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Abstract We present a new approach to address the prob-
lem of large sequence mining from big data. The particu-
lar problem of interest is the effective mining of long se-
quences from large-scale location data to be practical for Re-
ality Mining applications, which suffer from large amounts
of noise and lack of ground truth. To address this complex
data, we propose an unsupervised probabilistic topic model
called the distant n-gram topic model (DNTM). The DNTM
is based on Latent Dirichlet Allocation (LDA), which is ex-
tended to integrate sequential information. We define the
generative process for the model, derive the inference pro-
cedure, and evaluate our model on both synthetic data and
real mobile phone data. We consider two different mobile
phone datasets containing natural human mobility patterns
obtained by location sensing, the first considering GPS/wifi
locations and the second considering cell tower connections.
The DNTM discovers meaningful topics on the synthetic
data as well as the two mobile phone datasets. Finally, the
DNTM is compared to LDA by considering log-likelihood
performance on unseen data, showing the predictive power
of the model. The results show that the DNTM consistently
outperforms LDA as the sequence length increases.

1 Introduction

As large scale mobile phone datasets on human behavior be-
come more readily available, the need for effective meth-
ods and mathematical models for analysis becomes crucial.
Research in Reality Mining [7,10] has led to the need for
the development of models that discover patterns over long
and potentially varying durations. We address the problem
of modeling long duration activity sequences for large-scale
human routine discovery from cellphone sensor data. Our
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objective is to handle sequences corresponding to human
routines based on principled procedures, and to apply them
to human location data.

There are several difficulties to modeling human activi-
ties, including various types of uncertainty, lack of ground
truth, complexity due to the size of the data, and diversity
of phone users. One fundamental issue motivating this work
is that we often do not know (or cannot pre-specify) the ba-
sic units of time for the activities in question. We do know
that human routines have multiple timescales (hourly, daily,
etc.), however the effective modeling of multiple unknown
time durations is an open problem. Secondly, the problem
of mining location sequences quickly results in an exponen-
tial number of possibilities, particularly when considering
the wide range of locations visited by people and the or-
der in which the locations occur. The focus of our model
is to address the issue of modeling long sequences (such as
those occurring in mobility patterns) by proposing a novel
approach based on latent topics in order to avoid parameter
dimension explosion.

We focus on probabilistic topic models as the basic tool
for routine analysis for several reasons. Topic models are,
first and foremost, unsupervised in nature. Their probabilis-
tic generative nature make them attractive over discrimina-
tive approaches since we are interested in mining the struc-
ture of the data. Topic models are also intuitive and pro-
vide opportunity for extensions with approximate methods
for inference. They can handle uncertainty due to the ex-
changeability of the bag of words property and process large
amounts of data [25]. They can also be extended in various
ways to integrate multiple data types [10].

The contributions of this paper are as follows: (1) we
propose the distant n-gram topic model (DNTM) for se-
quence modeling; (2) we derive the inference process us-
ing Markov Chain Monte Carlo (MCMC) sampling [21];
(3) we generate a dataset of synthetic sequences and ap-



ply the DNTM to test the model under a controlled set-
ting; (4) we apply the DNTM to two real large-scale mo-
bile phone location datasets. The model discovers user loca-
tion routines over several hour time intervals, correspond-
ing to sequences, and these results are illustrated by dif-
fering means; (5) we also perform a comparative analysis
with Latent Dirichlet Allocation (LDA) [4], showing that the
DNTM performs better in predicting unseen data based on
log-likelihood values. This paper is an extended version of
the work originally presented at [11].

This paper is structured as follows. We begin by present-
ing the most related work in Section 2. We introduce the Dis-
tant N-Gram Topic Model (DNTM) in Section 3, defining
the graphical model, the generative procedure, and the infer-
ence and parameter estimation details. We then evaulate the
DNTM on a synthetic dataset in Section 4 followed by two
real mobile phone datasets in Section 5. We conclude with a
discussion followed by the conclusion and future works.

2 Related Work

This section discusses related work in mobility modeling
methods for location data from cell phones and on proba-
bilistic topic models.

2.1 Mobility Patterns from Phone Data

There have been many recent works considering large-scale
mobile phone calling occurrences to obtain location data
from cell tower connections. Such datasets are available to
mobile phone operators and contain sparse location infor-
mation over a large set of users. We consider this data to
be sparse since location is only available when a phone call
takes place, otherwise the location is unknown. Based on
this data, several problems relating to activity modeling have
been addressed.

Phithakkitnukoon et al. [26] identify daily human activ-
ity patterns of eating, shopping, entertainment, and recre-
ation from location estimates at the beginning and end of
calls, messages, and internet connections over a data collec-
tion of one million users over a few month period. Candia
et al. [5] propose an approach to discover what they refer to
as spatio-temporal anomalies, which are anomalous events
in the mean collective behavior of individuals obtained by
resolving phone call records in time and space. Gonzalez et
al. [12] find that human trajectories show a high degree of
temporal and spatial regularity by considering a data collec-
tion of 100,000 users over a 6 month period. They find that
each individual can be characterized by a time-independent
travel distance and has a significant probability to return
to a few highly frequented locations. The most closely re-
lated work to ours in this category is by Gornerup [13], in

which a probabilistic approach for mining common routes
from cell tower IDs is presented. This paper extends the
work by Becker et al. [3] by addressing scalability. The ap-
proach considers two steps, the first is the locality-sensitive
hashing of the cell ID sequences, which disregards the or-
der of cell ID occurrences. The second step is graph clus-
tering resulting in groups of cell ID sequences. The work
is evaluated with GPS traces collected by the author. The
main advantages of the approach are its scability and the
resulting anonymisation of personal trajectory information.
The drawbacks are that the work was evaluated on a small
dataset with a small set of routes and base station densities.
Further, the disregard of the cell ordering information sim-
plifies the method, particularly since time of day informa-
tion is not considered. In our work, however, the goal is not
to obtain route information from cell tower ID sequences,
but to mine dominantly occurring sequences of locations.

The problem of mobility modeling directly using mo-
bile location sensor data has also been studied previously.
Previous work by Zheng et al. has been done to mine lo-
cations of interest and top travel sequences in a geospa-
tial region [32]. The approach additionally infers the most
experienced users in a geo-related community using GPS
trajectories. The algorithm links users and locations, where
users point to many locations and locations are pointed to
by many users. These weighted links are used to mine the
locations of interest and determine the top travel sequences
and the main application of the work is location recommen-
dation. Hightower et al. [15] use WiFi and GSM radio fin-
gerprints collected by personal mobile devices to automati-
cally learn places and then to detect when users will return
to those places. Their algorithm is called BeaconPrint and
is compared to three similar previous strategies [1,18,22].
They conclude that BeaconPrint is 90% accurate in learning
and recognizing the places people visit. An unsupervised ap-
proach based on particle filters has been developed by Pat-
terson et al. [24] to simultaneously learn a unified model of
transportation modes as well as most likely routes. The data
considered is taken from a GPS sensor stream collected by
the authors over a period of three months. Yavas et al. [30]
present a data mining algorithm for the prediction of user
movements. The algorithm proposed is based on mining the
mobility patterns of users, forming mobility rules from these
patterns, and finally predicting users’ next movements.

Our overall goal of mining location sequences and the
latent topic modeling approach in this paper differ from these
previous works, which also considered location sensor data
for activity modeling.

2.2 Topic Models

Probabilistic topic models were initially developed to an-
alyze large collections of text documents [4,16]. They have



been used more recently for other sources of data such as lo-
cation [10] and physical proximity [2,6]. Here we consider
their application to large scale mobile phone data.

Previously, we used existing topic models (Probabilis-
tic Latent Semantic Analysis, LDA, and the Author Topic
Model) [8,10] for human activity discovery and prediction
using cell tower and a small collection of GPS data. This pa-
per extends on this initial work by defining in detail a new
model to address the limitation of long duration activity dis-
covery with topic models.

Bao et al. [2] address a similar problem (modeling user
mobile contexts) with unsupervised models, namely an ex-
tension of LDA. However, the focus of [2] is on incorporat-
ing dependencies among context, features, and external con-
ditions into the model. Huynh et al. [17] use LDA for activ-
ity recognition, but considering wearable sensors and con-
sidering fine-grained daily activities such as washing hands.
Do and Gatica-Perez [6] introduce a topic model for group
discovery from Bluetooth interaction data. They develop an
unsupervised topic model based on LDA which discovers
dominantly co-occurring group interaction patterns over time.
Recently, Zheng and Li [31] proposed an unsupervised ap-
proach to mine location-driven activities to enable activity
discovery from celltowers. Time is modeled explicitly, and
the model can be used for location prediction. The model
can compare users’ activities as well. However, sequential
information is discarded by the model (due to the bag of
words), and the focus is prediction and user comparison.
None of these previous works focuses on the issue we ad-
dress in this paper, namely to model sequence information
using topic models in a manner that can handle long se-
quences, which is necessary for human activities.

Topic models have previously been used for n-gram dis-
covery in the context of text and speech. The bigram topic
model [28], the LDA collocation model [29], and the topi-
cal n-gram model [29] are all extensions of LDA to tackle
this problem. The topical n-gram model is an extension to
the LDA collocation model, and is more general than the
bigram model. This approach was developed to be applied
to text modeling, and retains counts of bigram occurrences,
and thus could not easily be extended for large n (i.e. n >

3) due to parameter dimension explosion. The multi-level
topic model is another extension of LDA for n-gram discov-
ery [9], cascading a series of LDA blocks for varying length
sequence discovery. The problem of activity discovery from
mobile phone data requires n-gram models capable of han-
dling long sequences; we approach this issue by modeling
a simplified dependency between labels (or words) within a
sequence and adding a dependency to topics; we find that
this technique is promising for location sequence discovery.

3 Distant N-Gram Topic Model

3.1 Topic Models Basics

Latent Dirichlet Allocation (LDA) [4] is a generative model
in which each document is modeled as a multinomial distri-
bution of topics and each topic is modeled as a multinomial
distribution of words. By defining a Dirichlet prior on the
document/topic (Θ) and word/topic (Φ) distributions, LDA
provides a statistical foundation and a proper generative pro-
cess. The main objective of the inference process is to deter-
mine the probability of each word given each topic, result-
ing in the matrix of parameters Φ, as well as to determine
the probability of each topic given each document, result-
ing in Θ. Formally, the entity termed word is the basic unit
of discrete data defined to be an item from a vocabulary. In
the context of this paper, a word, later referred to as a label
w, is analogous to a person’s location. A document is a col-
lection of words also referred to as a bag of words. In our
case, a document is a day in the life of an individual. A cor-
pus is a collection of M documents. In this paper, a corpus
corresponds to the collection of sensor data to be mined. In
the context of text, a topic can be thought of as a ’theme’,
whereas in our analogy, a topic can be interpreted as a hu-
man location routine.

3.2 DNTM Overview

We introduce a new probabilistic generative model for se-
quence representation. The model is built on LDA, with the
extension of generating sequences instead of single words
as LDA does. The limiting criteria is to avoid parameter di-
mension explosion. We define a sequence to be a series ofN
consecutive labels or words. We represent a sequence as fol-
lows: q = (w1, w2, ..., wN), where w denotes a label. In the
context of this paper, a label w corresponds to a user’s loca-
tion obtained from a mobile phone sensor, though in general
a label can correspond to any given feature in a series. The
sequence q is then a sequence of locations occurring over
an interval of time. The interval of time is defined by the
duration over which each label occurs times the number of
elementsN in the sequence. The distant n-gram topic model
(DNTM) defines a generative process for a corpus of se-
quences. The maximum length of the sequence N is prede-
fined. In existing n-gram models [29], a label in a sequence
is assumed to be conditionally dependent on all previous la-
bels in the sequence, thus making large sequences (longer
than 3 labels) infeasible to manage due to an exponential
number of dependencies as the sequence length grows. In
contrast here, we integrate latent topics and assume a label
in the sequence to be conditionally dependent only on the
first element, the distance to this label, and the correspond-
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Fig. 1 Graphical model of the Distant N-Gram Topic Model (DNTM).
A sequence q is defined to be N consecutive locations q = (w1, w2, ...,
wN). Latent topics, z, are inferred by the model and can be interpreted
as the different routines found to dominate the sensor data. There are
M days (or documents) in the dataset. Θ is a distribution of days given
the routines, and Φj is a distribution of location sequences given rou-
tines.

ing topic, removing the dependency on all other labels, and
thus removing the exponential parameter growth rate.

The underlying concept and the novelty of our method
is to obtain a distribution of topics given the first element in
a sequence, represented by Φ1z . Then for each position j in
the sequence, where j > 1, the distribution of topics given
the jth position in the sequence is obtained, depending on
both the first element and the topic, represented by Φjz,w1

.
With this logic, our parameter size grows linearly with the
sequence length N . Note that our approach for label depen-
dency on w1 is the simplest case for which a label is always
present. More advanced methods, including determining the
number of previous labels for dependency are the subject of
future work. We apply this model to location data to dis-
cover activities over large durations considering intervals of
up to several hours. Next we define the generative process
and introduce the learning and inference procedure. More
derivation details can be seen in the Appendix, and the full
derivation can be found in [8] where our model was referred
to with a slightly different acronym.

3.3 The Probabilistic Model

The graphical model for our distant n-gram topic model is il-
lustrated in Figure 1. We use a probabilistic approach where

Table 1 Symbol description

N The length of the sequence
q A sequence of N consecutive labels (w1, ..., wN)
m An instance of a document (a day here)
Sm The total number of sequences q in document m
M The number of documents in the corpus
T The number of latent topics
z A latent topic (a location routine here)
V The vocabulary size
Θ The distribution of topics given documents
Φ The distribution of sequences given topics,

where Φ = {Φ1z , Φ2z,w1
, ..., Φnz,w1

}
Φ1z The distribution of w1 given topics
Φjz,w1

The distribution of wj given w1 and topics

observations are represented by random variables, highlighted
in gray. The latent variable z corresponds to a topic of activ-
ity sequences. The model parameters are defined in Table 1.

The generative process is defined as follows:

1. Initialization:
(1) For each document m in the corpus draw a distribu-

tion over topics θm ∼ Dirichlet(α).
(2) For each document m in the corpus:

(2.1) For each sequence q in document m:
(2.1.1) Draw a distribution over labels

Φ1z ∼ Dirichlet(β1) for the first element in
the sequence.

(2.1.2) For each consecutive label wj in the se-
quence:
Draw a distribution over labels Φjz,w1

∼
Dirichlet(βj). Here Φjz,w1

captures the de-
pendency with z, w1, as well as the dis-
tance from the first label. Note the sequence
length is defined by the user and is fixed.

2. Sequence generation procedure.
(1) For each document m in the corpus:

(1.1) For each sequence q of the Sm sequences in
document m:

(1.1.1) Draw a topic z |m ∼Multinomial(θm).
(1.1.2) Draw the first label in the sequence w1|z ∼

Multinomial(Φ1z ).
(1.1.3) For j = 2 to N :

Draw the j-th label in the sequence wj|w1, z ∼
Multinomial(Φjz,w1

) for 1 < j 5 N .

In summary, in the generative process for each sequence,
the model first picks the topic z of the sequence and then
generates all the labels in the sequence. The first label in the
sequence is generated according to a multinomial distribu-
tion Φ1z , specific to the topic z. The remaining labels in the
sequence, wj for 1 < j 5 N , are generated according to a
multinomial Φjz,w1

specific to the current label position j,
the topic z as well as the first label of the sequence w1. Note
j is the j-th label in the sequence, but it can also be viewed
as the distance between label j and 1.



p (z,q|α, β) = p(z|α)p(w1|z, β1)
n∏
j=2

p(wj |z,w1, βj) (1)

=

∫
Θ

p(z|Θ)p(Θ|α)dΘ ·
∫
Φ1

p(w1|z,Φ1)p(Φ1|β1)dΦ1 ·

n∏
j=2

∫
Φj

p(wj |w1, z,Φj)p(Φj |βj)dΦj (2)

=
M∏
m=1

B(nm + α)

B(α)
·
T∏
k=1

(
B(nk + β1)

B(β1)
·
n∏
j=2

B(nk‘
j
+ βj)

B(βj)
) (3)

We define the following notation; nkm is the number of
occurrences of topic k in document m; nm = {nkm}Tk=1;
nw1

k is the number of occurrences of label w1 in topic k,
nk = {ntk}Vw1=1; finally n(w1,w2)j

k‘j
is the number of occur-

rences of label w2 occurring j labels after w1 in topic k and
nk‘j = {n(w1,w2)j

k‘j
}V,Vw1=1,w2=1.

We assume a Dirichlet prior distribution for Θ and Φ =

{Φ1z ,Φ2z,w1
, ..., Φnz,w1

}with hyperparameters α and β =

{β1, β2, ..., βn}, respectively. We assume symmetric Dirich-
let distributions with scalar parameters α and β such that
α =

∑T
k=1

αk

T , β1 =
∑V
v=1

β1,v

V , and

βj =
∑V
w1=1

∑V
w2=1

β(w1,w2)j

V 2 for 1 < j 5 N . Note the
parameters αk, β1,v , and β(w1,w2)j are the components of
the hyperparameters α, β1, and βj , respectively in the case
of non-symmetric Dirichlet distributions. The joint proba-
bility of observations and latent topics can be obtained by
marginalizing over the hidden parameters Θ and Φ. These
relations are then used for inference and parameter estima-
tion in Equations (1)-(3), where p(z|α), p(w1|z, β1), and
p(wj |w1, βj) resulting in the following. Note, derivation
details can be found in the appendix and in [8].

p(z|α) =
M∏
m=1

B(nm + α)

B(α)

where nm = {nkm}Tk=1 (4)

p(w1|z, β1) =
T∏
k=1

B(nk + β1)

B(β1)

where nk = {ntk}Vt=1 (5)

and for 1 < j <= n

p(wj |w1, z, βj) =
T∏
k=1

B(nk‘j + βj)

B(βj)

where nk‘j = {n(t1,t2)j
k‘j

}V,Vt1=1,t2=1 (6)

3.4 Inference and Parameter Estimation

Like LDA, the optimal estimation of model parameters is
intractable. The model parameters are derived based on the
MCMC approach of Gibbs sampling [14]. The model pa-
rameters can then be estimated by solving the following re-
lationship.

p(zi = k|z−i,q, α, β ) ∝ (nkm,−i + α) ·
ntk,−i + β1∑V
t=1 n

t
k,−i + β1

·

n∏
j=2

n
(t1,t2)j
k,−i + βj∑V

t1=1

∑V
t2=1 n

(t1,t2)j
k,−i + βj

(7)

where n(y)x = n
(y)
x,−i + 1 if x = xi and y = yi and

n
(y)
x = n

(y)
x,−i in other cases.

The model parameters can then be estimated by sam-
pling the dataset using the following relations:

θkm =
nkm + α∑T

k=1(n
k
m + α)

(8)

φt1,k =
ntk + β1∑V

t=1(n
t
k + β1)

(9)

φ
(t1,t2)j
j,k =

n
(t1,t2)j
k + βj∑V

t1=1

∑V
t2=1(n

(t1,t2)j
k + βj)

(10)

where nk = {ntk}Vt=1 and nk′j = {n(t1,t2)j
k′

}t1=V,t2=Vt1=1,t2=1 .

4 Experiments on Synthetic Data

First we consider synthetic data to demonstrate the strength
of the DNTM. We consider a vocabulary of 10 possible lo-
cation labels wi thus V = 10. We first create 5 topics each
represented as a sequence of 6 location labels inspired by the
synthetic topics developed in [27]. We create one document
of 2000 random sequences assuming equi-probable topics
following the generative process of Section 3.3. The five
topics are shown in Figure 3, where each topic contains a
sequence of 6 location labels (x-axis). Note, in topic 4 there
is an equal probability of generating a sequence with labels
1-9 in position 3 but not label 10.

The topics learned by the DNTM are shown in Figure 4
for N = 6, T = 5, and α = 0.1, β = 0.1 (we assume
all βi are equal to β). We plot the most probable location
label for each position in the sequence given the topic, (i.e.
p(wj |w1, k) for position j and topic k). The x-axis corre-
sponds to the sequence position and the y-axis to the pos-
sible location labels. We reorder the topics learned by the
model to correspond to the topics in Figure 3. We plot the 10
most probable sequences discovered by the model for topic
1 (corresponding to Topic 4 Figure 3) in order to illustrate



// GOAL: Given a training corpus, α, β, T and n, estimate the parameters nkm, ntk, and n(t1,t2)j
k for

j = 2 to n from which we can determine the model parameters θkm, φt1,k, and φ(t1,t2)j
j,k .

// Initialization
1) Initialize the count parameters, nkm = 0, ntk = 0, n(t1,t2)j

k =0 for j = 2 to n.
2) Iterate over each sequence q in the corpus:

3) Sample a topic k from k ∼Mult( 1
T
).

4) Update the count parameters nkm, ntk, n(t1,t2)j
k as follows nkm = nkm+1, ntk = ntk+1,

n
(t1,t2)j
k = n

(t1,t2)j
k + 1 for j = 2 to n.

// Run the chain
5) Iterate over a large number of iterations (e.g. 1000):

6) Iterate over each sequence:
7) Decrement the current sequence and sequence elements’ topic assignments as follows
nkm = nkm − 1, ntk = ntk − 1, n(t1,t2)j

k = n
(t1,t2)j
k − 1 for j = 2 to n.

8) Sample a topic k for the sequence from p(z = k|z¬i,w) ∝ (nkm,−i + α) ·
nt
k,−i+β1∑V

t=1
nt
k,−i

+β1
·
∏n
j=2

n
(t1,t2)j
k,−i

+βj∑V
t1=1

∑V
t2=1

n
(t1,t2)j
k,−i

+βj

.

9) Increment the new topic assignments as follows nkm = nkm + 1, ntk = ntk + 1,

n
(t1,t2)j
k = n

(t1,t2)j
k + 1 for j = 2 to n.

// Compute model parameters
10) Estimate the unknown parameters as follows

θkm =
nk
m+α∑T

k=1
(nk

m+α)
,φt1,k =

nt
k+β1∑V

t=1
(nt

k
+β1)

, and

φ
(t1,t2)j
j,k =

n
(t1,t2)j
k

+βj∑V
t1=1

∑V
t2=1

(n
(t1,t2)j
k

+βj)
, for j = 2 to n.

Fig. 2 Gibbs Sampling Algorithm for the Pairwise-Distance Topic Model.
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Fig. 3 Synthetic sequences to test the distant n-gram topic model. Each topic contains one sequence of length 6 (x-axis). There are 10 possible
location labels (y-axis). Note position 3 in topic 4.
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Fig. 4 DNTM results for N = 6, T = 5, α = 0.1, β = 0.1. All of the sequences discovered by the DNTM correspond to the correct synthesized
topics presented in Figure 3. The colorbar displays the probability of the sequence elements given the topics. Note the correct discovery of locations
1-9 but not 10 in topic 1 position 3.

the model correctly learned the 9 possible locations for po-
sition 3.

Next, we consider a more complex synthetic dataset of
6 topics consisting of multi-length sequences N = 6 and
N = 9. These topics are shown in Figure 6, where topic 4
(d) and topic 5 (e) contain the sequences of length 9 and (a)-
(c) and (f) are length 6. Again, one document is generated by

randomly sampling the topics (a)-(f) with equal probability
following the generative process of Section 3.3. We refer to
this test set as the multi-length synthetic data.

The results for the DNTM on the multi-length synthetic
data are shown in Figure 6. The DNTM is run with N = 12,
T = 10, and α = 0.1, β = 0.1. In Figure 6 we show
the single most probable sequence discovered by the model



for select topics, corresponding to topics in Figure 5. We
consider N = 12 in order to capture all of the sequences.
When N = 9, all of the sequences of length 6 are discov-
ered, however the sequences of length 9 are cut up between
topics. By setting N = 12 the sequences of length 9 are
not cut up between topics and occur within the interval of
length 12 often enough in order for the model to capture
the co-occurrences. Since Figure 6 displays the sequences
of length 12 discovered, segments of other sequences are
also discovered which often co-occurred with the sequences;
all of the input sequences are correctly discovered by the
DNTM. Note the colorbar displays the probability of the
location element given the topic. Considering the sequence
112222 (Figure 5 (a)), it appears in position 4 to 10 (Figure 6
(a)). Similarly sequence (b) 444333 appears in position 1 to
6, and so on. Note topic 10 (Figure 5 (d)) contains a small
probability of possible locations for position 6 though we
just plot the single most probable sequence.

5 Mobile Phone Location Data

The DNTM could be potentially applied to any type of data
with discrete valued labels in a sequence, for example text.
We are interested in mobile location data over time. As stated
in Section 2, we make an analogy with LDA where a docu-
ment is an interval of time in a person’s daily life. Here we
always consider a document to be a day in the life of a user.
A label w = (t, l) is composed of a location l ∈ L, where
L is the discrete set of possible locations which occurred
over a 30 minute interval and a time coordinate of the day
t ∈ Z = {1, 2, 3, ..., tt}. We consider two different datasets
for experiments. The representations for each are detailed
below.

5.1 Nokia Smartphone Data

We use real life data from 25 users using a Nokia N95 smart-
phone from 2009.10.01 to 2010.07.01 corresponding to a
nine-month period of the Lausanne Data Collection Cam-
paign [19]. The phone has an application that collects loca-
tion data on a quasi-continuous basis using a combination of
GPS and WiFi sensing, along with a method to reduce bat-
tery consumption. Place extraction was performed using the
algorithm proposed in [23], that reported good performance
on similar data. The place extraction algorithm is described
in more detail in the next subsection (Section 5.1.1). In Sec-
tion 6.1, we create w where tt = 8, (i.e., the day is divided
into 8 equivalent time intervals), L = {l0, l1, l2, ...lMAX},
where MAX is the number of detected places determined
by [23], and li is the user-specific index of the place. In Sec-
tion 6.2, we study a second case in which we disregard tt.

0 100 200 300
0

2

4

6

Number of Stay Regions
Fig. 7 Histogram of the number of stay regions per user.

If li = 0, there is no detected place, either due to no loca-
tion being sensed, or due to the user moving or not staying
at the location for very long. All places li > 0 are indexed
according to their frequency of occurrence. Note that each
user has a differing set of places and for this data collection,
topics are discovered on an individual basis. We show the
histogram of lMAX over the 25 users in Figure 7. One user
has a much larger number of stay regions than the majority.
The average number of stay regions for this group of users
is 117.5.

5.1.1 Place Extraction Algorithm

Place extraction was performed on the location data using
the algorithm in [23] in order to obtain a manageable num-
ber of regions of interest frequented by users from the large
number of location points sensed. The algorithm has two
levels of clustering. The location coordinates are first clus-
tered into stay points, where stay points are clusters of coor-
dinates from the same day, representing geographic regions
in which a user stayed for a while. Stay points are then
clustered into stay regions, where stay regions are places
of interest from several days of data with the same seman-
tic meaning. The purpose of this step is to reduce the large
number of locations sensed for each user into a more man-
ageable set of regions for which the user stayed in for a min-
imum duration of time and to disregard the regions which
were not frequently visited in order to maintain a reasonable
vocabulary size for the model.

In Figure 8 we plot the stay regions discovered over one
user’s data. White intervals indicate that no place was ob-
served during that time interval. This user had 101 unique
stay regions found by the place extraction algorithm. In Fig-
ure 9 we show 2 of the same user’s stay regions in geo-
graphic terms that correspond to public places. We only dis-
play the satellite view for anonymity reasons.

5.2 MIT Reality Mining (RM) Data

The MIT RM data collected by Eagle and Pentland [7] con-
tains the data of 97 users over 16 months in 2004-2005. This
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Fig. 5 Synthetic sequences of length 6 and 9 for testing the DNTM.
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Fig. 6 DNTM results for N = 12, T = 10, α = 0.1, β = β2 = 0.1. We plot the single most probable sequence output per topic. The colorbar
indicates the location label probability for the topic.

data contains no detailed location information, but we de-
fine four possible location categories for a user collected via
cell tower connections. The towers are labeled as ’home’,
’work’, ’out’, or ’no reception’, making the labels consistent
over all the users. This corresponds to L = {H,W,O,N}.
For this we set tt = 48.

6 Experiments and Results

We present the DNTM results on two real mobile phone data
collections. First on the Nokia Smartphone data considering
a scenario with a time coordinate of the day t in the label
definition w. Then, we consider the modified scenario with-
out a time coordinate in the vocabulary. Finally, results are
presented on the MIT RM dataset.

6.1 Nokia Smartphone Data

For experiments with the smartphone data, we remove days
that do not have at least one place detected. The results shown
here are for T = 25, βj = 0.1, 1 5 j 5 N and α = 0.1 se-
lected heuristically. We consider N = 12 corresponding to
six-hour sequences for the topics displayed here. Note that a
range of values of T give similar results, the difference be-
ing that when T is small, the overall most occurring topics
are discovered, and when T is larger, more specific items are
found. The constraint on the hyperparameters βj and α are
that they be smaller than the order of label/topic and docu-
ment/topic counts.

Several of the topics discovered by the DNTM for the
smartphone data displayed in Figure 8 are shown in Fig-
ures 10 and 11. The first parameter the model returns is Θ,
containing a probability distribution of each day in the cor-
pus for each topic. We rank these probabilities for each topic
and visualize the 10 most probable days, illustrating which

days in the data had the highest probability of the location
sequences for the given topic. In Figure 10, the three fig-
ures illustrate the 10 most probable days (i.e., max(θkm) for
a given topic k). The x-axis corresponds to the time of day,
the y-axis corresponds to days, and each unique colour cor-
responds to a unique place. We can see that sequences of
places occurring over particular intervals of the day are dis-
covered by the model. For example, topic 8 for user 1 corre-
sponds to place 1 (home in magenta) occurring over most of
the day.

Using data from a different user, in Figure 11 (a) we
show topic 19 discovered for user 2. We also visualize the
coordinates of the place as displayed below the topic. The
circle indicates the location of place 1 on a satellite map
view. In Figure 11 (b) we show topic 2 for user 2. Below the
topic we display the mobility traces for the day 2010.02.07,
which is one of the 10 most probable days for topic 2. On the
satellite view, each colour corresponds to a unique location,
coordinated with the colour scheme of the topic displayed.

6.2 Nokia Smartphone Data: Modified Scenario

We now consider a slightly different input feature format
considering the Nokia data collection. A label l is simply a
location occurring over a 10-minute period without time in-
formation. Previously in Section 6.1, a stay region was con-
sidered every 30 minutes and tt = 8. The input sequences
are the non-overlapping location stay regions in sequence of
lengthN for a given user. We illustrate in Figures 13-16 that
the DNTM successfully discovers location routines of large
sequence lengths N .

First we run the DNTM with T = 10, N = 6 for each
of the 25 users and plot the probability distribution over the
topics in Figure 12. Since each location label corresponds to
a 10 minute interval and N = 6, we are modeling one hour
sequences here. We can see that most of the probability mass



Fig. 8 One user’s data after place extraction. Each row (y-axis) corre-
sponds to a day quantized into intervals of 10 minutes (x-axis). There
are 101 unique places (stay regions) found by the place extraction al-
gorithm. Each place is numbered according to the frequency of occur-
rence and assigned a unique colour. Here, pink corresponds to region 1
(home) and green corresponds to region 2 (work). Note that the regions
extracted are specific to a particular user for the Nokia dataset.

is over a few topics indicating T can be smaller, however,
there is no harm in setting T larger.

We plot several of the most probable topics for users
by displaying the most probable days given topics, Θ (Fig-
ure 13) and the most probable sequence given topics, Φ (Fig-
ure 14). In Figure 13, the five most probable days are plot for
each topic, where the y-axis corresponds to days, the x-axis
to the time of day, and the colorbar to the locations. In Fig-
ure 14, the single most probable sequence is plot for given
topics, where the y-axis corresponds to the locations, and the
colorbar represents the probability of the location (or label)
given the sequence position (x-axis), the first location label
and the topic. The probability of each sequence component
(indicated by the colorbar) differs and is an indication of the

Fig. 9 Satellite view of 2 places extracted for a user. Each color rep-
resents a given user’s visited place and is used consistantly across the
results for the given user.

(a) User 1, Topic 8

(b) User 1, Topic 16

(c) User 2, Topic 4

Fig. 10 Selected topics discovered for N = 12 (a,b) user 1, (c) user 2.
The x-axis is the time of day, the y-axis are the 10 most probable days
for the topic ranked from top to bottom (output as Θ by the DNTM).
Each unique colour represents a unique place. Our model discovers
sequences of locations which dominantly occur in a user’s mobility
patterns. For example, topic 8 for user 1 corresponds to being at home
(pink) throughout the day. Topic 16 for user 1 corresponds to being at
work (green) for several hours in the afternoon.

amount of ’noise’ or variation in this label occurring at this
position given the topic. A wide range of mobility routines
are apparent, particularly by viewing the most probable days
given topics (Figure 13) for all users, where co-occuring se-
quential patterns of stay regions are found by the model.

Next we consider a longer sequence length, N = 18

considering 3 hour sequences, with the same model param-
eters and again display several topics in terms of most prob-
able days given topics, Θ (Figure 15) and most probable se-
quence given topics, Φ (Figure 16). We can see that when
several hour sequences are discovered, there are often changes
in location captured. For example Figure 16 (c), topic 6’s
most probable sequence is 441111111444444444 with a much
higher probability of the last labels (stay region 4’s) occur-
ring in the sequence. Note for all users, activity sequences
were discovered by the DNTM and we visualize a small set
of the most probable topics.
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Fig. 13 The five most probable days given topics for various users. The corresponding sequences learned by the model are in Figure 14. Note that
even though we remove the time information from the input sequences, the sequences discovered mostly occur at particular intervals of the day.
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Fig. 14 DNTM results for N = 6. The most probable sequence for the given user and topic is visualized. The model outputs a distribution of
labels given each position in the sequence, which is visualized along the x-axis where the colorbar shows the probability. Note in (b) the sequence
is not visible due to a large range between sequence labels (and low probability of the sequence occurring over the entire dataset). However, the
most probable days given topics shows the location routine learned.

6.3 MIT RM Data

For experiments with the MIT dataset, we remove days which
contain entirely no reception (N) labels. We experimented
with many values of T and plot selected results for T = 20.
We plot results for the same values of α and β as in Sec-
tion 6.1. We consider up to N = 14 corresponding to seven-
hour sequences.

We first visualize a set of 6 topics corresponding to ac-
tivity sequences for various N . Note the colorbar indicates
the locations. Figure 17 corresponds to dominant sequences
discovered for N = 3 (Figure 17 (a)-(c)), and N = 13 (Fig-
ure 17 (d)-(f)). We plot the results in terms of the 20 most
probable days given topics, θkm. The x-axis of the figures
corresponds to the time of the day, the y-axis are days, and
the legend of the colours are shown to the right of the plots.

In general, we can see emerging location patterns discov-
ered for specific subsets of days in the corpus. For example,
in Figure 17 (a) there is ’N’ (no reception) in the morning. In
(b) there is ’W’ (work) after roughly 10 am, with ’O’ (out)
several hours later, followed by ’W’ again. These results re-
semble the type of results that standard LDA would extract,
however, we are able to obtain precise sequence informa-
tion in our output and “push” the model to output sequences
by searching for results at distance d from the first label in
the sequence. As N increases, we generally discover longer
duration location patterns, which are defined in the output
parameters of the DNTM model as shown in Tables 2 and 3.
Note these tables show the sequences that defined the topics
displayed in Figure 17.

In Table 2, we display the DNTM results in terms of the
most probable sequence components given topics. The table
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Fig. 15 The five most probable days given topics for N = 18. The corresponding sequences learned by the model are in Figure 16. Note that
even though we are considering a very long sequence length, the model successfully discovers location behavior patterns.
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Fig. 16 The most probable sequence discovered by the DNTM for N = 18. Note often the first few most probable sequences discovered by the
topic are of interest, but we plot the single most probable sequence for visual clarity.



(a) User 2, Topic 19
Satellite view of place 1

(Satellite view displayed for anonymity)

(b) User 2, Topic 2
Mobility of User 2 on 2010.02.07,

Fig. 11 Topics and location details for user 2. (a) The satellite view
of place 1 is displayed, which corresponds to work for user 2. (b) The
mobility for day 2010.02.07 is displayed. The colours of the places dis-
played on the map correspond to those displayed in the topic. Note that
2010.02.07 is one of the 10 most probable days for user 2 discovered
in topic 2 and involved transitions between 3 places.
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Fig. 12 DNTM results over 25 users (y-axis) for 10 topics (x-axis)
for N = 6. The user specific topics are reordered according to their
most to least probable topics. For most users a few topics formulate
the probability mass.

shows the model output for N = 3, where the sequence
is as follows q = (w1, w2, w3). The top ranked sequence
components given topics k are displayed: w2|w1 obtained
by φ(w1,w2)2

2,k and w3|w1 obtained by φ(w1,w2)3
3,k along with

their probabilities. We do not display w1 obtained by φw1

1,k

since it is inherent in the previous two parameters. We can
see the sequence O-O-O starting at 8 pm is discovered in (a)
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Fig. 17 Topics discovered using our model with N=3, N=13. We plot
the results in terms of the 20 most probable days given topics. In gen-
eral, we can see emerging location patterns discovered within subsets
of days in the corpus.

for topic 3 (N = 3). The notation ’*’ represents any possible
location, i.e. O-*-H indicates that w1 = O, w3 = H , with
any possible location label for w2.

In Table 3 we show the two most probable sequences
for the topics displayed in Figure 17(d)-(f). Here, due to the
larger value of N = 13, the actual sequences q are dis-
played. For large N , we can observe that some of the se-
quences output are separated in time, for example sequence
2 in (a) N = 13 topic 2. Since we do not force the output to
always be a sequence of length N , there may be more than
one sequence of duration less than N output by the model
where the sum of the durations of the sequences output re-
sults in N . Constraints could be imposed to always force
length N sequence as output, though the relaxation of this
dependency in our model can be viewed as an advantage.
We may in fact be discovering the durations of the domi-
nantly co-occurring sequences. This characteristic is further
discussed in the limitations section of the paper. We can see
the output obtained by our model contains sequence infor-
mation, since we obtain probabilities for the labels j up to
distance N whereas LDA would simply output a probability
for each individual label, without any sequence information.

In Figure 18, we plot the perplexity of the DNTM over
varying number of topics computed on 20% unseen test data.
Note that perplexity is a measure in text modeling of the
ability of a model to generalize to unseen data; it is defined
as the reciprocal geometric mean of the likelihood of a test
corpus given a model. The experiments are conducted for a
sequence length of N = 8. We can see that the perplexity
drops to a minimum at around T = 50 topics. We therefore
use T = 50 topics in order to compare the performance of
our model to LDA. The perplexity results illustrate that for a
large number of topics, T , the model does not seem to overfit
the data, since the perplexity does not increase.



Table 2 Topics discovered using the DNTM corresponding to those
displayed in Figure 17, expressed in terms of the most probable se-
quence components for topics. We show the top ranked sequence com-
ponents given topics with the probabilities.

(a) N = 3, Topic 3
w2|w1 p(w2|w1) w3|w1 p(w3|w1)

8 pm O-O 0.25 8 pm O-*-O 0.23
5 am N-N 0.21 5 am N-*-N 0.21

(b) N = 3, Topic 5
w2|w1 p(w2|w1) w3|w1 p(w3|w1)

3:30 pm W-W 0.15 3:30 pm W-*-W 0.14
1:30 pm W-W 0.13 1:30 pm W-*-W 0.12

(c) N = 3, Topic 11
w2|w1 p(w2|w1) w3|w1 p(w3|w1)

12:30 pm W-W 0.16 12:30 pm W-*-W 0.15
5:30 am N-N 0.14 5:30 am N-*-N 0.14

Table 3 Continuation of Table 2. The results in this table are for N =
13 displayed as the sequence q.

(a) N = 13, Topic 2
Sequence 1 9 am H-H-H-H-H-H-H-W-W-W
Sequence 2 5 pm N-N-N-N-N
Sequence 2 9 am H-*-*-*-*-W-W-W-W-W

(b) N = 13, Topic 3
Sequence 1 3 pm W-W-W-W-W-W-W
Sequence 1 1:30 pm W-*-*-*-*-*-*-W-W-W-W-W
Sequence 1 4:30 am O-*-*-*-*-*-*-*-*-*-*-*-O
Sequence 2 1:30 pm W-W-W-W-W-W-*-*-*-*-*-W
Sequence 2 3 pm W-*-*-*-*-*-W-W-W-W
Sequence 2 4:30 am O-*-*-*-*-*-*-*-*-*-O-O

(c) N = 13, Topic 10
Sequence 1 4 pm W-W-W-W-W-W
Sequence 1 4 am O-*-*-*-*-*-O-O-O-O-O-O-O
Sequence 2 4 am O-O-O-O-O-O
Sequence 2 4 pm W-*-*-*-*-*-W
Sequence 2 5 am O-*-*-*-*-*-*-O-O-O-O-O-O

Fig. 18 Perplexity of the DNTM over the number of topics on 20%
unseen days (documents).

Fig. 19 Average loglikelihood of the DNTM versus LDA on 20% un-
seen days (documents).

In order to compare our DNTM to LDA, we adapt the
vocabulary used for LDA to have a comparable format to
that used in the DNTM. The vocabulary we use for LDA
consists of a pair of locations, a timeslot, as well as the
distance between the locations. This results in a competi-
tive comparison since the key attributes of the DNTM are
taken into the vocabulary for LDA. The log-likelihood re-
sults on 20% unseen test data, are plotted in Figure 19. We
plot the log-likelihood averaged over all the test documents.
The log-likelihood results reveal that for small N , LDA per-
forms slightly better. However, as N increases, the DNTM
consistently has better generalization performance.

6.4 Discussion

Though only selected results are presented for the discussion
here, many extracted topics correspond to human routines.
There are topics corresponding to noise, though they do not
dominate the extracted routines.

One evaluation criteria in determining the quality of a
model is its predictive power. In Section 6.3 we considered
the average loglikelihood of the model on previously unseen
data. This is a very general measure giving insight into the
predictive capabilities of the model for data that was not pre-
viously seen by the model, and the results from Figure 19 are
promising for the DNTM.

There are two main limitations of our model. The first
one is that there is no constraint forcing the output compo-
nents to be in sequence. More specifically, a valid output
could be w2|w1, z and w3|w1′ , z where w1 6= w1′ . In our
experiments, we found that this effect did not occur often
in the output. This can also be an advantage in that the out-
put generates varying length sequences and determines the
actual sequence lengths of the activities since they may not
necessarily be N. We would have to add some constraints to
the model in order to always force the output to be sequences
of length N . Another limitation is that the output can con-
tain overlapping components. For example, using the data
from Section 6.3, a valid sequence output for a topic may be
3:30 pm H-H and 3 pm H-*-H. Here, the sequence output is



not of length 3. To address this problem, again, some con-
straints should be imposed regarding the time component in
the feature construction.

7 Conclusions

In this paper we proposed the distant n-gram topic model as
an alternative to model long sequences for activity model-
ing, and apply it in the context of human location sequences.
Considering two real life human datasets collected via mo-
bile phone location logs, we tested our model firstly on loca-
tions obtained by smartphones based on GPS and wifi, and
secondly by cell tower location features. The patterns ex-
tracted by our model are meaningful and are further vali-
dated by considering a synthetic dataset. We evaluated our
model against LDA considering log-likelihood performance
on unseen data and found that the DNTM outperforms LDA
for most of the studied cases.

There are several future directions for this work. The
first direction is to explore extensions of the proposed model.
One could extend the DNTM by taking into account the lim-
itations mentioned and imposing application-specific con-
straints. One can also further investigate the dependence prob-
lem and consider methods to model dependence among la-
bels as opposed to always having the label dependent on the
first element, though this could quickly lead to parameter
size explosion. For example, there may be effective hierar-
chical methods for determining the number of previous la-
bels that a given label in a sequence should depend on. The
second direction of extensions would be to consider other
types of data, for example in the context of other wearable
data and activities. Finally, one other relevant line of work
future work is a comparison of our method with Hidden
Markov Models learned in an unsupervised setting, impos-
ing structure to learn long-term sequential patterns.
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Appendix: derivation of the distant n-gram topic
model

From the graphical model in Figure 1, we can determine
the following relationship:

p(z,q|α, β) = p(z,w1, ...,wN |α, β)
= p(w1, ...,wn|z, α, β) · p(z|α, β)
= p(w2, ...,wn|w1, z, α, β) · p(w1|z, α, β) · p(z|α, β)

= p(z|α)p(w1|z, β1)
N∏
j=2

p(wj |z,w1, βj)

=

∫
Θ

p(z|Θ)p(Θ|α)dΘ ·
∫
Φ1

p(w1|z,Φ1)p(Φ1|β1)dΦ1 ·

n∏
j=2

∫
Φj

p(wj |w1, z,Φj)p(Φj |βj)dΦj

=
M∏
m=1

(
1

B(α)

∫ T∏
k=1

θ
nk
m+α−1

m,k dθ) ·
T∏
k=1

(
1

B(β1)

∫ V∏
t=1

φ
nt
k+β1−1

1k,t
dφ1) ·

n∏
j=2

T∏
k=1

1

B(βj)
(

∫ V∏
t1=1

V∏
t2=1

φ
n

(t1,t2)j

k‘
i

+βj−1

jk,t1,t2
dφj)

=
M∏
m=1

B(nm + α)

B(α)
·
T∏
k=1

(
B(nk + β1)

B(β1)
·
n∏
j=2

B(nk‘
j
+ βj)

B(βj)
)

The joint probability of observations and latent topics
can be obtained by marginalizing over the hidden parame-
ters Θ and Φ. These relations are then used for inference
and parameter estimation where p(z|α), p(w1|z, β1), and
p(wj |w1, βj) are derived in [8] resulting in the following.

p(z|α) =
M∏
m=1

B(nm + α)

B(α)
(11)

p(w1|z, β1) =
T∏
k=1

B(nk + β1)

B(β1)
(12)

p(wj |w1, z, βj) =
T∏
k=1

B(nk‘
j
+ βj)

B(βj)
, 1 < j 5 n (13)

We then derive the model parameters based on the MCMC
approach of Gibbs sampling [14].



p(zi = k|z−i,q, α, β) =
p(z,q|α, β)
p(z−i,q|α, β)

(14)

using the knowledge z−i, or wx−i indicate that

token i is excluded from the topic or label wx

∝ B(nm + α)

B(nm−i
+ α)

· B(nk + β1)

B(nk−i
+ β1)

·
n∏
j=2

B(nk′j
+ βj)

B(nk′j,−i
+ βj)

(15)

Note the proportionality stems from the terms w1i and wji

∝ (nkm,−i + α) ·
nw1

k,−i + β1∑V
w1=1 n

t
k,−i + β1

· (16)

n∏
j=2

n
(w1,w2)j
k,−i + βj∑V

w1=1

∑V
w2=1 n

(w1,w2)j
k,−i + βj

where n(y)x = n
(y)
x,−i + 1 if x = xi and y = yi

and n(y)x = n
(y)
x,−i in other cases.

where nk = {nw1

k }Vw1=1 and nk′j = {n(w1,w2)j

k′
}w1=V,w2=V
w1=1,w2=1 .

We use the properties B(x) =
∏dimx

k=1 Γ (xk)

Γ (
∑dimx

k=1 xk)
, and Γ (y) =

(y − 1)!.
The model parameters can then be estimated as follows:

θkm =
nkm + α∑T

k=1(n
k
m + α)

(17)

φt1,k =
ntk + β1∑V

w1=1(n
w1

k + β1)
(18)

φ
(w1,w2)j
j,k =

n
(w1,w2)j
k + βj∑V

w1=1

∑V
w2=1(n

(w1,w2)j
k + βj)

(19)


