
Rapid Prototyping of New Instruments with CodeCircle

Michael Zbyszynski
EAVI Group, Department of

Computing
Goldsmiths University of

London
New Cross, London, SE14

6NW, UK
m.zbyszynski@gold.ac.uk

Mick Grierson
EAVI Group, Department of

Computing
Goldsmiths University of

London
New Cross, London, SE14

6NW, UK
m.grierson@gold.ac.uk

Matthew Yee-King
EAVI Group, Department of

Computing
Goldsmiths University of

London
New Cross, London, SE14

6NW, UK
m.yee-king@gold.ac.uk

ABSTRACT
Our research examines the use of CodeCircle, an online, col-
laborative HTML, CSS, and JavaScript editor, as a rapid
prototyping environment for musically expressive instru-
ments. In CodeCircle, we use two primary libraries: Max-
iLib and RapidLib. MaxiLib is a synthesis and sample pro-
cessing library which interfaces with the Web Audio API
for sound generation in the browser. RapidLib is a prod-
uct of the Rapid-Mix project, and allows users to imple-
ment interactive machine learning, using “programming by
demonstration” to design new expressive interactions.

Author Keywords
mobile devices, machine learning, javascript, browser-based
NIMEs, web audio, websockets, MIDI

ACM Classification
H.5.1 [Information Interfaces and Presentation] Multimedia
Information Systems – Animations. H.5.2. [Information
Interfaces]: User Interfaces – input devices and strategies;
interaction styles; prototyping; user-centered design. H.5.5
[Information Interfaces and Presentation] Sound and Mu-
sic Computing. D.2.2 [Software Engineering]: Design Tools
and Techniques – User interfaces.

1. INTRODUCTION
When designing new instruments, it is usually desirable to
refine a design by iterating over a number of prototypes.
As a design iterates, it should become more aligned with
the physical affordances of the performer as well as the aes-
thetic needs of the performance. Our research examines
the use of web browsers and machine learning to streamline
the prototyping process, allowing developers to program in-
struments and train them by example in a relatively simple
environment.

Web browsers have been identified as appealing hosts for
new expressive interfaces. Roberts, Wakefield and Wright[11]
demonstrated the potential for browsers, and specifically
the Web Audio API1 to allow both synthesizers and inter-

1https://developer.mozilla.org/en-US/docs/Web/API/
Web_Audio_API

Licensed under a Creative Commons Attribution
4.0 International License (CC BY 4.0). Copyright
remains with the author(s).

NIME’17, May 15-19, 2017, Aalborg University Copenhagen, Denmark.

faces to be programmed in JavaScript. Wyse and Subrama-
nian[15] examine computer music in browsers more gener-
ally, noting the potential offered by browsers’ intrinsic con-
nection to networks, ease of access, and portability. New
standards from W3C and extensions to JavaScript have
made browser technology more “viable” for musical work.

However, timing can be problematic. Web Audio API
scripts are run in the browser’s main thread, which can be
prone to latency and jitter. Jitter can be reduced by using
the Web Audio Clock, rather than the JavaScript clock.[13]
Large buffer sizes are required (>1024 samples), and cur-
rent implementations impose a fixed latency of two buffers.
As this paper will show, connectivity to sensors is also a
potential “pain point.”

In spite of known deficiencies when compared to platform-
specific applications, we believe that web apps and web
browsers can be excellent environments for collaborative
prototyping. We have been exploring this space using Code-
Circle and a new machine learning library, RapidLib. This
paper will discuss our early prototypes with these tools. We
will outline a potentially promising approach to designing
NIMES and present some preliminary studies that demon-
strate this promise.

Figure 1: CodeCircle interface, with code editor
pane on the right and resulting web page on the
left.

2. CODECIRCLE
2.1 Description
CodeCircle was created by Fiala, Yee-King and Grierson[3]
with the following objectives:



• To design and develop a web-based interface that en-
ables real-time, collaborative, and social coding in a
creative context.

• To implement an integrated code sharing and collab-
oration system that enables study of the process of
collaborative, creative coding.

• To devise a platform that is attractive and accessible
to learners and professionals alike, and can be used in
a variety of contexts including computing education.

It is an online editor for web-specific code, including HTML,
CSS, and JavaScript. As seen in Figure 1, it presents the
user with a pane for editing, which can be hidden, and a
viewer frame, where the resulting web page is running. The
editor features code indentation, highlighting, and comple-
tion as well as live code validation, all of which assist the
developer in quickly writing accurate, functional code. Doc-
uments can be marked private or public. Public documents
are editable by multiple users at once, and updated reac-
tively, allowing for real-time, collaborative programming.

The design of CodeCircle aligns strongly with the needs
of developers of new instruments who wish to work collabo-
ratively, quickly, in a simple but powerful environment, and
with little or no installed software. It can run in any com-
puter lab where the user has access to the internet and a
modern browser, with the same interface on Linux, OSX,
or Windows platforms. Furthermore, completed documents
can be exported as HTML5 that can run in modern browsers
without any dependency on CodeCircle. This includes mo-
bile browsers.

2.2 Libraries
With the addition of third-party media libraries, see Ta-
ble 1, CodeCircle can generate and render a large palette of
text, audio, and visual media.

Table 1: Libraries available in CodeCircle
name information

p5js http://p5js.org/

MaxiLib see below
processing.js http://processingjs.org/

ThreeJS https://threejs.org/

Marked https://github.com/chjj/marked

FontAwesome http://fontawesome.io/

jQuery https://jquery.com/

SoundJS http://www.createjs.com/soundjs

Grierson’s Maximillian[6] is available directly in Code-
Circle as a JavaScript library, MaxiLib. Maximillian and
MaxiLib are open-source audio synthesis and signal pro-
cessing libraries designed to facilitate artists and creatives
who are learning to program or are rapidly prototyping
audio applications. They include standard waveforms, en-
velopes, sample playback, filters with resonance, delay lines,
FFTs, granular synthesis and low-level feature extraction.
Although the Maximillian C++ library was designed with
openFrameworks2 in mind, the JavaScript library fits nat-
urally into CodeCircle’s pedagogical and prototyping func-
tions.

The MaxiLib library has been ported, or “transpiled,”
from C++ to JavaScript using Emscripten[17]. This al-
lows the developers to maintain one code base across mul-
tiple implementations. Also, Emscripten outputs asm.js,

2http://openframeworks.cc/

a strict subset of JavaScript that is optimized for ahead-of-
time compilation and has been shown to run within a factor
of two slowdown versus native code.[8]

Figure 2: Although CodeCircle includes third-party
drawing libraries, impressive results can also be had
using HTML5’s Canvas API.

3. RAPIDLIB
3.1 Description
NIME developers need to interface with external hardware.
Hartmann, Abdulla, Mittal and Klemer (2007)[7] have iden-
tified that “programming by demonstration” with a layer of
machine learning technology can expedite the development
process and improve results. RapidLib provides a machine
learning library which allows such development and fits with
the rapid prototyping philosophy of CodeCircle.

RapidLib was developed as part of the Real-time Adaptive
Prototyping for Industrial Design of Multimodal Interactive
and eXpressive technologies (RAPID-MIX) project, an In-
novation Action funded by the European Commission under
the Horizon 2020 program. It is a lightweight set of libraries
(both C++ and JavaScript) that implements Interactive
Machine Learning (IML) in the style of Fiebrink’s[4] Wek-
inator3. IML allows developers and end-users to quickly
customize interactions by demonstration, encoding intuitive
knowledge about performance gestures into trained machine
learning models. IML is characterized by smaller data sets
(relative to classical machine learning) and rapid iteration
between training and testing. Using RapidLib in CodeCir-
cle, performers can create a set of gestures associated with
desired outcomes and immediately (a few seconds) exper-
iment with an interactive space based on those gestures.
Undesirable results can be refined or discarded as the de-
sign process continues.

Like MaxiLib, RapidLib has been transpiled into JavaScript
using Emscripten and enjoys the same benefits of ease of
development and high performance. Eventually, RapidLib
will be incorporated into CodeCircle at the same level as the
other libraries listed above. RapidLib can also be accessed
outside of CodeCircle by linking to http://doc.gold.ac.

uk/eavi/rapidmix/RapidLib.js

4. COMMUNICATING WITH SENSORS
3http://www.wekinator.org/



This section is a brief survey of methods to bring sensor and
media data into the browser environment. Characteristic
of web development, there are many methods and imple-
mentations are sometimes inconsistent across browsers and
platforms. The sections below describe methods we have
been able to use.

4.1 Mouse & keyboard
Keyboard and mouse gestures can be used to control com-
plex musical material. IML can allow users to quickly map
two-dimensional control spaces to high-dimensional control
spaces[9]; these mappings can be generated and refined with-
out any programming by the end-user.

4.2 Gamepad API
The Web Gamepad API4 is still in the draft stage. The
current API supports buttons (which can have an analog
value) and axes (normalized from -1.0 to 1.0) for up to four
controllers. There is also a draft for extensions to this API
that includes haptic feedback and gamepad position.5

The authors were able to use this API in Chrome and
Firefox on OSX and Windows, using a Saitek Xbox-type
controller, a GameTrak, and a Logitech Flight controller.
We view this API as very promising, and are planning future
prototypes to explore further.

4.3 Sensors on mobile devices
Mobile operating systems (both iOS and Android) provide
specific API’s for web apps directly access on=board sen-
sors, including accelerometers, gyroscopes, magnetometers,
and GPS. These data can be forwarded to a central server,
as in the CoSiMa project[12], or processed directly on the
device.

4.4 MIDI
The Web MIDI API6 is also in draft form, and is currently
only implemented in Chrome and Opera7. While this might
be a serious limitation for a commercial product, it does not
seem unreasonable to ask developers of experimental instru-
ments to download a common browser. In December 2016,
Chrome had more than 50% share of desktop browsing,8 and
even more users have Chrome on their computer. An exam-
ple of basic MIDI interaction with CodeCircle can be found
at http://live.codecircle.com/d/H7TL6qMDf4QSxxjn5.

4.5 WebSockets
The most secure and rich method for two-way data exchange
between browser and server is currently via the WebSocket
protocol. For communication between sensors and browsers
running on the same computer, WebSockets require that a
server be running locally. Although this is somewhat incon-
venient, it is not an insurmountable obstacle.

Many manufacturers provide WebSocket software that fa-
cilitates communication with their devices. For example,
Myo’s daemon9 and BITalino’s python server10. Communi-
cation with a Myo can be seen in Figure 3.

WebSockets can also be a general transport for Open
Sound Control.[14] We have developed a stand-alone NodeJS

4https://www.w3.org/TR/gamepad/
5https://w3c.github.io/gamepad/extensions.html
6https://webaudio.github.io/web-midi-api/
7http://caniuse.com/#feat=midi – accessed 19 January
2017
8http://gs.statcounter.com/
#all-browser-ww-monthly-201612-201612-bar
9https://github.com/logotype/myodaemon

10https://github.com/BITalinoWorld/python-serverbit

Figure 3: Myo data is captured over websockets,
visualized, and used, with RapidLib to control pa-
rameters of a synthesizer implemented in MaxiLib.
Page by Francisco Bernardo

server11 that passes OSC packets to and from the browser,
and a special build of CodeCircle that understands OSC.
Users of OSC-enabled software can send OSC to the server
over UDP.

4.6 WebRTC
WebRTC is a protocol for real-time communication between
browsers[1], and allows for peer-to-peer exchange of audio,
video, and control data. Incoming audio buffers can be
passed to maxiLib as arrays of 32-bit floats for processing
and/or feature extraction. An example using MFCCâĂŹs
for texture/style recognition can be found at https://live.
codecircle.com/d/kpebzng3rPcCFnLnY

5. EVALUATION
5.1 CodeCircle
CodeCircle’s offers a superset of the features available in
other, similar systems, including Gibber, codepen, jsfiddle
and livecodelab.[3] In addition it offers rapid access to me-
dia libraries, as mentioned above. CodeCircle has been used
as a research workbench for computing education pedagogy,
where its detailed analytics capabilities were used to exam-
ine coding behavior in student programmers [16]. It has
been used as the programming IDE for an audiovisual pro-
gramming MOOC 12 wherein approximately 500 users were
active on the system for a period of 6 months. It is soon to
be used in larger scale research studies with thousands of
users, in a new computer music MOOC and with an under-
graduate cohort.

5.2 RapidLib
User-centered design is one of the core methods of Rapid-
Mix; the design of RapidLib has been repeatedly prototyped
and tested with the aim of creating a machine learning API
that was both simple and powerful, especially for users in
musical and artistic domains. Public documentation of this

11http://gitlab.doc.gold.ac.uk/rapid-mix/rapid_web_
service

12https://kadenze.com



development can be found on the project website: http:

//rapidmix.goldsmithsdigital.com/downloads/

We recently ran a hack-a-thon run with a version of RapidLib
wrapped as a JUCE library. JUCE is an open-source cross-
platform C++ application framework, used for the develop-
ment of desktop and mobile applications.13 Approximately
twenty proficient C++ developers were asked to implement
machine learning using RapidLib at a one-day event in Lon-
don. In general, participants felt that the JUCE RapidLib
module was a capable tool to achieve their desired hacks.
After a short introduction to machine learning, participants
were able to easily navigate the JUCE RapidLib module
code and documentation and seemed comfortable using it.

There were, however, some conceptual misunderstand-
ings among the participants, particularly when distinguish-
ing between classification or regression models. There was
also a desire for more insight into and control of the train-
ing process, particularly with large data sets where training
seemed particularly CPU intensive. The need for a feature
extraction stage between sensor or audio input and machine
learning was also noted. A full write-up of this evaluation
will be available at the Rapid-Mix website by the time of
publication.

6. CONCLUSIONS & FUTURE WORK
Fiala, Yee-King, and Grierson[3] evaluate the design fea-
tures of CodeCircle in comparison to Gibber[10], among
others. Gibber is a mature environment for live audio and
media coding in browsers. Whereas MaxiLib pursues effi-
ciency through the use of asm.js and its potential for Ahead-
of-Time (AOT)compilation, Gibberish generates code opti-
mized for Javascript’s Just-in-Time (JIT) compiler. More
research is called for to evaluate the functional differences
between these two approaches.

Rapid-Mix is an ongoing project, and there is a long road
map of features to be added that would improve instrument
prototyping. We are currently integrating more machine
learning algorithms into the API, including algorithms that
support recognition of gestures in time[5], rather than just
states. We also plan to expose feature extractors from Max-
imillian, Pipo14, and Essentia[2].

Although training is reasonably efficient with smaller data
sets, users of larger data sets have expressed frustration. It
would be possible to introduce web workers into RapidLib
to expedite training with large data sets and preserve UI re-
sponsiveness during that process by moving training out of
the main page thread. Unfortunately, Emscripten does not
currently support transpiling of multithreaded C++ code,
so threading optimizations would need to be implemented
separately for each programming language.

7. ACKNOWLEDGEMENTS
The work reported here was supported in part by RAPID-
MIX, an EU Horizon 2020 Innovation Action: H2020-ICT-
2014-1 Project ID: 644862.

8. REFERENCES
[1] A. Bergkvist, D. C. Burnett, C. Jennings, and

A. Narayanan. Webrtc 1.0: Real-time communication
between browsers. Working draft, W3C, 91, 2012.

[2] D. Bogdanov, N. Wack, E. Gómez, S. Gulati,
P. Herrera, O. Mayor, G. Roma, J. Salamon, J. R.
Zapata, and X. Serra. Essentia: An audio analysis

13https://www.juce.com/
14http://ismm.ircam.fr/pipo/

library for music information retrieval. In ISMIR,
pages 493–498. Citeseer, 2013.

[3] J. Fiala, M. Yee-King, and M. Grierson. Collaborative
coding interfaces on the web. Proceedings of the
International Conference on Live Interfaces, pages
49–57, June 2016.

[4] R. Fiebrink and P. R. Cook. The wekinator: a system
for real-time, interactive machine learning in music.
In Proceedings of The Eleventh International Society
for Music Information Retrieval Conference (ISMIR
2010)(Utrecht), 2010.

[5] J. Françoise, N. Schnell, and F. Bevilacqua. A
multimodal probabilistic model for gesture–based
control of sound synthesis. In Proceedings of the 21st
ACM international conference on Multimedia, pages
705–708. ACM, 2013.

[6] M. Grierson. Maximilian: A cross platform c++
audio synthesis library for artists learning to program.
In Proceedings of the International Computer Music
Conference, New York, 2010.

[7] B. Hartmann, L. Abdulla, M. Mittal, and S. R.
Klemmer. Authoring sensor-based interactions by
demonstration with direct manipulation and pattern
recognition. In Proceedings of the SIGCHI conference
on Human factors in computing systems, pages
145–154. ACM, 2007.

[8] D. Herman, L. Wagner, and A. Zakai. asm. js:
Working draft 18 august 2014. Available online at
asmjs. org/spec/latest. Accessed January 2017, 2014.

[9] A. Momeni and D. Wessel. Characterizing and
controlling musical material intuitively with geometric
models. In Proceedings of the 2003 conference on New
interfaces for musical expression, pages 54–62.
National University of Singapore, 2003.

[10] C. Roberts and J. Kuchera-Morin. Gibber: Live
coding audio in the browser. In ICMC, 2012.

[11] C. Roberts, G. Wakefield, and M. Wright. The web
browser as synthesizer and interface. In NIME, pages
313–318, 2013.

[12] N. Schnell, S. Robaszkiewicz, F. Bevilacqua, and
D. Schwarz. Collective sound checks: Exploring
intertwined sonic and social affordances of mobile web
applications. In Proceedings of the Ninth International
Conference on Tangible, Embedded, and Embodied
Interaction, pages 685–690. ACM, 2015.

[13] C. Wilson. A tale of two clocks - scheduling web audio
with precision. Available online at:
https://www.html5rocks.com/en/tutorials/audio/scheduling/.

[14] M. Wright. Open sound control: an enabling
technology for musical networking. Organised Sound,
10(03):193–200, 2005.

[15] L. Wyse and S. Subramanian. The viability of the
web browser as a computer music platform. Computer
Music Journal, 37(4):10–23, 2013.

[16] G. M. Yee-King, Matthew and M. d’Inverno. Do
student programmers learn differently in stem and
steam lessons. 2017, in press.

[17] A. Zakai. Emscripten: an llvm-to-javascript compiler.
In Proceedings of the ACM international conference
companion on Object oriented programming systems
languages and applications companion, pages 301–312.
ACM, 2011.


