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Abstract

Recurrent Neural Networks (RNN), particularly Long Short Term Memory (LSTM)
RNNs, are a popular and very successful method for learning and generating
sequences. However, current generative RNN techniques do not allow real-time
interactive control of the sequence generation process, thus aren’t well suited for
live creative expression. We propose a method of real-time continuous control and
‘steering’ of sequence generation using an ensemble of RNNs and dynamically
altering the mixture weights of the models. We demonstrate the method using
character based LSTM networks and a gestural interface allowing users to ‘conduct’
the generation of text.

1 Introduction

Recurrent Neural Networks (RNN) are artificial neural networks with recurrent connections, allowing
them to learn temporal regularities and model sequences. Long Short Term Memory (LSTM) [16] is a
recurrent architecture that overcomes the problem of gradients exponentially vanishing or exploding
[15, 1], and allows RNNs to be trained many time-steps into the past, to learn more complex programs
[21]. Now, with increased compute power and large training sets, LSTMs and related architectures
are proving successful not only in sequence classification [11, 14, 20, 12], but also in sequence
generation in many domains such as music [6, 2, 19, 22], text [24, 23], handwriting [10], images
[13], machine translation [25], speech synthesis [28] and even choreography [4].

However, sequence generation with RNNs is currently not a real-time, interactive process. Some
recent implementations have used a turn-based approach, such as the online text editor Word Synth
[8]. This allows a user to enter a ‘seed’ phrase for the RNN, ‘priming’ it such that the next phrase
generated is conditioned on the seed. Although a very useful approach, this still does not provide
real-time continuous control in the manner required for the creation of expressive interfaces.

2 Method

An ensemble of models is usually used to improve overall prediction accuracy. The usual motivation
behind this approach is that training multiple diverse models (using different architectures, parameters
and/or algorithms) and then combining their predictions (through weighted or unweighted ‘voting’ or
averaging) is likely to minimise bias and undesired variance, and thus is more likely to provide more
accurate results [5]. Usually in these cases, all models are trained on the same training data.

We propose a method of using an RNN ensemble, containing models trained on vastly different
datasets, and dynamically altering the models’ mixture weights in real-time to control the output
‘style’ 1. While this method can potentially be applied to many different domains, we choose to

1We use the term ’style’ very liberally here.
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Figure 1: Example screen output and generated text. The user can select multiple models with over
20 to choose from. The chosen models are instantly available to interact with. The blue-red vertical
bars visualise the probability distributions at the current time-step t, one row per active model (yi

t for
the i′th model), and the mixed probability distribution ρt (the top row). The horizontal dark grey
bars on each row visualise the mixture weights for each model, stored in the vector πt.

first demonstrate it on character based text models for a number of practical reasons: i) the data
is relatively low dimensional and has modest compute requirements (processing power, memory
requirements, training times etc.), ii) training data is very easy to find, iii) the output is simple to
judge qualitiatively and unambigously, iv) it has been demonstrated that LSTMs are successful in this
domain [10, 17].

2.1 Training data

We train an ensemble consisting of n LSTM networks, each trained on a different corpus of text
representing a unique style. The styles were selected due to the ease with which each can be
characterised with respect to language use and structure. They include the works of Shakespeare,
Baudelaire, Nietzsche, Jane Austen, Donald Trump speeches, the King James Bible, assorted love
song lyrics, Linux kernel C code, LATEX source, the Chilcot Report of the Iraq Inquiry and many more.
The amount of training data varies for each corpus, ranging from 500KB to 10MB.

2.2 Training

We use different architectures for each model depending on the size of the training data, ranging from
a single LSTM layer with 256 dimensions, to three LSTM layers each with 512 dimensions. We use
LSTM cells with input, output and forget gates [7], without peepholes or skip connections between
layers. We use Dropout regularization as described in [29] with a dropout probability ranging fromm
10%-30% depending on the model and architecture.

In order to provide cross-model compatibility of inputs and outputs, we use a consistent mapping
between characters and indices. So we choose standard ASCII codes with each model having input
and output dimensions of 128, with a softmax on the output to provide a probability distribution over
the 128 characters. We train each model to minimize the negative log-likelihood of the next character
given a sequence of characters (of maximum length 80), as described in [10].

2.3 Interactive prediction and visualisation

Once trained, the system loads and runs each of the models independently with the same character
input represented as a one-hot vector xt. Each model, parameterized by θi where the superscript
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Figure 2: Software architecture for the interactive prediction and visualisation system. The Visualiser
is an OpenGL application which continually calculates model mixture weights πt at each time-step t,
either via mouse input, tracking the user’s hands using a LeapMotion device or using an external midi
controller. The Visualiser sends πt via the OSC protocol to the Server, which runs each of the models
independently on the same input xt to receive probability distributions from each model yi

t for the
next character. The Server then mixes each yi

t weighted by πt and sends the mixed ρt and each πt
back to the Vizualizer. Separating the two processes allows transparently switching between running
both processes on the same computer, or running the backend on a remote, more powerful server.

i denotes the model index {i ∈ [1, n]}, predicts a discrete probability distribution yi
t for the next

character conditioned on the current history of inputs where yi
t = Pr(xt+1|x1,x2, ...,xt, θ

i). The
distributions from each model are mixed via a model mixture weights vector πt and thenL1 normalised
to create a final probability distribution ρt = Ωt · πt/|Ωt · πt|1 where Ωt is a probability matrix with
the ith column and jth row containing the ith model’s predicted probability for the jth character at
time-step t. Finally, the system samples a character from ρt, prints it to the screen, and feeds it back
into the system at the next time-step as xt with t← t+ 1.

As an optimization, at every time-step we only run models which have a mixture weight > 5%.
Depending on the number of models active, the system outputs characters at around 5-20 chars/second.
While the sequence is being generated, a user can steer the output towards different models by
interacting with the system and dynamically shifting the mixture weights πt. Interaction is through
clicking on the screen, hand-tracking with a LeapMotion device, or through the use of an external
midi controller 2.

We are thus able to guide the system to morph between the different models’ output with relatively
smooth transitions.

2.4 Software architecture

The interactive prediction system consists of two standalone processes as seen in Figure 2 that
communicate with each other using the Open Sound Control (OSC) network protocol [27]. This
allows the interaction and visualisation frame-rate to be independent of the sequence generation
frame-rate. It also allows us to run the Server and Visualiser on different (networked) computers if
need be (e.g. a powerful GPU-based server for running the models, and a less powerful front-end
computer for visualisation and interaction).

3 Results and discussion

In this study we train an ensemble of LSTM RNNs, with each model trained on a different corpus,
and we build an interactive prediction and visualisation system which mixes each model’s predicted
probability distributions via mixture weights, controlled in real-time via a user’s gestures.

The system works as desired and allows users to continuously ‘steer’ the output while text is being
generated, seamlessly morphing between styles, in effect ‘conducting’ the generation of text. Figure
1 shows an example output.

2We are also developing new interaction mechanisms such as using a Multilayer Perceptron to map the user’s
facial expressions or hand gestures to different configurations of mixture weights.
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We also observe some interesting behaviour. When multiple models are active with roughly equal
mixture weights, and the system is fed a sequence containing words or phrases that are common to
all models, the probabilities for the common characters accumulate whilst probabilities specific to
individual models are suppressed, i.e. when multiple models are active the system tends towards
common words and phrases.

Sometimes, while a sequence is being generated, a particular model might output a spiking probability
distribution (i.e. very high confidence for a particular character). If at that point other models output
wider distributions (i.e. lower confidence aross multiple characters), then the first model will
overpower and dominate the sequence generation.

E.g. If at any time-step the input sequence ends with ‘the house ’, the Bible
model predicts the letter o with very high confidence (to eventually lead on to
‘the house of [Judah/Jeremiah/Noah/Isaac/etc...]’). Even if at that time-step, the Bible
model has a lower mixture weight than the other models, it is probable that it might overpower the
other models’ probability distributions and cause the o to be dominant in the final mixed probability
distribution. This is quite likely to start a positive feedback loop and that model will stay in control
of the sequence generation until it reaches a point where its probability distribution widens, and
another model spikes. So it’s very possible to see hints of love songs, philosophy or poetry within C
comments and variable names or LATEX equations. It seems there are ‘hand-over’ words or sequences
which are common to many models, but have stronger connotations in some models over others.
This is of course further guided by the user’s actions, who can choose to push further towards the
emerging theme, or pull towards another style and seamlessly go from one style to another over these
hand-over words.

It is also worth noting, that like most character based LSTM models, the output is quite nonsensical.
The only long-term dependencies which are preserved are in formatting and syntax, and there is only
meaning within the space of a few neighbouring words. Nevertheless, it’s still very interesting to
see the model produce words and phrases very much in the style of the associated texts, with correct
formatting, punctuation, indentation etc. There are also some nonsensical words, spelling mistakes
and incorrect punctuation. As well as being due to mixing probability distributions, this behaviour
is also observed in single models, and is most likely due to the relatively small training set (a few
hundred KB for some) and ‘unclean’ data. With more time dedicated to collecting more training data
and cleaning it, this is likely to be improved.

3.1 Future work

Mixing models with approximate equal weights generally works when the number of models is low
(e.g. n < 4). When we go beyond that, the sequence occasionally diverges away from comprehensible
words, towards what appears to be random sequences of characters. This is accentuated by the fact
that the system is predicting on a character-by-character level with no foresight beyond that. In order
to overcome this problem, we are planning on implementing a beam search [9] with limited depth,
whereby we sample multiple times per time-step, and explore (i.e. resample) each sample a few
time-steps into the future, scoring each path on the sum of the log-probabilities accumulated along
the way, then pruning and selecting accordingly.

As opposed to training many models independently on different corpora, another approach we are
looking at is using a single model trained on the entire corpora. We would then look to control
the output via manipulating the internal state of the LSTM. This has advantages and disadvantages,
particularly when it comes to adding a new corpus (i.e. ’style’) to the system.

With our current approach, adding a new ’style’ is relatively quick, since we only need to train a
new model on just the new corpus. However scalability becomes an issue during deployment. Since
all of the models are run during prediction, having too many models can be a bottleneck. We have
implemented an optimization such that if the mixture weight of a model is less than 5% at a particular
time-step, we don’t run the model. This allows us to have many (10+) models loaded in the system
and still retain real-time performance if not all models are mixed in at every time-step. However,
as we dynamically mix in more models, the rate of sequence generation drops from around 10-20
char/second (for 2-4 models) to 1 char/second (8+ models) on a high-end laptop. N.B. Since the
Visualiser is a separate process to the Server running the models, the Visualiser framerate is always
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real-time at 60fps, so the response of the interactivity and visualisation doesn’t suffer, but characters
are output at a slower rate.

With a single monolithic model, prediction performance is less of an issue, since we will always be
running a single model. However, in this case training performance can become an issue. To add
a new ’style’, we will have to incrementally train the model on the new corpus, while makig sure
it maintains prediction accuracy on the previous collection of corpora. As we add more and more
styles, this is likely to have a big impact on training times and memory requirements.

Finally, we are currently working with character based text models because the dimensions are
relatively low and discrete, training data is easily accessible and judging the outputs is quite straight-
forward. However we are planning on applying these techniques to higher dimensional and continuous
domains such as music, sound and vector graphics.
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A Sample output

Sample output, interactively guided by the user in realtime.

But that’s okay because I’m here right now to thank you in person and that was my term and I_m not going
to be a real wall. That_s what happened in the world. We don_t know what they do we don_t.
And then I like the money. I will make no man an ass unto the wicked.

7:15 For they shall see the prophets, they shall come and scatter them in the way, and their ear shall be confounded.

11:22 And the LORD spake unto Moses, unto the priests and of the conditions of
Lemma \ref{lemma-finite-colimit-finite-locally-free}.
\end{proof}

\begin{lemma}
\label{lemma-dimension-ring-property-local}
Let $f : X \to Y$ be a morphism of schemes.
Let $X$ be a self to be supposed to have made absolute being, and not of the meaning of the consider of the similar
discussion and the latter of the latter and I say all I_m for the way

All of my side
I can see you to think I_ve done
It_s all I really do
I can see your love to love the best that I mean
I should have got to fall in love,
I can see your rain
I_m always between the Iraqi Committee of Security Council on the military officers to the UK statement of the US
and the public of the court that the wart and her breast,
The winding soul of the sunny hour
Where some more lady had seems to sound and steal
In the secret song.

The flight and season’d Folly a double angels, and sent down to you when they are unjust?
When he had commanded the angels and his people who do not believe in His creatures.
It is He who created the heavens and exclusive under-entity and callbacks and all the

* times which can be not an interrition of death: and he shall take away the day could
* be registered and return the timer completely can be changed
* only and we can be released by call_rcu_tasks() that is returned
* for the task is not exiting the same partition descriptor.
*/

raw_spin_lock_irqsave(&cpu_ba_flip_lock, flags);
if (!ret)

goto out_unlock;

return ret;
}

static inline void __init thread_create(veronest and his way to the ship */
{

int i;

if the servants of the town and the servants of the ship we will say. When I saw this that he was returned
* that is dead to the time that has an the timer t to with the mercy); and those who deny the straight path.

They shall be your father without about the dead from your Lorded containing/state
* and one warning should have intconsider the construction of the products

of sheaves of sets on $\mathcal{C}$, seeing the king of Babylon have said "Well, we_re leading a lot of control.
/

if (!param) {
/* Yeah

Sometimes it comes to be through
I believe and it_s over now.
I fully the teacher is the patient’s phenomena and the dream which do not waking in the same time that is really a similar
symbol, so to individual and possible policy of the basis of Iraq and Jerusalem to be heavy with thee.

10:17 Then said Joseph, where $X$ is a finite dimensional ring of the dark
I_m not there to fall with the head of the same thing as a distinct and a call not make A
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