
Investigating Stochastic Diffusion Search
in Data Clustering

Mohammad Majid al-Rifaie∗¶‖, Daniel Joyce†‖, Sukhi Shergill‡‖, Mark Bishop§¶
¶Department of Computing, Goldsmiths, University of London, London SE14 6NW, United Kingdom

‖Cognition, Schizophrenia & Imaging Laboratory, King’s College London, London SE5 8AF, United Kingdom
∗m.majid@gold.ac.uk / m.majid@kcl.ac.uk

†daniel.joyce@kcl.ac.uk
†sukhi.shergill@kcl.ac.uk
§m.bishop@gold.ac.uk

Abstract—The use of clustering in various applications is key
to its popularity in data analysis and data mining. Algorithms
used for optimisation can be extended to perform clustering
on a dataset. In this paper, a swarm intelligence technique –
Stochastic Diffusion Search – is deployed for clustering purposes.
This algorithm has been used in the past as a multi-agent global
search and optimisation technique. In the context of this paper,
the algorithm is applied to a clustering problem, tested on the
classical Iris dataset and its performance is contrasted against
nine other clustering techniques. The outcome of the comparison
highlights the promising and competitive performance of the
proposed method in terms of the quality of the solutions and
its robustness in classification. This paper serves as a proof of
principle of the novel applicability of this algorithm in the field
of data clustering.

Keywords—Clustering; Stochastic Diffusion Search; iris
dataset; Swarm intelligence

I. INTRODUCTION

Given the undeniable significance of data clustering in
different and diverse scientific domains (e.g. computer science,
psychology, medicine), various techniques have been proposed
over the years. Nature-inspired metaheuristic algorithms are
among one of the categories which aimed at providing so-
lutions to this problem. In this paper a novel method in
addressing data clustering problems is used where a swarm
intelligence algorithm is adapted for this purpose.

This work attempts to pave the way for more effectively
optimising computationally expensive objective functions, by
deploying the diffusion mechanism of Stochastic Diffusion
Search [1], [2] to more efficiently allocate resources via
information-sharing between agents. A recent review [2] de-
tails the extensive applications of this algorithm in the last two
decades in various fields (e.g. optimisation, resource allocation,
medical imagining, etc).

This paper focuses on using Stochastic Diffusion Search
(SDS) in data clustering in order to provide a proof of
principle. In this paper, first Stochastic Diffusion Search algo-
rithm is explained, followed by a simple example detailing its
behaviour and highlighting one of its main features (i.e. partial
function evaluation). Afterwards, its application into a well-
known clustering problem is reported, and finally the results
are compared against other methods used in the area.

II. STOCHASTIC DIFFUSION SEARCH

Stochastic Diffusion Search (SDS) [2], [1] which was first
proposed in 1989 is a probabilistic approach for solving best-fit
pattern recognition and matching problems. SDS, as a multi-
agent population-based global search and optimisation algo-
rithm, is a distributed mode of computation utilising interaction
between simple agents. Its computational roots stem from
Geoff Hinton’s interest 3D object classification and mapping.

The SDS algorithm commences a search or optimisation
by initialising its population and then iterating through two
phases: the test and diffusion phases.

In the test phase, SDS checks whether the agent hypothesis
is successful or not by performing a hypothesis evaluation
which returns a boolean value1. Once the activity (i.e their
status as being ’true’ or ’false’) of all the agents are deter-
mined, successful hypotheses diffuse across the population and
in this way information on potentially good solutions spreads
throughout the entire population of agents. In other words,
each agent recruits another agent for interaction and potential
communication of hypothesis. The spreading of information
occurs during the diffusion phase. See Algorithm 1 for a high-
level description of the algorithm.

Algorithm 1 SDS Algorithm

01: Initialise agents
02: While (stopping condition is not met)
04: For each agent
03: Test hypothesis and determine activity
05: For each agent
06: Diffuse hypothesis
07: End While

A. Standard SDS and Passive Recruitment

In standard SDS (which is used in this paper), passive
recruitment mode is employed. In this mode, if the agent is
inactive, a second agent is randomly selected for diffusion;
if the second agent is active, its hypothesis is communi-
cated (diffused) to the inactive one. Otherwise there is no
flow of information between agents; instead a completely
new hypothesis is generated for the first inactive agent at

1A hypothesis can be considered a point in the search space. Later in the
paper hypothesis is explained in the context of the clustering problem

SAI Intelligent Systems Conference 2015
November 10-11, 2015 | London, UK

random (see Algorithm 2). Therefore, recruitment is not the
responsibility of the active agents. In this work, activity of
each agent is determined when its fitness is compared against
a random agent (which is different from the selecting one);
if the selecting agent has a better fitness (smaller value in
minimisation problems) than the randomly selected agent, it
will be flagged as active, otherwise inactive. Higher rate of
inactivity boosts exploration, whereas a lower rate biases the
performance towards exploitation.

Algorithm 2 Passive Recruitment Mode

01: For each agent ag
02: If (!ag.isActive)
03: r_ag = pick a random agent
04: If (r_ag.isActive)
05: ag.hypothesis = r_ag.hypothesis
06: Else
07: ag.hypothesis = generate random hypothesis
08: End If
09: End For

B. Partial Function Evaluation

One of the concerns associated with many optimisation
algorithms (e.g. Genetic Algorithm [3], Particle Swarm Opti-
misation [4] and etc.) is the repetitive evaluation of a computa-
tionally expensive fitness functions. In some applications, such
as tracking a rapidly moving object, the repetitive function
evaluation significantly increases the computational cost of the
algorithm. Therefore, in addition to reducing the number of
function evaluations, other measures can be used in an attempt
to reduce the computations carried out during the evaluation
of each possible solution, as part of the overall optimisation
(or search) processes.

The commonly used benchmarks for evaluating the per-
formance of swarm intelligence algorithms are typically small
in terms of their objective functions computational costs [5],
[6], which is often not the case in real-world applications
(examples of costly evaluation functions are seismic data
interpretation [6], selection of sites for the transmission infras-
tructure of wireless communication networks and radio wave
propagation calculations of one site [7] etc.).

Costly objective function evaluations have been investi-
gated under different conditions [8] and the following two
broad approaches have been proposed to reduce the cost of
function evaluations:

• The first is to estimate the fitness by taking into
account the fitness of the neighbouring elements, the
former generations or the fitness of the same element
through statistical techniques introduced in [9], [10].

• In the second approach, the costly fitness function
is substituted with a cheaper, approximate fitness
function.

When agents are about to converge, the original fitness func-
tion can be used for evaluation to check the validity of the
convergence [8].

The approach that the standard SDS algorithm uses is
similar to the second method. Many fitness functions are
decomposable to components that can be evaluated separately.

During the test phase of SDS, in partial function evaluation
(pFE, which is some function of the agent’s hypothesis;
pFE = f(h)), the evaluation of one or more of the compo-
nents may provide partial information to guide the subsequent
optimisation process.

III. CLUSTERING PROBLEM

Clustering is often described as the unsupervised classifica-
tion of patterns into groups or clusters. Considering the many
data analysis techniques, data clustering approach is among
the most popular.

Clustering, which is often described as the unsupervised
classification of patterns into groups or clusters, is the process
through which data are grouped according to their similarity;
therefore each entity in one group or cluster is believed to
have the most similarity to the members in the same group
and largely dissimilar to entities from other groups; measuring
distance between data object is an indicator of similarity.

The following poses the problem in a minimisation form,
where N number of data objects are to be allocated to M
cluster and the goal is to minimise the sum of the squared
Euclidean distance between each object and the centre of the
related cluster.

F (D,C) =

N∑
i=1

M∑
j=1

wij ‖ Di − Cj ‖2 (1)

where ‖ Di − Cj ‖ return the Euclidean distance between
the cluster centre Cj and data object Di. M and N represent
the the number of clusters and data objects respectively. The
association weight of data object Di with the cluster j is given
as wij ; this figure is set either in the binary form of 0 and
1 (i.e. wij = 1 if object i is allocated to cluster j, otherwise
wij = 0), or in fuzzy clustering, the value of wij belongs to
the interval [0, 1].

In another form, and as reported in [11], clustering is
defined as stated below:

Let O = {o1, o2, ..., on} be a set of n objects and let Xn×p

be the profile data matrix, with n rows and p columns. Each ith
objects is characterized by a real-value p-dimensional profile
vector ~xi, where each element xij corresponds to the jth real-
value feature (j = 1, ..., p) of the ith object (i = 1, ..., n).
Given Xn×p, the goal of a clustering algorithm is to determine
a partition G = {C1, C2, ..., Ck} (i.e., Cg 6= Φ,∀g;Cg ∩Ch =
Φ,∀g 6= h;∪kg=1Cg = O) such that objects belonging to the
same cluster are as similar to each other as possible, while
objects which belong to different clusters are as dissimilar as
possible. It has been shown that the clustering problem is NP-
hard when the number of clusters exceeds three [12].

A. Iris dataset

In this work Iris dataset from Machine Learning Laboratory
[13] is used. Arguably, the Iris dataset is one of the most well-
known and frequently used datasets in pattern recognition and
clustering literature; one of the most cited works in this context
is a paper written by Fisher in 1936 [14] .

www.conference.thesai.org 2 | P a g e

SAI Intelligent Systems Conference 2015
November 10-11, 2015 | London, UK

In this dataset, there are three iris types each of which
have 50 samples; each type represents one group of iris plant
where one out of three types is linearly separable from the
other two. Each of the 150 samples in the dataset has four
numeric features representing the sepal length, sepal width,
petal length and petal width (all in cm). There are no missing
attributes in any of the samples. See Table I for an overview
of the content of the iris dataset which is visualsed in Fig. 1.

B. Other techniques used for comparison

In order to compare the performance of SDS against other
methods, nine other techniques are briefly explained below
which be used in the next section:

Support Vector Machine (SVM) : SVM is one of the
most well-known and successful classifiers. SVM [15] is a
kernel method based on a support vector description of a data
set consisting of positive examples only. If all data are in-liers,
one-class SVM computes the smallest sphere in feature space
enclosing the image of the input data.

Neural Gas: The neural gas – an artificial neural
network, introduced in 1991 – is a simple algorithm for finding
optimal data representations based on feature vectors. The
algorithm was coined ”neural gas” because of the dynamics
of the feature vectors during the adaptation process, which
distribute themselves like a gas within the data space [16].

K-means : Among the classical clustering algorithms,
K-means [17] is the most well known algorithm due to its
simplicity and efficiency. In K-means the centres are moved
repeatedly by computing, at each iteration and for each center,
the smallest sphere enclosing the closest data until no center
changes anymore.

Ng-Jordan : Ng Jordan, a spectral clustering algorithm,
is built upon the earlier work of Weiss and Meila and Shi, who
analysed algorithms that use k eigenvectors simultaneously to
perform the tasks [18].

Self-Organising Map (SOM) : A self-organising map
[19] or self-organising feature map (SOFM) is a type of artifi-
cial neural network that is trained using unsupervised learning
to produce a low-dimensional (typically two-dimensional),
discretised representation of the input space of the training
samples, called a map. This makes SOMs useful for visualising
low-dimensional views of high-dimensional data.

Particle Swarm Optimization (PSO): This algorithm
was developed based on the swarm behaviour, such as fish
schooling and bird flocking [20]. In PSO, population are
evolved by moving the candidate solutions around in the search
space using the best found locations, which are updated as
better locations are found by the candidates.

Gravitational Search Algorithm (GSA) : In the GSA
[21] algorithm, the searcher agents are a collection of masses
that interact with each other based on the Newtonian gravity
and the laws of motion [22].

Big Bang-Big Crunch (BB-BC) : BB-BC optimisation
[23] is based on one of the theories of the evolution of the
universe. It is composed of the big bang and big crunch
phases. In the big bang phase the candidate solutions are spread
at random in the search space and in the big crunch phase

a contraction procedure calculates a center of mass for the
population.

Black Hole algorithm (BH): Similar to other
population-based algorithms, BH [24] starts with an initial
population of candidate solutions to an optimisation problem
and an objective function that is calculated for them. At each
iteration of the black hole algorithm, the best candidate is
selected to be the black hole, which then starts pulling other
candidates around it, called stars. If a star gets too close to
the black hole, it will be swallowed by the black hole and is
gone forever. In such a case, a new star (candidate solution)
is randomly generated and placed in the search space and
starts a new search.

In the next section, the clustering performance of SDS
algorithm over Iris dataset is compared against above-
mentioned nine techniques.

IV. EXPERIMENTS

Here the process through which SDS algorithm is adapted
to perform the clustering tasks is detailed and the steps taken
during the test and diffusion phases are explained. In order
to apply this swarm intelligence algorithm to the dataset the
following are considered:

• Search space is the entire Iris dataset

• SDS hypothesis refers to an iris element

• Iris attributes: Each iris has four attributes (i.e. sepal
length, sepal width, petal length and petal width; see
Table I and Fig. 1).

• Micro-features: The four attributes of each Iris
are considered the micro-features of the hypothe-
sis. Therefore each SDS hypothesis has four micro-
features which refer to the attributes of the iris.

As stated below, in order to visualise the clustering process,
the irises’ four attributes are illustrated in Fig. 1, where the
first five-rows belong to the first cluster of Iris dataset, and
the second and third five-rows belong to the second and third
clusters of the Iris dataset respectively.

A. Applying SDS algorithm

This section details the process through which SDS algo-
rithm conducts the clustering process:

1) Initialisation phase: During the initialisation phase, one
iris is chosen randomly from the dataset and is set as a model.
Then each agent is randomly associated with an iris from the
search space.

2) Test phase: During the test phase, each agent (which
is already allocated to an iris) randomly picks one of the
four micro-features and compares its value against that of
the model. If the difference between the two corresponding
micro-features is within a specific threshold, τd (where τ is the
threshold and d is the dimension) the agent becomes active,
otherwise inactive.

www.conference.thesai.org 3 | P a g e

SAI Intelligent Systems Conference 2015
November 10-11, 2015 | London, UK

TABLE I. IRIS DATASET

Iris setosa Iris versicolor Iris virginica

Sepal Sepal Petal Petal Sepal Sepal Petal Petal Sepal Sepal Petal Petal

length width length width length width length width length width length width

1 5.1 3.5 1.4 0.2 7 3.2 4.7 1.4 6.3 3.3 6 2.5

2 4.9 3 1.4 0.2 6.4 3.2 4.5 1.5 5.8 2.7 5.1 1.9

3 4.7 3.2 1.3 0.2 6.9 3.1 4.9 1.5 7.1 3 5.9 2.1

4 4.6 3.1 1.5 0.2 5.5 2.3 4 1.3 6.3 2.9 5.6 1.8

5 5 3.6 1.4 0.2 6.5 2.8 4.6 1.5 6.5 3 5.8 2.2

6 5.4 3.9 1.7 0.4 5.7 2.8 4.5 1.3 7.6 3 6.6 2.1
...

...
...

...
...

...
...

...
...

...
...

...

49 5.3 3.7 1.5 0.2 5.1 2.5 3 1.1 6.2 3.4 5.4 2.3

50 5 3.3 1.4 0.2 5.7 2.8 4.1 1.3 5.9 3 5.1 1.8

{Cluster #1

{Cluster #2

{Cluster #3

Four attributes of one Iris

Fig. 1. Iris dataset has three clusters; and each iris elements has four attributes.

3) Diffusion phase: The process in the diffusion phase is
the same as the one detailed in the algorithm description: each
inactive agent picks an agent randomly from the population; if
the randomly selected agent is active, the inactive agent adopts
the hypothesis of the active agent (i.e. they refer to the same
iris as their hypothesis), otherwise the inactive agent picks a
random iris from the dataset.

4) Categories, Clusters and Termination: The agents iter-
ate through the test and diffusion phases again until all agents
are active. At this stage, the irises referred to by all the active
agents are assigned to a category. Additionally, the number of
active agents on each iris is logged.

Once a category is determined, the process is repeated from
the initialisation phase where agents are initialised throughout
the search space and the first iris which has not yet been

Fig. 2. Agents are initialised throughout the search space; the red circles
signify the inactive agents and the green circles highlight the active ones.

assigned to any categories is set as the new model. Then the
algorithm iterates through the test and diffusion phases until
all irises are allocated to a category.

Finally, categories form the clusters, and when there exist
irises that belong to more than one cluster, they will be
allocated to the one which has attracted a larger number of
active agents.

B. Results and Discussion

This section details the clustering performance of SDS and
provides the summary of a comparison conducted amongst
SDS and five other clustering techniques.

www.conference.thesai.org 4 | P a g e

SAI Intelligent Systems Conference 2015
November 10-11, 2015 | London, UK

As mentioned earlier, after the initialisation phase, the
algorithm iterates between the test and diffusion phases in
order to determine the categories. The only tunable parameters
for SDS is the swarm size, N which is empirically set to
N = 10, 000. Threshold, ~τ , which is the acceptable distance
between the model and other samples for each dimension, d,
is calculated using the following formula:

~τd =

c∑
t=1

∣∣∣∣∣∣
MAX

(
~Itid

)
− MIN

(
~Itid

)
c

∣∣∣∣∣∣ d = 1, 2, 3, 4 (2)

where c is the number of iris types in the dataset (or the number
of clusters); ~Itid represents the value of ith iris with type t and
dimension d. There are 3 iris types and the dimensionality of
the problem is 4 (i.e. Sepal and Petal’s lengths and widths).
Therefore the difference between the minimum and maximum
values in each iris type is calculated, then the sum of the
differences in each dimension is averaged and used to calculate
the threshold. Using the formula above the threshold is set to
~τ = {2.2, 1.7, 1.8, 0.8}. Note that not the entire data in each
iris type needs to be used in the formula.

As illustrated in Fig. 2, active agents are shown in green
and inactive agents are presented in red; the randomly selected
model is highlighted in yellow2. Given that the model is on
the first cluster, it is likely that the active agents have a bigger
presence in this cluster. The numbers in each block signify
how many active agents there are.

As can be observed in the figure, in some of the blocks
while there might exist a high presence of active agents (e.g.
row six and column one, which has attracted 32 active agents)
there is also a high number of inactive agents resulting in
the colour not being bright green. The reason why an iris
could make an agent active and another one inactive can be
explained through SDS’s micro-features: each block consists
of four micro-features (the same as the number of attributes in
each Iris sample) and there are cases when, for example, two
out of four micro-features are within the acceptable threshold
from the model while the other two are outside the range;
therefore if an agent picks one of the micro-features that are
within the threshold, it becomes active, but if it randomly picks
one of the other micro-features, it becomes inactive. Duducing
from this, it is evident that having more micro-features within
the range of the model results in more agents becoming (or
rather staying) active, and as a result forming a stable category.

In one trial, the formation of the three categories is shown
in Fig. 3. And the final clusters are displayed in Fig. 4.

The Iris samples in the upper third part of the search
space (see Fig. 1) belong to Iris setosa type which is linearly
separable from the other two iris types (i.e. Iris virginica and
Iris versicolor). This separability is clearly highlighted in Fig.
3-top where the model is in the first cluster and the entire
agents population are attracted to this cluster. As illustrated in
the middle and bottom figures of Figs. 3, the two other two
iris types are not linearly separable.

2Note that there is an alpha value for the transparency of the colours.
Therefore there could be an overlap between the green and red colours in
some of the blocks.

Fig. 3. The process through which the first, second and third categories are
formed.

www.conference.thesai.org 5 | P a g e

SAI Intelligent Systems Conference 2015
November 10-11, 2015 | London, UK

Fig. 4. Final clusters identified.

In this section, the result of running SDS on the Iris dataset
is reported. This experiment consists of 50 trials. The average
number of iterations needed to cluster the Iris dataset is 25±4.
Table II summarise the error in SDS clustering activity. The
table shows that SDS is always successful to classify the first
cluster with 0% error; the misclassification in clusters B and
C are 10% and 6% respectively.

TABLE II. CLUSTERING ERROR

Misclassification Percentage
Cluster A 0±0 0%
Cluster B 5±3 10%
Cluster C 3±2 6%
Total 8 5.33%

Table III contains information about the number of Irises in
each categories as well as the number of iterations needed for
each category to be finalised (reaching the max agents activity
level). Also the standard deviation of the agent’s activity for
each Iris is reported. This table demonstrate that cluster 1
which has 50 Irises in each trial is easily separable from the
others, while in categories 2 and 3, the activity of agents should
be taken into account before determining the clusters.

TABLE III. AGENTS ACTIVITY IN EACH CATEGORY

Cat #1 Cat #2 Cat #3
Irises in Categories 50±0 83±3 48±4
Number of Iterations 19±4 25±2 30±6
Std Dev of activity 96.13 61.02 99.13

Fig. 5 illustrate the behaviour of the agents as they converge
to either of the three categories. This figure shows that category
1, at the initial point, has the least number of active agents
while category 2 has the highest number of initial active agents
due to its similarity with several irises in the third cluster
in addition to its own cluster (the second cluster). See Fig.
3-Middle which shows the number of Irises attracted to the
second category.

Additionally, Figs. 6 are presented in order to provide
further details about the activity of agents during the formation
of each categories. For example, Fig. 6-Top, in addition to
showing the total number of active agents at each iterations

Convergence of Agents

A
ct

iv
e

A
g

en
ts

6,000

6,500

7,000

7,500

8,000

8,500

9,000

9,500

10,000

10,500

6,000

6,500

7,000

7,500

8,000

8,500

9,000

9,500

10,000

10,500

Iterations
0 5 10 15 20

0 5 10 15 20

Category 3
Category 2
Category 1

Fig. 5. Convergence of Agents.

TABLE IV. COMPARISON WITH OTHER DATA CLUSTERING
TECHNIQUES

Correctly Accuracy Ranking
Classified Ratio

BB-BC 135 89.95 % 6

BH 135 89.98 % 4

GSA 135 89.96 % 5

K-Means 134 89.33 % 8

Neural Gas 138 91.70 % 3

Ng Jordan 126 84.30 % 9

PSO 135 89.94 % 7

SOM 122 81.33 % 10

SDS 142 94.67 % 1

SVM 139 92.67 % 2

(while creating the first category), the number of active agents
in each cluster is also illustrated; it is is shown that the number
of active agents in cluster 1 increases immediately after the
start of the clustering process; however, on the contrary to the
behaviour of agents in cluster 1, the agents in clusters 2 and
3 lose their activity rapidly3.

Following the explanation of the SDS behaviour in cluster-
ing the Iris dataset, next, a comparison is presented where the
proposed technique is contrasted against nine other clustering
technique. In this comparison, the number of correctly clas-
sified Irises is detailed as well as the accuracy ratio and the
ranking of the techniques. See Table IV for the comparison.
Some of these techniques are designed solely for clustering
purposes and some are optimisation techniques adapted to
address clustering problems4.

These results show the promising performance of SDS
compared to the aforementioned nine classifiers. In this dataset,
SDS outperforms all the classifiers including SVM (among
the most well-known and successful classifiers). One of the

3Here is the link to the video of the clustering process at a reduced speed:
http://youtu.be/v81b2 sUbys

4The figures (except SDS’s) are borrowed from [25], [24], [26].

www.conference.thesai.org 6 | P a g e

SAI Intelligent Systems Conference 2015
November 10-11, 2015 | London, UK

Category 1: Agents Activity in Clusters

N
um

b
er

 o
f

ac
ti

ve
 a

g
en

ts

0

2,000

4,000

6,000

8,000

10,000

0

2,000

4,000

6,000

8,000

10,000

Iterations
0 5 10 15 20 25 30

0 5 10 15 20 25 30

Cluster3
Cluster2
Cluster1
Total

Category 2: Agents Activity in Clusters

N
um

b
er

 o
f

ac
ti

ve
 a

g
en

ts

0

2,000

4,000

6,000

8,000

10,000

0

2,000

4,000

6,000

8,000

10,000

Iterations
0 5 10 15 20 25 30

0 5 10 15 20 25 30

Cluster3
Cluster2
Cluster1
Total

Category 3: Agents Activity in Clusters

N
um

b
er

 o
f

ac
ti

ve
 a

g
en

ts

0

2,000

4,000

6,000

8,000

10,000

0

2,000

4,000

6,000

8,000

10,000

Iterations
0 5 10 15 20 25 30

0 5 10 15 20 25 30

Cluster3
Cluster2
Cluster1
Total

Fig. 6. Convergence of Agents.

main features of SDS is the embedded partial function eval-
uation which leads to inexpensive and low cost comparison
of samples. In SDS’s partial function evaluation, at any time,
each agent only checks only one of the features of the sample,
thus the comparison is computationally inexpensive. In other
word, in the notion of partial-function evaluation, a given set of
parameter values (the agent hypothesis) a complex objective
function is broken into m components, only one randomly
selected of which will be evaluated and the subsequent agent-
activity is based on this. Clearly, as this process merely
evaluates 1/m of the total number of computations required
for the full hypothesis evaluation, it concomitantly offers a
potentially significant performance increase. This feature is
particularly important when dealing with problems with very
large dimensionality including fMRI related classifications
which are the subject of ongoing research.

V. CONCLUSION

This paper deployed Stochastic Diffusion Search algorithm
(SDS) in a novel approach for clustering purposes. This
algorithm has been successfully applied to several optimi-
sation problems as well as medical imaging. In this work,
the performance of SDS is contrasted against several other
classic classifiers including Support Vector Machine (SVM)
and K-Means. SDS is shown to outperform the nine techniques
referred to in this paper in clustering the Iris dataset. The only
tunable parameter for SDS is the swarm size; the values of the
threshold vector, ~τ are generated using a formula suggested in
the paper. Given the partial function evaluation feature of SDS
and the low computational cost of comparing samples, this
algorithm is likely to be particularly useful when applied to
problems with huge dimensionality. Topics for future research
are dynamic fine tuning of the threshold as well as the
application of the introduced technique to real-world and high-
dimensional fMRI problems.

REFERENCES

[1] J. Bishop, “Stochastic searching networks,” in Proc. 1st IEE Conf. on
Artificial Neural Networks, London, UK, 1989, pp. 329–331.

[2] M. M. al-Rifaie and M. Bishop, “Stochastic diffusion search review,”
in Paladyn, Journal of Behavioral Robotics. Paladyn, Journal of
Behavioral Robotics, 2013, vol. 4(3), pp. 155–173.

[3] D. E. Goldberg, Genetic Algorithms in Search, Optimization and
Machine Learning. Addison-Wesley Longman Publishing Co., Inc.
Boston, MA, USA, 1989.

[4] J. Kennedy and R. C. Eberhart, “Particle swarm optimization,” in
Proceedings of the IEEE International Conference on Neural Networks,
vol. IV. Piscataway, NJ: IEEE Service Center, 1995, pp. 1942–1948.

[5] J. Digalakis and K. Margaritis, “An experimental study of benchmarking
functions for evolutionary algorithms,” International Journal, vol. 79,
pp. 403–416, 2002.

[6] D. Whitley, S. Rana, J. Dzubera, and K. E. Mathias, “Evaluating
evolutionary algorithms,” Artificial Intelligence, vol. 85, no. 1-2, pp.
245–276, 1996.

[7] R. Whitaker and S. Hurley, “An agent based approach to site selection
for wireless networks,” in 1st IEE Conf. on Artificial Neural Networks.
Madrid Spain: ACM Press Proc ACM Symposium on Applied Com-
puting, 2002.

[8] Y. Jin, “A comprehensive survey of fitness approximation in evolution-
ary computation,” In: Soft Computing, vol. 9, pp. 3–12, 2005.

[9] J. Branke, C. Schmidt, and H. Schmeck, “Efficient fitness estimation
in noisy environments,” In Spector, L., ed.: Genetic and Evolutionary
Computation Conference, Morgan Kaufmann, 2001.

www.conference.thesai.org 7 | P a g e

SAI Intelligent Systems Conference 2015
November 10-11, 2015 | London, UK

[10] M. A. el Beltagy and A. J. Keane, “Evolutionary optimization for
computationally expensive problems using gaussian processes,” in Proc.
Int. Conf. on Artificial Intelligence’01. CSREA Press, 2001, pp. 708–
714.

[11] C. Zhang, D. Ouyang, and J. Ning, “An artificial bee colony approach
for clustering,” Expert Systems with Applications, vol. 37, no. 7, pp.
4761–4767, 2010.

[12] P. Brucker, “On the complexity of clustering problems,” in Optimization
and operations research. Springer, 1978, pp. 45–54.

[13] C. Blake and C. J. Merz, “{UCI} repository of machine
learning databases,” 1998, available from: http://www.ics.uci.edu/-
mlearn/MLRepository.html. [Online]. Available: http://www.ics.uci.
edu/-mlearn/MLRepository.html

[14] R. A. Fisher, “The use of multiple measurements in taxonomic prob-
lems,” Annals of eugenics, vol. 7, no. 2, pp. 179–188, 1936.

[15] D. M. Tax and R. P. Duin, “Support vector domain description,” Pattern
recognition letters, vol. 20, no. 11, pp. 1191–1199, 1999.

[16] T. Martinetz, K. Schulten et al., A “neural-gas” network learns topolo-
gies. University of Illinois at Urbana-Champaign, 1991.

[17] A. K. Jain, “Data clustering: 50 years beyond k-means,” Pattern
Recognition Letters, vol. 31, no. 8, pp. 651–666, 2010.

[18] A. Y. Ng, M. I. Jordan, Y. Weiss et al., “On spectral clustering: Analysis
and an algorithm,” Advances in neural information processing systems,
vol. 2, pp. 849–856, 2002.

[19] T. Kohonen, “The self-organizing map,” Proceedings of the IEEE,
vol. 78, no. 9, pp. 1464–1480, 1990.

[20] R. Eberhart and J. Kennedy, “A new optimizer using particle swarm
theory,” in Proceedings of the sixth international symposium on micro
machine and human science, vol. 43. New York, NY, USA: IEEE,
1995.

[21] E. Rashedi, H. Nezamabadi-Pour, and S. Saryazdi, “Gsa: a gravitational
search algorithm,” Information sciences, vol. 179, no. 13, pp. 2232–
2248, 2009.

[22] ——, “Gsa: a gravitational search algorithm,” Information sciences, vol.
179, no. 13, pp. 2232–2248, 2009.

[23] O. K. Erol and I. Eksin, “A new optimization method: big bang–big
crunch,” Advances in Engineering Software, vol. 37, no. 2, pp. 106–
111, 2006.

[24] A. Hatamlou, “Black hole: A new heuristic optimization approach for
data clustering,” Information Sciences, vol. 222, pp. 175–184, 2013.

[25] F. Camastra and A. Verri, “A novel kernel method for clustering,”
Pattern Analysis and Machine Intelligence, IEEE Transactions on,
vol. 27, no. 5, pp. 801–805, 2005.

[26] W. QU, W. WANG, and F. LIU, “A novel classifier with support vector
machine based on ap clustering,” Journal of Computational Information
Systems, vol. 9, no. 10, pp. 4041–4048, 2013.

www.conference.thesai.org 8 | P a g e

