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Abstract—This paper proposes an architecture for tactile-based
fabric learning and classification. The architecture is based on
a number of SVM-based learning units, which we call fabric
classification cores, specifically trained to discriminate between
two fabrics. Each core is based on a specific subset of the fully
available set of features, on the basis of their discriminative value,
determined using the p-value. During fabric recognition, each
core casts a vote. The architecture collects votes and provides an
overall classification result. We tested seventeen different fabrics,
and the result showed that classification errors are negligible.

I. INTRODUCTION

Humans deal with garments everyday: picking them from
the wardrobe, folding them and making the laundry. These
kinds of activities require the ability to perceive and recognize
fabrics(e.g. the selection of the proper washing cycle according
to the fabric type). Providing robot with the capability of
manipulating and recognising fabric is still a challenging
task. Indeed a huge effort has been done in literature in
order to classify various kinds of materials (polycotton, nylon,
silicone, brass, wood plastic, foam, and PVC to name, but
few) using tactile sensors based on different transduction
principles [1], [2], [3] but with respect to the these examples,
where materials have clear different geometric and mechanical
characteristics, to classify fabrics is more challenging due to
the high variability of existing types that in many cases could
have really similar characteristics (i.e., consider for example
a jumper that can be made from wool or acrylics). A multi-
sensorial approach can be used for improving the fabric clas-
sification as in [4], where data coming from RGB-D, tactile,
and photometric stereo sensors are used, but when only one
sensor modality is available, the challenge is to find a fabric
exploration technique that allow to detect all its discriminative
characteristics and also to determine which are the sensor data
features that are most effective for discriminating the differ-
ent type of fabrics. Different approaches have been used to
explore object properties, implementing different exploratory
behaviours like tapping, sliding, pressing and rubbing [5], [6]
showing that there is no predominant way to explore an object,
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and it usually depends on used sensing modality and on the
features to extract. Object classification algorithms are based
on a discriminative set of features defined in both time and
frequency domains. Examples are mean, standard deviation,
variance, kurtosis, skewness in the time domain [7], [8]. While
in the frequency domain, the first three peaks of the Fourier
components can form a useful feature vector [9], whereas
dominant frequencies have been considered in [2]. Even in
this case, there is no general agreement about which features
to use.

Our work tries to investigate the above aspects in order to
improve the classification of different types of fabrics using
tactile sensing modality. In particular the major contribution of
this paper is two-fold: (i) we propose a distributed fabric clas-
sification architecture where each component is specifically
designed to discriminate between two fabrics, and different
results are aggregated by a voting mechanism; (ii) we define,
for each couple of fabrics, which are the best features (to
be selected from a huge feature set, including both time
and frequency domain features) to obtain good classification
results. Each core is based on a support vector machine
(SVM) classifier. The proposed approach selects the number
of features using an active filter tuned during the training
phase of the algorithm. Seventeen different kinds of fabrics
are considered in the experiment. This paper is organised
as follows. Section II describes the used tactile sensor. Data
generation and feature extraction are discussed in Section III-B
and Section III-C, respectively. Section III-D describes the
classification approach. The experimental scenario and the
results are discussed in Section IV. Conclusion follows.

II. THE REFERENCE TACTILE SENSOR

This work is based on the tactile sensor presented in [10]
and shown in Figure 1a. The device has been developed to
be integrated on an industrial gripper specifically designed
for clothes manipulation and it embeds different sensing
modalities, namely: a microphone, an ambient light, a prox-
imity sensor and 16 capacitive pressure sensors constituted by
circular pads of 2 mm diameter etched on the PCB with a 4 mm
pitch (Figure 1b). The small dimension and the pitch of the
pads have been selected in order to recognize small details
of the manipulated garment. Over the PCB, a 100µm thick
acetate sheet acts as a dielectric layer and over it, a ground
plane, made by conductive fabric, covers all the pressure
sensors completing the capacitor structure. Two capacitance to
digital converters (AD7147 from Analog Device) encode the
measured pressure in 16 bits values at a rate of 37 Hz. For the
classification purpose, only the 16 pressure profiles measured
by these capacitive sensors during fabric manipulation will be
processed.978-1-5090-6132-7/16/$31.00 c©2016 IEEE



(a) (b)

Fig. 1: (a) Top side of the reference tactile sensor (b) Top and
bottom sides of the printed circuit board of the sensor.

Fig. 2: The fabric classification architecture with three main
components feature extraction, feature selection and classifi-
cation algorithm.

III. THE FABRIC CLASSIFICATION ALGORITHM

A. Overview

The general structure of the fabric classification algorithm
presented in this paper can be seen in Figure 2. It is constituted
by three main components, which are: feature extraction,
feature selection and the classification algorithm. The feature
extraction component extracts from the raw tactile data, the
feature vector that will be described in Section III-C.

Feature selection operates on the feature vector and selects
the relevant features for the next stage according to a criteria
that will be detailed in Section III-D. The classification
algorithm component implements a soft margin support vector
machine (SVM) with radial basis function kernel. During
a training phase, the internal parameters for both feature
selection and classification algorithm components are assessed
and updated using a validation dataset (see Figure 3). After
the training/validating phase ,the testing phase, described in
Section III-D, takes place in which the two components coop-
erate in order to classify a new feature vector using the learned
parameters similarly to what happens in the validation phase
that is shown in Figure 4. Within this architecture, the feature
selection and classification algorithm components, constitute
the fabric classification core (Figure 2). This classification
core implements a binary classifier, thus operating on two
different classes (i.e., the number of different fabrics we want

to classify). Only two different kinds of fabric can be classified
using a single classification core. If the architecture has to
operate on more than two classes, multiple core instances must
be generated, each one operating on one of the possible 2-
combinations on the set. For instance, to discriminate among
three classes (e.g., pile, wool and velvet), three classifiers
will be instantiated, namely pile vs. wool, wool vs. velvet
and pile vs. velvet. Inside a single core, during the training
phase, the feature selection component learns the best subset of
relevant features Ri, j from the feature vector for discriminating
classes Ci and C j, while the classification algorithm trains
the SVM on a reduced set of features generated by the
feature selection component. In the testing phase, feature
selection component extracts the relevant features Ri, j, which
will be used by the classification algorithm component for
classification, using the support vectors learned during the
training phase and, accordingly, express a vote on Ci or C j.
The final classification result is obtained by majority vote of
all the fabric classification cores (see Figure 4).

Fig. 3: Training phase of the fabric classification algorithm for
classes Ci and C j with tuning of parameters.

Fig. 4: Testing phase of the fabric classification algorithm with
final classification result obtained through majority voting.

B. Data Generation

Depending on the knitting type, the fabric can produce
different tactile sensor responses along different directions



Fig. 5: The response of one of the pressure sensor in the
different phases of the exploration.

of exploration, speed and exerted pressure. For this reason,
the fabric exploration performed by the tactile sensor has
been divided into a sequence of phases (Figure 5) each one
interacting with the fabric in a different way:
• Resting phase S: the sensor statically touches the fabric

but no force control is performed; the sensor response
depends on the sensor weight, as exerted on the fabric.

• Pressure phase P: pressure control is activated, the sensor
is not moving but a controlled pressure is exerted on the
fabric.

• Motion phase M: the sensor is moving on the fabric
applying a constant pressure.

• Resting phase E: the sensor stops and the pressure control
is deactivated; similarly to phase S, the sensor response
depends on its weight.

In our experiments, motion phase M has been realized by two
basic patterns. The first pattern, M1, is a linear motion along
one direction. The second pattern, M2, is an L-shaped motion.
The two patterns have been selected to explore the warps
and wefts of the fabric. During the experiments, the pressure
profiles of all the 16 tactile elements are recorded and later
segmented depending on the exploration phase. As a result,
the vector sc of pressure measurements of a single sensor c
can be expressed as the concatenation of different vectors sΦ

c
where Φ ∈ {S,P,M1,M2,E} is the exploration phase:

sc = sS
c ||sP

c ||s
[M1,M2]
c ||sE

c (1)

In (1), the term ‖ indicates a concatenation of vectors while
the term [M1,M2] indicates an alternate selection of pattern
motions. In fact, as we will see in Section IV-A, M1 and M2
belong to a different set of experiments. Therefore, the dataset
sc can be generated only by using M1 or as an alternative M2.
Finally, the complete dataset D of a single experiment can be
defined as:

D = {s1,s2, . . . ,s16} (2)

C. Feature Extraction

In this paper, the widely used set of features introduced by
Weiss et al. [11], plus additional new ones, are used. In all
the experiments, the 195 features in Table I are computed on
the dataset D. Moreover, features 4 to 163 are time domain
features, while features 164 to 195 are frequency domain
features. The feature extraction phase is performed by a set

TABLE I: List of features extracted from the sensor signals.

No. Notation Description

1 FP
mean Average value of 16 sensors in phase P.

2 FS,P
di f f Difference of means in phases S and P.

3 FP,E
di f f Difference of means in phases P and E.

4-19 FM
max

Maximum magnitude in phase M, one feature for
each sensor.

20-35 FM
min

Minimum magnitude in phase M, one feature for
each sensor.

36-51 FM
mean

Mean value of magnitudes in phase M, one feature
for each sensor.

52-67 FM
var

Variance of magnitudes in phase M, one feature for
each sensor.

68-83 FM
norm

Norm value of magnitudes in phase M, one feature
for each sensor.

84-99 FM
kurt

Kurtosis of the signal in phase M, one feature for
each sensor.

100-115 FM
skew

Skewness of the signal peaks in phase M, one feature
for each sensor.

116-131 FM
range

Range of magnitude in phase M, one feature for each
sensor.

132-147 FM
mode

Most frequent magnitude in phase M, one feature for
each sensor.

148-163 FM
5th

Fifth moment of the signal in phase M, one feature
for each sensor.

164-179 FM
H. f rq

Maximum rubbing magnitude in frequency domain
in phase M, one feature for each sensor.

180-195 FM
S.h

Sum of higher half of spectrum amplitudes in phase
M, one feature for each sensor.

of functions fk each one implementing the extraction of the
feature k from the dataset D. Therefore, for each experiment,
we can define the feature vector F as the vector of the
outcomes of the functions fk computed on D, that in our case
is equal to:

fk(D) = Fk, ∀k ∈ {1,2, · · · ,195}
F = (F1,F2, . . . ,F195) (3)

For each raw data eD acquired during an experiment e, we
can compute a feature vector eF. As we will see in the
next paragraphs, a collection of eF vectors is required for
training and validating the classification algorithm in the
training/validating phase while a single eF vector is used in
the testing phase to perform the classification of the currently
explored fabric.

D. Feature Selection and Classification Algorithm

Machine learning applications are usually characterized by
very high dimensional feature spaces that need to be reduced to
lower dimensions. Reduction in dimension can sometimes lead
to overfitting and low classification accuracy. To overcome
this problem, feature space can be compressed to a lower
dimensional one on the basis of information criteria (e.g.,
Principal Component Analysis and similar techniques [12]) or
a suitable subset of all the features can be found [13]. In this
work, the subset selection approach is adopted. The selection
criteria is based on the concept of p-value [14]. Let us assume



that n experiments have been performed on each of the two
classes C1 and C2, and we want to find out whether the feature
FP

mean is a discriminative feature for the two classes. We can
re-define the single feature value as eFP

meanc , where c identifies
the belonging class and e the experiment. In turn, we can re-
arrange all the feature values in two different vectors defined
as:

x =
(1FP

mean1
,2 FP

mean1
, . . . ,n FP

mean1

)
y =

(n+1FP
mean2

,n+2 FP
mean2

, . . . ,2n FP
mean2

)
. (4)

The values in (4) are outcomes of experiments whose results
are not known in advance. Therefore, they can be considered
as random variates of two random variables, one associated
with experiments on class C1, the other with experiments on
C2. Values in (4) characterize the two fabrics only from a
statistical point of view. In this way, for example, we can
understand whether the feature FP

mean is a discriminative feature
by comparing the average outcomes of the experiments for the
two classes. In the case they are equal, we can conclude that,
with respect to feature FP

mean, both fabrics respond on average
in the same way, thus the feature FP

mean is not discriminative.
Otherwise, we have to analyse the difference with respect to
the associated variances to conclude whether it is a discrim-
inative feature or not. We can relate our problem to a two-
sample t-test [15], assuming the following null hypothesis:
data in vectors x and y originate from independent random
samples from normal distributions with equal means and equal
but unknown variances, i.e., feature FP

mean is not informative
in discriminating the two classes. The outcome of this test
shows whether we must reject the null hypothesis or not. If
the null hypothesis is to be rejected, we have separable and
independent data sets and accordingly we can conclude that
FP

mean is a discriminative feature for classes C1 and C2. The
strength of the rejection evidence is called p-value and can be
computed from the outcome of the t-test [15].

A small p-value (typically less than 0.05) indicates strong
evidence against the null hypothesis, so hypothesis must be
rejected, while a large p-value (greater than 0.05) indicates
weak evidence against the null hypothesis which should not
be rejected. This suggests that the p-value can be used for
comparing different features with respect to their ability to
discriminate between two kinds of classes. In our approach,
at the beginning of the training phase, the feature selection
component inside the fabric classification core of classes
Ci and C j performs a t-test on the related training set and
computes for each feature the related p-value. The result is a
vector of p-values defined as:

pi, j = (p1, p2, . . . , pk, . . . , p195) (5)

where pk is the p-value related to the k-th feature and
subscripts i and j refer to classes Ci and C j. It is now
straightforward to define a function Pi, j(k) that maps to each
feature k its p-value as:

Pi, j(k) = pk, ∀k ∈ {1,2, . . . ,195}

Using the information in the pi, j vector, the fabric selection
component filters the relevant features by imposing a threshold
δi, j on the p-values, thereby selecting the most relevant ones
for the classification of Ci and C j. The relevant feature set can
be defined as:

Ri, j =
{

k : Pi, j(k)< δi, j,∀k ∈ {1,2, · · · ,195}
}

It must be noted that each feature selection operates on p-
values computed from the training set generated by a specific
pair of classes, e.g., vectors x and y in (4). As a result, each
feature selection component composes a different relevant
feature set with different size. Such an approach specializes
the features selection on a specific couple of classes of the
fabric classification core instead of finding a general feature
vector for all the available classes. The threshold value is not
arbitrarily selected. On the contrary, it is determined during the
training phase. In fact, δi, j is trained along with the parameters
of the classification algorithm component C and γ of the radial
basis function, that are tuned using K-fold cross validation.
Thus a unique set of parameters (C, γ , δ ) is obtained using
grid search (as shown in Figure 3). At the end of the training
phase, the value of δi, j with the lowest misclassification error
is selected.

In addition, a size limiting parameter N is introduced to
fix the maximum amount of features that can be used. This
parameter has been added mainly to limit the computational
requirements for training. The outcome of the feature selection
component of the feature classification core specialized for
classes Ci and C j is a reduced feature vector F̂e containing
feature values of vector Fe for all the features k ∈ Ri, j.
The reduced feature vector F̂e is used by the classification
algorithm component for discriminating between the fabric Ci
and C j. In particular, we use one vs one binary soft margin
SVM with radial basis function kernel that discriminates Ci
from C j by finding the hyperplane in the features space that
separates features generated by Ci from features generated by
C j. The idea behind using one vs one is to avoid the problem of
imbalanced training set which results in losing the symmetry
of the original problem in the case of one vs all [16].

IV. EXPERIMENTAL VALIDATION

A. Experimental Setup

In order to assess the overall performance of the clas-
sification architecture, a number of classification tests have
been performed with the tactile sensor presented in Section
II and a workbench set-up. The used setup is shown in
Figure 6. It consists of a Cartesian robot equipped with a
force/torque sensor used to measure the pressure exerted on
fabrics, which are located on a horizontal plate. The Cartesian
robot is a 5 DoF system with independent x, y and z-linear
axis, as well as two rotating angles along the x and y-axis,
which are actuated using high-precision motorised stages from
ThorLabs1. The x and y-axis, as well as one rotational motor,
move an instrumented platform where fabrics are fixed for

1See the official web page at http://www.thorlabs.de/



Fig. 6: Experimental setup.

(1) Acetate
cloth

(2) Artifi-
cial fur

(3) Awning (4) Cotton1 (5) Cotton2 (6) Cotton
manip

(7) Cotton
towel

(8) Elastic
Net

(9) Flax
cloth

(10)
Knitwear1

(11)
Knitwear2

(12)
Knitwear3

(13)
Leather

(14) Pile (15) Tulle (16) Velvet (17) Wool

Fig. 7: Seventeen samples of fabrics.

all the experiments. Under the platform, an ATIMini40 6-
axes force/torque sensor is able to measure exerted forces and
torques. The remaining rotational joint and a linear actuator
along the z-axis move and rotate a probe, on which the tactile
sensor is mounted. The linear actuator installed on the z-axis
regulates the exerted force (in the range 0− 10 N) using the
feedback provided by the force/torque sensor. The probe can
be moved with a precision of 1 µm and a speed up to 4 mm/s in
any direction. The working area of the Cartesian robot is about
150x150x150 mm. A robot controller has been developed to
plan a sequence of motions and to impose force profiles. The
classification architecture algorithm has been tested on the
set of fabrics shown in Figure 7. This peculiar set of fabrics
has been selected because they constitute a realistic set of
fabrics with different characteristics as far as elasticity and
softness are concerned. A preliminary set of experiments has
been conducted to identify the proper force and speed values
associated with tactile exploration in order to obtain the best
dynamic response from the tactile sensors. These experiments
consist of a number of simple one-way rubbing movements
at different pressures and speeds. As a result of such initial
tests, a 5 N force and a 2 mm/s speed have been selected as
process parameter values in all the experiments. As already
anticipated in Section III, two kinds of motion patterns have
been defined in the experiments for motion phase M. The
former, referred to as M1 (Figure 8a), is a single direction
motion for the tactile sensor along the y-axis for about 50 mm.
The latter referred to as M2 (Figure 8b), is an L-shaped motion,

(a) Pattern for M1 (b) Pattern for M2

Fig. 8: Motion patterns for M1 (straight line segment) and M2
(L-shaped).

(a) Confusion matrix for M1 (b) Confusion matrix for M2

Fig. 9: Confusion matrices for motion patterns M1 and M2
using p-value where the numbers correspond with respect to
the fabrics mention in Figure 7

.

again of 50 mm length in both directions. L-shaped motion has
been selected in order to mimick real-world tactile explorations
along non-preferred directions. In this case, it corresponds to
the fabric warp and weft. The fastening of fabric samples has
been performed accordingly, with the warp placed along the
x-axis and the weft along the y-axis. In order to generate the
dataset for the evaluation of the classification architecture, 20
repetitions have been performed for each fabric in the set and
for the two different motion patterns, thereby obtaining a total
of 680 experiments.

B. Results

The performance of the classification architecture has been
validated using the trained models or classifiers. As a reminder,
the estimation of the tuning parameters (C and γ) for training
were selected by using grid search with 5-fold cross validation.
In our experiments, the training set is 40% of the whole
dataset. Table II shows various results of computation time
during classification for each sample. The overall computation
time is obtained by averaging the classification time of 30
different trials for a sample. Figure 9a reports a confusion
matrix that refers to classification performed on the M1 pattern,
by considering all the feature set (i.e., no threshold on the
p-value is posed). The average classification rate is 89%.
The above results show that selecting the proper subset of
features, for each fabric classification core, leads to better
results compared to consider all the features extracted by the



TABLE II: Computational time for each sample in classifica-
tion.

Feature extraction time per sample (sec) 0.017
Total training time (sec) 0.566

Testing time per sample (sec) 0.045
Classification results (%) 98.87

TABLE III: Result of the training phase of feature selection
components with N = 20. In the middle column, the top four
features are reported. The number in the subscript of each
feature identify the pressure sensor related to that feature. In
the right column, the total number of selected features for the
classification.

Core Top Four Total
Knitwear1 Vs. Wool FM

range.2, FM
range.4 2

Knitwear1 Vs. Pile FM
min.1, FM

min.2, FM
min.4, FM

min.7 20
Flax Vs. Pile FM

norm.13, FM
norm.15, FM

mean.15, FM
H. f rq.15 18

feature extraction component. It is noteworthy that each fabric
classification core has its peculiar subset of features, as can
bee seen in Table III, ranging from just 2 features for the
core knitwear1 vs. wool to 20 features for the core knitwear1
vs. pile. Finally, in order to compare our approach to another
well-known feature reduction technique, the same previously
described experiments have been performed using principal
component analysis in the place of p-value thresholding. The
results, reported in Table IV, show that p-value performs better
compared to traditional PCA. Whereas showing comparable
results for M2 pattern.

V. CONCLUSION

This paper introduces an architecture for tactile-based fabric
classification which is based on the concept of fabric clas-
sification core, a classification unit devoted to discriminate
between two fabrics only. A voting mechanism is used to
compile the overall classification scores. The classification
core is based on the SVM approach and performs a selection
of which features are better suited to discriminate between
two fabrics by reasoning on the p-value of each feature. The
features with a p-value higher than threshold are considered
to be higher than the threshold. We validated the proposed
architecture using seventeen common fabrics and two differ-
ent tactile exploration behaviours. Results show very good
performance values when performing p-value based feature
selection. Current work is focused on extending the number
of considered fabrics and to include additional motion pattern
by exploring the fabric along the diagonals. It is noteworthy

TABLE IV: Comparison between p-value and PCA for M1 and
M2

Motion
pattern

p-value PCA
Classification
accuracy (%)

Training
time

Classification
accuracy (%)

Training
time

M1 98 0.525 89 0.720
M2 99 0.566 99 0.956

that one vs one approach suffers from dimensionality curse as
the number of cores grows quadratically with the number of
classes. However, this effect can be mitigated by parallelization
since each core is computationally independent from the
others. Nevertheless, given the testing time reported in Table
II for 17 different fabrics, the number of classes becomes
an issue at a point where it is not immediate to foresee a
practical application where there is the need to distinguish so
much different fabrics. Moreover, techniques exist to reduce
this dependency to a linear one [17].

REFERENCES

[1] H. Muhammad, C. Recchiuto, C. Oddo, L. Beccai, C. Anthony,
M. Adams, M. Carrozza, and M. Ward, “A capacitive tactile sensor
array for surface texture discrimination,” Microelectronic Engineering,
vol. 88, no. 8, pp. 1811–1813, 2011.

[2] A. Drimus, G. Kootstra, A. Bilberg, and D. Kragic, “Classification of
rigid and deformable objects using a novel tactile sensor,” in Advanced
Robotics (ICAR), 2011 15th International Conference on. IEEE, 2011,
pp. 427–434.

[3] T. Bhattacharjee, J. M. Rehg, and C. C. Kemp, “Haptic classification
and recognition of objects using a tactile sensing forearm,” in Intelligent
Robots and Systems (IROS), 2012 IEEE/RSJ International Conference
on. IEEE, 2012, pp. 4090–4097.

[4] C. Kampouris, I. Mariolis, G. Peleka, E. Skartados, A. Kargakos,
D. Triantafyllou, and S. Malassiotis, “Multi-sensorial and explorative
recognition of garments and their material properties in unconstrained
environment,” in 2016 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2016, pp. 1656–1663.

[5] Y. Tada, K. Hosoda, Y. Yamasaki, and M. Asada, “Sensing the texture of
surfaces by anthropomorphic soft fingertips with multi-modal sensors,”
in Intelligent Robots and Systems, 2003.(IROS 2003). Proceedings. 2003
IEEE/RSJ International Conference on, vol. 1. IEEE, 2003, pp. 31–35.

[6] J. Sinapov, V. Sukhoy, R. Sahai, and A. Stoytchev, “Vibrotactile recog-
nition and categorization of surfaces by a humanoid robot,” Robotics,
IEEE Transactions on, vol. 27, no. 3, pp. 488–497, 2011.

[7] F. De Boissieu, C. Godin, B. Guilhamat, D. David, C. Serviere, and
D. Baudois, “Tactile texture recognition with a 3-axial force mems
integrated artificial finger.” in Robotics: Science and Systems. Seattle,
WA, 2009, pp. 49–56.
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