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Abstract. There has been an increasing interest recently in examin-
ing the possible relationships between emotions expressed online and
stock markets. Most of the previous studies claiming that emotions have
predictive influence on the stock market do so by developing various
machine learning predictive models, but do not validate their claims rig-
orously by analysing the statistical significance of their findings. In turn,
the few works that attempt to statistically validate such claims suffer
from important limitations of their statistical approaches. In particular,
stock market data exhibit erratic volatility, and this time-varying volatil-
ity makes any possible relationship between these variables non-linear,
which tends to statistically invalidate linear based approaches. Our work
tackles this kind of limitations, and extends linear frameworks by propos-
ing a new, non-linear statistical approach that accounts for non-linearity
and heteroscedasticity.

1 Introduction

According to the investment theory, stock market is operating under the Efficient
Market Hypothesis (EMH), in which stock prices are assumed to incorporate and
reflect all known information. Sprenger et al. [15] strongly disagree with EMH
by saying that the market is inefficient and therefore abnormal returns can be
earned. In search for abnormal earning, researchers now ‘listen’ to news and
mine online aggregated social data all in the course for these attractive profits.

Schumaker and Chen [14] are among the early researchers to investigate
whether emotions can predict the stock market. Machine learning algorithms
such as SVM, Naive Bayes, etc, are utilised to develop predictive models used
to claim that financial news have a statistically significant impact on the stock
market. Bollen et al. [4] present an interesting machine learning based approach
to examine if emotions influence stock prices. Their results support the claim
that emotions do influence the stock market.

The linear Granger causality analysis is employed by Gilbert and Karahalios
[8] as a method to illustrate that web blog contained sentiment has predictive
information on the stock market, but this method proved to have clear limita-
tions as explained later in this paper. A linear model and the Granger causality
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test are used also by Mao et al. [12] to examine the influence of social blogs on
the stock market. The authors do raise some concerns about the possible non-
linear nature in the relationship, but such concerns are not further explored.
The non-linear Granger causality test, which relies on a Self-Organising Fuzzy
Neural Network model, is unpopular in this area of work as it is thought not
to be strong enough to capture volatile stock market movements, as revealed
by Jahidul et al. [10]. Mittal and Goel [13] use machine learning algorithms to
investigate if stock blogs, as a proxy for news, can predict this complex financial
movement. Their findings make the same claim that stock blogs can be used to
predict stock prices, and they use some level of accuracy of the predictive models
to support their results.

Stock market is highly volatile. Therefore, capturing its movement and identi-
fying relationships between stock prices and possible predictive variables require
the use of appropriate approaches. These approaches should normally meet two
requirements. The first requirement is to generate models for prediction, and the
second requirement is to rigorously prove the models’ predictive value.

As illustrated earlier in this section, there is a growing research work trying
to establish that online expressed emotions have predictive information on the
stock market. Most of these works fulfill the first requirement by devising and
proposing various predictive models, but very few works attempt to fulfill also
the second requirement by rigorously / statistically proving the predictive value
of these models. Gilbert and Karahalios [8] are among the very few that do
consider both requirements, by proposing a statistical approach, which is based
on the Granger causality analysis and Monte Carlo simulations. We recognise
the large interest and potential generated by [8] in inspiring further research
that demonstrates the link between the online expressed emotions and the stock
market. Our work builds upon the approach presented in [8], and does so by
critically analysing it, by clearly identifying its drawbacks and limitations, by
tackling these limitations and by extending the approach and the results pre-
sented in the paper. As such, we establish our findings on data which has been
obtained from the [8] ’s authors website.

The remainder of this paper is organized as follows. Section 2 briefly revisits
the empirical analysis of Gilbert and Karahalios [8]. In particular it presents
the data, and the Anxiety Index’s building process. In addition, we discuss the
essential limitations of the approach of [8], and provide and discuss the results of
our alternative Monte Carlo simulations. Section 3 presents our new statistical
based approach which captures efficiently the stock market volatility, and the
predictive information relationship direction between stock prices and emotion.
Section 4 entails our findings and conclusion.

2 Discussion on the Web blog based Anxiety Index

Four stationary daily time series variables were explored in Gilbert and Kara-
halios [8]: the Anxiety Index (AI), the stock return, and two control variables
which are the trading volume and the stock volatility. All the variables were
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generated from the stock market data S&P 500, except for the Anxiety Index
AI.

[8] introduced the Anxiety Index using 20 million posts and blogs from Live-
Journal, that had been gathered within three periods of 2008: January 25th
to June 13th; August 1st to September 30th, and November 3rd to December
18th. Two sets of linguistic classifiers trained with a LiveJournal mood corpus
from 2004 were employed to build the Anxiety Index metric. First, a corpus
of 624,905 mood-annotated LiveJournal posts from Balog et al. [3] was used.
12,923 posts that users tagged as ‘anxious’, ‘worried’, ‘nervous’ or ‘fearful’ were
extracted. Then two classifiers were trained to distinguish between ‘anxious’ and
‘non anxious’ posts. The first classifier C1, which was a boosted decision tree, as
introduced by Yoav and Robert [16], used the most informative 100 word stems
as features. The second classifier C2 consisting of a bagged Complement Naive
Bayes model [11], used 46,438 words obtained from the 2004 corpus mentioned
above. C1t and C2t were defined as the standard proportions of posts classified
as ‘anxious’ by C1 and C2, respectively, during the closing trading day t. C1t
and C2t were integrated in the series C defined by Ct = max(C1t, C2t). The
Anxiety Index was finally defined as the series At = log(Ct+1) − log(Ct). 174
values were generated for this series from the available data.

The S&P 500 index was used as a proxy for the stock market, and was em-
ployed to generate three variables participating in the development of predictive
models, namely the stock market acceleration metric denoted as M , the return
volatility denoted as V , and the volume of stock trading denoted as Q. The stock
return at time t was defined as Rt = log(SPt+1) − log(SPt), where SP is the
closing stock price. The stock market acceleration metric was obtained from the
stock return as Mt = Rt+1 − Rt. The stock return volatility was expressed as
Vt = Rt+1 ∗ Rt+1 − Rt ∗ Rt, and finally Qt was expressed as the first difference
of the lagged trading volume.

2.1 Findings and limitations

The two OLS models employed by Gilbert and Karahalios in [8] are:

M1 : Mt = α+Σ3
i=1βiMt−i +Σ3

i=1γiVt−i +Σ3
i=1δiQt−i + ϵt (1)

M2 : Mt = α+Σ3
i=1βiMt−i +Σ3

i=1γiVt−i +Σ3
i=1δiQt−i+

Σ3
i=1ηiAt−i + ϵt

(2)

The models M1 and M2 were used to measure the influence of the Anxiety
Index on stock prices. The difference in the models is that M1 does not include
the Anxiety Index variable, it only uses the lagged market variables mentioned
above in this section. M2 adds the lagged Anxiety Index to the M1’s variables.
If M2 performs better than M1, one could conclude that the Anxiety Index has
predictive information on the stock market. The first two columns of Table 1
show that M2, with the Anxiety Index included in the analysis, would outper-
form M1, judging from the Granger causality F statistics F3,158 = 3.006, and
the corresponding p-value pGranger = 0.0322.
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Table 1. Granger Causality results and Monte Carlo Simulation. MCpGausskern,
MCpinv and MCpboot are the p-values of the simulations using a Gaussian kernel
assumption, the inverse transform sampling, and bootstrap sampling respectively.

F3,158 pGranger MCpGausskern MCpinv MCpboot

3.006 0.0322 0.045 0.045 0.045

The main disadvantage of the approach of Gilbert and Karahalios [8] was
that the Granger causality analysis’s linear models M1 and M2 were actually
not valid from a statistical point of view. In particular these models suffered
of major shortcomings as for instance residuals were non-normally distributed,
and they presented a heterogeneity of the variance. As such, although the p-
value pGranger < 0.05 suggests that the Anxiety Index adds significantly some
predictive information on the stock market, such a conclusion is not supported
by a valid statistical reasoning.

Due to the mentioned pitfalls, [8] proposed also a Monte Carlo simulation
with a Gaussian kernel distribution assumption for the Anxiety Index, in an
attempt to retrieve the same conclusion as in the non-statistically supported
Granger causality analysis. The authors generated 1 million sets of samples for
the Anxiety Index. These new series were used in (2) by iterating 1 million
times to generate the same number of F statistic values, and then to classify
these values based on if any F statistic is at least 3.01. The total number of
F statistic’s values that were at least 3.01 was then divided by the number
of iteration to obtain the Monte Carlo experimental p-value, MCpGausskern =
0.045, shown in Table 1.

Although MCpGausskern < 0.05 seemed to confirm the conclusion of the
Granger causality analysis, the Monte Carlo simulation suffered at its turn of the
issue of retrieving a significantly different experimental p-value with respect to
pGranger. This issue seemed to be the consequence of another issue, consisting of
the fact that the empirical distribution of the F-statistic computed in the Monte
Carlo experiments significantly deviated from the expected F-distribution, as
confirmed by the Kolmogorov-Smirnov test, i.e. D = 0.0337, p < 0.001 [8].

This realization constitutes a nontrivial reason to question the Monte Carlo
estimates, and a natural question which arises is: would the assumption of
the Gaussian kernel distribution for the Anxiety Index have possibly intro-
duced a bias in the simulation? To answer the question, we apply other non-
parametric Monte Carlo simulation methods based on the inverse transform sam-
pling method using the continuous version of the empirical distribution function
corresponding to the original Anxiety Index’s sample, and bootstrap sampling.
We follow the same procedure as that used in [8]. Our Monte Carlo p-values are
presented in the columns four and five of Table 1, where MCpinv and MCpboot
denote p-values issued from the use of the inverse transform sampling and the
bootstrap sampling methods. Both simulations led to a similar value of 0.045.
Moreover, in both cases the empirical distribution of the F-statistic computed
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in the Monte Carlo experiments is different from the expected F-distribution.
These shortcomings confirm once again that proving the relationship between
the Anxiety Index and stock prices is problematic if linear models are involved.

To this end we propose a new statistical approach to solve the limitations in
[8] and to also reveal the relationship direction between the variables of interest.

3 Anxiety Index’s predictive information on the stock
market, revisited

We follow the guidelines from Diks and Panchenko [6] ( see [7] for detailed
explanation and software) to examine the line of Granger causality between the
variables involved in our analysis. The idea of the non-parametric statistical
technique for detecting nonlinear causal relationships between the residuals of
linear models was proposed by Baek and Brock [2]. It was later modified by
Hiemstra and Jones [9] and this has become one of the most popular techniques
for detecting nonlinear causal relationships in variables.

Consider two series Xt and Yt as follows: let the Lx and Ly be the lag length
of the lag series XLx

t and Y Ly
t of Xt and Yt respectively, and let us denote the

k-length lead vector of Yt by Y k
t . In other words,

Y k
t ≡ (Yt, Yt+1, ..., Yt+k−1), k = 1, 2, ..., t = 1, 2, ..,

Y Ly
t ≡ (Yt−Ly, Yt−Ly+1, ..., Yt−1), Ly = 1, 2, ..., t = Ly + 1, Ly + 2, ...,

XLx
t ≡ (Xt−Lx, Xt−Lx+1, ..., Yt−1), Ly = 1, 2, ..., t = Lx+ 1, Lx+ 2, ...,

(3)

Given arbitrary values for k, Lx, Ly ≥ 1 and ε > 0, then Xt does not strictly
nonlinearly Granger cause Yt if:

Pr(∥ Y k
t − Y k

s ∥< ε | ∥ Y Ly
t − Y Ly

s ∥< ε, ∥ XLx
t −XLx

s ∥< ε)

= Pr(∥ Y k
t − Y k

s ∥< ε | ∥ Y Ly
t − Y Ly

s ∥< ε)
(4)

where Pr(A | B) denotes the probability of A given B, ∥ · ∥ is the maximum
norm, i.e. for a vector V ≡ (v1, v2, . . . , vm), ∥ V ∥= max{v1, . . . , vm}, s,t =
max(Lx,Ly) + 1, . . . , N − k + 1, N is the length of the time series and ε is
N -dependent and typically has values between 0.5 and 1.5 after normalising the
time series to unit variance. The left hand side in (4) is the conditional probability
which implies that two arbitrary k-length lead vectors of Yt are within a distance
ε, given that two associating Lx- length lag vector of Xt and two associating
Ly-length lag vector of Yt are within a distance of ε. The right hand side in
(4) is the probability that two arbitrary k-length lead vectors of Yt are within
a distance of ε, given that the two corresponding Ly-length lag vector of Y are
within the distance of ε.

Eq.(4) can be rewritten using conditional probabilities in terms of the ratios
of joint probabilities as follows:
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CI(k + Ly, Lx, ε)

CI(Ly,Lx, ε)
=

CI(k + Ly, ε)

CI(Ly, ε)
(5)

The joint probabilities are defined as:

CI(k + Ly, Lx, ε) ≡ Pr(∥ Y k+Ly
t − Y k+Ly

s ∥< ε, ∥ XLx
t −XLx

s ∥< ε),

CI(Ly, Lx, ε) ≡ Pr(∥ Y Ly
t − Y Ly

s ∥< ε, ∥ XLx
t −XLx

s ∥< ε),

CI(k + Ly, ε) ≡ Pr(∥ Y k+Ly
t − Y k+Ly

s ∥< ε),

CI(Ly, ε) ≡ Pr(∥ Y Ly
t − Y Ly

s ∥< ε)

(6)

The Correlation-Integral estimators of the joint probabilities expressed in Eq.
(6) measure the distance of realizations of a random variable at two different
times. They are proportions defined as the number of observations within the
distance ε to the total number of observations. Let us denote the time series of
realizations of X and Y as xt and yt for t = 1, 2, ..., N and let ykt , y

Ly
t and xLx

t

denote the k-length lead, and Lx-length lag vectors of xt and the Ly-length lag
vectors of yt as defined in (3). In addition, let I(Z1, Z2, ε) denote a kernel that
equals 1 when two conformable vectors Z1 and Z2 are within the maximum-norm
distance ε of each other and 0 otherwise. The Correlation-Integral estimators of
the joint probabilities in equation (6) can be expressed as:

CI(k + Ly, Lx, ε, n) ≡ 2

n(n− 1)

∑∑
t<s

I(yk+Ly
t , yk+Ly

s , ε) · I(xLx
t , xLx

s , ε),

CI(Ly, Lx, ε, n) ≡ 2

n(n− 1)

∑∑
t<s

I(yLy
t , yLy

s , ε) · I(xLx
t , xLx

s , ε),

CI(k + Ly, ε, n) ≡ 2

n(n− 1)

∑∑
t<s

I(yk+Ly
t , yk+Ly

s , ε),

CI(Ly, ε, n) ≡ 2

n(n− 1)

∑∑
t<s

I(yLy
t , yLy

s , ε),

(7)

where t, s = max(Lx,Ly) + 1, ..., N − k + 1, n = N + 1− k −max(Lx,Ly).
Given that two series, X and Y , are strictly stationary and meet the required

mixing conditions mentioned in Denker and Keller [5], under the null hypothesis
that X does not strictly Granger cause Y , the test statistics T is asymptotically
normally distributed and it follows that:

T =
√
n
(CI(k + Ly, Lx, ε, n)

CI(Ly, Lx, ε, n)
−CI(k + Ly, ε, n)

CI(Ly, ε, n)

)
∼ N

(
0, σ2(k, Ly, Lx, ε)

)
(8)

where n = N + 1 − k −max(Lx,Ly) and σ2(·), the asymptotic variance of the
modified Baek and Brock test statistics, and an estimator for it are defined in
the Appendix in Hiemstra and Jones [9].
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To test our variables for a possibly non-linear relation, we start by introducing
the general framework of our models. Consider a regression modeling with a
constant conditional variance, V AR(Yt | X1,t, ..., Xm,t) = σ2

ϵ . Then regressing
Yt on X1,t, ..., Xm,t can be generally denoted as:

Yt = f(X1,t, ..., Xm,t) + ϵt, (9)

where ϵt is independent of X1,t, ..., Xm,t with expectation zero and constant
conditional variance σ2

ϵ . f(·) is the conditional expectation of Yt | X1,t, ..., Xm,t.
Eq.(9) can be extended to include conditional heteroscedasticity as follows:

Yt = f(X1,t, ..., Xm,t) + σ(X1,t, ..., Xm,t)ϵt (10)

where σ2(X1,t, ..., Xm,t) is the conditional variance of Yt | X1,t, ..., Xm,t and
ϵt has the mean 0 and the conditional variance 1. Since σ(X1,t, ..., Xm,t) is a
standard deviation, it is captured using a non-linear non-negative function in
order to maintain its non-negative structure. This leads us to GARCH models.
Comparing Eq.(9) and Eq.(10), the first part of the right hand side of Eq.(9) is
the same with that of Eq.(10). This is a linear model. The second part of the
right hand side of Eq.(9) are residuals of the linear process. They represent the
second part of the right hand side of Eq.(10). Eq.(9) can finally be presented in
the VAR framework as:

Mt = c+Σ3
i=1hiMt−i +Σ3

i=1γiVt−i +Σ3
i=1δiQt−i+

Σ3
i=1ηiAt−i + at

(11)

At = c+Σ3
i=1hiMt−i +Σ3

i=1γiVt−i +Σ3
i=1δiQt−i+

Σ3
i=1ηiAt−i + at

(12)

Following the second part of the right hand side of Eq.(10), the residuals at from
Eq.(11) and Eq.(12) are presented in GARCH(1,1) as:

at = σtϵt (13)

where σt =
√
w + α1a2t−1 + β1σ2

t−1, in which w, α1 and β1 are constants. We

finally derive the GARCH(1,1)-filtered residuals, standardized residuals, as

ϵt =
at
σt

(14)

We obtain the residuals from the VAR model in Eq. (11) and (12). The
test statistic in Eq. (8) is then applied to these residuals to detect the causal
relation between the Anxiety Index and stock prices. Diks and Panchenko [6]
provide some important improvement to the Non-linear Granger Causality test.
[6] demonstrates that the value to be arbitrarily assigned to the distance ε is
highly conditional on the length n of the time series. The larger the value n, the
smaller the assigned value for ε and, the better and more accurate the results.



8

Table 2. Assigning values to ε, as of Diks and Panchenko [6]

n 100 200 500 1000 2000 5000 10,000 20,000 60,000

ε 1.5 1.5 1.5 1.2 1 0.76 0.62 0.51 0.37

Most of the related works choose k = Lx = Ly = 1. The length of the series
we are analysing is less than 200, so choosing ε=1.5 conforms with Table 2.
Given ε = 1.5, k = Lx = Ly = 1, the results from the test are presented in
Table 3.

Our first result in this framework seems to support the idea that the Anxiety
Index has predictive information on the stock market, as this is based on the
p-value of 0.017 shown in the first row of Table 3. Some re-considerations are
necessary though.

Hiemstra and Jones [9] state that the non-linear structure of series is related
to ARCH errors. Anderson [1] proves that the volatility of time series contains
predictive information flow. But Diks and Panchenko [6] warn that the presence
of conditional heteroscedasticity in series could produce spurious results. To
avoid any possible bias in our results, the residuals are applied to Eq.(13) to
filter out any conditional heteroscedasticity in the residuals of the VAR models.
We also rely on the GARCH(1,1)-filtered residuals to re-establish our findings.

We are able to identify, using the GARCH(1,1) results, that at from Eq.(11)
is a GARCH process with ϵt being a Gaussian white noise (having the p-values
α = 0.003, β < 0.001 and Shapiro-Wilk = 0.383) and that at from Eq.(12)
does not contain significant heteroscedasticity except that ϵt is an i.i.d. white
noise with a heavy-tailed distribution (having the p-values α = 0.136, β = 0.454
and Shapiro-Wilk = 0.018). We obtain GARCH(1,1)-filtered residuals and the
test statistic in Eq.(8) is re-applied to three sets of residuals: OLS residuals
from Eq.(11) and Eq.(12); GARCH(1,1)-filtered residuals of stock returns and
OLS residuals from Eq.(12); and GARCH(1,1)-filtered residuals from both stock
returns and Anxiety Index. The results we present in rows 2 and 3 of Table 3
show p-values > 0.05 and thus confirm that our earlier result presented in row
1 of Table 3 is biased by the presence of heteroscedasticity in the residuals. We
are thus able to show that the Anxiety Index does not possess any significant
predictive information on the stock market.

In view of our results above, we therefore claim that the conclusion from
Gilbert and Karahalios [8] according to which the Anxiety Index has predictive
information on the stock market is not valid, which is supported also by the fact
that the statistical conditions to validate their results are not met.

4 Conclusion

This paper proposes a new approach to statistically demonstrating the predictive
information relationship direction between stock prices and emotions expressed
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Table 3. Non-linear Granger non-causality test

AI => SP SP => AI

Lx=Ly=1 p Lx=Ly=1 p

Before filtering 0.017 Before filtering 0.182
GARCH(1, 1)SP 0.349 GARCH(1, 1)SP 0.922
GARCH(1, 1)SP,AI 0.718 GARCH(1, 1)SP,AI 0.685

online. In particular it proves that the Anxiety Index introduced by Gilbert and
Karahalios [8] does not possess predictive information with respect to S&P 500.
Our work does so by addressing the statistical limitations present in, and by
extending the approach of [8].

The main drawback of the approach in [8] to proving the existence of the
predictive information of the Anxiety Index with respect to the stock market
was that this approach used a Granger causality analysis based on producing
and assessing predictive linear models, which were actually not valid from a
statistical point of view. In particular these models suffered of major shortcom-
ings as for instance residuals were non-normally distributed, and they presented
a heterogeneity of the variance. In an attempt to partially correct the above
shortcomings, the Monte Carlo simulation performed by assuming a Gaussian
kernel based density for the Anxiety Index, was also biased as the empirical
distribution of the employed F statistic significantly deviated from the expected
F-distribution [8].

We note that Monte Carlo simulations using the Gaussian kernel density
approach have their own bandwidth selection problem, which may bias the sim-
ulations - see Zambom and Dias [17]. We therefore re-designed the Monte Carlo
simulation presented in [8] by using bootstrap samples of the Anxiety Index first,
and the inverse transform sampling based on the continuous version of the em-
pirical distribution function corresponding to the original Anxiety Index sample.
The results showed no improvement. This re-confirms the non-linear nature in
the relationship between the stock market and emotion, and the erratic volatil-
ity in the variables. Linear models appear to be too ‘basic’ to capture these
complexities.

We have therefore extended the approach of [8] by proposing a more capable
framework based on the non-linear models introduced in [6]. Our first result,
based on a p-value of 0.017 obtained in the non-linear Granger non-causality
test, capturing the predictive information of the Anxiety Index with respect to
S&P 500, is biased by the presence of heteroscedasticity. We filtered out the
heteroscedasticity in the residuals using Eq. (13) and our GARCH(1,1)-filtered
residuals were used with the test statistic in Eq. (7). Our results, based on p-
values > 0.05, express the true non-causality relationship of Anxiety Index with
respect to S&P 500.

Although our work has established that the Anxiety Index does not have
predictive information with respect to the stock market, by proposing a new
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approach which is statistically sound and more conclusive, there are still some
concerns on how the Anxiety Index was built, based on incomplete data, non-
specific LiveJournal posts, corpus challenges, non-representative data sample,
among others. Further refining the process of defining the Anxiety Index by
addressing the above mentioned concerns, may help to fine-tune our empirical
results and provide us with a more reliable predictive model.
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