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Abstract 1 

The brain mechanisms by which music-related interventions ameliorate fatigue-related symptoms 2 

during the execution of fatiguing motor tasks are hitherto under-researched. The objective of the 3 

present study was to investigate the effects of music on brain electrical activity and 4 

psychophysiological measures during the execution of an isometric fatiguing ankle-dorsiflexion task 5 

performed until the point of volitional exhaustion. Nineteen healthy participants performed two 6 

fatigue tests at 40% of maximal voluntary contraction while listening to music or in silence. Electrical 7 

activity in the brain was assessed by use of a 64-channel EEG. The results indicated that music down-8 

regulated theta waves in the frontal, central, and parietal regions of the brain during exercise. Music 9 

also induced a partial attentional switching from associative thoughts to task-unrelated factors 10 

(dissociative thoughts) during exercise, which led to improvements in task performance. Moreover, 11 

participants experienced a more positive affective state while performing the isometric task under the 12 

influence of music.  13 

Keywords: attention, brain, music, muscle fatigue, psychophysiology  14 

15 
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Cerebral Mechanisms Underlying the Effects of Music during a Fatiguing Isometric Ankle-1 

Dorsiflexion Task 2 

Introduction 3 

Performing movements that are integral to activities of daily life (ADL) such as walking do 4 

not impose great physical or cognitive demands on the human body. During low-intensity exercise, 5 

humans are readily able to allocate attention to environmental stimuli such as auditory and visual cues 6 

(Lavie, Hirst, de Fockert, & Viding, 2004). Beautiful scenery, the sweet sound of bird song, or a 7 

gentle breeze are good examples of stimuli that have the potential to elicit feelings of relaxation and 8 

general wellbeing (Gladwell, Brown, Wood, Sandercock, & Barton, 2013). Nonetheless, the brain has 9 

limited capacity to process sensory signals (Treisman, 1964; Watanabe & Funahashi, 2014). During 10 

high-intensity activity, the brain selects the most salient signals in an automated manner, and duly 11 

allocates the most attentional capacity toward them (Rejeski, 1985). Environmental stimuli (e.g., 12 

auditory and visual cues), however, have the potential to distract exercisers from the physical effects 13 

of exertion, improving performance and endurance (Hutchinson, Karageorghis, & Jones, 2015). The 14 

cerebral mechanisms that underlie selective attention during physical activity are hitherto under-15 

researched. This is due to the fact that currently available neuroimaging techniques are highly 16 

sensitive to movement artifacts and thus require participants to remain still.  17 

Attentional Focus 18 

 An increase in exercise intensity creates an attentional shift from an external focus on the 19 

surrounding environment to an internal focus on bodily sensations such as muscular contraction and 20 

respiration (Hutchinson et al., 2015). This phenomenon occurs gradually with the increasing intensity 21 

of exercise. When a given exercise load is sustained for a long duration, the levels of perceived 22 

exertion associated with that exercise load increase over time. This shift of attentional focus is 23 

referred to as attentional switching (AS) and represents the moment in the exercise when attention 24 

shifts from internal to external sensations or vice versa (Hutchinson & Karageorghis, 2013). AS 25 

typically occurs at exercise intensities approximating the ventilatory threshold: This phenomenon is 26 

demarcated by a disproportionate increase in pulmonary ventilation compared to oxygen uptake, 27 
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caused by an increase in CO2 production, which in turn results from the buffering of lactate build-up 1 

in the working muscles. 2 

In addition to physical exercise, attentional focus depends on a person’s cognitive strategy. 3 

Some people may generally focus more on bodily sensations than on the external environment. 4 

Attentional focus is also influenced by the attentional style of humans (Baghurst, Thierry, & Holder, 5 

2004) and this, in turn, influences the cognitive strategy employed during everyday tasks such as 6 

exercise. Association is a cognitive strategy in which the exerciser focuses on internal processes such 7 

as bodily sensations and performance-related information. Conversely, dissociation refers to a 8 

strategy in which the exerciser focuses on task-unrelated cues such as environmental stimuli. Some 9 

exercisers also demonstrate a constant shift of attention between associative and dissociative focus 10 

and are thus referred to as switchers (Hutchinson & Karageorghis, 2013). Such individuals exhibit a 11 

malleable attentional style that enables them to shift their attentional focus in accord with situational 12 

demands. 13 

The attentional style of exercisers can also influence how attention is allocated across the full 14 

spectrum of exercise intensities. Associators benefit from the use of internal bodily sensations to 15 

improve concentration and manipulate arousal responses before explosive and short-term physical 16 

activities such as the 100-m dash (Ille, Selin, Do, & Thon, 2013). Interestingly, the same cognitive 17 

strategy can compromise the execution of long-term modes of exercise such as marathons, because 18 

associative strategies may increase fatigue-related symptoms with the attendant impairment of 19 

performance-related variables (Lohse, Sherwood, & Healy, 2010). In such instances, a dissociative 20 

attentional style alleviates perceptions of exertion and postpones AS from external to internal cues, 21 

thus boosting performance (Hutchinson et al., 2015). Despite its importance, the effects of a malleable 22 

attentional style on psychophysiological responses and performance are difficult to examine, as 23 

switching attentional focus between internal cues is difficult to manipulate and quantify (cf. Guinote, 24 

2007).  25 

Sensory Modulation 26 

 Sensory strategies such as auditory stimuli have been extensively used as a means by which to 27 

ameliorate the effects of fatigue-related symptoms during exercise (Karageorghis & Priest, 2012b). 28 
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Through the purposeful use of sensory stimuli, individuals experience more pleasant sensations and 1 

lower perceived exertion than under normal circumstances. In such applications, sensory stimuli force 2 

one’s attentional focus to external sensory cues, causing significant psychophysiological effects (see 3 

Karageorghis & Priest, 2012a, 2012b for a review). A recent study indicates that even at high exercise 4 

intensities, affective responses are more positive under conditions of auditory and audiovisual 5 

stimulation (Jones, Karageorghis, & Ekkekakis, 2014).  6 

 Razon et al. (2009) identified a strong effect of external stimulation on AS. Participants were 7 

asked to perform a handgrip-squeezing task at 30% of their maximal handgrip capacity until volitional 8 

exhaustion. The authors also used sensory deprivation as a means by which to increase fatigue-related 9 

symptoms, preponing AS over time. Sensory deprivation is expected to increase associative strategies 10 

during exercise. In such applications, exercisers are hypothesized to allocate attentional focus to 11 

internal bodily sensations, with consequent detrimental effect on endurance performance. Results 12 

indicated that AS occurred approximately 1 min later under the influence of music and normal vision, 13 

with subsequent impact upon time to exhaustion. A similar effect was previously reported by 14 

Boutcher and Trenske (1990) who demonstrated that sensory deprivation has a negative influence on 15 

affective valence and perception of effort at different exercise intensities. Based on the 16 

aforementioned studies, sensory modulation appears to be a worthwhile pathway for researchers to 17 

use in order to examine the mechanisms that underlie AS during exercise. 18 

Cerebral Mechanisms Underlying Attentional Switching 19 

 Attention switches several times throughout a physical task depending on the physiological 20 

load, attentional style, and one’s desired focus of attention (Bigliassi, 2015). Attentional focus is the 21 

apparent trigger responsible for modulating the sense of effort (Hutchinson & Karageorghis, 2013). 22 

Accordingly, selective attention could not only integrate but also underpin the mechanisms of fatigue 23 

and task disengagement (Marcora, 2008; Noakes, 2011). The psychobiological model proposed by 24 

Marcora, Staiano, and Manning (2009) indicates that motivation is the trigger responsible for 25 

influencing perception of effort and neural activation. As suggested by Pageaux (2014): 26 

The psychobiological model is an effort-based decision making model based on motivational 27 

intensity theory, and postulates that the conscious regulation of pace is determined primarily 28 
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by five different cognitive/motivational factors: Perception of effort; potential motivation; 1 

knowledge of the distance/time to cover; knowledge of the distance/time remaining; 2 

previous experience/memory of perception of effort during exercise of varying intensity and 3 

duration. (p. 1319) 4 

It is also hypothesized that other psychological phenomena such as attentional focus should be 5 

integrated into the psychobiological model, because exertional responses are conscious and active 6 

processes (Bigliassi, 2015; Rejeski, 1985). However, exercise-specific tasks cannot easily be 7 

reproduced by use of common brain functional imaging methods (e.g., fMRI), owing to the artefacts 8 

associated with muscular contractions and movement patterns (Fontes et al., 2013).  9 

 High temporal resolution is necessary to identify action potentials that are usually associated 10 

with rapid psychological phenomena such as shifts of attention. Therefore, electroencephalography 11 

(EEG) represents an appropriate technique to identify the mechanisms that underlie attentional 12 

processes during exercise (Luck, Woodman, & Vogel, 2000). The identification of the brain 13 

mechanisms associated with AS can lead to future studies on the use of pharmacological or electrical 14 

procedures to manipulate attentional focus in high-risk populations (e.g., obese), or even to strengthen 15 

the use of associative strategies during highly demanding cognitive-motor tasks (e.g., shooting and 16 

golf performance). 17 

Brain Waves during Exercise 18 

 A very limited number of studies have addressed the effects of exercise on the electrical 19 

activity in the brain. Recently, Aspinall, Mavros, Coyne, and Roe (2015) explored the use of a 20 

wireless EEG device as a method to further understanding of the emotional experiences of walkers in 21 

different urban environments. The results indicated that green spaces (e.g., parks and rural areas) 22 

induced feelings of relaxation. This study illustrates how mobile EEG devices can be used to acquire 23 

physiological indices of emotional experiences during ADL. Furthermore, changes in the brain’s 24 

electrical frequency are directly connected to affective/perceptual changes caused by external and 25 

interoceptive cues during exercise. 26 

 Bailey, Hall, Folger, and Miller (2008) investigated changes in EEG activity during graded 27 

exercise on a recumbent cycle ergometer. They identified a substantial increase in low-frequency 28 
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brain waves (theta and alpha) in the frontal, central, and parietal regions of the cortex during the 1 

execution of incremental exercise performed to the point of volitional exhaustion. Immediately after 2 

completing the exercise bout, the power of low-frequency waves decreased substantially. This study 3 

indicated that frequency modulations in the brain during exercise are associated with the exercise 4 

intensity and feasibly interconnected with affective (e.g., a reduction in affective valence) and 5 

perceptual (e.g., an increase in perceived exertion) responses. The increase in low-frequency 6 

components during incremental modes of exercise is theoretically linked to an increase in low-7 

frequency output that serves to contract the working muscles (Arendt-Nielsen & Mills, 1988). In other 8 

words, fatigue-related symptoms downregulate high-frequency output to generate greater muscular 9 

contraction. Therefore, fatigue-related symptoms cause a substantial increase in low-frequency brain 10 

waves such as theta and alpha.  11 

Aims of the Present Study 12 

 EEG was used in the present study with a view to shedding new light on the mechanisms that 13 

underlie AS during a physically demanding motor task. Through frequency analyses, this approach 14 

also served to ascertain key cortical areas/networks that activate in response to an auditory stimulus 15 

(musical excerpt). The stimulus was used to manipulate AS and thus further understanding of the 16 

attentional processes that underlie a fatiguing isometric ankle-dorsiflexion task. 17 

Hypotheses  18 

Affective and perceptual responses. Sensory stimulation was hypothesized to slightly 19 

enhance exercise performance (ankle flexion fatigue tests) and induce moderate changes in 20 

psychological responses (e.g., affective valence and fatigue-related symptoms). This hypothesis is 21 

predicated on the fact that local exertion produces a limited amount of corollary discharge (De 22 

Morree, Klein, & Marcora, 2012), with partial effects on affective valence (hedonic tone of feelings), 23 

situational motivation, and felt arousal (for details, see the psychobiological model; Pageaux, 2014). 24 

Based on this assumption, the use of auditory stimulation is hypothesized to have a salient impact 25 

upon psychological responses during the execution of a fatiguing test. 26 

Electrical activity in the muscle. Internal association to physiological sensory cues is 27 

expected to elicit co-contraction (simultaneous contraction of agonist and antagonist muscles; Lohse 28 
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& Sherwood, 2012) and prompt a degradation in physical performance. Based on this assumption, AS 1 

is expected to modulate muscle activity and coordination between agonist and antagonist muscles 2 

during isometric modes of exercise. An auditory stimulus was adopted to guide attentional focus 3 

toward external sensory cues, and it was therefore hypothesized that this approach would ameliorate 4 

the effects of fatigue and enhance the neural activation of the working muscles during a fatiguing 5 

motor task. 6 

Cerebral mechanisms. The central regions of the cortex (central motor command: precentral 7 

and paracentral gyri) are hypothesized to reduce action potentials to the working muscles in cases of 8 

peripheral fatigue, and this could be reflected in the EEG as an increase in low-frequency waves such 9 

as delta, theta, and low-alpha waves in the frontal and central areas (cf. Craig, Tran, Wijesuriya, & 10 

Nguyen, 2012). This hypothesis is predicated on the modulation of output frequency (increase in low-11 

frequency components) to sustain muscular contractions over long periods of time (Cifrek, Medved, 12 

Tonković, & Ostojić, 2009). The present authors hypothesized that the precentral and paracentral gyri 13 

could potentially reduce neural output to the working muscles in case of fatigue-related sensations 14 

(e.g., limb discomfort) caused by interoceptive sensory cues (i.e., group III and IV muscle afferents). 15 

The premotor cortex is responsible for controlling the muscles, which suggests that a reduction in 16 

action potentials originates in this region. Other somatosensory regions of the brain (e.g., postcentral 17 

gyrus) are hypothesized to process fatigue-related symptoms and accordingly up-/down-modulate the 18 

activity of the central motor command (i.e., an indirect response; de Morree, Klein, & Marcora, 19 

2012). Auditory Stimuli should divert attention away from internal sensory cues and increase exercise 20 

performance. It is hypothesized that the beneficial effects of listening to music during exercise should 21 

correspond with frequency modulations in the frontal and central regions of the cortex (Bigliassi et al., 22 

2016). 23 

Methods 24 

Participants 25 

Ethical clearance was secured from the first author’s institutional ethics committee and 26 

written informed consent was obtained from all participants. Undergraduate students were invited to 27 

participate via institutional email. Participants who demonstrated an interest in taking part were 28 
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initially surveyed by the first author to collate demographic data such as age, gender, ethnicity, and 1 

sociocultural background. Furthermore, participants were administered the Attentional Focusing 2 

Questionnaire (AFQ; Brewer et al., 1996) in order to assess their dominant attentional style during 3 

exercise. The inclusion criteria were that participants needed to be: right-handed, music listeners, non-4 

musicians, and apparently healthy. Sample size was calculated using G*Power (3.1) for a one-way 5 

ANOVA (within-subject factors; three experimental conditions). Alpha level was set at 0.5 and 1-beta 6 

at 0.8 (Cohen, 1994). Based on a large effect size of sensory modulation on attentional focus (f = 1; 7 

Hutchinson et al., 2015), 15 participants were required. An additional four participants were included 8 

in order to account for the likelihood of experimental attrition. In total, 19 participants (10 men and 9 9 

women; Mage = 26.4, SD = 3.6 years; Mheight = 170.3, SD = 9.4 cm; Mweight = 67.0, SD = 11.5 kg; 10 

Mphysical activity = 203.1, SD = 5 min/week) completed each experimental phase of the study.  11 

Experimental Design 12 

Participants were invited to the laboratory in order to be familiarized with the apparatus and 13 

procedures. Researchers also explained the psychometric measures and addressed any queries that 14 

participants had. Subsequently, each participant had her/his legs and face cleaned with preparation 15 

pads saturated with 70% isopropyl alcohol. Five EMG surface electrodes (Goldy Karaya Gel 16 

electrodes, 28 mm diameter, silver/silver chloride, Arbo, Henley Medical, Stevenage, UK) were 17 

placed on the participant’s right leg, and 64 EEG electrodes (Quik Cap; Compumedics Neuromedical 18 

Supplies) were placed on their scalp. 19 

Participants were instructed that exercise should be sustained until the point of volitional 20 

exhaustion or when the participant could no longer tolerate the proposed exercise intensity for more 21 

than 3 s. The period of time that participants sustained the contraction was recorded by use of a 22 

handheld stopwatch (Casio, model HS-80TW-1EF) and variations in produced force ≤ 10% were 23 

permitted. The same piece of music used in the sensory stimulation condition (see Music Selection 24 

section) was administered again 5 min after the final experimental condition, as a means by which to 25 

identify the sole effects of music that are not evident during exercise. The music-only effects (MO) 26 

were subsequently compared with the control condition (CO; no intervention) and music-during-27 
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movement condition (MM) in order to explore the brain activity that is exclusively representative of 1 

the interaction between music and motor task. 2 

***Figure 1*** 3 

Music Selection 4 

 Eye Of The Tiger by Survivor (109 bpm) was used in the present study as a means by which 5 

to ameliorate the effects of fatigue-related symptoms that occur during the execution of exhaustive 6 

motor tasks. The rationale underlying this choice was predicated on participants’ likely extramusical 7 

associations and level of familiarity with this particular track (North, Hargreaves, & Hargreaves, 8 

2004). The track was expected to awaken long-term memories (Watanabe, Yagishita, & Kikyo, 2008) 9 

of the Rocky movie series and evoke positive emotions (Juslin, 2013) during exercise-related 10 

situations (Karageorghis & Priest, 2012a). Participants were asked about their level of familiarity with 11 

the stimulus after completing all the experimental phases; all were familiar with the auditory stimulus 12 

and related the piece of music to the Rocky movie series. 13 

Procedure  14 

Participants were randomly permuted into one block of two experimental conditions (MM 15 

and CO) using a deterministic algorithm designed to generate random values. A force transducer 16 

(Model 615, S-Type Load Cell, Tedea-Huntleigh Electronics, UK, max 100 kg) was used to measure 17 

the foot pressure generated by each participant, who was able to observe the strength line (Spike 2 18 

v4.11; Cambridge Electronic Design) in order to adjust the required rate of contraction. The force 19 

signal was amplified 1000 times, low-pass filtered at 2 KHz, and digitized at 1 KHz using a data 20 

acquisition unit (micro 1401). In all experimental conditions, the participant was requested to perform 21 

an isometric ankle-dorsiflexion contraction until the point of volitional exhaustion at 40% of 22 

maximum voluntary contraction (MVC). The maximum voluntary contraction (MVC) was assessed 23 

three times in order to identify the peak value before commencement of the exercise bout. The 24 

participant was asked to perform the strongest ankle-dorsiflexion contraction for 5 s and a 2-min rest 25 

interval punctuated each attempt in order to minimize the effects of muscular fatigue.  26 

A 6-8 min interval was used to induce appropriate recovery between experimental conditions. 27 

It was intended that the participant started their next experimental condition when 28 
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psychophysiological indices returned to baseline levels. Thus, the category ratio (CR10) was 1 

administered to assess the limb discomfort and the participant was required to perform a new MVC 2 

test. The menstrual cycle of women was not monitored in the present study, because there is strong 3 

evidence to suggest that this variable does not influence isometric strength (Nicolay, Kenney, & 4 

Lucki, 2007) regardless of the use of contraceptive medication (Elliott, Cable, & Reilly, 2005). 5 

Electromyography 6 

Electrical activity in the muscles was measured by use of electromyography (EMG), which 7 

identifies the electrical potential generated by muscle cells. Surface electrodes were placed on the 8 

tibialis anterior and lateral gastrocnemius in accord with the recommendations of the SENIAM project 9 

(Surface Electromyography for the Non-Invasive Assessment of Muscles) and the ground electrode 10 

was placed on the lateral malleolus. The EMG signal was amplified 1000 times, low-pass filtered at 11 

20 Hz, and digitized at 1 KHz using a data acquisition unit (micro 1401). 12 

Electroencephalography 13 

Electrical activity in the brain was assessed by means of a 64-channel Quik-cap. The 64 14 

Ag/AgCl electrodes were attached to the scalp based on the international 10-20 system and filled with 15 

Quik gel (Compumedics Neuromedical Supplies). The mastoids were used to digitally reference the 16 

brain electrical signal. Two pairs of electrodes captured the horizontal (HEO) and vertical eye 17 

movements (VEO). Impedance was kept below 5 kΩ. The brain electrical signal was amplified at a 18 

gain of 1000. Online bandpass filters 0.1 – 100 Hz were used to reduce electrical interference and 19 

muscle artifacts. The signal was acquired through the use of the software Scan 4.4 acquisition and 20 

digitized at 1000 Hz. 21 

In-task Measures 22 

Selective attention was assessed every 30 s by use of the Tammen’s (1996) single-item state 23 

attention scale (SIAS). The SIAS measures the allocation of attentional focus to internal and external 24 

sensory information during the execution of physical tasks. Limb discomfort (CR10; Borg, 1982), 25 

situational motivation (MOT, Tenenbaum, Kamata, & Hayashi, 2007), affective valence (Feeling 26 

Scale [FS]; Hardy & Rejeski, 1989) and felt arousal (Felt Arousal Scale [FAS], Svebak & 27 

Murgatroyd, 1985) were assessed prior to and immediately after the exercise bout. An order of 28 
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administration was established and applied consistently throughout the experiment (1st SIAS, 2nd 1 

CR10, 3rd MOT, 4th FS, and 5th FAS). The CR10 was used to measure the level of limb discomfort 2 

associated with the active limb during the execution of a fatiguing task using the response set “How 3 

much discomfort are you feeling in your leg?” Situational motivation was used to measure how 4 

motivated participants were feeling at that moment using the response set “How motivated are you 5 

feeling?” The FS was applied to assess participants’ affective state using the response set “How are 6 

you feeling right now?” The FAS was used to measure the level of perceived activation/arousal that 7 

one experiences using the response set “How aroused are you feeling right now?” 8 

Data Analysis 9 

Electromyography. Spike2 (v4.11; Cambridge Electronic Design) was used to obtain time 10 

and frequency indices from the muscle electrical signal, which was initially filtered, rectified, and 11 

smoothed. Time and frequency domains were used to identify the motor unit recruitment and fatigue-12 

related symptoms, respectively. The root mean square value obtained from the raw EMG data is 13 

representative of the motor units necessary to produce a certain level of contractile strength. The mean 14 

frequency obtained from the frequency spectrum was used as an index of fatigue (Arendt-Nielsen & 15 

Mills, 1988). Fatigue-related symptoms usually increase over time as a response to increasing exercise 16 

intensity. Accordingly, the mean frequency is expected to decrease, because the firing rate of 17 

electrical signals emitted by the brain also decreases over time as a response of increasing RPE 18 

(Cifrek, Medved, Tonković, & Ostojić, 2009). Fast Fourier Transform was used to decompose the 19 

EEG signals into different wave frequencies. The mean frequency of the power spectrum (MF) was 20 

calculated as a means to compare experimental conditions and identify the trend by which fatigue 21 

occurs over time (De Luca, Sabbahi, & Roy, 1986). The root mean square (RMS) was used to identify 22 

the motor unit recruitment. The recruitment of motor units is expected to increase over time as a 23 

means by which to compensate the increasing exercise intensity (Chester & Durfee, 1997). The 24 

agonist-antagonist ratio was calculated by dividing the average of the anterior tibialis RMS value by 25 

the average of the gastrocnemius RMS value. 26 

Electroencephalography. A default EEG cap (Neuroscan Quik-cap 64) was used to create 27 

topographical results. The brain electrical signal was visually checked in an attempt to identify bad 28 
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electrodes; these were subsequently removed for further analyses. Bad electrodes were only identified 1 

in two instances and discarded. Large artifacts were identified observing the raw file and discarded 2 

before subsequent transformations. Blink events were created and consequently corrected (blink 3 

artifact rejection) using independent component analysis by tracking down the activity of vertical eye 4 

movements. The EEG data were imported to the database by splitting the original file into 1-s 5 

windows (asynchronous samples), DC-offset correcting, and re-sampling the original file at 1000 Hz 6 

(Tadel, Baillet, Mosher, Pantazis, & Leahy, 2011). The EMG signal was used to indicate the period of 7 

time between the participant starting and finishing the test. The initial and final 5 s of contraction 8 

were also removed as a means to prevent the influence of rapid neurological adaptations to the onset 9 

and offset of movement execution. Therefore, the EEG signal processed in the present experiment 10 

overlapped muscular contractions due to the fact that the fatiguing test was conducted isometrically 11 

for approximately 2–3 min. Subsequently, the 1 s samples were submitted to bandpass filters 0.5–30 12 

Hz, 24 dB/octave. The number of samples varied according to participants and experimental 13 

conditions, because the exercise was performed until volitional exhaustion. 14 

Three folders were created to separate the experimental conditions (19 files each; CO, MM, 15 

and MO). The results are presented for group data ensemble-averaged waveforms. Fast Fourier 16 

Transform (FFT) was used to decompose each 1 s asynchronous samples into different frequencies. 17 

Three wave frequencies (theta [3–8 Hz], alpha [8–12.5 Hz], and beta [12.5–35 Hz] bands) were 18 

selected to investigate the interconnection between music and the motor task involved (Schneider, 19 

Askew, Abel, Mierau, & Strüder, 2010). The average power of FFT values was saved across files 20 

(average the spectra) and topographical results were presented for each experimental condition. The 21 

power spectrum was exported to excel files for each electrode (62 electrode sites) and band frequency. 22 

The mean values were compared between experimental conditions as a means by which to identify the 23 

effects of music, exercise, and music-and-exercise on the brain electrical activity. All the EEG 24 

procedures applied in the present research were performed with Brainstorm (Tadel et al., 2011), which 25 

is documented and freely available for download online under the GNU general public license 26 

(http://neuroimage.usc.edu/brainstorm).  27 

 28 
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Statistical Analysis 1 

The Shapiro-Wilk test was used to verify the suitability of data for parametric analysis. 2 

Outlier cases were subsequently excluded as a means to avoid the interference of extreme values on 3 

normal distribution. Multiple imputation was used to replace missing values by comparing five 4 

different methods of linear regression (see He, 2010). The imputations were consequently compared 5 

by use of F tests as a means to identify the most appropriate method (greatest p value). A multivariate 6 

general linear model was used to compare psychological variables, EMG indices, and task 7 

performance across two experimental conditions (2 moments: pre and post; 2 experimental 8 

conditions: MM and CO). When the assumption of spherecity was violated, a Greenhouse-Geisser 9 

correction was applied to the F test. Bonferroni adjustments were used to locate statistically 10 

significant differences. The EEG signal (power values) was log10 transformed due to exhibiting a 11 

platykurtic profile. Electrode sites (62) and band frequencies (theta, alpha, and beta) were compared 12 

across three experimental conditions (one-way ANOVA). Interactional analyses were not used to 13 

compare active electrode sites. Bonferroni adjustments were used to locate statistically significant 14 

differences. The statistical procedures used in the present experiment were conducted on SPSS 17.0.  15 

Results 16 

Checks for univariate outliers indicated that 17 cells had abnormal Gaussian distribution; box 17 

plot checks were used to identify these cases which were subsequently removed. Multiple imputation 18 

was used to replace the missing values by applying methods of linear interpolation (He, 2010). Four 19 

variables (FS, FAS, CR10, and SIAS) did not present normal distribution and had their values 20 

corrected through the use of logarithmic transformations (Bland & Altman, 1996). All variables were 21 

successfully corrected prior to running the main analyses. 22 

Psychological Responses and Task Performance 23 

 ANOVA and t test results are presented in Table 1. Participants’ attentional style had no 24 

influence on the dependent variables of the present study (p > .05). The fatigue test used in the present 25 

study elicited detrimental effects in participants’ affective states; however, values for this variable did 26 

not change when participants executed the motor task under the influence of music (CO: FSpre M = 27 

2.31, SD = 1.33, FSpost M = 1.63, SD = 1.30; MM: FSpre M = 2.47, SD = 1.26, FSpost M = 2.31, SD 28 
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= 1.45). There were no statistically significant differences between MM and CO for felt arousal 1 

(FAS), situational motivation (MOT), and limb discomfort (CR10) measures (see Figure 2). Changes 2 

in AS were analyzed over time by calculating the rate of change along the regression line; the 3 

attentional slope represents the magnitude by which fatigue-related symptoms force the reallocation 4 

of attentional focus to associative thoughts (attentional shift). Participants who performed the task 5 

under the influence of music demonstrated greater levels of dissociation throughout the exercise bout 6 

(CO: M = -16.36, SD = 9.19; MM: M = -12.61, SD = 6.34). Task performance was significantly 7 

different between MM and CO (CO: M =167.58, SD = 81.39 s; MM: M = 196.53, SD = 103.32 s; 8 

~15% of difference).  9 

***Table 1*** 10 

***Figure 2*** 11 

Electrical Activity in the Muscles 12 

 No statistical differences were identified in the mean frequency of the power spectrum when 13 

comparing CO and MM (CO: M = 74.20, SD = 16.85; MM: M = 73.65, SD = 17.13; t = .218; p = 14 

.830); correspondingly, the agonist-antagonist ratio was similar between CO and MM (CO: M = 15 

184.07, SD = 71.19; MM: M = 181.92, SD = 65.57; t = .039; p = .969). The electrical activity in the 16 

muscles was similar on time and frequency domains, but those results need to be analyzed in tandem 17 

with indices of task performance, given that participants who executed the motor task under the 18 

influence of music had significant improvements in time to exhaustion, meaning that the auditory 19 

stimulus partially controlled fatigue and the recruitment of motor units (see Figure 3). 20 

***Figure 3*** 21 

Electrical Activity in the Brain 22 

 The brain electrical activity was analyzed on frequency domain at each electrode site. Results 23 

indicated statistically significant differences between CO, MM, and MO (see Table 2). A difference 24 

was identified at low-frequency components of the power spectrum. When participants executed the 25 

motor task in the absence of music, an increase in low-frequency waves (mostly theta rhythm) was 26 

evident in the frontal, central, and parietal regions of the cortex. Conversely, listening to music 27 

elicited a decrease in theta waves through the entire surface of the brain compared to CO (see Figure 4 28 
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and Figure 5). The same pattern of response was identified when participants exercised in the 1 

presence of music; low-frequency waves in the frontal, central and parietal areas were partially 2 

suppressed in MM, but the magnitude of the differences was moderated by exercise-related signals. 3 

AF3 was the only electrode site that MM differed statistically from both CO and MO (***; p < .05). 4 

In other words, the results of the present study indicated that theta waves in MM were partially 5 

suppressed/inhibited by music and partially stimulated by exertion-related cues (parallel processing of 6 

internal and external sensory information). 7 

***Table 2*** 8 

***Figure 4*** 9 

***Figure 5*** 10 

Discussion 11 

The main objective of the present investigation was to further understanding of the attentional 12 

processes that occur during a fatiguing isometric ankle-dorsiflexion task by applying music as a 13 

potential external distractor. The presence of music was expected to partially reallocate the 14 

participants’ attentional focus to task-unrelated factors and subsequently ameliorate the effects of 15 

peripheral fatigue (Rejeski, 1985; Treisman, 1964; Van Duinen, Renken, Maurits, & Zijdewind, 16 

2007). Due to the multifaceted effects of music on brain activation (Levitin, 2008), the authors also 17 

expected a more positive affective state coupled with improvements in task performance.  18 

Affective and Perceptual Responses 19 

 The authors of the present study predicted that music would promote a dissociative attentional 20 

style, with consequent effects on psychophysiological responses, affect, and task performance. This 21 

hypothesis was supported by the results. The findings indicate that music primarily forces attention to 22 

auditory areas and therefore evokes positive affective responses. This response is subsequently 23 

overcome by the detrimental effects of peripheral discomfort that naturally lead to volitional 24 

exhaustion. However, participants sustained the task for a longer period of time under the influence of 25 

music, meaning that the reallocation of attentional focus to task-unrelated information led to 26 

improvements in task performance when the symptoms of fatigue were fairly light or moderate. Limb 27 

discomfort, felt arousal, and situational motivation were similar when compared between MM and 28 
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CO. These results are also surprising given that participants who executed the motor task under the 1 

influence of music were able to sustain the contraction for a longer duration, which, in accord with the 2 

dual-mode theory of affective responses (see Ekkekakis, 2003), should lead to more negative affective 3 

responses. The dual-mode theory suggests that affective valence is influenced by cognitive processes 4 

and interoceptive cues. Therefore, the increasing exercise intensity is hypothesized to up-regulate 5 

afferent feedback from peripheral organs and down-regulate protective cognitive processes such as 6 

self-efficacy. This combination of peripheral and central processes is hypothesized to generate 7 

negative affective responses during exercises performed at high intensities. The results support the 8 

notion that task disengagement relies on the worthiness of the action (i.e., one’s desire to persist), 9 

which is assessed continuously via conscious pathways (Pageaux, 2014). Music-related interventions 10 

reduce focal awareness and render reflexive control of movement execution (Kiefer, 2012). The 11 

upshot of this is a partial reduction in the interpretation of fatigue-related sensations and consequent 12 

increase in time-to-exhaustion. 13 

It is apparent that music-related interventions bear direct and measurable influence on the 14 

brain during the execution of exhaustive motor tasks. Moreover, under the influence of auditory 15 

stimuli, affective responses to such exhaustive tasks are altered. Jones et al. (2014) demonstrated that 16 

even high-intensity bouts of physical activity can feel more pleasant under the influence of music. The 17 

authors suggest that subcortical regions of the brain might be responsible for controlling the execution 18 

of motor tasks and the processing of music; in this case, little processing would need to take place for 19 

music to have its beneficial effects on affective responses. Furthermore, it has been indicated that 20 

music could not only activate one sensory region, but also reduce the activity in other sensory regions 21 

(Hernández-Peón, Brust-Carmona, Peñaloza-Rojas, & Bach-Y-Rita, 1961) and these combined 22 

responses could be responsible for the positive effects of music on fatigue-related symptoms and 23 

affective responses (Karageorghis & Priest, 2012a). The present results are noticeably similar to those 24 

found by Jones et al. (2014) and Hutchinson et al. (2015), and support the notion that music-related 25 

interventions are facilitative strategies that modulate affective valence, attentional focus, and task 26 

performance during the execution of exhaustive or fatiguing motor tasks. 27 

 28 
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Electrical Activity in the Muscles 1 

 The authors who developed the present experiment hypothesized that internal association to 2 

interoceptive sensory cues was expected to decrease the agonist-antagonist ratio and thus degrade 3 

physical performance. Based on this assumption, shifts of attentional focus were expected to modulate 4 

the electrical activity in the musculature and the coordination between agonist and antagonist muscles 5 

during isometric motor tasks (Lohse & Sherwood, 2012). The use of an auditory stimulus was 6 

hypothesized to guide the attentional focus to external sensory cues, ameliorate the effects of fatigue, 7 

and consequently enhance the neural activation of the working muscles during a fatiguing bout of 8 

physical activity. The results of the present experiment partially support the hypotheses previously 9 

proposed. The auditory stimulus was not sufficiently powerful to modulate the mean frequency of the 10 

power spectrum and the agonist-antagonist ratio; however, these results need to be interpreted with 11 

caution because the motor task was conducted to the point of volitional exhaustion, meaning that the 12 

end point varied across participants.  13 

 Based on the electrical signal extracted from the anterior tibialis and gastrocnemius (see 14 

Figure 3), the present authors were able to identify a physiological index of attentional distraction; 15 

participants presumably fell into a partial “trance” (e.g., resting state and meditation; Aftanas & 16 

Golocheikine, 2001) during the execution of the motor task. During various periods of time, 17 

participants were only partially aware of the fatigue-related symptoms because the auditory stimulus 18 

reallocated attentional focus toward somatosensory regions, and the execution of the movements was 19 

reflexively controlled by the central motor command. This result is supported by the notion that 20 

simple motor tasks can be performed with partial focal awareness if they do not involve extreme 21 

symptoms of fatigue or pain (e.g., Kiefer, 2012).  22 

Rejeski (1985) suggested that perceived exertion could be an active process because of its 23 

interaction with cognitive factors prior to perception. The present results indicate that Rejeski was 24 

possibly correct in his assertions; if music enhanced endurance performance but maintained the 25 

recruitment of motor units and the mean frequency of the power spectrum, fatigue-related symptoms 26 

had to be only active creations of the brain (De Morree et al., 2012) and activated by attentional 27 

processes (Bigliassi, 2015). Interestingly, fatigue-related symptoms (e.g., corollary discharges and 28 
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internal sensory cues) overcome the protective effects of external sensory information and led 1 

participants toward volitional exhaustion (Boullosa & Nakamura, 2013). This faculty was developed 2 

through human evolution as a means by which to avoid catastrophic situations and protect humans 3 

against osteoarticular injuries, strokes, and seizures (see Noakes, 2012). 4 

Cerebral Responses 5 

 The central motor command (precentral and paracentral gyri; Voss et al., 2006) was expected 6 

to reduce action potentials to the working muscles and possibly generate an increase in low-frequency 7 

waves such as theta and alpha (initial hypotheses; e.g., Cao, Wan, Wong, da Cruz, & Hu, 2014). The 8 

effects of music were expected to partially block the processing of internal sensory cues and enhance 9 

exercise performance with possible effects on the brain electrical activity (Bigliassi et al., 2016). The 10 

results indicated that music not only reallocated the participants’ attentional focus toward sensory 11 

regions but also rearranged the brain activity throughout the exercise bout. Music suppressed the 12 

sharp increase of low-frequency waves in the frontal, central, and parietal regions (see Figure 5). For a 13 

short period of time, fatigue-related symptoms were somewhat inhibited by the defensive effects of 14 

music. The barrier imposed by music to reduce exertional responses was initially triggered by 15 

attentional processes, because participants were only partially aware of internal sensory cues at light-16 

to-moderate levels of exertion (attentional shift; see Figure 2). 17 

 The fatiguing test used in the present experiment was considerably challenging to execute and 18 

participants had to control numerous internal (e.g., sensations of fatigue) and external factors (e.g., 19 

level of strength produced). The increasing symptoms of fatigue compromised task performance and 20 

participants had to maintain force at the target level (40% of MVC), which means that the difficulty 21 

should increase over time due to a presumed increase in lactic acidosis and other biochemical 22 

metabolic markers. An increase in low-frequency waves in the frontal, central, and parietal regions is 23 

possibly associated with the effects of fatigue-related symptoms on executive control during the 24 

execution of fatiguing motor tasks. The considerable complexity of the physical task and necessary 25 

control to sustain the contraction at the target level naturally reallocated attentional focus toward 26 

associative thoughts such as internal sensory cues and task-related information (Hutchinson & 27 

Karageorghis, 2013).  28 
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The execution of a fatiguing motor task increased low-frequency waves through the entire 1 

surface of the cortex. This result has been previously identified by Craig et al. (2012) who 2 

demonstrated that fatigue-related symptoms have a strong effect on low-frequency waves in the 3 

frontal and central areas. The authors of this study hypothesize that exertional responses modulated 4 

theta waves as a means by which to reduce the neural output to activate the working muscles. In order 5 

to counteract the effects of fatigue, high-frequency waves are generally manifest in the central regions 6 

of the cortex as a means by which to increase neural output and overcome the influence of 7 

interoceptive sensory cues (e.g., Bigliassi et al., 2016; Craig et al., 2012). Previous studies have 8 

indicated an increase in low-frequency waves (Bailey et al., 2008) and a reduction of high-frequency 9 

output as a neural mechanism that controls the working muscles (Hunter, St Clair Gibson, Lambert, 10 

Nobbs, & Noakes, 2003; Thongpanja, Phinyomark, Phukpattaranont, & Limsakul, 2012) as a direct 11 

response to the increasing exercise intensities. The present results confirmed the psychophysiological 12 

mechanisms postulated by Rejeski (1985) that fatigue-related symptoms are strong signals and usually 13 

more relevant than external sensory cues (e.g., music). In such instances, it is only a matter of time 14 

until exertion-related signals control decision-making processes. The cerebral mechanisms that 15 

underpin such responses are possibly associated with a significant modulation of theta waves in the 16 

frontal, central, and parietal regions of the cortex. The left frontal regions of the brain are possibly 17 

associated with processes of selective attention during the execution of highly demanding cognitive-18 

motor tasks (cf. Chong, Williams, Cunnington, & Mattingley, 2008).  19 

Limitations of the Present Study 20 

 The piece of music used in the present experiment was chosen by the researchers and might 21 

not elicit precisely the same cluster of psychophysiological responses across participants, given that 22 

music preference is highly personal (North et al., 2004). However, different pieces of music could 23 

pose a threat to the internal validity of the experiment due to differences in the psychoacoustic 24 

properties of the stimulus (Karageorghis & Priest, 2012b). Based on this assumption, the research 25 

team decided to partially compromise the ecological validity of the experiment given its laboratory-26 

based approach. Secondly, the motor task used in the present study can only induce peripheral fatigue 27 

(limb discomfort) and might not be sufficiently effective to discharge a large number of corollary 28 
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signals to sensory regions. Whole-body modes of physical activity can possibly cause substantial 1 

discharges of corollary signals from the central motor command and increase the input of afferent 2 

feedback; in such instances, the brain regions that activate in response to the sensory stimulus would 3 

be possibly different from those identified in the present experiment. However, this study represents 4 

the first scientific attempt to illuminate the complex effects of music and exercise on cerebral activity. 5 

It is noteworthy that the carryover effects of fatigue might have influenced task performance across 6 

conditions, despite the physiological (cardiac stress), neural (MVC), and perceptual (limb discomfort) 7 

parameters that were monitored to ensure that participants had regained homeostasis. Moreover, a 8 

randomized, counterbalanced design was employed to address the potential confound of fatigue 9 

carryover on EEG activity, task performance, and psychophysiological responses. 10 

Conclusions 11 

 The present experiment was undertaken as a means by which to further understanding of the 12 

effects of music on electrical activity in the brain and psychophysiological responses during the 13 

execution of a fatiguing isometric ankle-dorsiflexion task. The findings indicate that music induces a 14 

partial attentional switching from associative thoughts to task-unrelated factors during exercise, which 15 

leads to improvements in task performance. Participants also experienced a more positive affective 16 

state under the influence of music. These psychological responses are possibly associated with a 17 

mechanism pertaining to suppression of fatigue-related symptoms that are triggered by attentional 18 

processes (corollary discharges/afferent feedback; Bigliassi, 2015). The stimulative piece of music 19 

used in the present study down-regulated theta waves in the frontal, central, and parietal regions of the 20 

brain when participants executed a fatiguing motor tasks. The effects of music on electrical activity in 21 

the brain are possibly associated with a mechanism of attention reallocation, wherein exercise-related 22 

afferent cues remain outside of focal awareness over a broader range of intensity. 23 

 24 

 25 

 26 

 27 

 28 
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