
Towards generating novel games using conceptual blending

Jeremy Gow and Joseph Corneli
Computational Creativity Group

Department of Computing
Goldsmiths, University of London, UK

Abstract

We sketch the process of creating a novel video game by
blending two video games specified in the Video Game
Description Language (VGDL), following the COIN-
VENT computational model of conceptual blending.
We highlight the choices that need to be made in this
process, and discuss the prospects for a computational
game designer based on blending.

Introduction
This paper outlines the process of creating a novel video
game by blending two video game descriptions given in the
Video Game Description Language (VGDL). Several issues
need to be considered: which games to blend? Which el-
ements of the game will be blended and which removed?
Do we need to adjust the resulting game in order to make it
playable? Taking two games from the GVG-AI Competition
(Perez et al. 2015), we provide a worked example based on
a recent computational, domain-independant model of con-
ceptual blending (Bou et al. 2015).

Our account provides a high-level sketch of how a com-
putational system could blend game designs, and does not
propose a concrete architecture. Instead, our intent is ex-
plore how a game blending system could work. We high-
light the specific challenges presented by various steps in
the blending process, and describe how certain steps provide
the opportunity to add or close off new potential mechanics
and meanings. The implementation and evaluation of this
approach will be the focus of future work.

Background
Recent research (Treanor et al. 2012; Cook and Colton 2014)
has examined computational generation of games from pro-
vided concepts. The current exploration of blending game
descriptions is motivated by our observation that game de-
signers often build new games by combining ideas from ex-
isting games.

Conceptual blending is the notion that new concepts can
be generated by combining elements of existing concepts.
COINVENT is an EU FP7 project that aims to develop
a “computationally feasible, formal model of conceptual

Preprint version.

blending” (Schorlemmer et al. 2014)1. The project takes
Goguen’s formalisation of conceptual blending as a starting
point (Goguen 1999). Early implementations draw on the
related notion of amalgams (Ontañón and Plaza 2010). The
core ideas in the model are:

Conceptual spaces may be mathematical theories, ontolo-
gies, or, in our case, video game descriptions.

Signature morphisms between conceptual spaces are
mappings from the symbols of a source conceptual
space into the symbols of target conceptual space. In the
diagram below, φ1, φ2, ψ1, ψ2, and ι are all signature
morphisms.

Generic spaces are a particular kind of conceptual space
that possess maximum commonality with a number of
given input spaces. In the diagram below, φ1 and φ2 rep-
resent the inclusion of the elements of the generic space
G in both X and Y .

Blends are unique conceptual spaces that preserve structure
from the input spaces and a generic spaceG, via a specific
arrangement of signature morphisms; namely, such that
the diagram is commutative, and that ‘axioms’ in the input
spaces X,Y are sent to ‘theorems’ in the unique colimit
B, known as the blend:

B

X Y

G

ψ1 ψ2

φ1 φ2

ι

Within the COINVENT project the model has been
primarily applied to examples from mathematics (Bou
et al. 2015) and music (Cambouropoulos, Kaliakatsos-
Papakostas, and Tsougras 2014). The constituent processes
have been automated to differing degrees, and for some sim-
ple examples complete automation is feasible. One of the
key outstanding issues is the evaluation of blends, both from
the point of view of judging the final outcome, and from an
‘online’ point of view that can help constrain the potential
combinatorial explosion as the collection of possible input
spaces is explored, and possible blends are computed.

1http://www.coinvent-project.eu/



VGDL: The Video Game Description Language allows
the specification of simple arcade-style games (Schaul
2014). It was recently developed to support research into ar-
tificial intelligence and games, in particular general game-
playing agents, and now forms the basis of the General
Video Game Playing AI (GVG-AI) Competition (Perez et
al. 2015).

VGDL conceptualises a game as having five components:

Sprite Set The entities in the game, their types and proper-
ties. The predefined types are Avatar, FromAvatar, NPC,
Static, Movable, Resource and Portal, plus a large number
of specialised subtypes, e.g. RandomNPC. The sprites are
arranged in a hierarchy, where subsprites (here denoted
v) inherit types/properties of their ancestors.

Interaction Set The mechanics of the game. Each interac-
tion rule defines the consequences of a particular pair of
sprites overlapping.

Termination Set The win/lose conditions, based on either
a timeout or the value of counter, e.g. player health.

Level Mapping A translation from ASCII characters to
sprites.

Level Designs Multiple levels can be defined in ASCII, in-
terpreted using the Level Mapping.

A VGDL specification defines the first four elements, with
level designs being specified in a set of accompanying text
files.

The sprites and rules are described in terms of a prede-
fined ontology, e.g. a sprite can be a RandomNPC which
wanders around the screen. The default ontology is fairly
limited, and the VGDL versions of well-known titles are of-
ten quite simplistic. Nevertheless, it can be used to define an
impressive range of games which present a serious challenge
for a general game-playing agent, as demonstrated by the
GVG Competition examples. In the context of game design,
VGDL presents a large space of possible games. Random
instances from within that space are unlikely to be coherant,
playable games, let alone high quality ones (Barros and To-
gelius 2014). Hence it also presents a research challenge for
automated game design, and researchers are now beginning
to look at VGDL generation (Nielsen et al. 2015b).

Blending VGDL
Taking VGDL specifications as our ‘conceptual spaces’ for
games, we wish to show how a computational agent could
conceivably create new designs by blending existing game
elements. Our proposed approach closely follows the gen-
eral COINVENT process model:

Select two input games to blend.

Generalise the games by matching selected elements from
each, resulting in a generic game concept.

Blend the games by combining their constituent elements,
reformulated in terms of the generic game concept.

Evaluate whether the (perhaps nonsensical) blend is a vi-
able game.

Weaken the blend by removing/adjusting elements to
achieve viability.

Run the blend by elaborating the design to exploit any new
structure which it has introduced.

The following account is a thought experiment, but is, we
argue, computationally plausible. We expect that the ma-
jority of games developed by such a process would not be
playable, and indeed there will be many partially devel-
oped blends that will fail. For non-trivial examples, each
stage presents a huge number of choices — a combinato-
rial explosion which any automated designer needs to tackle
in order to extract playable needles out of a haystack of
‘frankengames’. We draw attention below to some of the de-
cisions a computational designer would have to confront.

The term “designer” is used to refer to this imagined
agent, but one might also conceive a co-creative approach
where a human designer takes some of the key decisions,
and perhaps takes inspiration from the blends the system
produces.

Previous work in automated game design has suggested
that there are few intrinsic criteria for game quality (Nel-
son et al. 2015). Playtesting, whether by humans or bots,
is an essential component of game design. An implementa-
tion could use feedback from automated playtesting of the
games to guide this process, as in e.g. (Nielsen et al. 2015a;
2015b).

We completely sidestep the difficult issues of blending
level designs and blending audiovisual elements, focusing
instead on blending game entities and rules. Of course, the
design of all these elements is intimitely connected, and a
full account of game blending would encompass these as
well.

Selection
The first question is which games should we blend? Input
game selection can be thought of as taking part in some
wider game design context: perhaps an agent is elaborating
a particular design, and decides to blend in another game
concept in order to fix a perceived problem with the orig-
inal. Alternatively, an agent could be simply exploring the
creative possibilities of mashing together diverse game de-
signs.

For this paper, we have just hand-selected two games
from the GVG Competition example set: Frogger (AKA
Frogs) and Zelda (Perez et al. 2015). Both games are in-
spired by well-known commercial titles and have simple
specifications — the VGDL is shown in Figure 1 and 2 re-
spectively. The level and visual design are both outside the
scope of this paper, so for simplicity we have omitted the
LevelMapping information and img and color prop-
erties. We have also renamed a few sprites and made minor
alterations for clarity, without affecting the game mechanics.

It is possible to intuit a lot about how these games
work from the VGDL descriptions: the player controls
an Avatar, Missiles travel in given direction etc. Due to
lack of space, we do not include a full description of
the games: see Schaul (2014) for more details, or play



SpriteSet

forest > SpawnPoint stype=log

dense > prob=0.4 cooldown=10

sparse > prob=0.1 cooldown=5

structure > Immovable

home > Door

water

wall

log > Missile orientation=LEFT speed=0.1

safety > Resource limit=2

frog > MovingAvatar

truck > Missile img=truck

rightTruck > orientation=RIGHT

fastRtruck > speed=0.2

slowRtruck > speed=0.1

leftTruck > orientation=LEFT

fastLtruck > speed=0.2

slowLtruck > speed=0.1

InteractionSet

home frog > killSprite scoreChange=1

frog log > changeResource resource=safety value=2

frog log > pullWithIt

frog wall > stepBack

frog water > killIfHasLess resource=safety limit=0

frog water > changeResource resource=safety value=-1

frog truck > killSprite scoreChange=-2

log EOS > killSprite

truck EOS > wrapAround

TerminationSet

SpriteCounter stype=home win=True

SpriteCounter stype=frog win=False

Figure 1: Frogger VGDL specification.

them using the Java emulator at https://github.com/
EssexUniversityMCTS/gvgai.

Generalisation
The generalisation step proposes a generic game concept
which can be mapped onto elements of the two input games.
In the case of VGDL, we need to propose one or more
generic sprites, which can then be mapped on to a subset
of the two input sprite sets. For example, if game X fea-
tures aliens and game Y ghosts, we could propose a generic
game concept G with enemies. We then have two signa-
ture morphisms, i.e. mappings from the sprites of G to the
sprites of the input games: φ(G,X) : enemy 7→ alien and
φ(G, Y ) : enemy 7→ ghost.

Even for quite small sprite sets the number of possi-
ble mappings is considerable. We can imagine quite radical
mappings, e.g. where a sprite is mapped to both the player
avatar and a ghost, or both an alien and an ammo pack, and
these clearly have a lot of creative potential. However, for
now we make the additional simplifying assumption that
the mappings preserve the VGDL sprite categories: Avatar,
NPC, Resource etc. So the generic player avatar is mapped
to the player avatars in both input games, and so on.

In our running example, the designer could propose the
following category-preserving generic sprite set that maps

SpriteSet

door > Door

key > Immovable

wall > Immovable

sword > Flicker limit=5 singleton=True

movable >

link > ShootAvatar stype=sword

nokey

withkey

monster > RandomNPC

monsterQuick > cooldown=2

monsterNormal > cooldown=4

monsterSlow > cooldown=8

InteractionSet

movable wall > stepBack

nokey door > stepBack

door withkey > killSprite scoreChange=1

monster sword > killSprite scoreChange=2

link monster > killSprite scoreChange=-1

key link > killSprite scoreChange=1

nokey key > transformTo stype=withkey

TerminationSet

SpriteCounter stype=door win=True

SpriteCounter stype=link win=False

Figure 2: Zelda VGDL specification.

as follows:
Generic Frogger Zelda
avatar frog link
goal home door
wall wall wall
enemy truck monster

fastREnemy fastRTruck monsterQuick
fastLEnemy fastLTruck monsterQuick
slowREnemy slowRTruck monsterSlow
slowLEnemy slowLTruck monsterSlow

Note that both input games have additional unmapped
sprites, e.g. Zelda’s key and sword don’t correspond to
anything in the generic game.

Blending the Sprites
An initial version of our blended game — let’s call it Frolda
— can now be generated. The blended sprite set combines
those from both games, merging sprites identified by the sig-
nature morphisms: this is shown in Figure 3.

In generating this blend, we have retained as much struc-
ture as possible from both games: goalvstructure is
based on the door from Zelda, and the monster and
truck sprite hierarchies have been integrated, retaining the
rightTruck and leftTruck sprites from Frogger (re-
named rightEnemy and leftEnemy).

The input games used two separate mechanisms to con-
trol NPC speed — cooldown (rate of action) and speed
(distance traveled per movement action) — hence all ene-
mies are slower in the blend than either of the inputs. This
is an example of a undesirable interaction between game el-



forest > SpawnPoint stype=log

dense > prob=0.4 cooldown=10

sparse > prob=0.1 cooldown=5

structure > Immovable

goal > Door

water

wall

key

sword > Flicker limit=5 singleton=True

log > Missile orientation=LEFT speed=0.1

safety > Resource limit=2

movable >

avatar > ShootAvatar stype=sword

nokey

withkey

enemy > Missile

rightEnemy > orientation=RIGHT

fastREnemy > cooldown=2 speed=0.2

slowREnemy > cooldown=8 speed=0.1

leftEnemy > orientation=LEFT

fastLEnemy > cooldown=2 speed=0.2

slowLEnemy > cooldown=8 speed=0.1

monsterNormal > RandomNPC cooldown=4

Figure 3: Initial sprite set for Frolda.

ements that will need to be dealt with later in the blending
process.

Two significant decisions have been made during the
sprite set blend:

1. The player is a ShootAvatar, following Zelda.
2. An enemy is a Missile, following Frogger.
This is a form of weakening (see below) which it makes
sense to apply at this stage, adjusting the blend to ensure
the initial blend is valid VGDL.

Some elements of the input games are unaffected by
the blend: the walls, the river system from Frogger
(forest/water/log/safety), and the sword, key
and monsterNormal from Zelda.

Blending the Rules
We continue the blend by combining the interaction sets:
an initial version is shown in Figure 4. All interac-
tions can be included without modification, except for
avatar-enemy, which reduces the score by 2 in Frogger,
but only 1 in Zelda. By choosing the latter value we again
weaken the blend in order to obtain valid VGDL.

Finally, we blend the termination sets. In this example,
the structure happens to be identical: the player loses if the
avatar is killed, and wins if the goal is ‘killed’ by being
touched by the avatar.

Evaluation/Weakening
The initial blend includes all the sprites, interactions and ter-
mination conditions from both games, with a unique blended
structure defined by the chosen signature morphisms. Ad-
justments were made to the blend to ensure we had valid
VGDL, which introduced choices about how the unique
blend should be weakened. The next step is to consider

goal avatar > killSprite scoreChange=1

goal withkey > killSprite scoreChange=1

nokey goal > stepBack

key avatar > killSprite scoreChange=1

nokey key > transformTo stype=withkey

movable wall > stepBack

avatar wall > stepBack

avatar log > changeResource resource=safety value=2

avatar log > pullWithIt

avatar water > killIfHasLess resource=safety limit=0

avatar water > changeResource resource=safety value=-1

log EOS > killSprite

enemy EOS > wrapAround

enemy sword > killSprite scoreChange=2

avatar enemy > killSprite scoreChange=-1

monsterNormal sword > killSprite scoreChange=2

avatar monsterNormal > killSprite scoreChange=-1

Figure 4: Initial interaction set for Frolda

whether we need to further weaken the blend to improve the
game’s coherance and playability.

First, we can see that the initial interaction set (see Figure
4) contains some redundancies:
• avatar and movable have the same interaction

with wall, and avatarvmovable. Also note that
truckvmovable and if trucks are blocked by walls
then they will be prevented from wrapping around, i.e.
all the trucks will end up stacked against the wall. Hence,
we remove the movable interaction and retain the more
specific rule.

• avatar and withkey have the same interaction with
goal, and withkeyvavatar. If we retain the more
general rule then the player could always get to the goal,
making the key redundant. Hence we again choose to re-
tain the more specific rule, and drop the avatar interac-
tion.
Another principle we can apply is parsimony: does the

game contain unnecessary elements? This is very much
context-dependent. A designer who was working on Frog-
ger, but had blended it with Zelda in order to add a key- door
mechanism might regard the wandering monsterNormal
as an unnecessary addition. Likewise, a Zelda designer who
had blended in the ‘crossing the road’ structure from Frog-
ger could regard the log/river system as unwanted. If we are
interested in mashing up the two games, we could regard
any additional structure outside the core of the blend (i.e.
the generic shared structure) as unnecessary. Here we adopt
the latter position, and remove both the wandering monsters
(monsterNormal) and river system.

Finally, we may wish to retune values in the blended
game, such as the speed of the enemies, which may not be
appropriate in their new context. As noted above, the en-
emies speed in the initial blend is being modulated by both
speed and cooldown values. Here, we decide that we can
use the default cooldown value.

A final version of Frolda is shown in Figure 5. The game



SpriteSet

structure > Immovable

goal > Door

wall

key

sword > Flicker limit=5 singleton=True

movable >

avatar > ShootAvatar stype=sword

nokey

withkey

enemy > Missile

rightEnemy > orientation=RIGHT

fastREnemy > speed=0.2

slowREnemy > speed=0.1

leftEnemy > orientation=LEFT

fastLEnemy > speed=0.2

slowLEnemy > speed=0.1

InteractionSet

goal withkey > killSprite scoreChange=1

nokey goal > stepBack

key avatar > killSprite scoreChange=1

nokey key > transformTo stype=withkey

avatar wall > stepBack

avatar enemy > killSprite scoreChange=-1

enemy EOS > wrapAround

enemy sword > killSprite scoreChange=2

TerminationSet

SpriteCounter stype=goal win=True

SpriteCounter stype=avatar win=False

Figure 5: Final specification for Frolda.

features enemies that move laterally left and right across the
screen, but which can be killed by using a sword, and re-
quires the player to collect the key before reaching the goal.
Figure 6 shows the game running in the GVG-AI Java em-
ulator, with our choice of sprite images and level design.
This level takes advantage of the key-door mechanic to force
Frolda to cross the ‘road’ of monsters twice before exiting
the level.

‘Running the blend’ refers to further elaborating the
blended game to take advantage of the synthesis of game
elements. For example, we may decide to make the key a
Missile so that as well as ‘crossing the road’ of enemies, the
player has to pick the key out of the moving traffic.

Alternative Blends
One can imagine many alternative choices to the ones made
above. Consider these examples, out of the many possible
blends:

• A generic game which doesn’t distinguish the speed of
enemies, resulting in single-speed monsters which travel
left and right.

• A generic game without a unified class of enemies. Trucks
and monsters would both be included in the blend as a
separate sprites, and the designer could run the blend by
inventing new interactions for them.

• Blending home with doorvstructure was
straightforward. But what if Frogger had specified
homevbuilding? One option would be to blend
building and structure during the generalisation
phase. Another would be to create a new relationship in
the blend, e.g. buildingvstructure. A third option
would be to remove, say, building entirely.

• When blending the sprite set we could have selected
MoveAvatar instead of ShootAvatar, leaving the
sword without a role in the game, to be later removed dur-
ing weakening.

• Choosing RandomNPC enemies instead of Missile
would have given us a Zelda-style free-roaming monsters
instead of the horizontally-moving trucks that can be used
in level designs to create a dangerous ‘road’.

Next Steps
The account above has glossed over many details, although
we hope that each step is computationally plausible. To-
wards this end we intend to implement a basic VGDL
blender using the Java VGDL library (Perez et al. 2015).
We envision the primary research topic for blended games
to surround experimentation with heuristics: can we man-
age the massive combinatorial possibilities to produce a di-
verse range of non-trivial, coherent, novel, playable games?
A subsequent phase of work would integrate the imple-
mentation with the COINVENT software stack, as that ma-
tures. The COINVENT system currently accepts input in
the Web Ontology Language (OWL) or the Common Al-
gebraic Specification Language (CASL), so one likely ap-
proach would be to write a translator, for instance between
VGDL descriptions and OWL.

A more immediate next step to support system-building is
to work out further compelling examples in detail, e.g.

Pac-Man + Zombies The Survive Zombies game that ships
with the GVG-AI collection has some similarity to Pac-
Man (Perez et al. 2015). Both games give the protago-
nist the task of collecting a certain resource while avoid-
ing a population of Chasers. However, in Survive Zom-
bies another sprite is introduced (bees) which transforms
the chasers into honey. One possible blend with Pac-Man
would allow the protagonist to place fruit that is toxic to
ghosts in strategic locations.

Sokoban + Snake The protagonist’s tail grows when boxes
are pushed to the goal2.

Sokoban + Sokoban Two copies of Sokoban hooked to-
gether, so that boxes cleared from one side appear on
the other. Perhaps best conceived of as a two-player
game, with each player in the role of “Maxwell’s demon”.
VGDL would have to be extended to multi-player games.

Two other directions that we did not address here in-
clude level design and audiovisual design for games. Rather
than directly blending the example levels that accompany

2It seems challenging to implement Snake in VGDL, since the
snake’s tail would have to be made of a chain of chasers that are
programmed to follow each other.



Figure 6: A screenshot of Frolda running in the GVG-AI Java emulator. The player (bottom left) has to cross the ‘road’ of
monsters to get the key (top) and then cross again before exiting the level (bottom).

VGDL, we propose to express the level idiom in the form
of a declarative level generator, e.g. in ASP (Smith and
Mateas 2011), and blend these generators in concert with
the rest of game description. Other aspects of visual design
(e.g. sprites) could be developed through blending, building
on recent work in icon blending (Confalonieri et al. 2015).
Given its focus on game-playing agents, VGDL does not
currently support any audio that could be blended, although
it would be relatively easy to extend with simple audio ef-
fects to support research in that direction.

Discussion
One aspect in which our account is significantly lacking is
how a computational designer can “run the blend” to take
advantage of the new creative opportunities afforded by the
newly combined elements. Consider the variant mentioned
above where trucks and monsters remain separate sprites.
How should they interact? We expect our initial implemen-
tation will use quite basic mechanisms, e.g. randomly se-
lecting an event (or no event) for the interaction of the two
sprites. A more radical move would be to elaborate new me-
chanics. For instance, monsters could commandeer and drive
trucks. To give Frolda a chance to survive in this new Mad
Max universe, it may be important to give her the oppor-
tunity to collect a bazooka that can launch missiles at the
trucks. How this kind of elborative process can be realised
computationally could be a direction for future research.

The player’s imagination does a significant amount of
work to make sense of the blend — perhaps especially in
a game with limited graphics. Knowledge of the original
games may help the player envision the new blended sce-
nario. Thus, if we recognise the two source games, Frolda
may be envisioned as an anthropomorphic frog equipped
with a sword. We have only considered structural blending,
but a broader view could include blending of audiovisual el-

ements to achieve these kind of effects.
Brandt and Brandt offer a critique of conceptual blending

that can help in thinking about what makes a blended game
playable (Brandt and Brandt 2005). They argue that a purely
conceptual approach to blending is not as cognitively useful
as an approach that considers blends in their communica-
tive context. In the case of games, there is both a narrative
and an interactive component to the communication. This is
consistent with the view from PCG that intrinsic criteria are
insufficient for automated game design, and that some form
of playtesting is required (Nelson et al. 2015).

Conclusions

We have shown that it is — in principle — possible to pro-
vide a computational approach to blending games specified
in VGDL, although many such blends are possible. We high-
lighted the opportunities for emergent meaning making that
are afforded to game designers using this approach. Never-
theless, it is difficult to point to anything resembling elabo-
ration, evaluation, or meaning-making within VGDL games
themselves: for instance, the observation that a given game
is unduly difficult for the player would have to come from
outside. Automated playtesting could provide some of the
necessary feedback to guide the blending process, and will
be integral to the implementation of the approach we have
outlined here.

Acknowledgments

Many thanks to Christian Guckelsberger and the anonymous
reviewers for their comments on an earlier draft of this paper.
Joseph Corneli was supported by the European Commision
via the COINVENT project (FP7 FET-Open grant 611553).



References
Barros, G., and Togelius, J. 2014. Exploring a large space of
small games. In Proc. 2014 IEEE Conf. on Computational
Intelligence and Games, CIG 2014.
Bou, F.; Corneli, J.; Gómez-Ramı́rez, D.; Maclean, E.;
Pease, A.; Schorlemmer, M.; and Smaill, A. 2015. The
role of blending in mathematical invention. In Colton, S.;
Toivonen, H.; Cook, M.; and Ventura, D., eds., Proc. 6th
Int. Conf. on Computational Creativity, ICCC 2015. ACC.
http://computationalcreativity.net/.
Brandt, L., and Brandt, P. A. 2005. Making sense of a blend:
A cognitive-semiotic approach to metaphor. Annual Review
of Cognitive Linguistics 3(1):216–249.
Cambouropoulos, E.; Kaliakatsos-Papakostas, M.; and
Tsougras, C. 2014. An idiom-independent representation
of chords for computational music analysis and generation.
In Proceeding of the joint 11th Sound and Music Computing
Conference (SMC) and 40th International Computer Music
Conference (ICMC), Athens, Greece.
Confalonieri, R.; Corneli, J.; Pease, A.; Plaza, E.; and Schor-
lemmer, M. 2015. Using argumentation to evaluate concept
blends in combinatorial creativity. In Colton, S.; Toivonen,
H.; Cook, M.; and Ventura, D., eds., Proc. 6th Int. Conf.
on Computational Creativity, ICCC 2015. ACC. http:
//computationalcreativity.net/.
Cook, M., and Colton, S. 2014. Ludus ex machina: Build-
ing a 3D game designer that competes alongside humans.
In Proc. 5th Int. Conf. on Computational Creativity, ICCC
2014. ACC.
Goguen, J. 1999. An introduction to algebraic semiotics,
with application to user interface design. In Computation
for metaphors, analogy, and agents. Springer. 242–291.
Nelson, M. J.; Togelius, J.; Browne, C.; and Cook, M. 2015.
Rules and mechanics. In Shaker, N.; Togelius, J.; and Nel-
son, M. J., eds., Procedural Content Generation in Games.
Springer. chapter 6. http://www.pcgbook.com.
Nielsen, T. S.; Barros, G.; Togelius, J.; and Nelson, M. J.
2015a. General video game evaluation using relative algo-
rithm performance profiles. In Proceedings of EvoApplica-
tions 2015.
Nielsen, T. S.; Barros, G. A. B.; Togelius, J.; and Nelson,
M. J. 2015b. Towards generating arcade game rules with
VGDL. In Proc. 2015 IEEE Conf. on Computational Intel-
ligence and Games, CIG 2015. IEEE.
Ontañón, S., and Plaza, E. 2010. Amalgams: A formal
approach for combining multiple case solutions. In IC-
CBR10: 18th International Conference on Case-Based Rea-
soning, volume 6176 of Lecture Notes in Artificial Intelli-
gence. Springer. 257–271.
Perez, D.; Samothrakis, S.; Togelius, J.; Schaul, T.; and Lu-
cas, S. 2015. The General Video Game AI Competition.
http://www.gvgai.net/.
Schaul, T. 2014. An extensible description language for
video games. IEEE Trans. Comput. Intellig. and AI in
Games 6(4):325–331.

Schorlemmer, M.; Smaill, A.; Kühnberger, K.; Kutz, O.;
Colton, S.; Cambouropoulos, E.; and Pease, A. 2014. COIN-
VENT: Towards a computational concept invention theory.
In Proc. 5th Int. Conf. on Computational Creativity, ICCC
2014. ACC. http://computationalcreativity.
net/.
Smith, A. M., and Mateas, M. 2011. Answer set program-
ming for procedural content generation: A design space ap-
proach. IEEE Trans. Comput. Intellig. and AI in Games
3(3):187–200.
Treanor, M.; Blackford, B.; Mateas, M.; and Bogost, I. 2012.
Game-o-matic: Generating videogames that represent ideas.
In Proc. 3rd Workshop on Procedural Content Generation
in Games. ACM.


