
Shapiro, Kelly, Ahrens, Johnson, Politi & Fiebrink  1 

BlockyTalky: Tangible Distributed Computer Music for 
Kids 

R. Benjamin Shapiro, Annie Kelly  

University of Colorado Boulder 

Matthew Ahrens 

Tufts University 

Benjamin Johnson, Heather Politi 

 Boulder Valley School District 

Rebecca Fiebrink 

Goldsmiths, University of London 

 

Abstract 

Computer music research realizes a vision of performance by means of computational 

expression, linking body and space to sound and imagery through eclectic forms of 

sensing and interaction. This vision could dramatically impact computer science 

education, simultaneously modernizing the field and drawing in diverse new 

participants. In this article, we describe our work creating an interactive computer 

music toolkit for kids called BlockyTalky. This toolkit enables users to create networks 

of sensing devices and synthesizers, and to program the musical and interactive 

behaviors of these devices. We also describe our work with two middle school teachers 

to co-design and deploy a curriculum for 11- to 13-year-old students. We draw on work 

with these students to evidence how computer music can support learning about 

computer science concepts and change students’ perceptions of computing. We 

conclude by outlining some remaining questions around how computer music and 

computer science may best be linked to provide transformative educational experiences. 

 

Introduction 



Shapiro, Kelly, Ahrens, Johnson, Politi & Fiebrink  2 

The creation of new digital musical instruments exemplifies how computational 

practices can be simultaneously creative, expressive, and technologically rich. Much 

research and creative work in computer music investigates new ways for computational 

systems to enable musical expression and interaction. Reciprocally, the task of creating 

interactive systems for performing computer music functions as a sort of “extreme 

human-computer interaction,” pushing the limits of existing computing systems and 

demonstrating possibilities for technological advancement (Tubb 2016). Despite this 

boundary-pushing relationship between Computer Science (CS) and music, the 

innovations of the computer music community have not yet become a widespread part 

of computer science education. 

We believe that computing education could benefit from integrating topics central to 

computer music performance into CS curricula, and from adopting the computer music 

community’s understanding of computing as an expressive, creative domain.  

First, computer music is a uniquely strong application domain through which we 

could modernize computer science curricula. Computing education research scholars as 

well as industry have bemoaned the absence of contemporary computing topics like 

distributed systems and concurrency from computer science education (Patterson 2006). 

Recent standards documents like the ACM-IEEE Computer Science Curricula 2013 

(ACM/IEEE-CS Joint Task Force on Computing Curricula 2013) mandate these topics’ 

inclusion within CS education pathways, but compelling examples of how to do so are 

currently lacking. In contrast, many computer music performance systems rely on 

timing-sensitive distributed computing, concurrency, and networking.  

Next, computer music also offers a chance to combat pervasive and insidious 

misperceptions of computer science and computer scientists. American students and 

adults have negative stereotypes of science and scientists, often believing that they are 

socially distant, dangerous, workaholic, peculiar, irreligious, and missing fun in their 

lives (Mason, Kahle, and Gardner 1991; Losh 2010). They tend to hold similar 



Shapiro, Kelly, Ahrens, Johnson, Politi & Fiebrink  3 

stereotypes of computer scientists (Martin 2004; Carter 2006; Grover, Pea, and Cooper 

2014). These stereotypes can be challenged by educational approaches that bring 

scientific methods together with topics that are relevant to people’s lives and that 

showcase the wide range of possible pro-social impacts of STEM (Science, Technology, 

Engineering, and Mathematics), including computing (Grover, Pea, and Cooper 2014). 

Given that music is often both highly social and creative, CS education experiences that 

draw on computer music could drastically change students’ perceptions of computing. 

Integrating music into computer science education may likewise be helpful in 

broadening participation in CS by women, ethnic or cultural minorities, and low 

socioeconomic people, all of whom are under-represented in CS. Integrating computer 

music into computing curricula could improve participation both by combatting the 

misperceptions described above and by creating more pathways into computer 

science—as well as computer music itself—for students who are already musicians. 

In this paper, we describe the creation of a distributed and physical computer music 

systems-building and performance toolkit for youth aged 10 and up. We have designed 

this toolkit to enable youth to create new digital musical instruments and other 

interactive music systems, with the aims of engaging them with a variety of computing 

concepts as well as challenging them to think more positively about the creative 

potential of computers and their own ability to do computing. We then describe our 

recent work with two middle school teachers—one a math teacher, and one a music 

teacher—to co-design and deploy a curriculum for 11- to 13-year-old students. Our 

work with these students provides evidence of ways in which computer music can 

support learning about computer science concepts and change students’ perceptions of 

computing. We conclude by outlining some remaining challenges and questions around 

how computer music and computer science might best be linked to provide 

transformative educational experiences. 

Design Considerations 



Shapiro, Kelly, Ahrens, Johnson, Politi & Fiebrink  4 

We have constructed a toolkit for youth to create computer music systems that they 

can use in collaborative music performance. Our tool, called BlockyTalky enables users 

to construct a variety of physical, sensor-rich interfaces, and it supports the combination 

of different student-made technologies in distributed systems (e.g., sensors 

communicating wirelessly with software sequencers and synthesizers). 

Systems that integrate real-time sensing, programming logic, sound-making, and 

networked communication are quite common in computer music, yet existing 

programming tools designed for youth do not target this type of design. For example, 

Scratch is a popular software system for kids to use to create games, stories, and 

animations. Scratch enables users to write programs by dragging pieces of code onto 

sprites in order to define their behaviors. Scratch allows users to play sounds and even 

to build modest physical interfaces for triggering sound (via MaKey MaKey). However, 

the sound programming features are more suited to adding sound to games than they 

are to composing and performing music. EarSketch (Freeman et al. 2014) is another 

educational programming environment, and one that combines music with CS 

education. It enables users to programmatically sequence and manipulate synthesized 

sounds and samples. However, it is not designed for collaborative real-time 

performances or for using physical inputs to shape sound synthesis.  

We wished to replicate certain successful aspects of tools like Scratch and EarSketch; 

for instance, their browser-based interfaces drastically reduce the complication of 

system use in schools. However, we also recognized that we would need to borrow 

heavily from design and engineering patterns that are common in the design of new 

digital musical instruments such as those featured at the International Conference on 

New Interfaces for Musical Expression (NIME) or the Guthman Musical Instrument 

Design Competition. Such instruments can often be understood as assemblages of the 

following types of components: sound synthesis methods that offer real-time control 

over their parameters, sensing hardware that obtains real-time information about 



Shapiro, Kelly, Ahrens, Johnson, Politi & Fiebrink  5 

performers’ physical actions, software that controls the parameters of sound synthesis 

in response to sensor data and/or algorithmic processes, and networking components 

that support distributing sensing and sound-making (and possibly also communication 

and synchronization between multiple performers). As engineers, we wished to create 

the first toolkit that enabled young learners (aged 10 and over) to create these types of 

components and connect them to make new systems for live music performance.  

Furthermore, as educators, we wanted to empower users of this toolkit to learn 

about relevant computational concepts. For instance, BlockyTalky requires students to 

design their own high-level networking protocols—messages passed between different 

devices for synchronization and control. Students often must discover and adapt to 

constraints such as latency in sensing, communication, and synthesis. This is essential 

for students to learn as they design instruments that allow them to improvise during 

performances using physical inputs or modification of code. Furthermore, building 

instruments for live performance can lead students to discover how different 

configurations of sensors support different types of physical interaction.  

 

Implementation 

Over the past three years we have iteratively refined the BlockyTalky toolkit in 

order to meet the above engineering and educational goals. BlockyTalky is open source 

and runs on low-cost single-board computers like the Raspberry Pi. Typically, we equip 

these boards with “shields” that allow the use of modular sensors and actuators, 

including child-friendly LEGO Mindstorms and the slightly more complex Seeed Studio 

Grove components.  

Each BlockyTalky device runs a server that provides users a complete web interface 

for configuring and programming its hardware. Drop-down menus enable users to 

declare what kinds of sensors are connected to each input port, and the system provides 

real-time sensor readings to help users plan, monitor, and troubleshoot their designs. 



Shapiro, Kelly, Ahrens, Johnson, Politi & Fiebrink  6 

A variety of programming blocks enable users to define musical motifs (including 

synthesized notes and samples), to send messages between devices, and to create event-

handlers for inputs received from physical sensors or for messages received over the 

network. The programming model assumes that users will typically compose and enact 

performances using several physical devices at once, with some devices handling sound 

synthesis and others handling physical inputs from users; user-created asynchronous 

messaging protocols coordinate activity across these devices. Figure 1 shows a typical 

configuration along with code for that configuration. 
 

 
Figure 1: Typical project architecture and code 

Users can configure BlockyTalky synthesizers to synchronize their clocks to one 

another by choosing one synthesizer to serve as a reference clock, and programming the 

other synthesizers to subscribe to that clock (using a Sync to block). Then they can use 

Wait for blocks to specify the timing of note synthesis or sample playback. For 

instance, multiple synthesizers can synchronize their actions by Waiting for the same 

event, such as the next downbeat.  

The block-based programming interface is implemented using Google’s Blockly 

toolkit (Google Developers 2016). Users’ block programs are transpiled into a textual 

Domain-Specific Language (DSL). The DSL provides convenient abstractions around 

common complexities for physical computing and network programming. For example, 

the block program 



Shapiro, Kelly, Ahrens, Johnson, Politi & Fiebrink  7 

     
becomes 

when_sensor "PORT_1" == 1 do 

   send_message(“tickle", "elmo”) 

end 

 

The when_sensor macro manages hardware state information that is necessary to 

detect and dispatch events, while the send_message function encapsulates peer 

discovery, serialization, and transmission of messages over UDP or TCP.  

This functionality is implemented in JavaScript and the Elixir functional 

programming language, which runs on the Erlang virtual machine. Erlang’s actor-based 

architecture enables us to quickly add new capabilities to the system, such as support 

for new hardware, networking protocols, and user interfaces. The Phoenix web 

framework (which serves both static web content and streaming realtime 

communication between BlockyTalky devices and the browser over WebSockets) 

enables us to provide live information to users about device and sensor states and 

network communications. 

Results with Youth and their Teachers 

We have used BlockyTalky with youth in a variety of different educational settings, 

including two month-long computer music units in middle school classrooms, two 

multi-week computer music summer camps (Shapiro et al. 2016), many short 1–2 hour 

workshops, and in 5- to 10-minute interactions during outreach events. Here, we 

present results from the two most recent iterations of our approach, which were enacted 

in two middle school classes in the Rocky Mountain region of the United States. All 

data presented in this paper were collected under the supervision of our university’s 

Institutional Review Board.  



Shapiro, Kelly, Ahrens, Johnson, Politi & Fiebrink  8 

Co-Designing Classroom Implementations 

We partnered with two middle school teachers to design four- to six-week computer 

music units that they would deploy—with our support—in their classrooms. In the 

United States, middle school students are typically 11–13 years old. Mr. Johnson is a 

music teacher who has 18 years of teaching experience. Ms. Politi is primarily a math 

teacher, though she also teaches courses on computing and design, using technologies 

like Scratch, Arduino, and 3D Printing. She has taught for nine years. We were 

introduced to Mr. Johnson by another researcher, who had previously partnered with 

him to integrate electronics design into his music composition class. We met Ms. Politi 

at an outreach event focused on connecting teachers to CS Education resources.  

Our work with students in Ms. Politi’s and Mr. Johnson’s classrooms began in 

March 2016. However, our co-design (Roschelle & Penuel 2006) work with Politi and 

Johnson began months earlier, when we began meeting approximately weekly to play 

with BlockyTalky, brainstorm possibilities for classroom learning, draw connections 

between each teacher’s pre-existing goals for student learning and approaches to 

teaching, to create rough lesson plans for using BlockyTalky within their classrooms, 

and even to modify aspects of the BlockyTalky programming language to better match 

Mr. Johnson’s music teaching methods. Once the classroom implementations began, we 

continued to meet regularly to discuss how things were proceeding, and to make—or 

adjust—plans for subsequent days of teaching.  

Ms. Politi and Mr. Johnson had distinct but overlapping goals for using BlockyTalky 

in their classrooms. Mr. Johnson planned to use BlockyTalky in his course on music 

theory and composition, a course in which students already had experience composing 

and performing music of their own creation using acoustic instruments. He hoped that 

computer music would offer students a new context to apply and further develop their 

composition skills, as well as push them to strengthen their teamwork skills. Students in 

his class had previously used Finale NotePad software to support their music 



Shapiro, Kelly, Ahrens, Johnson, Politi & Fiebrink  9 

composition, and had even built their own acoustic musical instruments, but had not 

previously worked together to compose and enact joint performances.  

In contrast, Ms. Politi had never taught, or even played, music before our work 

together, so some of our co-design sessions involved introducing her to basic musical 

concepts and vocabulary (e.g. the diatonic scale, how pitch can be described in terms of 

note or frequency, relationships between melody, harmony, and rhythm). She was 

eager to participate because she believed that creating interactive musical devices could 

offer a challenging and interesting design domain for her students, and that it would 

offer them an opportunity to further develop the programming skills they had 

developed with Scratch. As such, while Mr. Johnson was primarily excited about how 

doing computer music with BlockyTalky could enhance students’ learning of music, 

Ms. Politi was primarily motivated by expanding students’ “computer power.” 

 

Sharing Knowledge: Algorithmic Composition for BlockyTalky 

We drew upon Mr. Johnson’s knowledge of teaching music theory to address a 

challenge that had arisen in our prior work teaching non-musician youth to create 

interactive computer music systems. Many students who participated in our previous 

workshops and camps have been excited to re-create pop songs that they are familiar 

with (Shapiro et al. 2016). We have found this to be a double-edged sword: On one 

hand, it is exciting to many students to be able to recreate music that they already enjoy, 

to make something that sounds good even without formal knowledge about music 

composition. On the other hand, we have frequently found this to be a time-consuming 

dead-end for students, and we have come to call it the “Pop Music Recreation Trap.” 

Students who succumb to this trap tend to become intensely focused on one-to-one 

replication of pop music, and do not explore re-arrangement or improvisation around 

melodies and rhythms in their chosen songs. Their work focuses more on fidelity of re-

creation rather than creative expression. Because re-creations are necessarily linear and 



Shapiro, Kelly, Ahrens, Johnson, Politi & Fiebrink  10 

non-interactive, students doing them tend to write programs that consist of one or two 

very long, non-branching procedures. They tend not to explore programmatic methods 

for flow control, event handling, and synchronization of musical motifs that would be 

useful in improvisation, thereby limiting their CS learning.  

Because Ms. Politi’s students were mostly non-musicians, we were concerned about 

encountering the same computationally weak Pop Music Recreation Trap as we had 

encountered with other non-musician participants. Fortunately, in his prior work 

teaching music theory, Mr. Johnson had developed an algorithmic approach to 

composition which he calls “Johnson’s Recipes.” These simple rules govern the 

construction and integration of melody, harmony, and rhythm, and they can be 

presented in a way that is accessible to middle school students. The rules are articulated 

in terms of scale degrees (in the classroom, these were often referred to as "finger 

numbers") so that they can be applied to composition in any scale (e.g., in C Major, a 2 

corresponds to D). The rules for melody composition are as follows: 1) Start and end on 

1; 2) Use steps frequently; 3) Use skips sparingly. Here are two examples of melodies 

composed using these rules: 

 

 
After they compose melodies, students can complement them with harmonies. 

Johnson’s Recipes initially specified the rules for harmony composition as follows:  

1. Use the I, IV, and V chords from the same key the melody is in. The chord is 
named from the root note of the chord. For instance, I is 1-3-5, IV is 4-6-1, V is 5-
7-2. 

2. For each note in the melody, choose a chord that contains that note. 



Shapiro, Kelly, Ahrens, Johnson, Politi & Fiebrink  11 

3. Do not use a IV chord immediately following a V chord. It may be necessary to 
backtrack, changing the chord on a previous note in order to meet this constraint. 

Upon seeing this, computer scientists on our research team were excited to realize 

that musical rules could be represented as state machines; in particular, 

Nondeterministic Finite Automata (NFA) offer a simple way to do so. Therefore, we 

rewrote the rules listed above as: 

 
Figure 2: An NFA diagram to help composers choose harmonizing chords which 

follow classical Western rules. Each state corresponds to a particular chord. 

This representational shift offered a way to depict musical conventions with a 

representation that is computationally powerful. The NFA diagram in Figure 2 also 

affords easy representation of the different “rulesets” associated with different musical 

genres (e.g., adding an additional edge from V to IV in the above state machine 

transforms it to allow for Blues harmony). Indeed, the power and flexibility of NFAs 

and other state machines have often been exploited by algorithmic composition systems 

in computer music community (e.g., Choi and Wang 2010). In an educational context, 

an NFA diagram offers the further benefit of affording easy checking of student work 

for conformance with a specific genre. This property of the diagram, of being useful as a 

tool for being able to generate harmonies as well as to verify their acceptability within a 

given genre of music, is emblematic of how such diagrams are generally used in CS 

theory courses and, as such, enables a deeply musical activity (songwriting) to also be a 

computationally rich one.  

Our co-design work with Mr. Johnson and Ms. Politi made extensive use of 

Johnson’s Recipes. We used them to write songs together, to construct and program 



Shapiro, Kelly, Ahrens, Johnson, Politi & Fiebrink  12 

networks of BlockyTalky devices to play those songs, and then designed lesson plans to 

teach students to do the same.  

Unit Organization 

Due to their differing goals and the different prior knowledge of their students, Ms. 

Politi and Mr. Linden opted to work together with us to create two different sets of 

plans for what to do in their classrooms, including both what the products of student 

work would be and what the process of creating those products would be. 

  

Week Mr. Linden’s Class Ms. Politi’s Class 

1 Intro to BlockyTalky Intro to BlockyTalky 

2 Small Projects, Show & Tell “Throw Away Project”, Teach 

Melody/Harmony 

3 Plan & Play Building final projects 

4 Build Final Presentations/Display 

5 Finalizing the Projects  

6 Performances  

 

We also planned to sequence these classroom implementations such that Mr. 

Linden’s class would go first, and Ms. Politi’s afterward. This allowed us to manage 

equipment scarcity (we did not have enough sensors or synthesizers for both classes to 

work simultaneously) as well as debug any issues that arose in combining BlockyTalky 

with Linden’s Rules in a school-day classroom (all of our previous work with youth had 

taken place in summer workshops or other informal educational contexts). 

Student Work 

All consenting students were video- and audio-recorded as they worked together in 

groups. We also retained time-coded snapshots of all code that students saved on their 



Shapiro, Kelly, Ahrens, Johnson, Politi & Fiebrink  13 

BlockyTalky devices. In both Ms. Politi’s 24-student class and Mr. Johnson’s 21-student 

class, the students showcased their projects at the end of the workshops. Students 

created a variety of projects, including: 

 
Coldplay Mashup 

A mashup of two Coldplay songs, Clocks and Viva La Vida. The group of girls used 

buttons to trigger particular parts of the song as they performed. 
 

 
Catspresso 

A 4x5 grid of buttons that could trigger different combinations of melodies and 

instruments. 
 



Shapiro, Kelly, Ahrens, Johnson, Politi & Fiebrink  14 

 
Fireball 

A carnival style game that utilized a light sensor, a motor, and a button. Players 

score points by tossing balls into a cup. 
 

 
Rubik’s Cube Competition Accompaniment  

3 boys try to solve their Rubik’s cubes while music plays. The tempo increases the 

longer they take to solve their cubes. 
 

Table 1: Project descriptions, network diagrams,  and project images. In the network 

diagrams, orange nodes are devices with sensors, blue nodes are synthesizers, purple 

edges are student-constructed messages, and green edges are clock subscriptions 



Shapiro, Kelly, Ahrens, Johnson, Politi & Fiebrink  15 

These projects involved students designing, building, and programming a variety of 

hardware and software structures. Table 1 describes a sample of student projects from 

both classes (9 projects total in Politi’s and 5 in Johnson’s) and shows their final system 

architectures and physical construction. The architectures differed strikingly depending 

upon the kinds of functionality and eventual user interaction the students hoped to 

support. For example, the Coldplay Mashup system supported a group performance in 

which all of the performers manipulated sensors connected to a single device, Demeter, 

which in turn dispatched messages to the various synthesizers in the system. In 

contrast, the Rubik’s Cube Competition Accompaniment System had a strikingly parallel 

network structure, one in which each Rubik’s competitor interacted with a distinct two-

node system consisting of a sensor (e.g. Mystique) and a synthesizer (e.g. Transparent). 

Prior work suggests that this intra-class variation in solution structure is associated with 

students’ attention to peers’ creative ideas (Deitrick, O’Connell, and Shapiro 2014), and 

greater success at problem solving (Barron, 2003).   

Their projects differed in their visual aesthetics (see Table 1). For instance, the 

Coldplay Mashup project was a spartan assembly of computing hardware, unadorned by 

decoration. This was consistent with the group’s plans for them to use it within a 

performance of their own, in contrast to other groups who created projects for others to 

use, such as Catspresso, and Fireball.  

These examples illustrate the kinds of projects that students created, as well as the 

complexity of the distributed systems that students designed and implemented to 

create them. Our qualitative data, consisting of audio and video recordings of students’ 

working conversations with each other, their teachers, and our research team, offer us 

insight into the processes through which students created these systems. Specifically, 

they enable us to observe the processes of composition, design, programming, and 

problem-solving that produced these projects. We now present and interpret a pair of 

such conversations. These conversations were typical of students’ conversations in both 



Shapiro, Kelly, Ahrens, Johnson, Politi & Fiebrink  16 

classes, and as such are representative of the kind of computational problem solving 

that the BlockyTalky experience engendered. 

Example 1: Reasoning About Message Passing While Debugging Silence 

The following conversation took place between two students, Carter and Anthony, 

early in the work of the Catspresso group. They are trying to figure out why one of their 

motifs does not play after they press a button.  

Anthony: Does it even play? 
Carter: When port 2 is pressed, send message “ostinato”… now that should 
work, but nothing is playing. Is this speaker on? Yeah. That’s the thing we’ve 
been struggling with. We’ve never been able to play the ostinato from Ned and 
the melody from Beeps at the same time. 

Here, Carter is explaining the problem to his groupmate: when they push the button 

connected to WallE, they want to have music play on two different synthesizers—Ned 

and Beeps—but it is only playing on Beeps. After the boys struggle with this for a while, 

a research team member, AK, comes over to help. The boys explain the situation to her, 

and she proceeds to help them debug their code. They start to discuss whether or not 

the synthesizers are synchronized with one another:  

Carter:  …So on Beeps we have ‘sync Beeps to Ned’. And then—we don’t have any 
syncing stuff on this [Ned] because we only need one I think. 
AK:  Yeah you’re right.  Can I see what happens when you press both the 
buttons?  Does anything play at all?   
Carter:  When we press one the melody does, and when we press two it receives 
the message but it doesn’t start playing. 

Carter’s explanation of the problem includes subtle details that evince a nuanced 

understanding of event dispatching and inter-device communication in BlockyTalky. 

Their program on WallE defined distinct event handlers for each button, with each one 

sending a message to a different synthesizer. This arrangement has numerous places for 



Shapiro, Kelly, Ahrens, Johnson, Politi & Fiebrink  17 

potential failure, including the electronic connection between the buttons and WallE, the 

configuration of WallE (defining the types of inputs that were connected to its various 

sensor ports), programming of the event handlers on WallE (including choosing what 

events to respond to and what to do in response, which in this case was to send 

messages to two other devices when a button was pressed), defining event handlers on 

both Ned and Beeps that respond to the specific messages that WallE is programmed to 

send, and programming musical motifs on Ned and Beeps. For the boys’ system to 

function as desired, all of these elements must be done correctly. 

When Carter notes that “it receives the message but it doesn’t start playing,” he is 

drawing upon several different pieces of knowledge. First, that pressing the button on 

WallE should send a message to Ned, that Ned should receive that message, and that 

when Ned receives the message, it should make sound. By pointing out that Ned does 

receive the message but does not make sound, he is pointing out that he knows that the 

message has been sent and has been received, and is locating the problem in the 

handling of that message-receipt event. He was able to determine this point of 

breakdown because he watched Ned’s realtime event log, which displays a stream of 

information about all network traffic the device receives. Using this log information 

enabled him to troubleshoot the system relatively precisely, ruling out the WallE or the 

network as sources of error. We believe that this is a remarkably sophisticated act of 

debugging for a student who only days before had never done any network 

programming whatsoever, and it illustrates how building computer music systems with 

BlockyTalky not only offers pathways into computer music, but into learning about 

interactive and networked systems more broadly. Ultimately, AK helped the students 

to locate the bug in their system (they had not defined the key of the motif they were 

trying to play), and the boys created the complex Catspresso system depicted above. 

Example 2: Synchronization Challenges 



Shapiro, Kelly, Ahrens, Johnson, Politi & Fiebrink  18 

In this next conversation, a group of girls is trying to create a mashup of two 

Coldplay songs. They are experiencing problems getting the melody and the ostinato to 

synchronize properly; one seems to start before the other. 

Ivanna: Why is it not working? 
Nevaeh: Do you still have the “wait”?  
Ivanna: Nope. 
Nevaeh: I think maybe you pressed the button too soon. 

Nevaeh asks Ivanna if she has the “wait” in her code, this is in reference to a block of 

code called Wait for that is important to use when synchronizing two or more 

devices. Synchronizing synthesis in BlockyTalky involves combining three different 

programming language features: 1) The Sync to block, which configures a device to 

subscribe to another device’s clock; 2) The Wait for block, which delays subsequent 

synthesis until a specified beat arrives (e.g. a downbeat or a 2 in a four-count); 3) The 

Set Tempo block, which specifies the tempo of a synthesizer in beats per minute.  

Using the Sync to block alone is not enough to assure synchronized playback across 

devices; Wait Fors must also be used. Because all BlockyTalky devices default to 120 

beats per minute, using a Set Tempo block is only necessary for distributed 

synchronization if something other than the default tempo is desired, in which case all 

participating synthesizer nodes must use it.  

In this instance, the group does not have Wait For logic in their code. When 

Nevaeh learns this, she responds by telling Ivanna that she may have pressed the 

button too soon. This is a reference to a common strategy that students developed for 

synchronization without programming: physically pressing multiple buttons 

(programmed to control different synthesizers) simultaneously. This can lead to 

approximate synchronization in simple musical systems, particularly those where all 

synthesizers use default tempos and where no Wait Fors (such as to rest to the start 

of the next measure) are used. However, this approach only works approximately 



Shapiro, Kelly, Ahrens, Johnson, Politi & Fiebrink  19 

(groups of novice musicians are rarely good at simultaneous button pressing), and not 

at all when using motifs that include any scheduling (i.e. Wait For). 

After this exchange, the girls test their song again. This time the two synthesizers 

happen (by chance) to start at the same time. The synchronized start enables them to 

notice that one device seems to be playing at a faster speed than the other. 

Ivanna: Why are they going different speeds? 
Nevaeh: Check your tempos. 
Ivanna: Tempo 120, and…tempo 120. 
Jasmine: There was one note that was too fast. 

The girls believe that one synthesizer was playing faster than another, and check 

that both synthesizers are configured to use the same tempo. In actuality, the girls’ 

tempo problem is that they had made an error while programming the motifs on the 

two devices, with one motif a single beat longer than the other. This is a peculiar 

instance of the Pop Music Recreation Trap. On one hand, the girls’ mashup involved 

arranging pieces of two different Coldplay songs, and so it was musically rich work, 

involving modifying the keys and tempos of those different pieces to make them 

compatible. However, because their re-arrangements also involved fidelity to extended 

portions of the two original Coldplay songs, the girls’ programs also included very long 

motifs corresponding to those song fragments. These were considerably longer than the 

motifs that the students tended to compose for themselves. This caused them to end up 

with code on each device that was just one very long list of notes to play, making it 

incredibly hard to debug off-by-one errors in note durations. This led to the frustrating 

situation in which the girls repeatedly attempted to program a distributed BlockyTalky 

system using the Sync to, Wait For, and Set Tempo blocks, but were unable to 

achieve the results that they desired. They gave up on programming the system to be as 

synchronized as they desired. Ultimately, their performance of the Coldplay mashup 



Shapiro, Kelly, Ahrens, Johnson, Politi & Fiebrink  20 

involved choreographed button pressing to work around their motif length 

mismatches, and non-use of programmatic synchronization features.  

Evaluation of Student Impacts 

In addition to capturing data (audio/video recordings and code) about the processes 

of students’ work, we surveyed students about their enjoyment of their experience and 

their beliefs about computer science and music. Surveys captured information about 

whether the students believed that CS and music are enjoyable fields, ones that they can 

be successful in, and ones that people of various ethnicities and genders can excel in. 

Surveys also asked students whether they intend to persist in music and/or computing. 

While most of these survey items were Likert-scale, we also asked free response 

questions about what students thought the best parts of their experiences were, what 

they thought needed improvement, and what they believed that they learned.  

All of the students in Mr. Johnson’s class agreed to participate in our surveys, and 

submitted signed parent/guardian consent to do so. However, only a minority of Ms. 

Politi’s students returned signed parent/guardian consent forms. Out of concern for 

how this limited participation rate might bias our sample from Ms. Politi’s class, we 

opted to only analyze the survey data from Mr. Johnson’s class.  

Survey Results 

Students were generally positive about their experiences. On a Likert-scale survey, 

18 of 21 students reported that they somewhat or strongly liked their experiences, with 

strongly liked being the most frequent response. Three members of the research team 

open coded (Strauss & Corbin 1990) the students’ free responses to the prompts “The 

best thing about this workshop was…”, “Describe, list or draw three things that you 

learned at this workshop”, and “I would improve this workshop by…” They iteratively 

converged upon the summary of students’ answers that appears in Table 2.  

   Best Things      Things Learned     Improvements 
Programming 8  Programming 19  More time 5 



Shapiro, Kelly, Ahrens, Johnson, Politi & Fiebrink  21 

Creating 8  Tools 7  Instruction 5 
Group work 3  Building 6  Programming 5 
Interest 3  Computer Music 6  Participation 3 
Music 2  Group work 4  Music 2 
Problem solving 2  Troubleshooting 3  Perfect 2 
Table 2: Summary of students’ free response answers, with counts of students (out of 21 

students in total) who mentioned each topic in their responses. 

Overwhelmingly the students mentioned programming as something that they 

learned and enjoyed. The students also highlighted enjoying the process of creating and 

learning about using the tools and building. It is interesting to note that even though 

this was a music class, for all questions music was mentioned less than other categories. 

This could be because the novelty was not there, given that music was the primary 

study in this classroom setting. 

Students’ pre- and post-participation responses to our attitudinal questions are 

shown in Figure 3. Though there is considerable support for researchers treating Likert-

scale data as interval data (Norman 2010; Sullivan & Artino 2013), there is also some 

debate about the appropriateness of doing so, with some arguing that they should be 

treated as ordinal data only (Allen & Seaman 2007; Jamieson 2004). We have chosen to 

respect both perspectives by graphically presenting the distribution of responses to each 

survey item (depicting its ordinal character) as well as presenting descriptive and 

inferential statistics (an interval-oriented approach).  



Shapiro, Kelly, Ahrens, Johnson, Politi & Fiebrink  22 

 

Figure 3: Students’ survey response distributions. Black dots are item means. 

Students generally had small positive shifts in their view of computational and 

musical participation, though in many cases the survey items were limited by strong 

ceiling effects. In addition to computing means for all items, we took the interval 

perspective one step further, conducting paired Student’s t-tests on all survey items. We 

Strongly Agree Disagree In Between Agree Strongly Agree

I see myself as a music person

I enjoy listening to music

Playing Music is hard

Pre
Post
Pre
Post
Pre
Post
Pre
Post
Pre
Post
Pre
Post
Pre
Post
Pre
Post

I can get good grades in music class

Playing music is fun

I’m not the type to do well in music class

I enjoy creating my own music

Music is boring

Pre
Post
Pre
Post

I feel I “belong” in music

Pre
Post

I see myself as a music person

Playing music is hard

Using computer science to help 
people is very important to me

Many hispanics are excellent Computer Scientists

Pre
Post

I enjoy solving problem in computer science

I will use computer science in many 
ways throughout my life

Pre
Post
Pre
Post

Pre
Post
Pre
Post

Playing music is fun

I can get good grades in computer science Pre
Post
Pre

I intend to take courses related to 
computer science in the future.

I will get a good job if I learn 
how to program a computer

Pre
Post

Girls can do just as well as boys in 
computer science and programming.

Pre
Post

Pre
Post

I’m not the type to do well in music class Pre
Post

I am able to be expressive and 
creative with computer science

Pre
Post

Pre
Post

There are many females who are 
excellent computer scientists

Pre
Post
Pre
Post

When a computing problem arises that I can’t 
immediately solve, I stick with it until I have a solution

Many African Americans are excellent 
computer scientists.

Many Asian-Americans are excellent 
  computer scientists. 

Pre
Post

Pre
Post

Pre
Post

I feel like I ‘belong’ in computer 
science & programming.

Programming is boring.



Shapiro, Kelly, Ahrens, Johnson, Politi & Fiebrink  23 

found significant (p < .05) positive changes on the items about CS Grades and Good 

Jobs, the students seeing themselves persisting in music, and the computational 

excellence of people of all genders and ethnicities queried (except for girls, for which 

ceiling effects made significant change all but impossible). We take this as a very 

positive sign that participation in programs like ours can ameliorate negative 

stereotypes about who can succeed in computer science. 

 

Summary of Outcomes 

The outcomes of this work suggest that creating interactive computer music systems 

can support creative engagement and meaningful learning. Students’ projects reveal an 

openness to combining computing technology with music in innovative ways. They 

built systems that can be performed as single-player musical instruments as well as 

systems whose approaches to real-time interaction with music defy easy categorization. 

Designing, debugging, and refining these systems required students to become 

proficient with computational concepts beyond those encountered in learning 

programming, including reasoning about networked communication and 

synchronization. Students also designed and refined their projects with explicit 

attention to how the technology would integrate into human contexts of use (e.g., using 

music to encourage faster Rubik’s cube solving, or using people to synchronize to make 

up for shortcomings of the technology). Furthermore, survey data suggest that students 

generally felt positive about the experiences of using BlockyTalky, and that computer 

music may have the potential to improve perceptions of computing and combat 

stereotypes.  

 

Challenges and Open Questions 

The many workshops we have run with youth have revealed several common 

challenges to supporting meaningful youth engagement with the design of computer 



Shapiro, Kelly, Ahrens, Johnson, Politi & Fiebrink  24 

music systems. As we look toward future possibilities for engaging youth in computer 

music creation, we also see a number of open questions ripe for exploration within the 

computer music community. 

Embracing Pop While Fostering Musical and Computational Richness 

Leveraging students’ prior knowledge is a central principle of learning environment 

design (Bransford, Brown, and Cocking 1999). In computer music education, non-

musicians’ prior knowledge of pop music may be a pathway into deeper musical 

participation, both by kindling interest in participation and by offering conceptual and 

cultural resources for students to use within their learning. Further, students who are 

accomplished musicians may wish to use their knowledge of music theory to rearrange 

or enhance pop works. Prior work, such as in the EarSketch project, demonstrates the 

potential value of pop music for computer music education. We should embrace this 

potential. Yet our work shows how using pop music can also be fraught.   

Ultimately, we desire to create computer music learning experiences that are both 

musically and computationally rich, but the “Pop Music Recreation Trap” described 

above can trap students in activities that are neither. Focusing on programmatically 

reproducing existing songs can lead to uninteresting systems, which are not highly 

interactive and do not encourage computational ingenuity. Further, transcribing 

existing pop music into programmatic form can be error-prone for both novice and 

experienced musicians. We were frustrated to see how such errors led the Coldplay 

group described above to abandon sophisticated distributed programming techniques, 

which might have in turn facilitated a more musically satisfying performance that was 

less dependent on human synchronization. 

Embedding music theory education into these activities is one promising strategy to 

combat the Pop Music Trap. In our recent workshops, “Johnson’s Recipes” not only 

provided practical means through which non-musicians could compose songs, but also 

explicitly encouraged students to understand themselves as musical creators. One 



Shapiro, Kelly, Ahrens, Johnson, Politi & Fiebrink  25 

might further imagine using Mr. Johnson’s rules and the derived NFAs not just as tools 

for teaching music theory, but as representations that could be embedded and 

manipulated within the BlockyTalky programming environment to support higher-

level control over algorithmic music generation.  

Or, new tools could help students work more effectively and accurately with 

existing pop music. Programming tools to help students reason about how their 

composed musical motifs fit together over time could have helped the Coldplay group 

quickly identify their error and move on to other activities.  

More broadly, we believe that additional design research is needed in order to 

understand how new learning experiences can offer students the benefits of drawing 

upon their pop music knowledge while avoiding the pitfalls that we have described. 

The Challenge of Adapting Existing Tools for Real-Time Music-Making 

Building new educational technologies using existing hardware and open source 

software can help to minimize engineering effort, provide easier pathways for teachers 

to gain proficiency in the tools, and lower costs for schools. However, support for real-

time, expressive interaction with audio has not been a goal of commonly existing 

platforms. Balancing engineering effort, cost, and suitability for real-time music-making 

is an ongoing concern for BlockyTalky. 

Our current iteration of BlockyTalky uses Sonic Pi for sound sequencing and 

synthesis. Sonic Pi works well for sound synthesis, even on the relatively low-end 

hardware of the Raspberry Pi. It also has an existing community of educators and 

students. However, Sonic Pi is designed for live coding, not for performances that 

involve real-time control over sequencing and synthesis. It maintains a long buffer in 

order to avoid skipping, which means that there is often a lengthy delay, up to a 

second, between when a user manipulates a sensor and when the sound they hear 

changes. This can be confusing to users, and the Sonic Pi project has no concrete plans 



Shapiro, Kelly, Ahrens, Johnson, Politi & Fiebrink  26 

to address this problem. We are currently addressing synthesis latency by replacing 

Sonic Pi with a new synthesis engine better geared toward real-time performance.  

The cost of sensors and the need for associated “shields” or “capes” for connecting 

sensors to processors are also important considerations in the development of 

BlockyTalky. The current cost of a single BlockyTalky device with LEGO or Grove-

compatible shield is $100US, making the cost of a set out of reach for most school 

programs. We are currently collaborating the BeagleBone Foundation to port 

BlockyTalky to the BeagleBone Green Wireless, a $40 board that is also compatible 

microcontroller hardware targeting the computer music community (e.g., McPherson 

and Zappi 2015). This cost reduction has great potential to drive advances and wider 

adoption of educational technologies like BlockyTalky. 

Should We Move Beyond Programming, and How? 

BlockyTalky is robust, cheap, and low-latency enough to support a range of 

rewarding and engaging music-making activities. The drag-and-drop programming 

environment is also a usable tool for kids with no programming background, provided 

that they are open to experimenting with a wide variety of sounds and effects or that 

they have the musical knowledge to be able to translate their ideas efficiently into 

symbolic representations (e.g. lists of note names and durations). However, when the 

educational aims are to teach about musical instrument building, creative expression, 

design, and collaborative music performance—rather than about procedural 

programming or musical note reading—might other modes of software design be better 

suited to these aims? For instance, previous work has shown that building new musical 

instrument mappings using supervised learning—providing examples of human 

motions along with the musical outcomes to match those motions—can facilitate a more 

efficient, satisfying, and embodied approach to design (compared to programming) for 

professional composers (Fiebrink 2011). Might such techniques also allow kids to 

translate their musical instrument ideas into real systems? Or, might techniques for 



Shapiro, Kelly, Ahrens, Johnson, Politi & Fiebrink  27 

symbolic transcription of sung melodies or automatic harmony generation (Simon, 

Morris, and Basu 2008) speed up the process of “writing” programs that mimic pop 

songs? Might helping kids easily realize the creative limitations of mimicry at an earlier 

stage of their work with technology encourage them to explore new ideas? 

What Should Youth Computer Music Education Look Like? 

Setting aside the question of how to embed computer music topics into computer 

science education, what should computer music education look like for youth? How could 

(or should) music education itself change to incorporate computer music ideas and 

practices? The potential benefits of expanding musical curricula to encompass computer 

music topics range from increasing the relevance of music education to youth who are 

most excited about musical genres that rely heavily on digital production practices, to 

facilitating music-making by youth with disabilities through bespoke digital 

instruments, to making a politically expedient argument for supporting music 

education because of its STEM content. But the risks include suggesting that music 

education is valuable only insofar as it aids in teaching “serious” or “economically 

important” STEM subjects, or exacerbating disparities between well-off schools with 

ample resources to invest in digital music equipment and those without them. We are 

excited about the potential benefits of early computer music education despite these 

risks, and one of our research aims is to engage the computer music research 

community more broadly in these questions.  

Acknowledgements 

We thank the National Science Foundation (CNS-1418463 & CNS-1562040), the 

NCWIT Acadamic Alliance Seed Fund, and LEGO Education for funding this work. We 

also thank our numerous collaborators, including Elise Deitrick, Joe Sanford, Paul 

Lehrman, Elena Cokova, Catherine Gao, Hilary Dwyer, Zach Lamb, Susana Gomez-

Burgos, Lila Finch, and Monica Bolles. 

 



Shapiro, Kelly, Ahrens, Johnson, Politi & Fiebrink  28 

References 

ACM/IEEE-CS Joint Task Force on Computing Curricula. 2013. “Computer Science 

Curricula 2013.” ACM Press and IEEE Computer Society Press. 

Barron, B., 2003. When Smart Groups Fail. The Journal of the Learning Sciences, 12(3), 

pp.307-359. 

Bransford, J. D., A. L. Brown, and R. R. Cocking. 1999. How People Learn: Brain, Mind, 

Experience, and School. National Academy Press. 

Carter, L. 2006. “Why Students with an Apparent Aptitude for Computer Science Don’t 

Choose to Major in Computer Science.” Proceedings of the 37th ACM SIGCSE 

Technical Symposium on Computer Science Education (SIGCSE ‘06): 27-31. 

Corbin, J. M, and A. Strauss. 1990. “Grounded Theory Research: Procedures, Canons, 

and Evaluative Criteria.” Qualitative Sociology 13.1: 3-21. 

Choi, H. and G. Wang. 2010. “LUSH: An Organic Eco+Music System.” Proceedings of the 

International Conference on New Interfaces for Musical Expression, pp. 112–116. 

Deitrick, E., O’Connell, B., & Shapiro, R. B. 2014. “The Discourse of Creative Problem 

Solving in Childhood Engineering Education.” Proceedings of the 2014 Annual 

Conference of the Learning Sciences, pp. 591–598. 

Deitrick, E., R. B. Shapiro, M. P. Ahrens, R. Fiebrink, P. D. Lehrman, and S. Farooq. 

2015. “Using Distributed Cognition Theory to Analyze Collaborative Computer 

Science Learning”. Proceedings of the 11th Annual International Conference on 

International Computing Education Research (ICER ‘15): 51–60.  

Fiebrink, R. 2011. “Real-time Human Interaction with Supervised Learning Algorithms 

for Music Composition and Performance.” PhD dissertation. Princeton University. 

Freeman J., et al. 2014. “Engaging Underrepresented Groups in High School 

Introductory Computing through Computational Remixing with 

EarSketch.” Proceedings of the 45th ACM Technical Symposium on Computer Science 

Education (SIGCSE ‘14): 85-90. 



Shapiro, Kelly, Ahrens, Johnson, Politi & Fiebrink  29 

Ginsburg, H. P. 1997. Entering the Child’s Mind. Cambridge University Press.  

Google Developers. 2016. Google Blockly. Accessed December 17, 2016. 

https://developers.google.com/blockly/ 

Grover S., Pea R., and S. Cooper. 2014. “Remedying Misperceptions of Computer 

Science Among Middle School Students.” Proceedings of the 45th ACM Technical 

Symposium on Computer Science Education (SIGCSE ‘14): 343-348. 

Jamieson, S., 2004. “Likert Scales: How to (Ab)use them.” Medical Education, 38(12), 

pp.1217-1218. 

Kelleher C., R. Pausch, and S. Kiesler. 2007. “Storytelling Alice Motivates Middle School 

Girls to Learn Computer Programming.” Proceedings of the ACM SIGCHI Conference 

on Human Factors in Computing Systems (CHI ‘07):1455-1464. 

Losh, S. C. 2010. “Stereotypes about Scientists over Time Among US Adults: 1983 and 

2001.” Public Understanding of Science, 19(3): 372-382. 

McPherson, A., and V. Zappi. 2015. “An Environment for Submillisecond-Latency 

Audio and Sensor Processing on BeagleBone Black.” Audio Engineering Society 

Convention 138.  

Martin, C. D. 2004. “Draw a Computer Scientist.” Working Group Reports from ACM 

ITiCSE on Innovation and Technology in Computer Science Education (ITiCSE-WGR ‘04): 

11-12. 

Mason, C. L., J. B. Kahle, and A. L. Gardner. 1991. “Draw-a-Scientist Test: Future 

Implications.” School Science and Mathematics 91, no. 5: 193-198. 

Norman, G. 2010. “Likert Scales, Levels of Measurement and the ‘Laws’ of Statistics” 

Advances in Health Science Education. 15(625). doi:10.1007/s10459-010-9222-y 

Patterson, D. A. 2006. “Computer Science Education in the 

21st Century.” Communications of the ACM 49, 3 (March 2006): 27-30. 



Shapiro, Kelly, Ahrens, Johnson, Politi & Fiebrink  30 

Roschelle, J. and Penuel, W.R., 2006, June. Co-design of Innovations with Teachers: 

Definition and Dynamics. In Proceedings of the 7th International Conference on Learning 

Sciences (pp. 606-612). International Society of the Learning Sciences. 

Shapiro, R. B., A. Kelly, M. Ahrens, and R. Fiebrink. 2016. BlockyTalky: A Physical and 

Distributed Computer Music Toolkit for Kids. In Proceedings of the International 

Conference on New Interfaces for Musical Expression. 

Simon I., D. Morris, and S. Basu. 2008. “MySong: Automatic Accompaniment 

Generation for Vocal Melodies.” Proceedings of the ACM SIGCHI Conference on Human 

Factors in Computing Systems (CHI ‘08), pp. 725-734. 

Strauss, A. and Corbin, J., 1990. “Open Coding.” Basics of Qualitative Research: Grounded 

Theory procedures and Techniques, 2(1990), pp.101-121. 

Sullivan, G. M., & Artino, A. R. 2013. Analyzing and Interpreting Data from Likert-

Type Scales. Journal of Graduate Medical Education, 5(4), 541–542. 

http://doi.org/10.4300/JGME-5-4-18 

Tubb, R. H. 2016. “Creativity, Exploration, and Control in Musical Parameter Spaces.” 

PhD dissertation. Queen Mary University of London. 

 


