
GOLDSMITHS, UNIVERSITY OF LONDON

DISSERTATION

Autoencoding Video Frames

Author:
Terence BROAD

Supervisor:
Dr. Mick GRIERSON

A dissertation submitted in partial fulfillment of the requirements
for the degree of Msci Creative Computing

in the

Department of Computing

May 12, 2016

http://www.gold.ac.uk/
http://terencebroad.com
http://doc.gold.ac.uk/~mus02mg/
http://department.university.com

iii

Abstract

This report details the implementation of an autoencoder trained with a
learned similarity metric - one that is capable of modelling a complex dis-
tribution of natural images - training it on frames from selected films, and
using it to reconstruct video sequences by passing each frame through the
autoencoder and re-sequencing the output frames in-order. This is primarily
an artistic exploration of the representational capacity of the current state
of the art in generative models and is a novel application of autoencoders.
This model is trained on, and used to reconstruct the films Blade Runner and
A Scanner Darkly, producing new artworks in their own right. Experiments
passing other videos through these models is carried out, demonstrating the
potential of this method to become a new technique in the production of
experimental image and video.

v

Acknowledgements
I would like to thank my parents and Grandfather for all the support they
have given me over the years, and particularly for both giving me the finan-
cial support I needed in helping to purchase the two new computers that
were essential for me carrying out this project.

I would like to thank Emma for the support this year, and all the previous
years that we have been studying together. Hopefully I will now be able to
offer her more support over the summer while she is completing her disser-
tation.

But in particular I would like to extend my gratitude to Mick. I can’t believe
how much I have learned and progressed in the past four years at Gold-
smiths, and he has been central to my development throughout my time
here. I am particularly grateful that he offered me the opportunity to extend
my time at Goldsmiths doing an additional year of research, which is in it-
self a rare and unique opportunity. But on top of all that I will be eternally
grateful that he pushed me towards researching deep learning at such an
exciting and pivotal time.

vii

Contents

Abstract iii

Acknowledgements v

1 Introduction 1
1.1 Motivation . 1
1.2 Initial Research . 2
1.3 Final Idea . 2

2 Context 3
2.1 History of Artificial Neural Networks 3

2.1.1 Deep Learning . 3
2.1.2 The Development Towards Generative Models 5

2.2 Autoencoders . 5
2.2.1 Denoising Autoencoders 5
2.2.2 Variational Autoencoders 6
2.2.3 Extended Autoencoder Models 7

Deep AutoRegressive Networks 7
Deep Recurrent Attentive Writer 7
One-Shot Generalisation in Deep Generative Models . 8

2.3 Generative Adversarial Networks 9
2.3.1 Laplacian Pyramid of Generative Adversarial Networks 10
2.3.2 Deep Convolutional Generative Adversarial Networks . 11

2.4 Combining Autoencoders and Adversarial Networks 12
2.4.1 Autoencoding With A Learned Similarity Metric 13

2.5 Other Techniques For Reconstructing Video 14

3 Research Questions 15
3.1 Aim . 15
3.2 Technical Challenges . 15
3.3 Artistic Motivation . 16

4 Method 19
4.1 Model Overview . 19
4.2 Network Architecture . 20

4.2.1 Encoder Network . 20
4.2.2 Decoder Network . 21
4.2.3 Discriminator Network 22
4.2.4 Activation Functions 23

Rectified Linear Unit 23
Leaky Rectified Linear Unit 23

4.3 Objective Functions . 24
4.3.1 Kullback-Leibler Divergence 24

viii

4.3.2 GAN Objective . 25
4.3.3 Discriminator Covariance 25

4.4 Respective Error Gradients . 26
4.5 Training Procedure . 26

4.5.1 Fine Tuning . 27
4.6 Running The Model . 28

5 Results 29
5.1 Blade Runner . 29

5.1.1 Samples From Training 30
5.1.2 Reconstructed Film . 36

5.2 A Scanner Darkly . 38
5.2.1 Samples From Training 39
5.2.2 Reconstructed Film . 45

5.3 Feeding Other Videos Through The Models 47
5.3.1 Blade Runner Through A Scanner Darkly 47
5.3.2 A Scanner Darkly Through Blade Runner 48
5.3.3 1984 Apple Advert Through Blade Runner 49
5.3.4 Matrix III Through Blade Runner 50

6 Evaluation 51
6.1 Qualitative Assessment . 51

6.1.1 Reconstructing the Test Dataset 52
Reconstructing Faces 52
Collapsing Representations 54

6.1.2 Reconstructing Alternative Datasets 55
6.2 Efficiency and Stability . 56
6.3 Artistic Evaluation . 57

6.3.1 As A Method For Film-Making 57
6.3.2 As An Artwork . 57

7 Conclusion 59

A Links To Download Reconstructed Videos 61

Bibliography 63

ix

List of Figures

1.1 Reconstruction of images from brain activity 1

2.1 Unrolling stacked RBMs into an autoencoder 4
2.2 Hierarchy of Features in Convolutional DBN 4
2.3 DRAW: Deep Recurrent Attentive Writer 8
2.4 Generated faces from spatial transformer + additive canvas . 8
2.5 Generative Adversarial Networks 9
2.6 Diagrams of LAPGAN architecture 10
2.7 Interpolating in the latent space of a DCGAN model 11
2.8 Diagram of DCGAN generator network 12
2.9 Results from different autoencoder models 13
2.10 Corpus-based visual synthesis 14

4.1 Overview of autoencoder model 19
4.2 Table 1: Showing architecture of encoder 21
4.3 Table 2: Showing architecture of decoder 22
4.4 Table 3: Showing architecture of discriminator 22
4.5 Overview of autoencoder and objective functions 24

5.1 Samples from training on Blade Runner after 1 epoch 30
5.2 Samples from training on Blade Runner after 2 epochs 31
5.3 Samples from training on Blade Runner after 3 epochs 32
5.4 Samples from training on Blade Runner after 4 epochs 33
5.5 Samples from training on Blade Runner after 5 epochs 34
5.6 Samples from training on Blade Runner after 6 epochs 35
5.7 Blade Runner reconstructed - 1 36
5.8 Blade Runner reconstructed - 2 37
5.9 Samples from training on A Scanner Darkly after 1 epoch . . . 39
5.10 Samples from training on A Scanner Darkly after 2 epochs . . 40
5.11 Samples from training on A Scanner Darkly after 3 epochs . . 41
5.12 Samples from training on A Scanner Darkly after 4 epochs . . 42
5.13 Samples from training on A Scanner Darkly after 5 epochs . . 43
5.14 Samples from training on A Scanner Darkly after 6 epochs . . 44
5.15 A Scanner Darkly reconstructed - 1 45
5.16 A Scanner Darkly reconstructed - 2 46
5.17 Blade Runner reconstructed through A Scanner Darkly model 47
5.18 A Scanner Darkly reconstructed through Blade Runner model 48
5.19 1984 Apple advert reconstructed through Blade Runner model 49
5.20 Matrix III reconstructed through Blade Runner model 50

6.1 Failure to reconstruct completely a black input sample 52
6.2 Samples from Blade Runner of character rotating their head . 53
6.3 Samples from A Scanner Darkly of character changing facial

expressions . 53

x

6.4 Samples from Blade Runner of a long sequence collapsing into
one representation . 54

1

Chapter 1

Introduction

This report details the efforts in building an autoencoder capable of mod-
elling a complex distribution of natural images, training it on frames from
selected films, and using it to reconstruct video sequences by passing each
frame through the autoencoder and re-sequencing the output frames in-
order. This is primarily an artistic exploration of the representational cacity
of the current state of the art in generative models - as far as I am aware -
this is a novel application of autoencoders, and has the potential to become
a new method in the production of experimental image and film.

1.1 Motivation

FIGURE 1.1: Reconstruction of visual experiences from brain
activity evoked by natural movies (Nishimoto et al., 2011).

I originally had to idea of trying to view videos through artificial neural
networks after seeing the talk “Mindreading in Modern Neuroscience” by
John-Dylan Haynes (2013) at Ars Electronica. In the talk he demonstrated
the ability to reconstruct images of what people were seeing, using fMRI
and a Bayesian decoder that combines frames from the closest seen matches
in the previously seen posterior clips (see figure 1.1), I found the results
astonishing and wondered if it was possible to do the same thing with ar-
tificial neural networks. I had considered doing attempting to do this for
my undergraduate dissertation, but even as recently as last year, develop-
ment in neural networks was not at the stage where this would have been
possible. Even in September 2015, when I started investigating generative

2 Chapter 1. Introduction

models, it seemed like models for complex natural images where a long way
off. Luckily, in the past 6 months there has been amazing advances in the
development of generative models that have made this work possible.

1.2 Initial Research

Although I had the idea to reconstruct video with neural networks several
years ago, at the beginning of the academic year this did not seem feasable,
and I had spent most of my time understanding the two best generative
models at that time (purely to research image generation); DRAW (section
2.2.3) and LAPGAN (section 2.3.1). My research into DRAW, led me to
reading about DARN (section 2.2.3) and finding the work done to combine
that with an LSTM to do binarized video prediction of Atari games (Graves
and Freitas, 2015), this led me to attempt to reproduce this, with an eye
on furthering it by improving the image model combined with the LSTM to
handle more natural images.

However when DCGAN (section 2.3.2) was published it was obvious that
using a convolutional model was the best way to produce natural images. I
then turned my attention to finding some way of combining the advarsar-
ial approach with an autoencoder, and maybe even using another network
to compare the similarity of the images produced by an autoencoder with
the real images. Within a month however, a paper was published that com-
bined both of these approaches in a very surprising and elegant way (section
2.4.1). Therefore once again, I turned my attention to implementing this
method, with the idea that would combine in it with an LSTM and do video
prediction with this more sophisticated autoencoder model. Unfortunately
due to the time taking to build this model, getting it functioning in a sta-
ble manner, and then the time taken training the models, I was not able to
progress with the line of research. But - perhaps serendipitously - it led me
back to the original idea I had years ago; reconstructing videos with neural
networks.

1.3 Final Idea

Once it was clear that I would restrict my focus to using autoencoders to
reconstruct images, I should put some thought into what videos I was going
to reconstruct. I remembered a talk I went to at LCC in 2014 by the author
and Professor of media theory Charlie Gere. At the end of the talk Gere
spent quite some time talking about the film Blade Runner - the adaption
of Philip K. Dick’s novel Do Androids Dream of Electric Sheep? - and how it
reflects on the limits of human finitude and experience. Given the subject
matter, it was obvious that Blade Runner was the most pertinent choice of
film to be reconstructed using a neural network (I expand on this in the
artistic motivation - section 3.3). The second film I chose to reconstruct was
A Scanner Darkly (another Phillip K. Dick adaption) which is an interesting
film to model not only because of the subject matter, but as it was animated
using the interpolated rotorscope method.

3

Chapter 2

Context

2.1 History of Artificial Neural Networks

Artificial neural networks are a family of computational models that are
loosely inspired by biological neural networks. There is no strict formal defi-
nition of what an artificial neural network is, but statistical models that have
multiple units connected by a set of adaptive weights, that are tuned by a
learning algorithm, which can then approximate non-linear functions upon
inputs are often classified as artificial neural networks. The units in artificial
neural networks are often known as ‘neurons’ or ‘nodes’, for the rest of this
report they will referred to as nodes. These nodes perform a function on a
weighted sum of their inputs, this function is known as the activation func-
tion and is most often a nonlinear function such as the sigmoidal function
or tanh.

Statistical models that can be classified as ‘neural’ date back to when McCul-
loch and Pitts (1943) created a computational model for biological neural
networks using mathematics which they called threshold logic. A notable
milestone was the development of the perceptron by Rosenblatt (1958),
which was a simple two layer network with a learning algorithm using ad-
dition and subtraction. This garnered a lot of attention and excitement at
the time, but research stagnated after Minsky and Papert (1969) published a
paper proving that perceptrons could not learn exclusive-or circuit, and that
computers didn’t have the processing power capable of to effectively handle
the long run time needed for large neural networks. It was not until Werbos
(1974) developed the backpropagation algorithm that perceptrons could ef-
fectively learn the exclusive-or circuit, causing a resurgence in the field of
developing multi-layered perception (MLP) networks.

2.1.1 Deep Learning

Once again in the 1990’s research interest in neural networks dwindled as
researchers developed other machine learning methods such as support vec-
tor machines that were more efficient to train (in hindsight interest probably
dropped because of a lack of computational power and insufficiently large
datasets). It was not until Hinton and Salakhutdinov (2006) first developed
a method that outperformed principal components analysis at reducing the
dimensionality of data - using a deep autoencoder that had been pre-trained

4 Chapter 2. Context

FIGURE 2.1: Unrolling a stack of restricted Boltzmann
Machines into an autoencoder (Hinton and Salakhutdinov,

2006).

as a stack of restricted boltzmann machines - that a resurgence in inter-
est in neural networks happened, giving rise to the field of deep learning.
Although ‘deep’ neural networks (networks with many layers) had been de-
veloped prior to this, they had not particularly useful as it had been difficult
to backpropagate error derivatives through many layers, and there was not
sufficient computational power to train these networks for a long time effi-
ciently.

Although it had been proven that a multi-layered percetron network with a
single layer containing a finite amount of nodes could approximate any con-
tinuous function (Gybenko, 1989), deep neural network models are much
more efficient and flexible in approximating complex functions. However,
the most import capability afforded to deep neural network models is the
ability for the network the learn a hierarchy of increasing complex and ab-
stract features. This was first demonstrated visually by Lee et al. (2009) with
their convolutional deep belief networks (see figure 2.2).

FIGURE 2.2: Hierarchy of features in convolutional deep be-
lief networks (Lee et al., 2009)

Since 2006, various types of deep neural networks have made significant
breakthroughs in many domains of machine learning, and are now the state

2.2. Autoencoders 5

of the art in most of these fields. The most notable breakthrough being
the use of a deep convolutional neural network to significantly outperform
state of natural image classification from the ImageNet 2010 competition
(Krizhevsky, Sutskever, and Hinton, 2012). Since then, deep convolutional
neural networks are the de facto method for image classification and can
now outperform humans in certain tasks in image classification (He et al.,
2015).

2.1.2 The Development Towards Generative Models

Although deep convolutional neural networks are very powerful at image
classification tasks, some of the criticisms leveled at them is that they are
black box methods (meaning it is difficult to understand the mechanics of
how they work), and that they learn to correlate features statistically use-
ful for classifying objects but are not components of the object themselves.
It has also been demonstrated that it is easy to train another network to
manipulate an image imperceptibly in order to fool another convolutional
neural network to make and incorrect classification (Szegedy et al., 2013).
In response to this, there has been a drive to develop neural networks that
can generate images well, the theory being that if a model can hallucinate
well it has a much deeper understanding of the world (Freitas, 2015).

2.2 Autoencoders

Autoencoders are neural networks with two components, one that restruc-
tures data into an encoding of reduced dimensionality, and another that
reconstructs the data from the encoding. The network is given a data input
x the encoder encodes it into a latent representation z and the decoder re-
constructs the data input x̄, the cost function used to train the network is
then defined as the mean squared error between the input x and the recon-
struction x̄.

argmin = ‖x− x̄‖2 (2.1)

Originally these models were used for reducing the dimensionality of data
and mapping it to meaningful encodings (Hinton and Salakhutdinov, 2006),
but recently they have been used for learning generative models of data.

2.2.1 Denoising Autoencoders

Denoising autoencoders (Vincent et al., 2008) take a partially corrupted in-
put and attempt to reconstruct the original undistorted input, forcing the au-
toencoder to learn more robust and general features (an approach that was
later extended to corrupting the hidden layers any given network with the
dropout training method (Srivastava et al., 2014)). A preliminary stochastic
mapping is performed x → x′ before the network encodes and reconstructs

6 Chapter 2. Context

the input. However the network is trained to reconstruct the origin input
L(x, x̄′) rather than the corrupted input L(x′, x̄′).

2.2.2 Variational Autoencoders

Variational autoencoders (independently developed by Kingma and Welling
(2013) and Rezende, Mohamed, and Wierstra (2014)) inherit the same ar-
chitecture from the previously described autoencoder models; but place a
strict assumption on the distribution of latent variables, taking a variational
bayesian approach to learning the latent representation. This model assumes
the original data given to the network is generated by a directed graphical
model p(x|z) and that the encoder is learning an approximation qφ(z|x) to
the posterior distribution pθ(z|x), where φ and θ denote the parameters of
encoder and decoder. The objective function of a variational autoencoder is
given as:

L(x) = −DKL(qφ(z|x)||pθ(z)) + Eqφ(z|x)(log pθ(x|z)) (2.2)

The second term in the equation Eqφ(z|x) is the reconstruction error, this
is often the log of the mean squared error between the original input and
reconstruction cost (as given in equation 2.1), this is referred to as the log-
likelihood. DKL is defined as the Kullback-Leibler divergence, measuring
the divergence of the approximate posterior from the prior distribution. The
prior over the latent variables is given as a centred isotropic multivariate
Gaussian pθ(z) = N (0, I). The equation 2.2 thus expresses a lower-bound
on the log likelihood, crucially variational autoencoders maximise a lower-
bound on the log-likelihood rather than maximising the likelihood directly.

In order to efficiently adapt qφ(z|x) to improve the reconstruction, the latent
representation z is a deterministic function of φ and noise ε. When the
latent representation z approximates the posterior distribution that has a
univariate Gaussian prior:

z ∼ p(z|x) = N (µ, σ2) (2.3)

Then z can be reparameterized as:

z = µ+ σε (2.4)

In the case the prior distribution on z is given as:

pθ(z) =
N∏
i=1

N (zi| 0, 1) (2.5)

And the approximate posterior distributions is normal and factorised:

2.2. Autoencoders 7

qφ(z|x) =
N∏
i=1

N (zi| µi(x), σ2i (x)) (2.6)

The Kullback-Leibler divergence term integrates to:

DKL =
1

2

N∑
i=1

1 + log(σ2i (x))− µ2i (x)− σ2i (x) (2.7)

A complete derivation of this can be found in the paper by Kingma and
Welling (2013).

2.2.3 Extended Autoencoder Models

There are a number of generative models that take the basic premise of an
autoencoder and expand on the architecture in unique and complex ways.
They will not be covered in great detail as this project does not directly build
on them, but they are worth noting due to their generative capabilities.

Deep AutoRegressive Networks

Deep AutoRegressive Networks (Gregor et al., 2013) takes the standard au-
toencoder architecture but adds successive layers of stochastic binary units
equipped with autoregressive connections, enabling the model to be sam-
pled efficiently using ancestral sampling. The cost function is based min-
imum description length principle - minimising the amount of stochastic
binary units used to encode an output - which can be seen as maximising
a variational lower bound on the log-likelihood. Deep AutoRegressive Net-
works are only capable of represented binary images, and at the time were
the state of the art for generative modelling of MNIST and binarized frames
from Atari 2600 games. In a lecture by Alex Graves (2015) he demonstrates
a model where an LSTM (a type of recurrent neural network) is intertwined
between the encoder and decoder of a DARN network, the system is able to
predict sucessive frames in Atari games, and hallucinate long sequences of
these frames when it is repeatedly given frames it has produced.

Deep Recurrent Attentive Writer

The Deep Recurrent Attentive Writer (DRAW) (Gregor et al., 2015) super-
seded DARN as the state of the art in generating MNIST, and when trained
on the Google Street View House Number dataset it generated images that
can not be distinguished by the naked eye. DRAW utilises a novel spatial at-
tention mechanism that mimics the foveation of the human eye. Combined
with a sequential variational auto-encoding framework that allows for the
iterative construction of complex images (see figure 2.3). The encoder and
decoder networks are recurrent neural networks - specifically Long Short
Term Memory networks - that exchange a sequence of codes to iteratively

8 Chapter 2. Context

FIGURE 2.3: A Trained DRAW network generating MNIST
digits. Each row show succesive stages in the generation of

a single digit. (Gregor et al., 2015)

construct the image; as opposed to one code representing one image, which
is the standard case for autoencoders.

One-Shot Generalisation in Deep Generative Models

In the paper "One-Shot Generalisation in Deep Generative Models" Rezende
et al. (2016) attempt to combine the representation power of of deep learn-
ing and the inferential power of bayesian reasoning. They develop a class
of sequential generative models that are built on the principles of feed back
and attention, capable of generating convincing and diverse samples after
seeing only one example of an object class. In addition to this they com-
bine the sequential generative model (built up the the DRAW architecture -
2.2.3) with spatial transformer networks (Jaderberg, Simonyan, Zisserman,
et al., 2015), a learnable module using convolutional neural networks that
are capable of spatial manipulation of data within a larger network. The
combination of these two approaches has undoubtably created the best gen-
erative model to date for generating samples of a single class of object (see
figure 2.4).

FIGURE 2.4: Generated faces from spatial transformer net-
works combined with an additive canvas with feedback and

attention over 32 steps (Rezende et al., 2016).

2.3. Generative Adversarial Networks 9

2.3 Generative Adversarial Networks

FIGURE 2.5: Images created using generative adversarial
networks: a) MNIST dataset, b) TFD dataset, c) and d)
CIFAR-10 dataset using convolutional discriminator and de-

convolutional generator (Goodfellow et al., 2014).

Generative Adversarial Networks, introduced by Goodfellow et al. (2014)
offers an alternative approach to generating images with neural networks.
Instead of using markov-chain monte-carlo to maximise the likelihood of the
data, or even maximising a variational lower bound, this technique simply
plays a game between two networks. A generator network G takes random
numbers and converts it into samples and a discriminator network D that
attempts to differentiate between samples from the real data, and samples
from G. Akin to counterfeiters G producing fake bank notes and police
D trying to determine whether a bank note is real or fake. The training
procedure for D is to maximise the probability of assigning correct labels for
training examples from the data and samples from G.

The training procedure for G is to maximise the probability of D making a
mistake, or in other words to minimise log(1−D(G(z))), where z is the prior
input noise variables and x is the data. This can be defined as a two-player
minimax game with a value function V (G,D):

min
G

max
D

V(G,D) = Ex pdata(x)[logD(x)] + Ez pz(z)[log(1−D(G(x))] (2.8)

The difficulty in training GAN’s is that it is essential to balance the rate of
learning of both the generator and discriminator in order that they learn at
the same rate. If the discriminator learns too quickly, it will quickly start to
classify every generated sample as being fake and the error signals propa-
gated through the discriminator will become meaningless. Likewise if the
generator learns to fool the discriminator too quickly, it may be fooling a

10 Chapter 2. Context

discriminator network that is yet to have developed a sophisticated under-
standing of the distribution of the data, and the quality of the generated
samples will cease to improve.

In the original paper describing Generative Adversarial Networks, Goodfel-
low et al. (2014) use feedforward multilayer perceptron networks using a
combination of rectified linear units1 and sigmoidal units for the activation
functions of the generator network, while the discriminator network uses
a combination of maxout2 activations using dropout3 as a regulariser. This
approach produces good results on the MNIST and Toroto Face Datasets,
but presents noisy, incoherent samples on the CIFAR-10 dataset of natural
images (see figure 2.5).

2.3.1 Laplacian Pyramid of Generative Adversarial Networks

FIGURE 2.6: Top: Sequence of steps in generating samples
from LAPGAN. Bottom: Sequence of steps in training LAP-
GAN, at every stage, a data sample is down-sampled and
the discriminator network compares the the true laplacian
transformation to form the real image and the one gener-
ated by the generator network (Denton, Chintala, Fergus, et

al., 2015).

Denton, Chintala, Fergus, et al. (2015) extend the GAN approach to develop
the first model capable of producing high quality samples of natural images.
They present an architecture of cascading generator and discriminator net-
works, spaced one octave apart. The networks generate and discriminate
band-pass images that act as up-sampling operators which smooths and ex-
pands an image to be twice the size. To train the network real data samples
(in this case 64x64)are down-sampled to half the size, the true Laplacian
band-pass image is extracted and one is generated by the generator net-
work, the discriminator network processes both samples and both networks

1Rectified linear units were first described by Nair and Hinton (2010).
2Maxout activation functions were first described by Goodfellow et al. (2013).
3Using dropout as a regulariser was first described by Srivastava et al. (2014).

2.3. Generative Adversarial Networks 11

are trained using the standard GAN objective function described in equation
2.8. This process is repeated down to a 4x4 image, in which there is a tradi-
tional GAN generator network that also generates a 4x4 image for compari-
son. Once training is completed the network can be sampled by generating
a 4x4 seed image and upscaling the image to twice the size and combining it
with the generated band-pass image at each stage in the network pyramid.

2.3.2 Deep Convolutional Generative Adversarial Networks

FIGURE 2.7: Interpolating between different points in the
latent space of a DCGAN trained on the LSUN bedrooms

dataset (Radford, Metz, and Chintala, 2015).

It was widely assumed that convolutional neural networks were not suitable
for the generation of images (Freitas, 2015), despite their vast superiority
for approaching image recognition. This was because of the standard use of
deterministic pooling layers (usually max-pooling) in convolutional neural
networks. Max-pooling layers are used to spatially down-sample image rep-
resentations at increasingly higher layers in the network, but because they
only pick the maximum pixel value from a windowed region (usually a 4x4
region), spatial information is lost and the process is not invertible. How-
ever, Radford, Metz, and Chintala (2015) demonstrated it was possible to
use convolutional neural networks to generate realistic natural images. To
overcome the problem of lost spatial information incurred by the use of max-
pooling layers, their model just has layers of strided convolutions, rather
than alternating layers of convolutions and max-pooling. This allows both
the discriminator and generator network to learn their own spatial down-
sampling and up-sampling.

12 Chapter 2. Context

The approach of an all convolutional network was first developed by Sprin-
genberg et al. (2014), in an attempt to simplify CNNs, and yields competi-
tive or state of the art performance on multiple different object recognition
datasets. In addition to using all convolutional networks, Radford, Metz,
and Chintala (2015) eliminate the traditional fully connected layers used at
the top CNN’s, instead opting for the top layer of the discriminator network
to be re-shaped linearly and fed into a sigmoid function. The generated net-
work is instantiated by a 100 digit random number from a uniform noise
distribution Z, and is re-shaped and projected onto a 4-dimensional tensor
that acts as the first layer in the convolutional stack. Batch normalisation
(Ioffe and Szegedy, 2015) is implemented in the DCGAN model and is used
as a regulariser; helping gradient flow in deep models, compensating for
poor initialisation of the network and allowing for the use of much higher
learning rates. The generator network uses ReLU (rectified linear units (Nair
and Hinton, 2010)) with the exception of the output layer which has a tanh
activation. The discriminator network uses leaky rectified activation units
(Maas, Hannun, and Ng, 2013) which was found to work especially well for
higher resolution image modelling. Training is performed using the ADAM
optimiser (Kingma and Ba, 2014) with a learning rate of 0.0002.

FIGURE 2.8: Diagram of the generator network in the DC-
GAN model, a 100 dimensional uniform distribution Z is re-
shaped and projected onto a Tensor representing 1024 4x4
image regions. A set of four fractionally strided convolution
layers upscale the image to a 64x64 colour image (Radford,

Metz, and Chintala, 2015).

2.4 Combining Autoencoders and Adversarial Networks

There were several attempts in 2015 to combine the GAN approach with
an autoencoder. Larsen and Sønderby (2015) demonstrated a variational
autoencoder that alternated its training as a GAN, with the decoder of the
VAE acting as the generator in the GAN architeture. This allowed them to
generate samples of faces with increased higher frequency content than a
VAE (which tends to produce smoothed samples). Makhzani et al. (2015)
take a similar approach, but also use the GAN in order to shape the latent
space according to classification labels, able to shape the latent space directly

2.4. Combining Autoencoders and Adversarial Networks 13

into gaussian distributions or even something completely arbitrary like a
swiss roll distribution.

2.4.1 Autoencoding With A Learned Similarity Metric

Following on from the original work by Larsen and Sønderby (2015) in alter-
nating a VAE with a GAN, Larsen, Sønderby, and Winther (2015) build upon
this model, they use the feature representations in the GAN discriminator as
the basis for the VAE reconstruction objective. This is quite a significant ad-
vance because the pixel-wise euclidean distance between two images is not
a good feature representation of the similarity between images because it is
not modelled on the properties of human visual perception. A small transla-
tion may result in a large pixel-wise error but would be imperceptible to the
human eye, and as this is the basis objective function for a VAE, it results
in the model learning low frequency, smoothed representations (see figure
2.10), to compensate for this invariance. Therefore they introduce a Gaus-
sian observation model (euclidean distance) for the distance in response in
the higher levels of the discriminator network, providing a sufficiently in-
variant representation of the images. This technique is used as the main
inspiration for this project (although it is not a direct implementation) so a
thorough description of the network architecture and training procedure is
outlined in chapter 4.

FIGURE 2.9: Results from different autoencoder models
trained on the celebA dataset (Ziwei Liu and Tang, 2015).
1st row: Input image. 2nd row: Reconstruction from VAE.
3rd row: Reconstruction from VAE trained with discrimina-
tor distance metric. 4th row: Reconstruction with VAE model
trained with discriminator distance metric that is addition-
ally balanced with the GAN objective function. (Larsen, Søn-

derby, and Winther, 2015).

14 Chapter 2. Context

2.5 Other Techniques For Reconstructing Video

Figure 1.1 in the previous chapter illustrates the work by Nishimoto et al.
(2011) for reconstructing video of what people are seeing fMRI data. This
is not reconstructing videos directly, but is still worth noting. They have
a bayesian framework that encodes voxel responses of brain blood-flow in-
formation, semantic information recorded from the visual processing parts
of the brain (occipital cortex anterior) and image priors from the training
images shown to subjects. In testing they then use voxel responses and the
semantic information ascertained from the fMRI to approximately recon-
struct the video that the subject is watching. This technique is not using a
artificial neural network, but rather hand-engineered image filters.

Casey and Grierson (2007) present a system for real-time matching of an au-
dio input stream to a database of continuous audio or video. They perform
nearest neighbour searching on variable-length sequences of audio features,
allowing real time reconstruction of an audio stream. In addition to this,
they describe an application called REMIX-TV where both the audio and
video of a film corpus is analysed, and video can be new video sequences
can be reconstructed using correlated audio features from an audio-stream.
Grierson (2009) develops on this work with PLUNDERMATICS with more so-
phisticated methods for feature extraction, segmentation and filtering. Au-
dio onset-detection, motion-based shot boundary detection and matched fil-
tering are all used to enable audiovisual segmentation. Allowing for various
real-time audiovisual interaction technologies.

Mital, Grierson, and Smith (2013) extend this approach further to synthe-
sis a target image using a corpus of images. The image is synthesised in
fragments that are matched from the database extracted from the corpus
based on shape and colour similarity. Adjusting the parameters of the syn-
thesis process can result in aesthetic stylisations associated with Impression-
ist, Cubist, and Abstract Expressionist paintings. The fragment matching is
performed using nearest neighbour.

FIGURE 2.10: Corpus-based visual synthesis: an approach
for artistic stylisation. Results from Mital, Grierson, and
Smith (2013) reconstructing videos from a corpus of source
images. In this case a clip from Akira Kurosawa’s "Dreams"
is reconstructed using Vann Gogh’s "Langlois Bridge at Arles"
as the corpus. Left: Input video. Right: Reconstructed video.

15

Chapter 3

Research Questions

3.1 Aim

The aim for this project is to implement the most sophisticated existing au-
toencoder model for producing images; which is capable of modelling a wide
distribution of natural images, therefore being the most suitable model for
modelling the distribution of images (individual frames) of any given video.
With the explicit intent of using these models to recreate the videos used to
train the autoencoder - by autoencoding every frame and reconstructing the
whole video in the original sequence - and autoencoding and reconstructing
other videos that the models have not been trained on. The artistic moti-
vation for using autoencoders to model and reproduce individual films is
outlined in section 3.3. The technical challenges facing this task are outline
in the next section.

3.2 Technical Challenges

In the aim I stated that I wanted to implement the most sophisticated autoen-
coder model that is flexible enough to model a wide distribution of natural
images. Therefore I have chosen to implement the model of autoencoding
with a learned similarity metric (Larsen, Sønderby, and Winther, 2015 - see
section 2.4.1). This has many advantages: it can be modelled as a convo-
lutional generative network, the best available model for natural images; it
uses a third - discriminator - network that learns to discriminate from real
images and generated images, that can learn to model and distinguish im-
age style, and uses this network to measure reconstruction error in a more
sophisticated way than the traditional pixel-wise euclidean distance.

Implementing this model alone is a substantial technical challenge. I have
chosen to do this in Google’s recently released machine learning framework
Tensorflow (Abadi et al., 2015), which is still in relatively early stages of
development. Training models with adverserial architectures is also notori-
ously difficult (Goodfellow et al., 2014), the rate of learning for each net-
work must be finely balanced, in order for all the networks to learn and
develop at the same rate. When building the model, it is also challenging to
optimise for efficiency, while attempting to optimise the aesthetic quality of
the results from the model.

16 Chapter 3. Research Questions

The specific challenge to modelling video frames - as opposed to modelling
a dataset one classification of image object all aligned in the centre of the
image - is that there is a wide variety of composition regarding lighting and
configuration of objects in a scene. This variety will certainly be a challenge
for the model to represent (one which is interesting to explore artistically),
but another challenge is that a lot of the frames in a film are very similar,
say the camera being fixed on one actors face for an extended monologue.
Balancing the models capability to represent a large variety of scenes, while
also representing fine-tuned differences between vert similar frames will be
a unique challenge facing this project.

Ideally I would be reconstructing video frames in the highest resolution pos-
sible, unfortunately, however, the limitations of memory available on mod-
ern GPU’s, and the time taken to train these models, restricts the resolution
that these generative models are able to represent. The standard resolu-
tion for the current state of the art models (such as DCGAN - section 2.3.2)
is 64x64 pixels. For the reconstruction of video, it is obviously preferable
to model images that are in a non-square aspect ratio. I will also pursue
modelling images at a high a resolution as possible within the practical lim-
itations of physical memory and training time.

3.3 Artistic Motivation

One of the fundamental goals of artificial intelligence - dating back to the
work of Alan Turing (1950) - is to build machines that can think like hu-
mans. This is a milestone that has yet been realised, despite human levels of
performance being achieved and exceeded in certain tasks. One of the crit-
icisms of traditional approaches in AI is that they were processing human-
defined symbolic representations, rather than processing real world data.
One of the great successes of deep learning is the development of general
purpose algorithms that can process many forms of raw real-world data. It
is telling that Google DeepMind - in their pursuit of true artificial general in-
telligence - are training their AI systems in increasingly complex interactive
virtual worlds1. The push toward developing systems that can negotiate in-
creasingly complex virtual worlds - and ultimately the real world - is almost
certainly influenced by the theory of embodied cognition.

Embodiment and enactivism are almost certainly the best frameworks within
which we can understand the mind and the mechanics of perception (Noe,
2004), and may ultimately lead to the development of true artificial gen-
eral intelligence. However, these are only theories of cognition, and other
theories of cognition can be modelled - at least allegorically – given the im-
plicit assumptions made about how an agent is structured and the way in
which it interacts with its environment. In particular, disembodied models

1DeepMind made their first major breaktrough with an general purpose AI system that
could learn to play many different ATARI games without any prior knowledge of the game
(Mnih et al., 2015). They have now developed a 3D maze environment which can be contin-
ually modified to add tasks of ever increasing complexity (Mnih et al., 2016).

3.3. Artistic Motivation 17

of cognition such as Cartesian dualism - which holds that the mind is a non-
physical and therefore, non-spatial substance (Descartes, 1967 [1641]) - can
be explored.

The visual model of the modern era, which can be associated with the Re-
naissance notions of perspective in the visual arts, and the Cartesian idea
of subjective rationality in philosophy; combined, these are known as Carte-
sian perspectivalism, which as Martin Jay (1988) argues, is the prevalent
scopic regime of modernity. The ability to represent the world mathemat-
ically as projected onto a flat plane, has dominated peoples understanding
of the world since the Renaissance. This theory of mind, combined with the
use of the camera obscura by artists in reproducing images, ultimately let to
the development of the photographic camera. Ironically, this disembodied
theory of perception gradually had to be discarded to take into account the
physiology of vision, i.e. the physical and chemical processes needed to fix
images (Gere, 2015).

While completely disembodied perception had to be discarded to take ac-
count for the physical realities of image making. The fundamental charac-
teristics of Cartesian perspectivalism (flat, rectilinear, monoscopic images -
as opposed to the stereoscopic, concave, saccadic nature of human vision)
continued to dominate the majority of mass media through the 20th century
and through to this day. It is only recently, through advances in virtual re-
ality, augmented reality and 360-degree video, that we are starting to see
a shift away from media that had inherited the characteristics of Cartesian
perspectivalism.

Thus, for a project that is trying to expose the phenomenology of disem-
bodied artificial perception, it is fitting to train it on media that indirectly
inherits so much from the Cartesian ideas of subjective rationality. In ad-
dition to this, there could not be a more apt film to explore these themes
with than Blade Runner (1982). The Ridley Scott adaption of the Phillp K.
Dick novel Do Androids Dream of Electric Sheep? (1982 [1968]), which was
one of the first novels to explore the themes of artificial subjectivity, and
which repeatedly depicts eyes, photographs and other symbols alluding to
perception.

The other film chosen to model for this project is A Scanner Darkly (2006) -
another adaption of a Phillp K. Dick novel (2011 [1977]). This story also ex-
plores themes of the nature of reality, and is particularly interesting for being
reconstructed with a neural network as every frame of the film has already
been reconstructed (hand traced over the original film) by an animator.

19

Chapter 4

Method

4.1 Model Overview

x

z

x̄ real/generated

Enc Dec

Dis

FIGURE 4.1: Overview of autoencoder model with discrimi-
nator network.

The model consists of three convolutional neural networks: the encoder
Enc, the decoder Dec, and the discriminator Dis. The encoder Enc en-
coders a data sample x into a latent representation z. The decoder Dec de-
codes the latent representation back into data space to produce a generated
sample x̄. The encoder Enc and decoder Dec constitute the autoencoder.

z ∼ Enc(x) = q(z|x), x̄ ∼ Dec(z) = p(x|z) (4.1)

The discriminator Dis networks assigns probability y = Dis(x) ∈ [0, 1] that
x is a real data sample and probability 1−y that x̄ and xp are generated data
samples. The GAN objective of assigning the best possible discrimination be-
tween real and generated data samples is used the train the discriminator
network Dec. The covariance between the discriminators Dec response to
the real data sample x and reconstructed sample x̄ is used as the reconstruc-
tion error used to train the encoder Enc and decoder Dec. A full description
of the training procedure and various objective functions is detailed in sec-
tion 4.3.

The model is trained using batch normalisation with a batch size of 12,
significantly smaller than the batch size of 64 described by Larsen, Søn-
derby, and Winther (2015) (the learned similarity autoencoding paper). This
is because those models were trained on images of size 64x64, whereas
this model is trained on images of size 256x144. Therefore the batch size
had to be reduced for the model to be within the memory restriction of
the GPU. The model is trained with random mini-batches of frames from a

20 Chapter 4. Method

film (the training dataset) that have been scaled to 256x144. Once trained,
the model processes mini-batches of video frames in order, and the recon-
structed frames x̄ are resequenced into a video using FFmpeg (Bellard, Nie-
dermayer, et al., 2012). The model was implemented in Python using Google’s
machine learning framework TensorFlow (Abadi et al., 2015).

The image resolution of 256x144 was chosen as it was the largest resolution
at a 16:9 aspect ratio that could be performed with a reasonable mini-batch
size for batch normalisation. The aspect ratio of 16:9 was chosen as it is
the standard aspect ratio for online video. The film Blade Runner was filmed
at an aspect ratio of 2.35:1, the standard for widescreen cinema. As this is
wider than 16:9, regrettably the frames had to be cropped to a 16:9 aspect
ratio. In addition to this, the 2.35:1 aspect ratio does not scale well to
dimensions of small integers needed to model images at high level layers in
convolutional neural networks.

4.2 Network Architecture

The model consists of three convolutional neural networks. The encoder
network Enc and the discriminator network Dis take a 4th-order Tensor of
size 256x144x3x12 as input, with the final layer of the decoder network
Dec being the same dimensions. The final layer of the decoder network
Dec being the same dimensions as the images in the training dataset, which
have a resolution of 256x144 and have 3 colour channels: red, green and
blue (RGB). The fourth dimension of the Tensor accounts for the fact that the
model is being trained using batch normalisation in mini-batches of 12. All
of the networks share the weight parameters and and bias parameters across
the 4th dimension spanning the size of the mini-batch. Therefore the model
is effectively a network to auto-encode 3rd-order Tensors, i.e. modelling
single images. The dimension of latent variables z is 200, smaller than the
2048 described by Larsen, Sønderby, and Winther (2015).

4.2.1 Encoder Network

The encoder network Enc has five layers. It takes as input a mini-batch of
data samples x, 4th-order Tensor of size 256x144x3x12. The first four layers
are convolutional layers and the final layer represents the latent representa-
tion z prior to it being a function of noise ε as in the variational autoencoder
re-parameterisation criterion (see section 2.2.2). Therefore the final layer
of the encoder has two outputs, µ and σ, z is ascertained by the function
z = µ+ σε.

The four convolutional layers use strided convolutions (as opposed to the
convolutions and pooling used in traditional conv-nets), using a convolution
filter size of 5x5 and strides of 2 in both the x and y directions. As strides of
2 are being used, the x and y dimensions are half of the previous layer for
each convolutional layer, reducing the x and y dimensions from the input
size of 256x144 to a size of 16x9 in the last convolutional layer. The num-
ber of convolutional filters in the first convolutional layer is 80, this number

4.2. Network Architecture 21

doubles in each layer with the last layer having 640 convolutional filters.
The activation function used in the four convolution layers is the leaky rec-
tified linear unit (leakyReLU, full description in section 4.2.4). This differs
from the model described by Larsen, Sønderby, and Winther (2015) which
uses rectified linear units in all convolutional layers.

The final convolutional layer in the encoder network Enc is reshaped (flat-
tened) from a 4th-order Tensor of size 16x9x640x12 to a linear (ignoring
the batch depth) 2nd-order Tensor of size 92160x12. The figure 92160 being
the sum 16 × 9 × 640. The final layer in the encoder network Enc is fully
connected to the flattened convolutional layer. The final layer is a 2nd-order
Tensor of size 200x12, 200 being the dimension of latent variables z. The ac-
tivation function used in the final layer is the tanh function1, this was found
to work best in practice in this implementation. This differs from the ReLU
activation function used in the final layer described by Larsen, Sønderby,
and Winther (2015).

Architecture of encoder network
Layer 1st 2nd 3rd 4th Layer Type Activation Function BNorm
Input 256 114 3 12 Sample x - -
1 128 72 80 12 Conv ↓ LeakyReLU BNorm
2 64 36 160 12 Conv ↓ LeakyReLU BNorm
3 62 18 320 12 Conv ↓ LeakyReLU BNorm
4 16 9 640 12 Conv ↓ LeakyReLU BNorm
5 200 12 - - Fully Conn tanh -

FIGURE 4.2: Table 1. Architecture of encoder network Enc
including input data sample layer. ↓ represents convolu-
tional down-sampling with strided convolutions. The net-
work trained with batch normalisation with a batch size of

12.

4.2.2 Decoder Network

The decoder network Dec has five layers. The input is the latent represen-
tation z a 2nd-order Tensor of dimensions 200x12, with the latent represen-
tation z having a dimension of 200. This is projected (as this is a matrix
multiplication this is essentially the same as being fully connected) onto a
linear 2nd-order Tensor of dimensions 92160x12, that is reshaped to a 4th-
order Tensor of dimensions 16x9x640x12. This first layer is used as the start
of the convolution stack. This is the same procedure as is described for the
generator in the DCGAN model (Radford, Metz, and Chintala, 2015).

The next four layers are fractially-strided transposed convolutions2. The x
and y dimensions of these layers double at each stage with the final layer

1In the first build of this model, no activation function was used in the final layer. This
led to the KL-divergence exploding at an unpredictable point, causing extremely large error
derivatives being propagated through the encoder Enc, effectively stopping learning and
eventually eroding all of the effective weights learned from training.

2Commonly reffered to as deconvolution in machine learning literature (Zeiler et al.,
2010), but this is actually the transpose of a convolution, rather than an actual deconvolu-
tion.

22 Chapter 4. Method

being the dimension 256x144x3x12, the same dimension as the data sam-
ples. The first four layers in the network use rectified linear units as their
activation functions (ReLU, full description in section 4.2.4), this is the same
activation function used by Larsen, Sønderby, and Winther (2015) in their
decoder. The final output layer uses the Tanh as the activation function
which was shown by Radford, Metz, and Chintala (2015) to learn more
quickly and to saturate and cover the colour space of the training distribu-
tion. Sampling the final output layer produces the mini-batch of generated
data samples x̄ and xp.

Architecture of decoder network
Layer 1st 2nd 3rd 4th Layer Type Activation Function BNorm
Input 200 12 - - Latent Rep z, zp - -
1 16 9 640 12 Fully Conn ReLU BNorm
2 32 18 320 12 Conv ↑ ReLU BNorm
3 64 36 180 12 Conv ↑ ReLU BNorm
4 128 72 80 12 Conv ↑ ReLU BNorm
5 256 144 3 12 Conv ↑ Tanh -

FIGURE 4.3: Table 2. Architecture of decoder network Dec
including input latent representation z. ↑ represents con-
volutional up-sampling with fractional-strided convolutions.
The last layer 5 is the output and is sampled as an images.
The network trained with batch normalisation with a batch

size of 12.

4.2.3 Discriminator Network

The discriminator network Dec takes as its input a mini-batch of either real
data samples x, or generated data samples x̄ or xp. The architecture of the
discriminator network is almost identical to that of the encoder network Enc
(see section 4.2.1), except the final convolutional layer is simply flattened
and fed into a single sigmoid activation function, which assigns probability
to the data sample being real or fake.

Architecture of discriminator network
Layer 1st 2nd 3rd 4th Layer Type Activation Function BNorm
Input 256 114 3 12 Sample x, x̄, xp - -
1 128 72 80 12 Conv ↓ LeakyReLU BNorm
2 64 36 160 12 Conv ↓ LeakyReLU BNorm
3 62 18 320 12 Conv ↓ LeakyReLU BNorm
4 16 9 640 12 Conv ↓ LeakyReLU BNorm
5 1 12 - - Fully Conn sigmoid -

FIGURE 4.4: Table 3. Architecture of discriminator network
Dis including input data sample layer. ↓ represents convo-
lutional down-sampling with strided convolutions. The final
convolutional layer is flattened and fed into a single sigmoid
output. The network trained with batch normalisation with

a batch size of 12.

4.2. Network Architecture 23

4.2.4 Activation Functions

There are four activation functions used in this model: sigmoid, Tanh, ReLU
and LeakyReLU. Definitions of ReLU and LeakyReLU are given in the follow-
ing subsections. The sigmoid and Tanh activation functions are standard
bounded nonlinear activation functions used in machine learning. The out-
put of a node is calculated as the weighted sum of the inputs w, passed
through one of these activation functions.

The sigmoid function is given as:

S(w) =
1

1 + ew
(4.2)

The Tanh function is given as:

tanh(w) =
1− e−2w

1 + e−2w
(4.3)

Rectified Linear Unit

The rectified linear unit (ReLU) is defined as:

f(w) = max(0, w) (4.4)

It was first proposed by Nair and Hinton (2010) and is very common in deep
learning, especially convolutional neural networks because of its efficiency.
It is also argued to be more biological plausible that complex non-linear
functions (Glorot, Bordes, and Bengio, 2011). In this model it is used in the
most of the convolutional layers of the decoder network Dec.

Leaky Rectified Linear Unit

The leaky rectified linear unit (LeakyReLU) is very similar to the rectified
linear unit but allows a small, non-zero gradient when the unit is not active.
It was first proposed by Maas, Hannun, and Ng (2013). The function is
defined as:

f(w) =

{
w, if w > 0
0.01, if w ≤ 0

(4.5)

In the model, this activation function is used in the convolutional layers of
the encoder network Enc and discriminator network Dis.

24 Chapter 4. Method

4.3 Objective Functions

x

z zp

x̄
xp LGAN

LKL

LDislike

Enc Dec

Dis

FIGURE 4.5: Overview of autoencoder model showing flow
of data and points at which objective functions are calcu-

lated.

There are three objective functions: LKL, LGAN and LDislike that are calcu-
lated in the training procedure, these three objective functions are used in
different in different combinations and propagated as the error derivatives
through the three networks Enc, Dec and Dis.

4.3.1 Kullback-Leibler Divergence

The objective function LKL is the Kullback-Leibler divergence that is used
to impose a strict prior on the distribution over the latent variables p(z), the
is used as one of the components of the objective function in the training
criterion of a variational autoencoder (see section 2.2.2). In this case the
prior is a centred isotropic multivariate Gaussian:

p(z) = N (0, I) (4.6)

The Kullback-Leibler divergence measures the difference between the prior
distribution of latent variables p(z) and the approximate posterior distribu-
tion of latent variables q(z|x) generated by the encoder network Enc given
data sample x.

LKL = DKL(q(z|x)||p(z)) (4.7)

Following the reparameterization trick described by Kingma and Welling
(2013), where the latent variable z is reparameterized as a deterministic
function of noise ε (see section 2.2.2), the Kullback-Leibler divergence is
calculated using the equation:

LKL =
1

2

N∑
i=1

1 + log(σ2i (x))− µ2i (x)− σ2i (x) (4.8)

4.3. Objective Functions 25

4.3.2 GAN Objective

The objective function LGAN is the GAN objective (generative adversarial
networks, see section 2.3). The discriminator network Dis observes real
data samples x and generated data samples x̄ and xp. The GAN objective is
for the discriminator network to learn the best possible binary classifier to
discriminate between real and generated data samples. This helps force the
decoder Dec to fit the true data distribution. This is calculated by maximis-
ing the binary cross entropy for real data samples and minimising the binary
cross entropy for generated data samples:

LGAN = log(Dis(x)) + log(1−Dis(x̄)) + log(1−Dis(xp)) (4.9)

4.3.3 Discriminator Covariance

The objective function LDislike is the covariance between the discriminators re-
sponse to real data samples Dis(x) and reconstructed data samples Dis(x̄).
This objective function is used to replace the pixel-wise reconstruction cost
that is used in traditional autoencoders. This objective function is the learned
similarity measure (Larsen, Sønderby, and Winther, 2015) that drastically
improves the performance of modelling natural images compared to varia-
tional autoencoders.

To calculate LDislike, the hidden representation of layer l of the discriminator
network given a real data sample Disl(x) is compared to the discrinators
response given the reconstructed data sample Disl(x̄). This is done using a
Gaussian observation model for Disl(x) with a mean of Disl(x̄) and identity
covariance3:

p(Disl(x)|z) = N (Disl(x)|Disl(x̄), I) (4.10)

In this implementation the observation model is performed for the 4 convo-
lutional layers of the discriminator network Dis but not the final sigmoid
layer. The mean of these values is taken by summing them and dividing by
the number of observed layers n, which in this case is 4:

LDislike =
1

n

n∑
l=1

N (Disl(x)|Disl(x̄), I) (4.11)

Calculating the mean of the covariance of several layers is an extension to
the method described by Larsen, Sønderby, and Winther (2015) and is per-
formed as it improves the capability of the decoder Dec to represent the
dataset over multiple levels of representation.

3In practice this is simply calculated as being the mean squared error (MSE).

26 Chapter 4. Method

4.4 Respective Error Gradients

Each of three networks in the model is trained with different combinations
of the three objective functions. Once the network parameters θEnc, θDec
and θDis have been initialised, a forward pass of the network is performed
from a mini-batch x. In the backward pass the parameters of the networks
are updated according to the respective error gradients. The parameters of
the discriminator θDis is simply updated using the GAN objective function:

θDis ← ∇θDis(LGAN) (4.12)

The parameters of the encoder network θEnc are updated using the sum of
the KL-divergence LKL and the discriminator covariance LDislike:

θEnc ← ∇θEnc(LKL + LDislike) (4.13)

The parameters of the decoder network θDec are updated using the weighted
combination of the discriminator covariance LDislike and the GAN objective
LGAN . This is weighted using the parameter γ which in the case of this
implementation a value of 2.5 was found to be the most stable. Larsen,
Sønderby, and Winther (2015) interpret this is as weighting the content and
style of the generated samples:

θDec ← ∇θDec(γL
Dis
like − LGAN) (4.14)

4.5 Training Procedure

To begin with, the parameters for the three networks θEnc, θDec and θDis
are initialised. The dataset F (all of the frames from a film) is loaded into
the software. As the all the frames of the dataset F are in sequence, if you
were to sample mini-batches in order from this dataset, the model would
effectively be learning an averaged image over the number frames in the
batch size. Therefore the frames in the dataset F are randomly shuffled
to give the randomised dataset Fr. Mini-batches of data samples x are se-
quentially sampled from the dataset Fr, performing a forward and backward
pass through the model until one epoch is complete. Then parameters may
be changed (see Fine Tuning - 4.5.1) and more epochs of the dataset Fr can
be performed.

A mini-batch of real data samples x is loaded into the model, the encoder
Enc encodes x into a latent representation z. The objective function LKL
is obtained by calculating the KL-divergence of the approximate posterior
z ∼ q(z|x) from the prior distribution p(z) = N (0, I). The decoder Dec
reconstructs the mini-batch of data samples from the latent representation
z to produce the reconstructed data samples x̄. In addition to this random
latent variables are sampled from the prior distribution zp and the decoder
Dec decodes zp to create the generated data samples xp. The discriminator
Dis processes the real data samples x and the generated samples x̄ and

4.5. Training Procedure 27

xp. The binary cross entropy of the decoders response to the data samples
is calculated and combined to calculate the GAN objective function LGAN .
The covariance of the four hidden convolutional layers in the discriminator
response to the real data samples x and reconstructed data samples x̄ is
calculated to ascertain the image similarity objective function LDislike. The
parameters for the three networks θEnc, θDec and θDis are then updated
using their respective error gradients (section 4.4) using the Adam optimiser
(Kingma and Ba, 2014) with a momentum of 0.5 and a learning rate of
0.0002. This is repeated until every mini-batch from the randomised dataset
Fr has been processed (1 epoch).

Algorithm 1 Training procedure

1: F ← Load dataset of film frames
2: Fr ← Randomise order of frames
3: θEnc, θDec and θDis ← initialise network parameters
4: repeat
5: x← mini-batch of data samples from Fr
6: z ← Enc(x)
7: LKL ← DKL(q(z|x)||p(z))
8: x̄← Dec(z)
9: zp ← samples from prior p(z) = N (0, I)

10: xp ← Dec(zp)
11: LGAN ← log(Dis(x)) + log(1−Dis(x̄)) + log(1−Dis(xp))
12: LDislike ←

1
n

∑n
l=1N (Disl(x)|Disl(x̄), I)

13: Update network parameters according to respective gradients:
14: θEnc ← ∇θEnc(LKL + LDislike)
15: θDec ← ∇θDec(γLDislike − LGAN)
16: θDis ← ∇θDis(LGAN)
17: until The defined number of epochs of Fr is completed

4.5.1 Fine Tuning

After training using the algorithm described, then running the network and
re-sequencing the film the network was trained on. It was discovered that
the model collapses large periods of similar frames (i.e a fixed camera shot
of a character talking) into one representation; usually the most common
frame (thus giving long sequences of an actors face not blinking or making
facial gestures). This is unsurprising as the distribution of a dataset F of film
frames is likely to be a lot more skewed and concentrated on a lot of very
similar frames, than say a hand picked evenly distributed dataset of images
of one subject matter.

One possible cause of this problem (similar frames collapsing into one rep-
resentation) was that the magnitude of the noise ε - which the latent rep-
resentation z is a deterministic function of: z = µ + σε - was too high. In
the original build ε was sampled from a normal distribution with a mean µ
of 0 and a standard deviation σ of 1: ε ∼ N (0, 1). Results were improved
by running the network with noise ε having a standard deviation σ of 0.25:
ε ∼ N (0, 0.252).

28 Chapter 4. Method

Results were improved further by gradually reducing the standard deviation
σ of the noise ε after each epoch. This allows the encoder Enc to efficiently
shape and manipulate the distribution of latent variables z in the early stages
of training, while allowing the decoder Dec to learn fine-grained differences
between similar frames in the latter stages of training. Reducing to propen-
sity for the system to collapse long sequences into one representation, en-
suring there is continuous variation in the resequenced video.

This addition to the training procedure is one of the novel contributions of
this project.

4.6 Running The Model

Once the model has been trained, sequential mini-batches x from the or-
dered training dataset F or an alternative dataset of sequentially ordered
video frames Falt can be used. The encoder Enc encodes the frames into
the latent representation z. In this case no noise ε is added to the latent
representation z4, although a very small amount (with a standard deviation
σ of something like 0.0001) may be added to inject some variation to the
reconstructed video sequence. The decoder Dec decodes the latent repre-
sentation z to produce the reconstructed frames x̄. The discriminator Dis is
not used when the model is not training.

Once one epoch of the ordered dataset F or Falt is complete, the complete
set of reconstructed outputs are saved into an external directory as the new
ordered and reconstructed set F̄ or F̄alt. These are then resequenced into a
video using FFmpeg (Bellard, Niedermayer, et al., 2012).

4This is performed by setting the standard deviation σ of noise ε to 0, thus z = µ + σε
simply equals µ with is the same as the encoder Enc output simply being z.

29

Chapter 5

Results

This section gives examples of samples during the training of the model
trained on Blade Runner (5.1) and A Scanner Darkly (5.2) and their final
reconstructed video sequences. Section 5.3 show samples from reconstruc-
tions of other videos ran the trained models. Links to download all of the
reconstructed videos can be found in Appendix A.

5.1 Blade Runner

The model was trained on the film Blade Runner (1982) for 6 epochs. The
training regime using the fine tuning algorithm (gradually reducing noise ε)
was as follows:

Parameters for training model on Blade Runner
Epoch Standard Deviation σ of Noise ε
1 0.25
2 0.25
3 0.01
4 0.01
5 0.05
6 0.05

The sides of the film Blade Runner was cropped to give the correct aspect
ratio 16:9. The credit sequences at the beginning and end of the film were
trimmed from the film, as in early experiments it was apparent that mod-
elling the distribution of images of high contrast detailed text alongside var-
ied natural images was putting too much strain on the model. Results were
significantly improved by removing the credit sequences from the training
dataset and this also stabilised training.

The trimmed film was converted into a dataset of still images at the res-
olution 256x144 using FFmpeg (Bellard, Niedermayer, et al., 2012). The
trimmed film (1:h52m) resulted in a dataset with 157224 individual frames.
With a batch size of 12 this gives 13102 mini-batches to be processed for one
epoch.

It takes about 13 seconds to process one mini-batch during training on a 4GB
NVIDIA GTX 960 graphics card. So to train for 6 epochs of Blade Runner took
approximately 283 hours or 11 days and 20 hours.

30 Chapter 5. Results

5.1.1 Samples From Training

The model exports the mini-batch x, the reconstructed samples x̄ and the
generated samples xp (from random latent variables zp) at regular intervals.
Examples of these samples over the course of the training are given in this
section.

1st Epoch

FIGURE 5.1: Samples from training on Blade Runner after 1
epoch. Top: mini-batch of training data x. Middle: recon-

structed samples x̄. Bottom: random samples xp.

5.1. Blade Runner 31

2nd Epoch

FIGURE 5.2: Samples from training on Blade Runner after 2
epochs. Top: mini-batch of training data x. Middle: recon-

structed samples x̄. Bottom: random samples xp.

32 Chapter 5. Results

3rd Epoch

FIGURE 5.3: Samples from training on Blade Runner after 3
epochs. Top: mini-batch of training data x. Middle: recon-

structed samples x̄. Bottom: random samples xp.

5.1. Blade Runner 33

4th Epoch

FIGURE 5.4: Samples from training on Blade Runner after 4
epochs. Top: mini-batch of training data x. Middle: recon-

structed samples x̄. Bottom: random samples xp.

34 Chapter 5. Results

5th Epoch

FIGURE 5.5: Samples from training on Blade Runner after 5
epochs. Top: mini-batch of training data x. Middle: recon-

structed samples x̄. Bottom: random samples xp.

5.1. Blade Runner 35

6th Epoch

FIGURE 5.6: Samples from training on Blade Runner after 6
epochs. Top: mini-batch of training data x. Middle: recon-

structed samples x̄. Bottom: random samples xp.

36 Chapter 5. Results

5.1.2 Reconstructed Film

After training, one epoch through the film Blade Runner is performed with-
out noise ε and without training. It takes about 2 seconds to process one
mini-batch when not training. Therefore it took approximately 7 hours 30
minutes to reconstruct every frame in the film.

FIGURE 5.7: Real and generated samples from the first half
of Blade Runner in steps of 4000 frames. Alternating real

then reconstructed samples.

5.1. Blade Runner 37

FIGURE 5.8: Real and generated samples from the second
half of Blade Runner in steps of 4000 frames. Alternating

real then reconstructed samples.

38 Chapter 5. Results

5.2 A Scanner Darkly

The model was also trained on the film A Scanner Darkly (2006) for 6
epochs. The training regime using the fine tuning algorithm (gradually re-
ducing noise ε) was as follows:

Parameters for training model on A Scanner Darkly
Epoch Standard Deviation σ of Noise ε
1 0.25
2 0.1
3 0.1
4 0.05
5 0.05
6 0.05

Unlike Blade Runner, A Scanner Darkly was filmed at a aspect ratio of 16:9.
The credit sequences at the end of the film were trimmed from the film.

The trimmed film was converted into a dataset of still images at the res-
olution 256x144 using FFmpeg (Bellard, Niedermayer, et al., 2012). The
trimmed film (1:h35m) resulted in a dataset with 137871 individual frames.
With a batch size of 12 this gives 11489 mini-batches to be processed for one
epoch.

It takes about 13 seconds to process one mini-batch during training on a
4GB NVIDIA GTX 960 graphics card. So to train for 6 epochs of A Scanner
Darkly took approximately 249 hours or 10 days and 9 hours.

5.2. A Scanner Darkly 39

5.2.1 Samples From Training

The model exports the mini-batch x, the reconstructed samples x̄ and the
generated samples xp from random latent variables zp at regular intervals.
Examples of these samples over the course of the training are given in this
section.

1st Epoch

FIGURE 5.9: Samples from training on A Scanner Darkly af-
ter 1 epoch. Top: mini-batch of training data x. Middle:

reconstructed samples x̄. Bottom: random samples xp.

40 Chapter 5. Results

2nd Epoch

FIGURE 5.10: Samples from training on A Scanner Darkly
after 2 epochs. Top: mini-batch of training data x. Middle:

reconstructed samples x̄. Bottom: random samples xp.

5.2. A Scanner Darkly 41

3rd Epoch

FIGURE 5.11: Samples from training on A Scanner Darkly
after 3 epochs. Top: mini-batch of training data x. Middle:

reconstructed samples x̄. Bottom: random samples xp.

42 Chapter 5. Results

4th Epoch

FIGURE 5.12: Samples from training on A Scanner Darkly
after 4 epochs. Top: mini-batch of training data x. Middle:

reconstructed samples x̄. Bottom: random samples xp.

5.2. A Scanner Darkly 43

5th Epoch

FIGURE 5.13: Samples from training on A Scanner Darkly
after 5 epochs. Top: mini-batch of training data x. Middle:

reconstructed samples x̄. Bottom: random samples xp.

44 Chapter 5. Results

6th Epoch

FIGURE 5.14: Samples from training on A Scanner Darkly
after 6 epochs. Top: mini-batch of training data x. Middle:

reconstructed samples x̄. Bottom: random samples xp.

5.2. A Scanner Darkly 45

5.2.2 Reconstructed Film

After training, one epoch through the film A Scanner Darkly is performed
without noise ε and without training. It takes about 2 seconds to process
one mini-batch when not training. Therefore it took approximately 6 hours
38 minutes to reconstruct every frame in the film.

FIGURE 5.15: Real and generated samples from the first half
of A Scanner Darkly in steps of 4000 frames. Alternating real

then reconstructed samples.

46 Chapter 5. Results

FIGURE 5.16: Real and generated samples from the second
half of A Scanner Darkly in steps of 4000 frames. Alternating

real then reconstructed samples.

5.3. Feeding Other Videos Through The Models 47

5.3 Feeding Other Videos Through The Models

As well as reconstructing the training videos, one of the goals of this project
was to experiment with feeding other video through the models to see how
this model fairs in generating new material, and to explore how the model
reinterprets other films. The next two sub-sections show Blade Runner ran
through A Scanner Darkly and A Scanner Darkly ran through Blade Runner
respectively. The following two sub-sections show two further videos ran
through the model trained on Blade Runner.

5.3.1 Blade Runner Through A Scanner Darkly

FIGURE 5.17: Real and generated samples from Blade Run-
ner ran through the model trained on A Scanner Darkly in
steps of 8000 frames. Alternating real then reconstructed

samples.

48 Chapter 5. Results

5.3.2 A Scanner Darkly Through Blade Runner

FIGURE 5.18: Real and generated samples from A Scanner
Darkly ran through the model trained on Blade Runner in
steps of 7500 frames. Alternating real then reconstructed

samples.

5.3. Feeding Other Videos Through The Models 49

5.3.3 1984 Apple Advert Through Blade Runner

The famous Apple 1984 Super Bowl advert that was made to introduce the
Macintosh was directed by Ridley Scott (1984) who also directed Blade Run-
ner (1982). It is believed that it was the success of Blade Runner that moti-
vated Steve Jobs (the former co-founder and CEO of Apple Computer Inc) to
commission Ridley Scott to direct the advert for a record breaking expense
(Gere, 2002, 2015). The visual aesthetic of the 1984 advert has a lot in
common with Blade Runner so it was a good choice for testing the model
with a video of a similar style.

FIGURE 5.19: Real and generated samples from the Rid-
ley Scott (1984) directed 1984 Apple Macintosh advert ran
through the model trained on Blade Runner in steps of 100

frames. Alternating real then reconstructed samples.

50 Chapter 5. Results

5.3.4 Matrix III Through Blade Runner

John Whitney was a pioneer of computer graphics and animation. From the
1960’s through to the 1990’s Whitney made ground breaking and influen-
tial computer generated animations. The film Matrix III (1972) was one in
a series of films that was demonstrating and exploring harmonic progres-
sion in animation. This film was chosen the run through the Blade Runner
model to see wether theses harmonic progressions would translate to the
reconstructed samples.

FIGURE 5.20: Real and generated samples from John Whit-
ney’s Matrix III (1972) ran through the model trained on
Blade Runner in steps of 1000 frames. Alternating real then

reconstructed samples.

51

Chapter 6

Evaluation

Assessing the effectiveness of generative models is difficult and problematic
for high resolution natural images. Theis, Oord, and Bethge (2015) give a
well-balanced account of the problems faced in trying to objective compare
the quality of generative models. Their recommendation is that in the case
of image synthesis, a subjective evaluation is the most appropriate means
for assessing the effectiveness of a generative model. As this model was
built to model high resolution non-square images1 I unfortunately did not
have time to restructure the model for smaller, square images in order to
make a direct comparison to other models by training on the same datasets.
I have however given a self contained qualitative assessment of the models
effectiveness in the following section. I also regret that I was not able to do a
systematic analysis of different configurations of training parameters, activa-
tion functions and optimisers; but due to the long times taken to train these
models (the best part of two weeks for both films), this was not possible
either.

The stated aim of this project however, was not necessarily to make the best
generative model - although I did set out to implement the best available
published model - but to take an existing state of the art model, implement
it, and to apply train it on film frames at the highest resolution possible with
currently available commercial technology. I feel that I largely achieved that
aim. In section 6.3 I reflect on the reconstructed films as artworks and the
potential for this method to become a new technique for experimental film
making. Section 6.2 reflects on some of the challenges in implementing the
model so that training was carried out in an efficient and stable manner.

6.1 Qualitative Assessment

Given that the current state of the art for generative models can only ef-
fectively model a restricted distribution of natural images (i.e. of class of
object from one perspective), and bearing in mind this model is represent-
ing much higher resolution images, this model does a reasonably good job
of modelling such a diverse set of images from the training data. The model
obviously does a much better job of reconstructing images from the train-
ing dataset than from other datasets; individual frames reconstructed from

1High resolution compared to state of the art published results from other generative
models; 256x144 compared to 64x64 (Radford, Metz, and Chintala, 2015; Larsen, Sønderby,
and Winther, 2015).

52 Chapter 6. Evaluation

films other than the training dataset are difficult to make out on their own,
but when resequenced into a video they are temporally coherent and make
interesting viewing. Results of reconstructing non-training dataset videos
would obviously be greatly improved by having a much bigger and more
diverse set of images in the training dataset but in turn this would remove a
lot of the artistic meaning from the videos, and any artistic style inherent in
the film that the model implicitly represents would be washed out as more
videos were added to the training dataset. Maybe the model could be pre-
trained on a very large, diverse set of training data from many films, then
finally pre-trained for a shorter time on one particular film - as Alex Graves
(2013) did with his handwriting generation model - but unfortunately this
could not be done because of the excessively long time required to train the
model on hundreds of hours of video.

6.1.1 Reconstructing the Test Dataset

The model does a reasonably good job at reconstructing most of the frames
from the films. The resequenced videos are coherent and can be followed
easily for the majority of their duration. The models do a good job of re-
constructing prolonged scenes that are static and have a high contrast, this
is not surprising as the model is effectively trained on frames from a static
prolonged scene many more times than scenes where the camera position
is moving. Traditionally this would be regarded as overfitting, but since the
model is intentionally trained on a skewed and unevenly distributed dataset
this is not a great cause for concern. The model struggles with dark, low-
contrast scenes; especially when there is one are where there is a lot of
variation frame to frame (i.e. an animated face that is moving), and curi-
ously the models are unable to reconstruct completely black frames (see fig-
ure 6.1) even though there are some examples in the training datasets (this
could surely be rectified by simply adding more black frames to the training
dataset). The model also struggles to reconstruct faces when there is a lot
of variation frame to frame, and has a tendency to collapse prologued static
shots where this is some variation into one single representation. These
limitations are described in detail the following sub-sections.

FIGURE 6.1: Failure of both models to reconstruct a com-
pletely black input. Left: Input. Middle: Reconstruction
with the Blade Runner model. Right: Reconstruction with

the A Scanner Darkly model.

Reconstructing Faces

Perhaps shortcomings in the reconstruction of faces are simply more notice-
able to the naked eye than the reconstruction of other kinds of scenes; but

6.1. Qualitative Assessment 53

this is an important limitation, given that a large proportion of the scenes
in these films are close-ups of people conversing. If the actors face is fixed
over a long period without much variation the model can represent it. But if
there is a lot of variation in a fixed shot - for instance if a character rotates
or moves their head (see figure 6.2) - the model seem to struggle.

FIGURE 6.2: Samples from Blade Runner showing the tran-
siting of the character Rachael rotating her head. Sampled
in increments of 14 frames. Top: Samples from the film.

Bottom: Reconstructed Samples.

This is a problem in the Blade Runner model but is even more pronounced
in the model trained on A Scanner Darkly (see figure 6.3). This problem
is probably exacerbated by the fact that all of the facial features are out-
lined (because every frame is traced by hand) and very high contrast. Thus
the model attempts to render high contrast outlined facial features, but the
variation and complexity of facial structures is too difficult for the model to
reproduce.

FIGURE 6.3: Samples from A Scanner Darkly showing the
transiting of the character Charles Freck changing facial ex-
pressions. Sampled in increments of 15 frames. Top: Sam-

ples from the film. Bottom: Reconstructed Samples.

Ultimately this is not that surprising. The objective function of the model
is skewed toward simply matching the spatial distribution of colour and
brightness in a given frame, not producing a convincing representation of
classification of object. The original learned similarity autoencoding paper
by Larsen, Sønderby, and Winther (2015) produced much better results of
faces (see figure 2.10) but they were training on a dataset of faces that were
all cropped, aligned and taken from the same head-on perspective. The only
known way to rectify this problem would be to combine a generative model
with spatial transformer networks (Jaderberg, Simonyan, Zisserman, et al.,
2015) that allow a model to be invariant to translation, scale, rotation and
warping. Rezende et al. (2016) demonstrated the power of combining spa-
tial transformer networks with a generative model (see figure ??), but this

54 Chapter 6. Evaluation

would require a radically different and more complex approach to the gen-
erative model and would probably not be suitable for modelling the frames
from an entire film as this approach is designed for one-shot generalisation
of one particular class of object representation.

Collapsing Representations

FIGURE 6.4: Samples from Blade Runner showing a long se-
quence in the film that has been collapsed into one repre-
sentation by the model. Sampled in increments of 75 frames
(3 seconds apart). Top: Samples from the film. Bottom:

Reconstructed Samples.

One of the shortcomings of the project that becomes apparent when the re-
constructed films are viewed in full, is that the model has a tendency to
collapse long sequences where the shot is static into one extended represen-
tation. This is obviously not a great problem when the sequence is just a shot
of a static landscape in the film, but the model quite often does this when
there is still some action in the scene. The model will either collapse the
scene into a representation where an actors motion is blurred out into some
kind of mean of their action, or sometimes just represents the most common
pose (i.e. the mode of their poses). This problem was particularly prevalent
in early experiments, but gradually reducing the amount of noise ε injected
into the latent representation z over the course of training (see Fine Tuning
- 4.5.1) greatly reduced the models tendency to do this2. In theory, this is
because if there is too much noise ε injected into the latent representation
z, it is impossible for the decoder to learn to model fine grained differences
between similar frames. The models were never trained without any noise
(this was a deliberate decision as training with noise is what allows varia-
tional autoencoders to learn so efficiently) but perhaps this might help in
the latter stages of fine-tuned training.

A potential solution to this problem would be to somehow alter the objective
function to deter the decoder from constructing the same representation for
slightly different frames, but it isn’t clear what the best way to do this would
be. Perhaps the discriminator would be given labels containing sequential

2Evidence of this can been seen in the last link to a video in Appendix A that shows
an early test which has not been trained with the fine tuning approach and tendency for
the model to collapse representations is even more extreme (there is however a lot of noise
in the video as that model was built without the ability to remove noise from the latent
representation when not training).

6.1. Qualitative Assessment 55

information, or that the image similarity objective function (see Discrimina-
tor Covariance - 4.3.3) would not only compare the similarity between the
real frame and reconstructed frame, but would compare previous and subse-
quent frames to asses whether the model is sufficiently modelling variation
frame to frame. This however, would require quite a radical rethinking of
the training procedure, and it is not immediately obvious how this would be
performed at the same time as batch normalisation.

6.1.2 Reconstructing Alternative Datasets

Not surprisingly, the model does not reconstruct other videos nearly as well
as it reconstructs the films used as the training datasets. It is difficult to
recognise what is being represented in any individual frame viewed alone,
but viewed along side the real frame the model is attempting to reconstruct
- it is obvious that the model is generating something that is somewhat sen-
sible. The resequenced videos are temporally coherent and it is possible to
get a vague sense of what might be going on. In addition to that the re-
constructed videos contain a lot of - albeit unintelligible - interesting and
complex structures that capture the cinematic style of the films they were
trained on (granted both Blade Runner and A Scanner Darkly are visually
very distinctive). In terms of representing style, this is not nearly as success-
ful as the recently published artistic style transfer for videos paper (Ruder,
Dosovitskiy, and Brox, 2016); but that method is not strictly a generative
model, and is only for transferring the style from one image onto a video,
not for modelling a large distribution of images.

56 Chapter 6. Evaluation

6.2 Efficiency and Stability

Regarding the efficiency of the implementation, it is quite difficult to as-
sess how efficient it is as there are only two implementations of the same
model, both implemented in frameworks I am unfamiliar with. Compar-
ing implementations would most likely just be comparing the efficiency of
the machine learning frameworks rather than the design of the implemen-
tations themselves. However, generally speaking TensorFlow does a good
job of implementing models efficiently. As a programmer, you define the
graph (model) in Python, then TensorFlow constructs an executes the graph
in well defined and efficient C++ backend. Training the model was made
more efficient when the optimiser was not sampling generated images (by
extracting the Tensors and converting them to NumPy arrays) after every
mini-batch, but only on regularly spaced intervals.

Getting the model to train in a consistent and stable manner was an incred-
ibly difficult and testing ordeal. Training generative adversarial networks is
a notoriously difficult thing to get right as the rate of learning for both the
generator and the discriminator need to be finely balanced so they learn in
step with each other. One of the recurring problems that plagued the devel-
opment of this implementation was that after a potentially very long time of
training well - like 8 hours for instance - one of the error gradients for one of
the three networks would suddenly explode to a very large number, wash-
ing away all of the nuanced weights the network had learned. The network
whose error gradient exploded would then never recover, effectively making
further training of that network and the other two networks redundant.

An early attempt to fix the exploding gradient problem was to clip the er-
ror gradients to a fixed range (i.e. 0.00000001 - 100), this improved the
stability of training, but ultimately did not rectify the problem3. This prob-
lem was rectified for the KL-divergence objective function LKL by using the
tanh activation function on the final layer of the encoder. For the GAN
loss LGAN however, the loss can still suddenly spike (when it gets every
real/generated prediction wrong, which is very unusual) and not recover.
When it did spike and didn’t recover, one of the problems was the GAN loss
was significantly higher than the learned similarity LDislike so the with the er-
ror gradients clipped, the decoder gradient ∇θDec(γLDislike − LGAN) becomes
zero and both networks stop learning. The only solution to this problem was
allow the decoder error gradient to be negative, while continuing to restrict
the encoder and discriminator error gradients to positive values. This is un-
fortunate because what ends up happening is that if the decoder suddenly
gets very good at fooling the discriminator, some of that learning immedi-
ately gets undone. However this was ultimately unavoidable as this was the
only way to get all networks to train in a harmonious, consistent and stable
manner.

3Clipping the values in the output of the discriminator to [0.00000001 - 1] prior to
performing the binary cross entropy did prevent the GAN objective function LGAN exploding
massively and causing a NaN error, as taking the log of 0 is not defined.

6.3. Artistic Evaluation 57

6.3 Artistic Evaluation

6.3.1 As A Method For Film-Making

Reconstructing videos that were not used as the training dataset certainly
yields interesting results. The reconstructed frames may not be recognisable
as being the same subject as the original samples, but when resequenced
the reconstruct videos are complex, coherent and fruitful in repeatedly sur-
prising ways. It can be safely assumed that with more training on much
bigger and more diverse datasets the results in reconstructing unseen video
samples would be improved. However when trained on solely one film, the
model personifies the aesthetic qualities that is inherent in the distribution
of images that make up one sole film, which is aesthetically and conceptually
meaningful in its own right.

6.3.2 As An Artwork

The videos reconstructed from the models that they were trained on are - in
my subjective opinion - very successful artworks. There are flaws to the re-
construction (which could probably be improved with more training and/or
small modifications to the training procedure), but from a conceptual and
aesthetic point of view these flaws are in no way problematic. In fact, they
help to expose the models mechanics, limitations and implicit assumptions.
The reconstruction of Blade Runner in particular, gives a great insight into
the phenomenology of the models subjective, artificial perception.

59

Chapter 7

Conclusion

Despite having spent the majority of this year planning to implement an
existing autoencoder model, and then to extend the model in a novel way
to either do sequence prediction or to model truly high resolution images;
I am still satisfied with the outcome of the project. This project is a novel
application of an autoencoder, and has the potential to be the basis for a lot
of exciting and creative work.

Prior to this year I had a very limited understanding of deep learning, I
would be lying if I said it hasn’t been extremely challenging wrapping my
head around all of the theory and underlying mathematics (Linear algebra,
Bayesian statistics) that I was previously unfamiliar with. Ultimately though,
it has been very rewarding and I feel extremely lucky to be researching this
field at an exciting time of such rapid development.

The results from training on and reconstructing the films Blade Runner and A
Scanner Darkly significantly exceeded my expectations, it is quite remarkably
how diverse the range of images are that can be faithfully reconstructed by
the model. Obviously I had hoped to perform the reconstructions at a much
higher resolution, but at the end of the day they still make for compelling
viewing, and that - ultimately - is what is most important.

61

Appendix A

Links To Download
Reconstructed Videos

Blade Runner reconstructed after 6 epochs of training: https://www.dropbox.
com/s/wxlsqazfknluru2/Blade_Runner_Full_Reconstruction_6_Epochs.
mp4?dl=0

A Scanner Darkly reconstructed after 6 epochs of training: https://www.
dropbox.com/s/2uh0ia4quoahc13/A_Scanner_Darkly_Full_Reconstruction_
6_Epochs.mp4?dl=0

Blade Runner reconstructed with the A Scanner Darkly model: https://www.
dropbox.com/s/hsvyo9q1cbh0euf/Blade_Runner_Through_A_Scanner_Darkly.
mp4?dl=0

A Scanner Darkly reconstructed with the Blade Runner model: https://www.
dropbox.com/s/9afn7uysn3tsmxt/A_Scanner_Darkly_Through_Blade_Runner.
mp4?dl=0

1984 Apple Macintosh advert reconstructed with the Blade Runner model:
https://www.dropbox.com/s/3bbh93mqa91fybl/Apple_1984_Through_Blade_
Runner.mp4?dl=0

Matrix III reconstructed with the Blade Runner model: https://www.dropbox.
com/s/ywpntbyik958al2/Matrix_III_Through_Blade_Runner.mp4?dl=0

An early test of a reconstruction from a model trained on Blade Runner with
no fine tuning and with noise injected into the latent representation: https:
//www.dropbox.com/s/owiywhn1d48azn1/Blade_Runner_Early_Test.mp4?
dl=0

https://www.dropbox.com/s/wxlsqazfknluru2/Blade_Runner_Full_Reconstruction_6_Epochs.mp4?dl=0
https://www.dropbox.com/s/wxlsqazfknluru2/Blade_Runner_Full_Reconstruction_6_Epochs.mp4?dl=0
https://www.dropbox.com/s/wxlsqazfknluru2/Blade_Runner_Full_Reconstruction_6_Epochs.mp4?dl=0
https://www.dropbox.com/s/2uh0ia4quoahc13/A_Scanner_Darkly_Full_Reconstruction_6_Epochs.mp4?dl=0
https://www.dropbox.com/s/2uh0ia4quoahc13/A_Scanner_Darkly_Full_Reconstruction_6_Epochs.mp4?dl=0
https://www.dropbox.com/s/2uh0ia4quoahc13/A_Scanner_Darkly_Full_Reconstruction_6_Epochs.mp4?dl=0
https://www.dropbox.com/s/hsvyo9q1cbh0euf/Blade_Runner_Through_A_Scanner_Darkly.mp4?dl=0
https://www.dropbox.com/s/hsvyo9q1cbh0euf/Blade_Runner_Through_A_Scanner_Darkly.mp4?dl=0
https://www.dropbox.com/s/hsvyo9q1cbh0euf/Blade_Runner_Through_A_Scanner_Darkly.mp4?dl=0
https://www.dropbox.com/s/9afn7uysn3tsmxt/A_Scanner_Darkly_Through_Blade_Runner.mp4?dl=0
https://www.dropbox.com/s/9afn7uysn3tsmxt/A_Scanner_Darkly_Through_Blade_Runner.mp4?dl=0
https://www.dropbox.com/s/9afn7uysn3tsmxt/A_Scanner_Darkly_Through_Blade_Runner.mp4?dl=0
https://www.dropbox.com/s/3bbh93mqa91fybl/Apple_1984_Through_Blade_Runner.mp4?dl=0
https://www.dropbox.com/s/3bbh93mqa91fybl/Apple_1984_Through_Blade_Runner.mp4?dl=0
https://www.dropbox.com/s/ywpntbyik958al2/Matrix_III_Through_Blade_Runner.mp4?dl=0
https://www.dropbox.com/s/ywpntbyik958al2/Matrix_III_Through_Blade_Runner.mp4?dl=0
https://www.dropbox.com/s/owiywhn1d48azn1/Blade_Runner_Early_Test.mp4?dl=0
https://www.dropbox.com/s/owiywhn1d48azn1/Blade_Runner_Early_Test.mp4?dl=0
https://www.dropbox.com/s/owiywhn1d48azn1/Blade_Runner_Early_Test.mp4?dl=0

63

Bibliography

Abadi, Martın et al. (2015). “TensorFlow: Large-scale machine learning on
heterogeneous systems, 2015”. In: Software available from tensorflow. org.

Bellard, Fabrice, M Niedermayer, et al. (2012). FFmpeg. http://ffmpeg.
org.

Casey, Michael and Mick Grierson (2007). “Soundspotter/remix-tv: fast ap-
proximate matching for audio and video performance”. In: Proc. of the
International Computer Music Conference.

Darkly, A Scanner (2006). “Directed by Richard Linklater”. In: Warner Inde-
pendent Pictures.

Denton, Emily L, Soumith Chintala, Rob Fergus, et al. (2015). “Deep Gener-
ative Image Models using a Laplacian Pyramid of Adversarial Networks”.
In: Advances in Neural Information Processing Systems, pp. 1486–1494.

Descartes, René (1967 [1641]). “Meditations On First Philosophy (Medita-
tion III)”. In: Descartes: Philosophical Writings.

Dick, Philip K (1982 [1968]). Do Androids Dream Of Electric Sheep? - Blade
Runner. Random House LLC.

– (2011 [1977]). A scanner darkly. Houghton Mifflin Harcourt.
Freitas, Nando De (2015). Deep Learning Lecture 10: Convolutional Neural

Networks. https://www.youtube.com/watch?v=bEUX_56Lojc&list=
PLjK8ddCbDMphIMSXn-w1IjyYpHU3DaUYw&index=10. Accessed: 2016-04-
07.

Gere, Charlie (2002). Digital culture. Reaktion Books.
– (2015). Network Agora. https://vimeo.com/130532543. Accessed: 2015-

05-12.
Glorot, Xavier, Antoine Bordes, and Yoshua Bengio (2011). “Deep sparse

rectifier neural networks”. In: International Conference on Artificial Intelli-
gence and Statistics, pp. 315–323.

Goodfellow, Ian et al. (2014). “Generative adversarial nets”. In: Advances in
Neural Information Processing Systems, pp. 2672–2680.

Goodfellow, Ian J et al. (2013). “Maxout networks”. In: arXiv preprint arXiv:1302.4389.
Graves, Alex (2013). “Generating sequences with recurrent neural networks”.

In: arXiv preprint arXiv:1308.0850.
Graves, Alex and Nando De Freitas (2015). Deep Learning Lecture 13: Alex

Graves on Hallucination with RNNs. https://youtu.be/-yX1SYeDHbg?t=
49m44s. Accessed: 2015-12-10.

Gregor, Karol et al. (2013). “Deep autoregressive networks”. In: arXiv preprint
arXiv:1310.8499.

Gregor, Karol et al. (2015). “DRAW: A recurrent neural network for image
generation”. In: arXiv preprint arXiv:1502.04623.

Grierson, M (2009). “Plundermatics: real-time interactive media segmen-
tation for audiovisual analysis, composition and performance”. In: Pro-
ceedings of Electronic Visualisation and the Arts Conference. Computer Arts
Society, London.

http://ffmpeg.org
http://ffmpeg.org
https://www.youtube.com/watch?v=bEUX_56Lojc&list=PLjK8ddCbDMphIMSXn-w1IjyYpHU3DaUYw&index=10
https://www.youtube.com/watch?v=bEUX_56Lojc&list=PLjK8ddCbDMphIMSXn-w1IjyYpHU3DaUYw&index=10
https://vimeo.com/130532543
https://youtu.be/-yX1SYeDHbg?t=49m44s
https://youtu.be/-yX1SYeDHbg?t=49m44s

64 BIBLIOGRAPHY

Gybenko, G (1989). “Approximation by superposition of sigmoidal func-
tions”. In: Mathematics of Control, Signals and Systems 2.4, pp. 303–314.

Haynes, John-Dylan (2013). “Mindreading in Modern Neuroscience”. In: To-
tal Recall: The Evolution of Memory - Ars Electronica 2013, pp. 18–24.

He, Kaiming et al. (2015). “Delving deep into rectifiers: Surpassing human-
level performance on imagenet classification”. In: Proceedings of the IEEE
International Conference on Computer Vision, pp. 1026–1034.

Hinton, Geoffrey E and Ruslan R Salakhutdinov (2006). “Reducing the di-
mensionality of data with neural networks”. In: Science 313.5786, pp. 504–
507.

III, Matrix (1972). “Directed by John Whitney”. In: Film, Independent.
Ioffe, Sergey and Christian Szegedy (2015). “Batch normalization: Acceler-

ating deep network training by reducing internal covariate shift”. In: arXiv
preprint arXiv:1502.03167.

Jaderberg, Max, Karen Simonyan, Andrew Zisserman, et al. (2015). “Spa-
tial transformer networks”. In: Advances in Neural Information Processing
Systems, pp. 2008–2016.

Jay, Martin (1988). “Scopic regimes of modernity”. In: Vision and Visuality,
pp. 3–28.

Kingma, Diederik and Jimmy Ba (2014). “Adam: A method for stochastic
optimization”. In: arXiv preprint arXiv:1412.6980.

Kingma, Diederik P and Max Welling (2013). “Auto-encoding variational
bayes”. In: arXiv preprint arXiv:1312.6114.

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E Hinton (2012). “Imagenet
classification with deep convolutional neural networks”. In: Advances in
neural information processing systems, pp. 1097–1105.

Larsen, Anders Boesen Lindbo, Søren Kaae Sønderby, and Ole Winther (2015).
“Autoencoding beyond pixels using a learned similarity metric”. In: arXiv
preprint arXiv:1512.09300.

Larsen, Anders Boesen Lindbo and Søren Kaae Sønderby (2015). Generat-
ing Faces with Torch. http://torch.ch/blog/2015/11/13/gan.html.
Accessed: 2016-05-02.

Lee, Honglak et al. (2009). “Convolutional deep belief networks for scal-
able unsupervised learning of hierarchical representations”. In: Proceed-
ings of the 26th Annual International Conference on Machine Learning.
ACM, pp. 609–616.

Maas, Andrew L, Awni Y Hannun, and Andrew Y Ng (2013). “Rectifier non-
linearities improve neural network acoustic models”. In: Proc. ICML. Vol. 30,
p. 1.

Makhzani, Alireza et al. (2015). “Adversarial Autoencoders”. In: arXiv preprint
arXiv:1511.05644.

McCulloch, Warren S and Walter Pitts (1943). “A logical calculus of the ideas
immanent in nervous activity”. In: The bulletin of mathematical biophysics
5.4, pp. 115–133.

Minsky, Marvin and Seymour Papert (1969). “Perceptron: an introduction to
computational geometry”. In: The MIT Press, Cambridge, expanded edition
19.88, p. 2.

Mital, Parag K, Mick Grierson, and Tim J Smith (2013). “Corpus-based visual
synthesis: an approach for artistic stylization”. In: Proceedings of the ACM
Symposium on Applied Perception. ACM, pp. 51–58.

http://torch.ch/blog/2015/11/13/gan.html

BIBLIOGRAPHY 65

Mnih, Volodymyr et al. (2015). “Human-level control through deep rein-
forcement learning”. In: Nature 518.7540, pp. 529–533.

Mnih, Volodymyr et al. (2016). “Asynchronous Methods for Deep Reinforce-
ment Learning”. In: arXiv preprint arXiv:1602.01783.

Nair, Vinod and Geoffrey E Hinton (2010). “Rectified linear units improve
restricted boltzmann machines”. In: Proceedings of the 27th International
Conference on Machine Learning (ICML-10), pp. 807–814.

Nishimoto, Shinji et al. (2011). “Reconstructing visual experiences from
brain activity evoked by natural movies”. In: Current Biology 21.19, pp. 1641–
1646.

Noe, Alva (2004). Action in perception. MIT press.
Radford, Alec, Luke Metz, and Soumith Chintala (2015). “Unsupervised

Representation Learning with Deep Convolutional Generative Adversar-
ial Networks”. In: arXiv preprint arXiv:1511.06434.

Rezende, Danilo Jimenez, Shakir Mohamed, and Daan Wierstra (2014).
“Stochastic backpropagation and approximate inference in deep gener-
ative models”. In: arXiv preprint arXiv:1401.4082.

Rezende, Danilo Jimenez et al. (2016). “One-Shot Generalization in Deep
Generative Models”. In: arXiv preprint arXiv:1603.05106.

Rosenblatt, Frank (1958). “The perceptron: a probabilistic model for infor-
mation storage and organization in the brain.” In: Psychological review
65.6, p. 386.

Ruder, Manuel, Alexey Dosovitskiy, and Thomas Brox (2016). “Artistic style
transfer for videos”. In: arXiv preprint arXiv:1604.08610.

Runner, Blade (1982). “Directed by Ridley Scott”. In: Beverly Hills, CA: Ladd
Company.

Scott, Ridley (1984). Apple Macintosh advertisement, 1984.
Springenberg, Jost Tobias et al. (2014). “Striving for simplicity: The all con-

volutional net”. In: arXiv preprint arXiv:1412.6806.
Srivastava, Nitish et al. (2014). “Dropout: A simple way to prevent neural

networks from overfitting”. In: The Journal of Machine Learning Research
15.1, pp. 1929–1958.

Szegedy, Christian et al. (2013). “Intriguing properties of neural networks”.
In: arXiv preprint arXiv:1312.6199.

Theis, Lucas, Aäron van den Oord, and Matthias Bethge (2015). “A note on
the evaluation of generative models”. In: arXiv preprint arXiv:1511.01844.

Turing, Alan M (1950). “Computing machinery and intelligence”. In: Mind
59.236, pp. 433–460.

Vincent, Pascal et al. (2008). “Extracting and composing robust features with
denoising autoencoders”. In: Proceedings of the 25th international confer-
ence on Machine learning. ACM, pp. 1096–1103.

Werbos, Paul (1974). “Beyond regression: New tools for prediction and anal-
ysis in the behavioral sciences”. In:

Zeiler, Matthew D et al. (2010). “Deconvolutional networks”. In: Computer
Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on. IEEE,
pp. 2528–2535.

Ziwei Liu Ping Luo, Xiaogang Wang and Xiaoou Tang (2015). “Deep Learn-
ing Face Attributes in the Wild”. In: Proceedings of International Conference
on Computer Vision (ICCV).

	Abstract
	Acknowledgements
	Introduction
	Motivation
	Initial Research
	Final Idea

	Context
	History of Artificial Neural Networks
	Deep Learning
	The Development Towards Generative Models

	Autoencoders
	Denoising Autoencoders
	Variational Autoencoders
	Extended Autoencoder Models
	Deep AutoRegressive Networks
	Deep Recurrent Attentive Writer
	One-Shot Generalisation in Deep Generative Models

	Generative Adversarial Networks
	Laplacian Pyramid of Generative Adversarial Networks
	Deep Convolutional Generative Adversarial Networks

	Combining Autoencoders and Adversarial Networks
	Autoencoding With A Learned Similarity Metric

	Other Techniques For Reconstructing Video

	Research Questions
	Aim
	Technical Challenges
	Artistic Motivation

	Method
	Model Overview
	Network Architecture
	Encoder Network
	Decoder Network
	Discriminator Network
	Activation Functions
	Rectified Linear Unit
	Leaky Rectified Linear Unit

	Objective Functions
	Kullback-Leibler Divergence
	GAN Objective
	Discriminator Covariance

	Respective Error Gradients
	Training Procedure
	Fine Tuning

	Running The Model

	Results
	Blade Runner
	Samples From Training
	Reconstructed Film

	A Scanner Darkly
	Samples From Training
	Reconstructed Film

	Feeding Other Videos Through The Models
	Blade Runner Through A Scanner Darkly
	A Scanner Darkly Through Blade Runner
	1984 Apple Advert Through Blade Runner
	Matrix III Through Blade Runner

	Evaluation
	Qualitative Assessment
	Reconstructing the Test Dataset
	Reconstructing Faces
	Collapsing Representations

	Reconstructing Alternative Datasets

	Efficiency and Stability
	Artistic Evaluation
	As A Method For Film-Making
	As An Artwork

	Conclusion
	Links To Download Reconstructed Videos
	Bibliography

