benefits of using these two methods when



labelled data is scarce. Moreover, the performance of our HR-NBC4 is equal to
or superior to that of NBC in all these cases.

Introducing address parsing of the data

As discussed in the framework (Figure 1), unstructured address fields could
be further parsed to improve training data quality. In our experiments, both
Restaurant and Tungsten datasets contain such address field. Specifically, by us-
ing the HMM parser discussed in Section 4, original fields “address” of Restaurant
and “address line 1” of Tungsten are further parsed into 3 fields: house number,
street name and street type.

Because original address fields are further parsed, hierarchical restrictions are
not introduced in the experiment. Therefore, we only discuss the performance of
PRL-W, TAN, ETAN and NBC. The results of different methods on the parsed
datasets are shown in Table 4. Compared with the results in Table 3, symbols
– and ↑ in Table 4 represent unchanged and improved performance respectively.
Moreover, values after ↑ indicate the specific increase in F1 score of the various
methods on these parsed datasets.

Table 4. The F1 score of PRL-W, TAN, ETAN and NBC with parsed addresses.

Dataset L PRL-W TAN ETAN NBC

Restaurant
10 0.996 (–) 0.950* (↑0.076) 0.956* (↑0.093) 0.975* (↑0.091)
50 0.996 (–) 0.982* (↑0.032) 0.987* (↑0.035) 0.992* (↑0.035)
100 0.996 (↑0.001) 0.989* (↑0.032) 0.990* (↑0.032) 0.993* (↑0.034)

Tungsten
10 1.000 (↑0.010) 0.982* (↑0.063) 0.977* (↑0.069) 0.987* (↑0.071)
50 1.000 (↑0.010) 0.995* (↑0.025) 0.992* (↑0.025) 0.996* (↑0.024)
100 1.000 (↑0.010) 0.996* (↑0.026) 0.994* (↑0.025) 0.997* (↑0.025)

Average N/A 0.998 (↑0.005) 0.982* (↑0.042) 0.983* (↑0.047) 0.990* (↑0.047)

As can be seen from the results of Table 4, the performance of all 4 methods is
improved by introducing parsed addresses. Specifically, comparing to the results
in Table 3, the average increases in F1 score in Table 4 are 0.005, 0.042, 0.047
and 0.047 for PRL-W, TAN, ETAN and NBC respectively.

8 Conclusions

In this paper, we discussed hierarchical restrictions between features, and ex-
ploited the classification performance of different methods for record linkage on
both synthetic and real datasets. Moreover, we showed an improved performance
of the methods considered on further parsed datasets (Table 4).

4 In each dataset, we only introduce one hierarchical restriction between the name
and address field.



The results demonstrate that, in settings of limited training data, PRL-
W works well and its performance is independent of the number of labelled
record-pairs, TAN, NBC and HR-NBC have better performance than ETAN
even though the latter method provides a theoretically better fit to the data.
Compared with NBC, HR-NBC achieves equal or superior performance in ex-
periments of Table 3 with an aptly chosen hierarchical restriction, which show
the benefits of this in these datasets.

We note, however, that our method might not be preferable in all cases. For
example, in a medical dataset, a patient could move her or his address and have
multiple records. In this case, two records with different addresses refer to the
same person. Thus, the hierarchical restrictions used in this paper will introduce
extra false non-matches.

In future work we will investigate other sources of domain knowledge to
enhance the performance of the resultant classifier, such as improving accuracy
by using specific parameter constraints [23] and transferred knowledge [24].
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