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Abstract

This article presents the long-term behaviour analysis of Stochastic Diffusion
Search (SDS), a distributed agent based Swarm Intelligence meta-heuristic for
best-fit pattern matching. SDS operates by allocating simple agents into differ-
ent regions of the search space. Agents independently pose hypotheses about
the presence of the pattern in the search space and its potential distortion. As-
suming a compositional structure of hypotheses about pattern matching agents
perform an inference on the basis of partial evidence from the hypothesised
solution. Agents posing mutually consistent hypotheses about the pattern sup-
port each other and inhibit agents with inconsistent hypotheses. This results
in the emergence of a stable agent population identifying the desired solution.
Positive feedback via diffusion of information between the agents significantly
contributes to the speed with which the solution population is formed.

The formulation of the SDS model in terms of interacting Markov Chains
enables its characterisation in terms of the allocation of agents, or computational
resources. The analysis characterises the stationary probability distribution
of the activity of agents, which leads to the characterisation of the solution
population in terms of its similarity to the target pattern.

Keywords: Generalised Ehrenfest Urn model, interacting Markov Chains,
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1. Introduction

In recent years there has been growing interest in swarm intelligence, a
distributed mode of computation utilising interaction between simple agents
(Kennedy et al., 2001). Such systems have often been inspired by observing
interactions between social insects: ants, bees, birds (cf. Ant Algorithms and
Particle Swarm Optimisers) see Bonabeau (Bonabeau et al., 1999) for a compre-
hensive review. Swarm Intelligence algorithms also include methods inspired by
natural evolution such as Genetic Algorithms (Goldberg, 1989) (Holland, 1975)
or indeed Evolutionary Algorithms (Back, 1996). The problem solving ability
of Swarm Intelligence methods, emerges from positive feedback reinforcing po-
tentially good solutions and the spatial/temporal characteristics of their agent
interactions.

Independently of these algorithms, Stochastic Diffusion Search (SDS), was
first described in 1989 as a population-based, swarm intelligence pattern match-
ing algorithm (Bishop, 1989). Unlike stigmergetic communication employed in
Ant Algorithms, which is based on modification of the physical properties of a
simulated environment, SDS uses a form of direct communication between the
agents similar to the tandem calling mechanism employed by one species of ants,
Leptothorax Acervorum, (Moglich et al., 1974).

SDS is an efficient probabilistic multi-agent global search and optimisation
technique (de Meyer et al., 2006) for solving the best-fit matching problem.
Many fundamental problems in Computer Science, Artificial Intelligence or
Bioinformatics may be formulated in terms of pattern matching or search. Ex-
amples abound in DNA or protein structure prediction, where virtually all the
deterministic methods employed are solving variations of the string matching
problem (Gusfield, 1997). In addition the classical exact string matching prob-
lem has been extended to the approximate matching, where one allows for a
pre-specified number of errors to occur. Other variations include consideration
of various distances used for the determination of similarity between patterns,
see (Navarro, 1998) for an extensive overview of an approximate string match-
ing algorithms. String matching can be generalised to tree matching and many
algorithms used for string matching are easily adapted to this significant class
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of problems (van Leeuwen, 1990). Thus, it is very important to develop new
efficient methods of solving string-matching problems.

SDS has now been successfully deployed across a wide variety of application
domains including: site selection for wireless networks (Whitaker and Hurley,
2002), mobile robot self-localisation (Beattie and Bishop, 1998), object recogni-
tion (Bishop and Torr, 1992) and text search (Bishop, 1989). Additionally, a hy-
brid SDS and n-tuple RAM (Aleksander and Stonham, 1979) technique has been
used to track facial features in video sequences (Bishop and Torr, 1992; Grech-
Cini, 1995); other hybrids have been explored to comprehensively characterise
the behaviour of merger of SDS with a variety of local optimisers on continu-
ous optimisation problems across a broad range of modern benchmark suites;
amongst other these include SDS-PSO hybrid systems (al-Rifaie et al., 2011)
and SDS-Differential Evolution hybrid systems (al-Rifaie and Bishop, 2013).
Furthermore SDS has been successfully deployed in NP-Hard problems: for ex-
ample, in 2012 SDS was applied to the rectilinear Steiner minimum tree problem
(Li and J., 2012); conversely, as an illustration of the diversity of its applica-
tion, SDS has also been successfully deployed in ‘artistic’ applications (al-Rifaie
et al., 2012). In addition a connectionist implementation of SDS was described
in (Nasuto et al., 2009). See (al-Rifaie and Bishop, 2013) for a recent compre-
hensive review paper detailing SDS, the algorithm variants and its numerous
fielded applications.

The last decades have witnessed an increased interest in various forms of
heuristic search methods, as alternative solutions to hard computational prob-
lems. This arose due to recognition of the limitations of fully specified deter-
ministic methods based on sequential operation and computation. Such heuris-
tic methods include Genetic Algorithms, Evolutionary Strategies, Ant Colony,
or Simulated Annealing (Holland, 1975) (Back, 1996) (Colorni et al., 1991)
(Kirkpatrick et al., 1983). They often base their computation on some form
of iterative parallel random sampling of the search space by a population of
computational agents, where the sampling bias is a function of coupling mecha-
nisms between the agents and thus is specific to the particular method employed.
For example Genetic Algorithms (Goldberg, 1989) are loosely inspired by the
natural evolution and the mechanisms by which GA agents sample the search
space are most often described in terms of gene recombination and mutation.
Ant Colony Optimisation is based on the modelling of the interaction between
simple organisms like ants or termites (Dorigo, 1992). These methods can be
collectively described as heuristic search methods, as their generic formulation
is based on very simplified intuitions about some natural processes. However, in
spite of considerable interest in these algorithms and their wide areas of applica-
tions, they still lack a standard formal framework enabling principled inference
about their properties. It can be argued that the very central and indeed ap-
pealing feature of these heuristic search methods (i.e. imitating solutions to
hard computational problems found by Nature) impedes development of their
theoretical basis.

However, randomness in computation has also been employed in more clas-
sical computational schemes, like RANSAC1, Random Global Optimisation,

1Coupled SDS - a variant of the algorithm described herein - evaluated well against
RANSAC on a variety of classical ‘parameter estimation’ problems (Williams and Bishop,
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Monte Carlo Markov Chains or related to them Particle Filters (Fischler and
Bolles, 1981) (Zhigljavsky, 1991) (Gilks et al., 1996) (Doucet et al., 2000). In
these algorithms biased random sampling is employed in order to avoid local
minima over the search spaces or to approximate values of otherwise intractable
functions. The theoretical framework of these algorithms is usually within the
area of discrete stochastic processes and the understanding of their properties
and behaviour is much more sound than that of their heuristic counterparts.

Simulated Annealing and Extremal Optimisation belong to a small class of
heuristic search algorithms taking inspiration from physical processes, which
nevertheless enjoy a sound theoretical basis (van Laarhoven and Aarts, 1987)
(Bak et al., 1987).

Some fundamental properties of SDS have been previously investigated within
the framework of Markov Chain theory (Nasuto and Bishop, 1999) (Nasuto
et al., 1998). In particular, it has been proven that SDS converges to the glob-
ally best fit matching solution to a given template (Nasuto and Bishop, 1999)
and that its time complexity is sub-linear in the search space size (Nasuto et al.,
1998) under a variety of search conditions (Myatt et al., 2004), thus placing it
among the state of the art search algorithms (van Leeuwen, 1990).

SDS operates by allocating simple agents into different regions of the problem
search space. Agents independently pose hypotheses about the presence of a
target pattern and its potential distortion in the search space. Agents utilise the
compositional structure of hypotheses about matching patterns by performing
an inference on the basis of only partial evidence. A population of agents posing
mutually consistent hypotheses about the pattern signifies the desired solution.
This population is formed very rapidly as the search progresses due to diffusion
of information between the agents.

In this article we describe steady state analysis of Stochastic Diffusion Search
(SDS), characterising how SDS achieves its tasks by distributing computational
resources while focusing on the solution. By complementing previous results on
global convergence and time complexity of SDS, the resource allocation analysis
constitutes a significant advancement of our understanding of this algorithm
operation. It appears that SDS is very robust and is capable of differentiating
between very small differences between patterns. This is achieved due to posi-
tive feedback leading to a rapid growth of clusters inducing strong competition
between them due to the limitation of agent resources. Thus SDS converges
to the best-fit solution by allocating to it the largest cluster of agents. How-
ever, the dynamic aspect of the process ascertains that the remaining amount
of agents, currently not assigned to any cluster, continue to explore the rest of
the search space, thus ensuring the global convergence. In this paper we charac-
terised quantitatively the distribution of agents during the search and obtained
the expected size and variance of the cluster corresponding to the desired solu-
tion. We also characterised their dependence on the characteristics of the search
space and the quality of the best solution.

The model of SDS used in this paper is based on a novel concept of inter-
acting Markov Chains (Nasuto and Bishop, 1999). It concentrates on modelling
the behaviour of individual agents as opposed to modelling the whole popula-
tion. This is a clear advantage as the size of the state space corresponding to

2014).

4



the whole population of agents grows quadratically with their number; the state
space of single agents is very small. However, in SDS agents are interacting with
each other and their actions depend on actions of other agents. The evolution of
the whole population of agents is thus reflected in coupling between the Markov
Chains. The dependence of the transition probabilities of single chains not only
on their immediate past but also on the state of other chains introduces non-
linearity into the system description. However, it is possible to show that there
exists a system of decoupled chains such that its long-term behaviour is the same
as that of interacting Markov Chains modelling SDS. The decoupled system of
Markov Chains with such behaviour forms a generalisation of an Ehrenfest Urn
model of irreversible processes introduced in statistical physics at the beginning
of this century (Ehrenfest and Ehrenfest, 1907).

The formulation of an Ehrenfest Urn model with an equivalent long-term
behaviour constitutes a basis for the quantitative characterisation of SDS steady
state distribution of the computational resources discussed in this paper.

The paper is organised as follows. Section 2 introduces Stochastic Diffusion
Search and presents the relationship between its model based on interacting
Markov Chains and the generalised Ehrenfest Urn model. Section 3 charac-
terises the long-term behaviour of an agent in SDS. This, together with char-
acterisation of the dependence of the steady state agent distribution on the
search conditions, presented in the next section, forms the basis of the charac-
terisation of resource allocation. The numerical simulations of SDS steady state
behaviour are presented in section 5. The final section discusses the results and
future work.

2. Stochastic Diffusion Search and the Ehrenfest Urn Model

Stochastic Diffusion Search employs a population of simple computational
units or agents searching in parallel for the pre-specified template in the search
space. Agents take advantage of the compositional nature of the statistical
inference about templates. This property ensures that the hypothesis about the
template can be factored into hypotheses about its constituents. At each step
agents perform an inference about the presence of the template in the currently
investigated region of the search space by posing and testing hypothesis about
a randomly selected templates sub-component. Each of the agents makes a
decision about which region of the search space to explore on the basis of its
history and the information it gets from other agents in the so called diffusion
phase (see Algorithm 1). This stage enables agents that failed their inferential
step (inactive agents) to bias their consecutive sampling of the search space
towards the region of the search space, which led to a successful test by another,
randomly chosen agent (active agent). This mechanism ensures that regions
with higher probability of positive testing will gradually attract higher numbers
of agents; regions of low positive testing attracting agents only sporadically.
Alternatively, had there been no sufficient reason to copy the position inspected
by the chosen agent, inactive agents have a possibility to resample entirely new
positions from the search space. While in the next iteration active agents attend
to the same position they tested previously thus exploiting current patterns for
further evidence regarding matching to the template. The random resampling of
the search space by inactive agents ensures that it will be sufficiently explored.
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Patterns of highest overlap with the template in the search space induce
a form of local positive feedback, because the more agents investigate these
regions the more likely is an increase of their number in the next step due to
the diffusion phase. This local positive feedback induces a competition between
best-fit patterns due to limited (computational) resources; the largest cluster of
agents concentrated on the globally best solution emerges rapidly suppressing
sub-optimal solutions. Thus, SDS performs the best-fit pattern matching; it will
find the pattern with the highest overlap with the template. This is an extension
of a concept of exact and approximate matching in computer science in which
the problem is to locate either exact copy or an instantiation differing from the
template by a pre-specified number of components (van Leeuwen, 1990).

Algorithm 1 Schematic of Stochastic Diffusion Search
1: initialise;
2: repeat
3: diffuse;
4: test;
5: until termination.

3. Interacting Markov Chains Model of the Stochastic Diffusion Search

Consider a noiseless search space in which there exists a unique object with
a non-zero overlap with the template - a desired solution. Assume that upon a
random choice of a feature for testing a hypothesis about the solution location,
an agent may fail to recognise the best solution with a probability p− > 0.
Assume further that in the nth iteration m out of a total of N agents are
active (i.e. tested successfully). Then the following transition probability matrix
describes a one-step evolution of an agent:

Pn =
[ a n

a 1− p− p−

n pn1 1− pn1

]
,

where,

pn1 =
m

n
(1− p−) + (1− m

n
)pm(1− p−)

pm is a probability of locating the solution in the search space by uniformly
random sampling and the active agent pointing to the correct solution is denoted
by a and an inactive agent (i.e. agent that failed the test) by n.

Thus, if an agent was active in the previous iteration then it will continue
to test the pattern at the same position but using another, randomly chosen
sub-component. Therefore with probability 1 − p− it may remain active (tests
positive), otherwise it becomes inactive. An inactive agent may become active
either by choosing at random an active agent and testing positively at its po-
sition (the first term in pn1 ) or otherwise by testing positively upon a random
resampling of the search space.

It is apparent that the above stochastic process modelling an evolution of an
agent is a non-homogenous Markov Chain. Non-homogeneity stems from the
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fact that the entries of the second row of the probability transition matrix P are
not constant in time but change as search progresses thus making the matrix Pn
time dependent. This is because the probability of an inactive agent becoming
active in the next iteration depends on the normalised number of active agents
in the previous iteration. The time dependence of P reflects the interactions
with other agents in the population. Thus, the population of Markov Chains
defined above describes the evolution of a population of agents in SDS.

The model capturing the agent’s behaviour is similar to the model formulated
by Ehrenfests in 1907 in order to resolve an apparent irreversibility paradox in
the context of statistical mechanics (Ehrenfest and Ehrenfest, 1907). In fact,
we will demonstrate that the long-term behaviour of SDS can be recovered from
an appropriately constructed generalised Ehrenfest Urn model.

The Ehrenfest Urn model consists of two urns containing in total N balls.
At the beginning there are k balls in the first urn and N − k in the other.
A ball is chosen at random from a uniform distribution over all N balls and
is placed in the other urn. The process relaxes to the stable state. In this
state it remains most of the time in a quasi-equilibrium, which corresponds to
approximately equal numbers of balls in both urns, subject to small fluctuations.
Whittle discussed a generalisation of this model consisting of a collection of N
simultaneous and statistically independent 2-state Markov chains governed by
the same transition matrix (Whittle, 1986),[

f11 f12
f21 f22

]
,

Thus a ball moving between the urns corresponds to a single Markov Chain.
Its transition probabilities between the two urns, f12 and f21, are in general not
equal.

There is an important difference between the generalised Ehrenfest Urn
Model and Interacting Markov Chains model of SDS. In the former the Markov
Chains are independent and stationary, whereas in the latter the Markov Chains
are interacting. In addition, the coupling between Markov Chains induces their
non-homogeneity - their transition probability matrices change in time. How-
ever, we will prove that the long-term behaviour of the Interactive Markov
Chains model can be described in terms of an appropriately constructed gener-
alised Ehrenfest Urn model.

The analysis based on this model will characterise the stationary probability
distribution of the activity of a population of agents. This will allow calculation
of the expected number of agents forming a cluster corresponding to the best-fit
solution as well as the variation of the cluster size. The model will also enable
characterisation of the long-term behaviour of SDS in terms of the statistical
properties of the search space.

4. Long term behaviour of the Stochastic Diffusion Search

In order to investigate the Markov Chain model of agent’s evolution we will
establish first its long-term behaviour. The following propositions about single
agent evolution can be proven:

Proposition 1 The sequence {Pn} of stochastic matrices describing the evo-
lution of an agent in the Stochastic Diffusion Search is weakly ergodic.
Proof. See Appendix.
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Proposition 2 {Pn} is asymptotically stationary. Proof. See Appendix.

Proposition 3 The sequence {Pn} is strongly ergodic. Proof. Strong ergodic-
ity of {Pn} follows as a consequence of the above propositions, and theorem
4.11 in Seneta (Seneta, 1973).

From Propositions 1-3 it follows that the Markov Chain corresponding to
the evolution of a single agent is asymptotically homogenous, i.e. the limit

P = lim
i→∞

Pi

exists. Thus this process behaves, as it approaches the equilibrium, more and
more like a homogenous Markov Chain with the transition probability matrix
P . Therefore, instead of considering a population of interacting Markov Chains
we will construct and consider a generalised Ehrenfest Urn model consisting of
homogenous Markov Chains with the transition probability matrix P .

First we will obtain an explicit formula for the matrix P. The strong ergodic-
ity of a non-homogenous Markov Chain amounts to the existence of its (unique)
equilibrium probability distribution. In other words, a stochastic process de-
scribing the time evolution of an agent as it visits states of its state space with
frequencies, which can be characterised via the limiting probability distribution.

Thus, in order to find the limit probability distribution one has to find the
solution of the fixed-point equation

S(ρ, P ) = (ρ, P )

(see Appendix for the definition of the mapping S).
This amounts to solving a system of two equations{

πP = π,

P1 = (1− p−)π1 + (1− p−)(1− π1)pm
(1)

The first equation is an equation for an eigenvalue 1 of a two-by-two stochas-
tic matrix P, for which the eigenvector has the form

π = (π1, 1− π1) =
(

p1

P1 + p−
,

p−

P1 + p−

)
(2)

This makes it possible to find the solution in the special case when pm = 0
(no solution in the search space). It follows, that the initial distribution of agents
is concentrated entirely on the inactive state and from the latter it follows that
p1 = 0 so, as expected,

π = (0, 1)

I.e. an agent will always remain inactive.
To find the solution in the general case, assume that pm > 0. From equation

(2) and the second equation of (1) it follows that

π1

[
(1− p−)π1 + (1− p−)(1− π1)pm + p−

]
= (1−p−)π1 +(1−p−)(1−π1)pm

which after rearrangement leads to a quadratic equation in π1

(1− p−)(1− pm)π2 +
[
2(1− p−)pm + 2p− − 1

]
π1 − (1− p−)pm = 0
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This can be written in the form

(1− p−)(1− pm)π2 −
[
2(1− p−)(1− pm)− 1

]
π1 − (1− p−)pm = 0

This equation has two solutions because the condition[
2(1− p−)(1− pm)− 1

]2 + 4(1− p−)2(1− pm)pm ≥ 0

is always fulfilled. These solutions are as follows

π1 =
2(1− p−)(1− pm)− 1±

√
[2(1− p−)(1− pm)− 1]2 + 4(1− p−)2(1− pm)pm

2(1− p−)(1− pm)
, i = 1, 2

Straightforward analysis of the above solutions implies that only one of them
can be regarded as a solution to the problem. Namely, the desired equilibrium
probability distribution is

π = (π1, π2) = (r, s) (3)
where

r =
2(1− p−)(1− pm)− 1±

√
[2(1− p−)(1− pm)− 1]2 + 4(1− p−)2(1− pm)pm

2(1− p−)(1− pm)

s =
1−

√
[2(1− p−)(1− pm)− 1]2 + 4(1− p−)2(1− pm)pm

2(1− p−)(1− pm)

As the long term evolution of an agent is approaching the evolution of a
homogenous Markov Chain with the transition matrix P , we can characterise
the limit behaviour of the Interactive Markov Chains model of SDS by finding
the behaviour for the corresponding generalised Ehrenfest Urn model, in which
the probability transition matrix P governing the transitions of a ball is

P =
[ a n

a 1− p− p−

n p1 1− p1

]
,

where,
p1 = (1− p−)π1 + (1− p−)(1− π1)pm

and π1 is given by (3).
It is important to note that in the above Ehrenfest Urn model the transition

of balls between the urns is now mutually independent. This is because the
dependence between Markov Chains in the Interacting Markov Chains model
of SDS was reflected in the changes of their probability transition matrices. By
using a limit probability transition matrix P we make the balls independent.
Thus in order to characterise the limit probability distribution we will proceed
analogously to Whittle (Whittle, 1986).

Modelling SDS via evolution of single agents, as proposed in the model,
implies distinguishability of agents. This is true also in the case of the balls in
the corresponding generalised Ehrenfest Urn model. From this it follows that
the state space of the ensemble of Markov Chains corresponding to N balls in
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the constructed Ehrenfest Urn model consists of N -tuples x = (x1, ..., xN ) where
the ith component takes on a value 1 or 0 depending on whether the ith ball
(agent in SDS) was in urn 1 or 2 (was active or not). Because of ergodicity of
Markov Chains describing evolution of balls and their independence there will
be a unique asymptotic limit probability distribution given by:

Π(X) = π
a[x]
1 π

N−a[x]
2 (4)

where a[x] denotes number of balls in the urn 1 (active agents) corresponding
to the state x and (π1, π2) is the two state asymptotic distribution given by (3).

In order to establish the equilibrium probability distribution of SDS one has
to abandon the distinguishability of balls implied by the construction of the
generalised Ehrenfest Urn model. This means that it is necessary to consider
an aggregate process Xn = a[x]n, in which all configurations corresponding to
the same number of balls in the first urn are lumped together. This aggregate
process is reversible, as it is derived from a reversible Markov Chain (every
time homogenous, two state Markov Chain is reversible (Whittle, 1986)). It
is also a Markov Chain because the aggregation procedure corresponds to a
maximal invariant under permutations of balls, which preserve the statistics of
the process, [Whittle (Whittle, 1986) theorem 3.7.2]. This can be seen from
the fact, that permuting two arbitrary balls in the same urn does not affect
the probability distribution of the process and the lumping procedure described
above establishes equivalence classes of states which have the same probability.
Therefore summing equation (4) over all configurations x corresponding to the
same number of balls in the first urn a[x] one obtains a probability distribution
of the generalised Ehrenfest Urn model and hence that of SDS:

π(n) =
(
N

n

)
πn1 π

N−n
2 (5)

which is a binomial distribution.
Equation (5) describes the steady state probability distribution of the whole

ensemble of agents used in the Stochastic Diffusion Search. It describes probabil-
ities of finding agents in different configurations of states, which implies different
possible distributions of resources by SDS. We can characterise the resource al-
location of SDS in the steady state by computing the expected distribution of
agents. The deviations from the expected distribution can be characterised in
terms of the standard deviation of the ensemble probability distribution. From
equation (5) it follows immediately that the expected number of active agents
in the equilibrium will be

E[n] = Nπ1 (6)

In fact the most likely state, n, given by the maximum of the binomial
distribution will be an integer number fulfilling following inequalities (Johnson
and Kotz, 1969),

(N + 1)π1 − 1 ≤ n ≤ (N + 1)π1

This implies that for sufficiently large N the expected number of active
agents is a good characterisation of their actual most likely number.
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Figure 1: The normalised average number of active agents in SDS as a function of the param-
eter p−. Plot obtained for N = 1000 and pm = 0.001

Similarly the standard deviation defined for binomial distribution as

σ =
√
Nπ1π2 (7)

will be used as a measure of variability of the number of active agents around
its steady state.

In fact E[n] is not sensu-stricto an equilibrium of the system. From strong
ergodicity it follows that eventually all possible configurations of agents will
be encountered provided that one would wait sufficiently long. However, as in
the case of the system with two containers with a gas, although all states are
possible, nevertheless some of them will appear extremely rarely (e.g. state in
which all the particles of the gas would concentrate in one container only). In
fact, the system will spend most of the time fluctuating around the expected
state, which thus can be considered as quasi-equilibrium.

The above discussion closely parallels the reasoning motivating the Ehren-
fests in using their model for a discussion of an apparent contradiction between
the reversible laws of micro-dynamics of single particles and irreversibility of
thermodynamic quantities.

The next section will illustrate some of these points with a numerical example
and will characterise the resource allocation of SDS in terms of the search space
and the properties of the best solution.

5. Characterisation of the resource allocation

The population of active agents converging to the best-fit solution is very ro-
bust. The convergence rate and the best-fit population size clearly differentiate
SDS from a pure parallel random search.

Below we will characterise the behaviour of the average number of active
agents as a function of the p− parameter characterising the possibility of false
negative response of agents for the best-fit solution. Figure (1) illustrates this
relationship for the value of pm = 0.001 and N = 1000 agents and Figure (2)
shows the two dimensional plot of the average number of active agents as a
function of both parameters pm and p−.
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Figure 2: The normalised mean number of active agents as a function of both the false negative
parameter p− and the probability of hit at the best instantiation pm, plotted for N = 1000.

Figure (1) implies that the number of active agents decreases nonlinearly
with an increase of the false negative parameter p− and reaches very small
values around p− = 0.5. Thus, two regions of different characteristics of the
resource allocation by SDS can be inferred from Figure (1). The first one is
for p− < 0.5, where the cluster of active agents constitutes a significant part of
the total amount of resources, and the second one is for p− > 0.5, where the
amount of active agents is orders of magnitude smaller.

From the fact that the number of agents in SDS is always finite it follows that
for a given total number of agents there exists such value of p− that, above it,
the actual number of active agents is almost always zero. This seems to confirm
an estimate obtained in (Grech-Cini, 1995). However, π1 as a function of p−

is everywhere positive in [0, 1). It follows that for any p− > 0 there exists a
finite number of agents N such, that bNπ1c > 0, where bxc denotes the greatest
integer smaller than x.

Figure (2) shows the normalised mean number of active agents as a function
of both the false negative parameter p− and the probability of locating the best
instantiation pm. From the inspection of this figure it follows that changing
pm does not significantly alter the dependence of the mean number of active
agents on the parameter p−. The change, resulting from an increase of pm,
can be summarised as a smoothing out of the boundary between two regions of
behaviour of SDS clearly visible in Figure (1).

Similarly, it is possible to investigate, using the equations (3) and (7), de-
pendence of the standard deviation on parameters of SDS. Figure (3) illustrates
the behaviour of the standard deviation as a function of p−, for pm = 0.001 and
N = 1000 agents and Figure (4) shows the 3D plot of the standard deviation as
a function of p− and N .

From Figure (3) one can deduce that standard deviation is also a non-linear
function of p−, first rapidly increasing with p− increasing from 0 to around 0.4,
where the normalised standard deviation is largest, and then rapidly decreasing
for p− increasing from 0.4 to 0.6. When p− increases further from 0.6 to 1
the normalised standard deviation decreases more steadily to 0. Figure (3)
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Figure 3: The rescaled standard deviation of the number of active agents calculated from the

model for N = 1000 agents and pm = 0.001; the scaling factor is α = N
−1
2 ≈ 0.0316

Figure 4: The standard deviation of the number of active agents as a function of the total
number of agents N in SDS and of false negative probability p−, plotted for pm = 0.001
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Figure 5: Evolution of the number of active agent in SDS with N = 1000 agents and pm =
0.001. The false negative parameter p− is 0.5 (top panel) and 0.7 (lower panel). The straight
lines correspond to the average activity predicted by the model surrounded by the ±2 standard
deviations band.

corresponds in fact to a cross-section of Figure (4) along the line of a fixed
number of agents.

6. Simulations

In this section we will evaluate the predictions of the Interacting Markov
Chains SDS model by applying SDS to perform a string search, a simple yet
nontrivial problem with very important applications in bioinformatics (Gus-
field, 1997), information retrieval and extensions to other data structures (van
Leeuwen, 1990). The task will be to locate the best instantiation of the given
string template in the longer text. The agents will perform tests by comparing
single characters in the template and the hypothesised solution and during the
diffusion phase they will exchange information about potential location of the
solution in the text. This set-up allows us to control precisely the parameters
characterising the search space and the best-fit solution, hence it constitutes an
appropriate test-bed for the evaluation of our model.

We run a number of simulations in order to compare reliably the theoretical
estimates characterising quasi equilibrium with the actual behaviour of the sys-
tem. The simulations reported here were run with N = 1000 agents, pm = 0.001
and p− assuming values of 0.1, 0.2, 0.5 and 0.7 respectively. For calculating the
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estimates of the expected number of active agents and its standard deviation
SDS was run for 2000 iterations. In all cases the first 500 samples were dis-
carded as a burn-in period. This method was suggested in Gilks (Gilks et al.,
1996) in order to avoid the bias caused by taking into account samples from the
evolution when the process is far from the steady state.

Average activity Standard deviation
889.02 10.06
749.61 15.22
20.57 15.48
0.81 1.09

Table 1: Average activities and standard deviations estimated from the 1500 iterations of
SDS. N = 1000, pm = 0.001 and p− changes from 0.1, 0.2, 0.5 to 0.7 respectively (top to
bottom).

However, the size of the burn-in period is, in general, a difficult issue because
it is related to the estimation of the convergence of a given Markov Chain to
its steady state probability distribution. In the Markov Chain Monte Carlo
practice, the number of iterations needed to obtain reliable estimates of statistics
is often of the order of tens of thousands and the burn-in periods lengths can
also be considerably long (Gilks et al., 1996). The particular value of the burn-in
period, used in these simulations, was chosen on the basis of visual inspection,
as a heuristic remedy against the bias of estimates.

The results of the simulations are summarised in Table 1 and Table 2 and
in Figure (5) and Figure (6).

Average activity Standard deviation
888.06 9.97
750.1 13.69
30.65 5.45
0.75 0.86

Table 2: Average activities and standard deviations of SDS predicted by the model. N = 1000,
pm = 0.001 and p− changes from 0.1, 0.2, 0.5 to 0.7 respectively (top to bottom).

It follows that the model predicts very well the steady state behaviour of
SDS. The biggest deviation between model prediction and empirical estimates
seem to be for the value of p− = 0.5, i.e. in the case when agents have only
50% chance of successful testing of the best-fit solution. This may be because
this value is located in the boundary of two regions of markedly different char-
acteristic of resource allocation exhibited by SDS and small fluctuations in the
number of agents in the cluster can have significant effects.

It appears that the expected number of active agents and two standard
deviations, as calculated from the model, correspond well to the empirical pa-
rameters used in (Bishop, 1989) to define statistical stability of SDS and thus
defining the halting criterion used in that work. Therefore our model provides a
firm ground for the calculation of these parameters and for the characterisation
of their dependence on the parameters of SDS and the search space.
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Figure 6: Evolution of the number of active agents in SDS with N = 1000 agents and pm =
0.001 (top) The false negative parameter p− is 0.1, (lower) p− = 0.2. The straight lines
correspond to the average activity predicted by the model, surrounded by the ±2 standard
deviations band.
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7. Conclusions

We have discussed in detail the resource allocation characteristics of SDS. It
appears that SDS can rapidly and reliably allocate a large amount of agents to
the best-fit pattern found in the search space, while the remaining agents contin-
ually exploring the search space for potentially better solutions. This property
underlies SDS success in dealing with dynamic problems such as lip tracking,
where the desired solution changes continually its position in the search space
(Grech-Cini, 1995). The analysis herein revealed that SDS is very sensitive to
the quality of the match of the hypothesised solution. This property combined
with the limited resource induced competition is responsible for the robustness
of the algorithm to the presence of sub-optimal solutions, or noise in the search
space (Nasuto et al., 1998). Two key properties of SDS - the exchange of infor-
mation between the agents and their relative computational simplicity illustrate
the fact that the communication-based systems are as powerful as systems based
on distributed computation, a thesis discussed in (Mikhailov, 1993). Stochastic
Diffusion Search can be easily extended to incorporate more sophisticated or
heterogeneous agents, different forms of information exchange, including local
communication, voting, delays etc. This makes it an appealing tool for both
solving computationally demanding problems and simulating complex systems.
The latter often are composed of many interacting subcomponents and it may
be easier to define the operation of subcomponents and their mutual interac-
tions, than find emergent properties of the system as a whole. We envision that
SDS can constitute a generic tool for simulating such systems, e.g. in models of
ecological systems, epidemics or agent based economic models.

SDS belongs to a broad family of heuristic algorithms, which utilise some
form of feedback in their operation. Neural networks, a well-known class of such
algorithms are often using some form of negative feedback during learning, i.e.
during process of incremental change of their parameters guided by the use of
disparity between desired and current response. In contrast, SDS, together with
Genetic Algorithms and Ant Colonies, belongs to category of algorithms util-
ising positive feedback (Dorigo, 1994). Positive feedback is responsible in SDS
for its rapid convergence and, together with limited resources, for the non-linear
dependence of the resource allocation on the similarity between the best-fit solu-
tion and the template. The resource allocation analysis presented in this paper,
complements previous results on the global convergence and time complexity
(Nasuto and Bishop, 1999) (Nasuto et al., 1998) setting a solid foundation for
our understanding of its behaviour.

The resource allocation management of SDS was characterised by finding
the steady state probability distribution of the (long-term behaviour) equivalent
generalised Ehrenfest Urn model and observing that the actual distribution of
agents is well described by the first two moments of this distribution.

It thus appeared that the resource allocation by SDS corresponds to the
quasi-equilibrium state of the generalised Ehrenfest Urn model. This quasi
equilibrium is well characterised by the expected number of active agents and
the stability region, in which SDS will fluctuate - by two standard deviation
bands around expected number of active agents. Finding explicit expressions
for these quantities made it possible to characterise their dependence on the
parameters of the search - a total number of agents, probability of false negative
and a probability of randomly locating the best instantiation in a random draw.
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This analysis allowed us to understand how the resource allocation depends on
the search conditions. This analysis also provides a theoretical background for
the halting criterion introduced in (Bishop, 1989).

Apart of the use in analysis of SDS, the concept of interacting Markov
Chains is interesting in its own right. Many computational models based on
distributed computation or agent systems utilise a notion of semi autonomous
computational entities, or agents. Such models are utilised in machine learning
and computer science but also in models of economic behaviour (Young et al.,
2000). At some level of abstraction the evolution can be described in terms of
Markov Chains. Interacting Markov Chains correspond to the situation when
agents are not mutually independent but interact with each other in some way.
This is often the case when agents try collectively to perform some task or
achieve a desired goal. The basic formulation of interacting Markov Chains is
flexible and can be extended to account for other types of interactions includ-
ing heterogenous agents, delays in communication, rational as well as irrational
agents, etc. Thus, it offers a very promising conceptual framework for analysing
such systems.
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8. Appendix

Proof of Proposition 1. The proposition will be first proven for p-¿0.
Recall that

Pn =
[ a n

a 1− p− p−

n pn1 1− pn1

]
, (8)

where,

pn1 =
m

n
(1− p−) + (1− m

n
)pm(1− p−) (9)

Define after Senata (Seneta, 1973):

λ(Pn) = max
j

{
min
i
pij

}
= max

{
min

{
1− p−, p1

}
,min

{
p−, 1− p1

}}
Rearranging (9) leads to

pn1 = (1− p−)((1− pm)x+ pm)

where x denotes the average activity in SDS. It is clear that pn1 is a linear
function of x and as 0 < x < 1, it follows that

pn1 ∈
[
pm(1− p−), 1− p−

]
so

pn1 ≤ 1− p =⇒ min(pn1 , 1− p−) = pn1

=⇒ min(p, 1− pn1 ) = p

and therefore

λ(Pn) = max(pn1 , p
−).

Consider a series
∑∞
i=1 λ(Pn). This series is divergent because

(∀n ≥ 0)(λ(Pn) ≥ p−) =⇒
∑

λ(Pn) ≥
∑

p−

The last series diverges and therefore the weak ergodicity of Pn follows from
theorem 4.8 in (Seneta, 1973).

When p− = 0 the same argument applies with the lower bound series taking
the form

∑∞
i=1 pm. This is because from (9) it follows that pm is a lower bound

for pn1 .

Proof of Proposition 2. The above assertion can be proven by formulating
the problem in geometric terms and showing that appropriately defined mapping
has a fixed point. Consider the subset K of a space R6 defined as
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K = X ×Mp−

2

X = {(p, 1− p)|0 ≤ p ≤ 1} ,

Mp−

2 =


[

1− p− p−

p21 1− p21

]∣∣∣∣∣∣
p21 = p(1− p−) + (1− p)pm(1− p−)
= (1− p−)(1− pm)p+ (1− p−)pm,

0 ≤ pm, p− ≤ 1, (p, 1− p) ∈ X


X is a set of two dimensional probability vectors (p, 1− p) and Mp−

2 is the
set of two dimensional stochastic matrices with fixed first row and components
of the second row being linear functions of p. All points of K can be attained
by varying the parameter p so by definition K is a one dimensional subset of
R6. As K can be thought of as a Cartesian product of one dimensional closed
intervals, it follows that K is convex and compact as a finite Cartesian product
of convex, compact sets.

Define a norm in R6

‖‖ = ‖‖x + ‖‖M

where ‖‖x and ‖‖M are l1 norm in R2 and l1 induced matrix norm in Mp−

2

respectively.
Define the mapping

S : K =⇒ K,

S(p, P ) = (pP, PpP ),

where

p = (p, 1− p)

p =
[

1− p− p−

p21 1− p21

]
,

PpP =
[

1− p− p−

p∗21 1− p∗21

]
,

and

pP = (p∗, 1− p∗) = (p(1− p−) + (1− p)p21, pp
− + (1− p)(1− p21)),

p21 = p(1− p−) + (1− p)(1− p−)pm
= (1− pm)(1− p−)p+ pm(1− p−), (10)

It follows that

p∗ = p(1− p−) + (1− p)((1− pm)(1− p−)p+ pm(1− p−))

= (1− p−) [p+ (1− pm)(1− p)p+ (1− p)pm]

= (1− pm)(1− p−)p(2− p) + pm(1− p−)

= (1− pm)(1− p−)p∗ + pm(1− p−) (11)

S acts on both components of a point from K returning probability dis-
tribution and stochastic matrix obtained as a result of one step evolution of
non-homogenous Markov Chain corresponding to the one step evolution of an
agent.
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It is possible to prove that S is continuous in K. In order to show this,
choose an ε > 0 and fix an arbitrary point in K, (q,Q) and chose another point
(p, P ), such that

‖(q,Q)− (p, P )‖ ≤ δ

Note that

‖q − p‖x = |q − p|+ |1− q − 1 + p| =
= |q − p|+ | − q + p| = 2|q − p|

and that using (10)

‖Q− P‖M =
∥∥∥∥[ 1− p− p−

q21 1− q21

]
−
[

1− p− p−

p21 1− p21

]∥∥∥∥
=
∥∥∥∥[ 0 0

q21 − p21 p21 − q21

]∥∥∥∥ = |q21 − p21| =

= (1− p−)(1− pm)|q − p| = 1
2

(1− p−)(1− pm)‖q − p‖x

Together the above give

‖(q,Q)−(p, P )‖ = ‖q−p‖x+‖Q−P‖M =
[
1 +

1
2

(1− p−)(1− pm)
]
‖q−p‖x

Now

‖S(q,Q)− S(p, P )‖ = ‖(qQ,QqQ)− (pP, PpP )‖ = ‖(qQ− pP,QqQ − PpP )‖ =
= ‖qQ− pP‖x + ‖QqQ − PpP ‖M

Both terms in the above equation will be considered separately.

‖qQ− pP‖x = 2|q∗ − p∗| = 2(1− pm)(1− p−)|q(2− q)− p(2− p)|
= 2(1− pm)(1− p−)|2(q − p)− (q2 − p2)|
= 2(1− pm)(1− p−)|2− (q + p)‖q − p|
= (1− pm)(1− p−)|2− (q + p)|‖Q− P‖M

Similarly

‖QqQ − PpP ‖M = |q∗21 − p∗21|
= |(1− pm)(1− p−)(q∗ − p∗)|

=
1
2

(1− pm)2(1− p−)2|2− (q + p)|‖q − p‖x

= (1− pm)(1− p−)|2− (q + p)|‖Q− P‖M

Finally it follows that

‖S(q,Q)− S(p, P )‖ = (1− p−)(1− pm)|2− (p+ q)|
[
1 +

1
2

(1− p−)(1− pm)
]
‖q − p‖x

= (1− p−)(1− pm)|2− (p+ q)|‖(q,Q)− (p, P )‖
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Continuity of the operator S follows from the fact that for δ = ε
2(1−p−)(1−pm)

one obtains

‖S(q,Q)− S(p, P )‖ = (1− p−)(1− pm)|2− (p+ q)|‖(q,Q)− (p, P )‖ ≤
≤ 2(1− p−)(1− pm)‖(q,Q)− (p, P )‖ ≤
≤ ε

Thus, by the Birkhoff-Kellogg-Schauder fixed point theorem, (Saaty, 1981),
it follows that S has a fixed point in K. This property implies that the sequence
{Pi} of stochastic matrices is asymptotically stationary. �
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