Cerebral Mechanisms Underlying the Effects of Music during a Fatiguing Isometric Ankle-

Dorsiflexion Task

## \*\*\*Figure 1\*\*\*



*Figure 1.* Experimental set-up of the present study. Figure 1A: Force transducer used to quantify the level of pressure generated by the participant against the load cell; Figure 1B: Participant wearing the EEG cap and headphone; Figure 1C: Participant's vision from outside the Faraday cage; the cage was assembled to prevent the electrical interference of external devices.



\*\*\*Figure 2\*\*\*

*Figure 2.* Psychological responses and exercise performance compared between CO and MM. Means and standard deviations are presented. *Note.* CO = Control condition; MM = Music condition; FS = Feeling Scale; FAS = Felt Arousal Scale; MOT = Situational motivation; CR10 = Limb discomfort; \* = p < .05.



\*\*\*Figure 3\*\*\*

*Figure 3*. Electromyographic measures taken in the present study. Music prolonged time-to-exhaustion and maintained the output frequency and recruitment of motor units during the execution of a fatiguing motor task. *Note.* CO = Control condition; MM = Music condition; EMG = Electromyography.



*Figure 4*. Theta rhythm power results for each electrode which differences were statistically significant (p < .05) between CO, MM, and MO (Bonferroni adjustment). Means and standard deviation are presented.

*Note.* CO = Control condition; MM = Music condition; MO = Music-Only condition; 1 = MM differed statistically from CO and MO; 2 = MM differed statistically from CO; 3 = MM differed statistically from MO; the absence of data label indicates that CO differed statistically from MO.



\*\*\*Figure 5\*\*\*

*Figure 5.* Low-frequency components (theta waves) of the power spectrum presented for CO, MM, and MO. *Note.* The colored scale indicates the power of the band frequency (power [signal units^2/Hz\*10^{-11}]); CO = Control condition; MM = Music condition; MO = Music-only condition.